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Abstract— The strong demand for more automated transport 

systems with enhanced safety, in conjunction with the explosion 

of technologies and products implementing machine learning 

(ML) techniques, has led to a fundamental questioning of the 

trust placed in machine learning. In particular, do state-of-the-art 

ML models allow us to reach such safety objectives? We explore 

this question through two practical examples from the railway 

and automotive industries, showing that ML performances are 

currently far from those required by safety objectives. We then 

describe and question several techniques aimed at reducing the 

error rate of ML components: model diversification, monitoring, 

classification with a reject option, conformal prediction, and 

temporal redundancy. Taking inspiration from a historical 

example, we finally discuss when and how new ML-based 

technologies could be introduced. 

Keywords— machine learning, safety, certification, probabilistic 

assessment, trustworthiness. 

I. INTRODUCTION 

Recent efforts in developing next generation transportation 

systems bet on significant contributions from machine 

learning-based predictive models to implement highly 

automated functions. Yet, despite the impressive progress seen 

in recent years, many questions remain open in regard to the 

capacity of such statistical models to comply with existing 

safety standards. Here we focus on one such central question: 

is the error rate of current state-of-the-art ML models low 

enough to allow the implementation of safety-critical 

functions? 

 

In this paper, we explore this question through two examples 

from the railway and automotive industries and make the 

following contributions: 

- In Section II, we note that the performances of ML-based 

detection systems used in each of the two use-cases is orders 

of magnitude lower than that required to reach safety 

objectives (or at least for now, or to reach it directly, i.e., 

without non-ML software components). 

- In Section III, we describe potential directions for safe 

integration of ML models: can we use several redundant ML 

models in parallel? Can the ML component be monitored by 

rejecting specific inputs or changing the (confidence of the) 

outputs when needed? Can we improve ML performances with 

temporally redundant inputs? We report experimental results 

from the ML literature indicating that these solutions can be 

useful, but are currently not at all sufficient to reach safety 

objectives. Since some of these techniques reduce the 

availability of the ML component, we also discuss the 

availability-reliability trade-off that naturally appears. 

- Finally, in Section IV, we take a historical perspective on 

how technologies were introduced in the past and try to relate 

it to (and differentiate it from) how ML-based technologies 

can be introduced. 

 

From a pedagogical viewpoint, this paper targets a mixed 

audience of safety engineers and ML researchers. We hope it 

can help highlight some key concepts and refocus research 

efforts on relevant topics from the safety perspective. 

In this document we focus our analysis exclusively on the 

performance of ML models, since they have recently shown 

considerable success in many complex tasks, and they 

currently represent the dominant AI paradigm used in many 

industrial applications. Other AI-flavored techniques are not 

discussed here, even if they may partly address some of the 

issues raised in this paper. 

 

Related works. The question of ML reliability and 

trustworthiness for integration to safety-critical systems has 

received a lot of attention recently. Many projects, institutes or 

working groups (e.g., ANITI, DEEL, SafeAI, the EUROCAE 

WG-114 and SAE G-34, ISO TC22/SC32/WG14, ISO-IEC 

JTC1/SC42/WG3, RISE SMILE), as well as workshops or 

conferences (e.g., AAAI-SafeAI, MLCS, WAISE, ERTS, 

Future Intelligence) were created to address these challenges. 

Though several reports and papers have been published very 

recently (e.g., white paper from DEEL [1], CoDANN II [2], 

[3]), many questions remain open. 

Authors from the DEEL project [3] provide a thorough review 

of existing methods aimed towards the certification of ML-

based software in critical systems. 

Work by authors from RISE SMILE project series [4] provides 

another review of verification and validation methods that aim 

to embed ML technologies into automotive critical systems. 

The authors highlight the gap between current standards and 

the ML-based software engineering and conclude that "ISO 

26262 largely contravenes the nature of DNNs". They 

enumerate and discuss several challenges and directions 

towards new methods and norms for certifying critical systems 

based on ML. 
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A similar assessment is provided by [5], which claims that ISO 

26262 cannot appropriately manage ML-based software and 

propose new measures to adapt the current norms. 

From the side of ML literature, many papers have addressed 

properties such as generalization, robustness, or explainability 

[6], [7], [8], [9], [10], yet we argue that none of these results 

alone can layout the necessary safety foundations for ML-

based critical systems, at least for now. 

 

II. FROM ML PERFORMANCE TO SAFETY OBJECTIVES 

A. ML performance and safety objectives  

In ML parlance a model refers to a software implementation of 

some stochastic function which provides predictions on unseen 

samples from a given input domain. In the context of system 

engineering, a function implements a decision to be taken, 

given the available information and constraints. Its role is to 

implement the necessary logic in order to alter or to maintain 

the current state of the system, according to a given 

specification. 

Safety analysis seeks to establish causal links between the 

erroneous components, the decisions taken by the system and 

the foreseeable failures.  

Safety objectives can be formulated in terms of acceptable 

failure rates for each critical function implemented by a 

system. In industrial standards the acceptable failure rates are 

expressed as number of average failures per hour of operation. 

In addition, assurance levels are considered: e.g., DAL (Design 

Assurance Level) for aviation industry, as introduced by 

ARP4754 [11] [12] [13] [14], SIL (Safety Integrity Level) for 

industry in IEC 61508 standard [15],  adapted for Railway 

systems in EN 50126 [16] [17] [18], and tailored in ASIL 

(Automotive Safety Integrity Level) in ISO 26262 [19]. Least 

stringent levels of performance require less than 10-3 failures 

per hour for such functions, while the strictest one generally 

require less than 10-9 failures per hour on average1. 

In order to assess whether an ML-based function complies 

with the safety objectives it is thus essential to estimate its 

failure rate. While everyone can acknowledge that there is a 

close dependency between the error rate usually reported in the 

ML literature and the failure rate of the system relying on ML 

predictions in operation, the exact relationship is far from 

obvious to describe analytically. Moreover, this relation is use-

case dependent. 

In this section we consider ML-based components for which 

every decision relies on a single prediction provided by the 

ML model. To conduct a rigorous safety assessment of a ML-

based component it is key to estimate its error rate per hour of 

operation of the system, based on some set of assumptions and 

empirical observations. 

We can draw here a parallel between the methods used to 

compute error rates for hardware components and for ML-

based components. At first glance the comparison seems 

appropriate as both types of components are characterized by 

stochastic processes. 

For most ML models these estimates can be computed from 

observational data, by sampling the operational domain. 

 
1 ML technologies are not completely covered by any safety 

standard/norm today, even recent ones like SOTIF [53]. In this 

paper, we consider that, due to its probabilistic nature, it makes 

sense to allocate to the ML components some probabilistic 

objectives, based on the analogy with HW components, or the 

system level components. 

Depending on the sampling schemes and other assumptions 

used to compute it, statistical guarantees can be obtained with 

respect to the gap between the empirical error rate (i.e. 

computed from the sampled observations) and the true error 

rate (the one that would have resulted by performing the 

computation on all possible observations of the entire 

operational domain). 

On the other hand, error rates of hardware components are 

reported after performing experiments in various regimes 

(normal operation, operation under stress, accelerated aging, 

etc.) and calibrating some expected distributions for the error 

rates as to closely match this empirical evidence. Failure rates 

of the system embedding them are then estimated according to 

various failure analysis tools and methods (FTA, FMEA, 

Human Factor Analysis, Functional Hazard Analysis, etc.). 

Most of these methods rely on assumptions and practices that 

must be used with a lot of attention for ML components (e.g., 

sub-components may not be independent as shown in 

Section III.A, the error distribution in operation is unknown, 

etc). Thus, in order to make accurate estimations of error rates 

for ML-based functions, one must rely almost exclusively on 

empirical observations (for now) of the actual behavior of 

these functions in operation-like scenarios. In order for these 

to be statistically significant, they require a large number of 

samples to be collected in real-life scenarios. For example, this 

would require at least 100 000 hours of operational testing 

(obviously simulation can help to accelerate the time) to 

decide whether the expected failure rate of a ML-based system 

function is lower than 10-5 errors per hour, and this under the 

stringent assumption that all the predictions provided by the 

ML model are i.i.d. over training and operation. The further we 

are from these assumptions, the more samples we would need 

to gather in order to reach such conclusions. Unless prior 

knowledge regarding mathematical properties of the 

operational domain and / or of the ML model, we are required 

to perform extensive testing in order to be able to guarantee 

statistically sound estimations of the error rate. In spite of 

these challenges, it can be useful to estimate the error rate 

under idealized assumptions. If the safety objectives are met in 

these conditions, further refinements (i.e., under realistic 

assumptions) should be conducted, but if they are far from 

being satisfied, the negative conclusion is a good indication 

that safety objectives are difficult to prove in realistic 

conditions.  

B. Two examples from the railway and automotive domains  

To illustrate the large gap between the performance of ML 

system and the targeted safety objectives, let us consider two 

examples: a computer vision system used in the railway 

domain, and a weather prediction system used in the 

automotive domain.  

1) Railway and computer vision  

Functional description. In our first example, we consider a 

railway automatic signal reading system. This system aims at 

recognizing the state of a light signal applicable to a train, a 

task that is currently performed by train drivers. 

Figure 1 gives an overview of the actions performed by a train 

driver. The system shall determine the indication of the signal 

automatically. The system must be able to operate in any 

environmental conditions in the open world of a typical 

railway infrastructure. This includes scenarios where the signal 

can be partially occluded by vegetation or due to some weather 

condition (fog, snow, etc.) or damaged. The recognition 

system relies on a ML-based computer vision model. The 

system takes in input an image (coming from a camera in front 

of the train) in which the approximate location of the signal is 
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known. This allows us to use a bounding box and thus to limit 

the detection effort of the signal in the complete image. In the 

end, the ML model has to cope with a small image containing 

only one signal that shall be classified. 

This use-case features two interesting properties with respect 

to the objective of our study: it implements a simple task 

(recognizing a light signal) and it operates in an open and 

weakly structured environment. 

 
Figure 1 : Action performed by a train driver. 

 

Safety objective. The analysis of the current human-operated 

system leads to an average target of maximum 10-5 failures per 

hour, which is the observed number of failed recognitions of a 

red signal per hour of driving on average. This in turn 

corresponds to 10-5 failures for red signal recognition if we 

consider the number of red signals that a train driver usually 

encounters during a journey, which is one red signal per hour 

on average. The red signals are the most critical ones, and this 

consideration determines the safety objectives that we consider 

here for the ML system that shall recognize the signals, in 

particular red signals. 

ML performances compared with safety objective. As of today, 

in the performance results carried out on test sets deemed 

representative of real-world situations the best classification 

models achieve on average 10-2 errors per signal. 

Compared with the safety objective, the order of magnitude of 

the observed performance is clearly insufficient.  

 

2) Automotive and weather prediction 

Functional description. Let us consider an assisted driving 

service using weather data to enhance the safety of the driving 

experience. Concretely, this service predicts the state of the 

road surface (icy, wet or dry) from various weather-related 

indicators (e.g., air temperature, humidity and water level on 

the road surface) available at any given location. This ML-

based predictive system is used to implement an assisted speed 

management system as a highly automated driving function 

(HAD). The system takes control from the driver and handles 

the vehicle accordingly in scenarios deemed safe, while 

handling the control to the driver in the remaining situations. 

 

Safety objective. The proposed ML-based service is expected 

to introduce some risks, especially when the predictions of the 

road conditions are erroneous (e.g., the road surface is deemed 

dry instead of wet or icy and the vehicle moves at high 

speeds). In such scenarios, due to its autonomous nature, the 

HAD function reduces the controllability of the vehicle, which 

potentially increases the risks of collisions. For this reason, the 

expected failure rate that would qualify as minimally safe by 

current automotive standards is 10-5 errors per hour2. 

 
2 This requirement mainly arises from two assumptions: 1) as 

explained in II.A a probabilistic objective is allocated to the 

 

ML performances compared with safety objective. The 

described service relies on an ML-based prediction model 

which computes periodically the road conditions in the near 

future based on recently observed weather-related data, for 

each square tile of size S of the Earth's surface. Each vehicle 

having enabled such a service would make a request for a new 

prediction periodically, depending on its geographical 

position. A very simplistic model in which the vehicle is 

considered to move at a constant speed, a periodic tile change, 

and an error rate per prediction (ML error rate) of 0.01, leads 

to a failure rate of 0.5 failure per hour. Again, to reach the 

required safety objectives, it would be necessary for this error 

rate to be orders of magnitude lower. 

C. The Gap 

We concluded in the two use-cases above that the ML 

performances are several orders of magnitude below those that 

would be required to reach the safety objectives. Such a gap 

should not be omitted by the new guidelines aiming for the 

integration of ML into safety-critical systems. 

In addition, neither rigorous software development efforts nor 

properly documented data collection rules are sufficient to 

reduce the gap between the actual performance of ML 

components and the safety objectives. Even a properly coded 

ML model trained on properly collected data could lead to 

unacceptable error rates—at least for now. 

Does this mean there are no hopes for integration of ML 

components into safety-critical systems? We believe not but 

urge to pursue research efforts. 

III. RECONCILING SAFETY OBJECTIVES WITH MACHINE 

LEARNING PERFORMANCES?  

Generally speaking, the prediction performances of ML 

models can be enhanced either by improving the data 

management and processing or the model’s engineering. 

Enhancing performances with data can be done by collecting 

more data, by improving their quality, by including more 

diverse sources of data (e.g., sensors), by exploiting certain 

constraints or properties of the operational domain, etc. 

Obviously, more data usually means dealing with more 

uncertainty, therefore obtaining overall better performances is 

not guaranteed. 

From the model's engineering viewpoint, we can apply various 

techniques to improve, e.g., robustness, generalization or 

explainability of the models. 

Next, we focus on possible solutions to decrease the error rate 

of ML components. We first question the possibility of using 

several redundant ML systems in parallel (Section A). Then, 

we describe methods that either detect inputs potentially 

leading to erroneous predictions (Sections B and C.1), or that 

are allowed to output less precise predictions for hard-to-

classify inputs (Section C.2). We finally question the 

possibility of using temporally redundant inputs (Section D).  

Part of these methods reduce the ML model’s availability by, 

e.g., ignoring its predictions in some situations. We thus also 

discuss the availability-reliability trade-off that arises there. 

 

A. Model diversification  

Using several redundant components in parallel is a classical 

way to reduce the failure rate of a system when the 

 

ML component 2) the predicted state of the road is not the 

only information used by the envisaged system, this particular 

contribution being considered as ASIL C or B. 
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components' failures are independent (and when the costs 

incurred by the additional components are justified from the 

safety perspective). Though it is very natural to implement 

redundant ML systems, it is now known that the independence 

assumption is hard to ensure in practice. As an illustration, 

Figure 2 below shows on the ImageNet dataset how the joint 

error rate of 𝑛  ML models in parallel would decrease as a 

function of 𝑛  if the models' errors were independent 

(exponential decrease, in blue), and how this joint rate actually 

decreases in practice (slow decrease, in red). For any value 

of 𝑛 , we considered the first 𝑛  models in the list 

{EfficientNet,DenseNet121,ResNet50V2, 

MobileNet,VGG16models}, which are state-of-the-art deep 

learning models for this dataset. We say we have a joint error 

if all 𝑛 models make a prediction error simultaneously. 

 
Figure 2: joint error rate versus number of redundant ML models 

Of course, we cannot conclude from Figure 2 that it is 

impossible to build independent (and accurate) deep learning 

models. What if we tried to get more diverse models, such as 

models trained with different hyperparameters, loss functions 

or optimization procedures, models with different 

architectures, or models trained on different datasets? Though 

somewhat negative answers were formulated by [20] (about 

standard ImageNet deep learning models) and by [21] (about 

bootstrapping deep learning models), the very recent paper 

[22] provides a more positive answer. The authors show that 

significantly different training methodologies can in fact lead 

to models with partially uncorrelated errors or, equivalently, 

models that err on partially disjoint test points. More precisely, 

for a pair of models, let us call "error inconsistency" the 

proportion of test points for which only one model errs (while 

the other is correct). On ImageNet, the authors show that two 

different optimization objectives (supervised versus 

contrastive learning) can yield an error inconsistency of around 

13%, while it can go up to approximately 20% for models that 

are trained on two different datasets. 

 

Though the results of [22] indicate that it is possible to build 

diverse models, they do not reach the diversity level that 

independent models would do: for two models with around 

𝑝 = 25% test error rate (as was the case in that paper), if the 

two models were independent, the error inconsistency would 

be of 2𝑝(1 − 𝑝) = 0.375, which is larger than the proportions 

of 13% or 20% mentioned above. Nonetheless, as shown by 

[22], producing diverse ensembles of deep learning models can 

help increase the ensemble test accuracy. For instance, two 

very diverse models trained with supervised learning on the 

one hand and contrastive learning on the other hand, both with 

about 75-76% test accuracy on ImageNet, were shown to 

achieve about 83% after ensembling. The main reason seemed 

that these diverse models specialize to two (partially) different 

subdomains of the data. Note that the gain in accuracy is 

however not as high as the one we could hope to get with 

independent models and remains orders of magnitude worse 

than that prescribed by safety objectives. 

 

Two natural yet important-for-safety remarks should be made. 

First, the fact that two ML models do not have independent 

test errors is not at all surprising, since the two models are 

evaluated on the same test points, with the same inputs. There 

can be test points that are easy to classify with both models, 

while other points can be hard to classify for both models (e.g., 

occluded images for which the ground truth is not at all 

readable), even if these two models were trained on different 

datasets. This indicates that their failure modes are typically 

not independent. Second, if we accept to work only with 

`partially independent’ models, estimating their error 

correlation accurately seems at least as hard as estimating the 

error rate of the ensemble itself (that is, the model after 

consolidation). It is thus not obvious a priori how one could 

leverage partial independence to prove safety at system level 

by combining low-reliability ML components. While the 

independence assumption is common in many safety analysis 

methods when combining various components, and helps 

prove a small system failure rate by, e.g., multiplying 

individual error rates, the formula to combine individual error 

rates is not known a priori when ML is involved. 

 

B. Monitoring 

Monitoring techniques are common means for detecting 

unexpected inputs or conditions that could lead to erroneous 

output of a system. Once those events are detected, prevention, 

recovery, or passivation actions can be taken to prevent an 

unsafe failure of the system. Those events may be due to the 

activation of intentional (cyber attack with malicious purpose) 

or unintentional errors, as shown in the following table.  

 

Category External Internal 

Intentional Spoofing,  

adversarial attacks 

Not relevant 

Unintentional Out Of Distribution 

inputs 

Lack of robustness,  

Inconsistent behavior  

 

Different monitoring approaches can be used: 

• ODD (Operational Design Domain) Monitoring [23] 
verifies that the ML-based system is operated in its 
usage domain (e.g., range of brightness, temperature, 
speed…) 

• OOD (Out Of Distribution) Monitoring [24] [25] 
ensures that the ML Model operates in the distribution 
defined during the training process. Monitoring 
techniques include distance-based approaches, One-
class classification, probabilistic approaches, 
reconstruction approaches, etc. 

• Attacks monitoring [26] allows to detect adversarial 
attacks. It can be based on Input source diversification, 
properties imposed at design phase, ML adversarial 
detector, prediction inconsistency, etc. 

• Robustness monitoring ensures that the ML Model is 
used in a stable area. Robustness can be verified using 
constraint  programming, abstract interpretation, 
geometrical approaches, statistical approaches, etc. 

• Consistency monitoring analyzes the consistency of 
outputs with the inputs. In particular, inconsistent 
sequences of outputs can be detected using Detection 
of unstable states, Functional rules, etc. 
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In this paper, for reason of space, we will focus on OOD and 

Robustness monitoring, presenting an overview of State-of-

the-Art techniques and their application for monitoring. 

 

1) OOD Monitoring 

The monitoring of Out-of-distribution (OOD) is a complex 

topic, often related to the detection of anomalies and to the 

underlying question of input normality. OOD inputs 

correspond to samples that seem to be drawn from a 

distribution different from the one used during training. 

Indeed, the use of a training data distribution representative of 

the real-world data is crucial for the quality of the learning 

process and the adequacy with the operational domain. 

However, the capabilities of the trained model to fulfill its task 

and the probabilistic guarantees on the model performances 

can only be ensured for the same type of data that it has seen 

during training. Therefore, OOD monitoring focuses on the 

detection of inputs that do not correspond to the normality 

represented by this training distribution. This led to families of 

OOD detection techniques relying on an estimation of the 

similarity between a sample and the ones seen during training, 

such as distance-based approaches [27] or one-class 

classification [28]. This kind of techniques can be used for 

obvious tasks like detecting major anomalies in the data, for 

instance when the expected task cannot be performed on the 

input (e.g., a picture of a dog given to classifier trained on 

digits). However, it can be harder to specify for elements 

belonging to the tail of the distribution, where we could also 

expect to rely on the generalization capability of the model. 

For this reason, these techniques always use a form of 

threshold on the similarity to discriminate OOD from ID 

inputs, and this choice of threshold will have a direct impact 

on the availability of the function.  

Furthermore, we also need to consider the question of the 

performance of OOD detection methods, which is addressed in 

a few papers [29, 30]. These articles compare the various 

techniques of the literature on dedicated datasets, typically 

with various images corruptions and noises, or representing 

industrial defects. It is worth noting that one major result of 

these comparisons is the inconsistency of most techniques, 

which may perform exceptionally well on specific types of 

simple corruptions (up to 100% detection) but may perform 

below average on others. Moreover, on complex tasks, or in 

high dimension, the average accuracy of the best methods 

remains particularly low, typically below 80% for realistic 

settings. 

In the railway use case, we considered primarily the detection 

of OOD inputs as a means to detect unreadable signals, which 

could be caused by several things: 

• An occlusion by an environmental element (e.g., a 

pole, a bird, or a tree) which makes the signal 

partially or entirely unreadable. We also consider 

other environmental elements such as fog or 

brightness issues, even if these could be easily 

associated with other types of monitoring such as the 

ones based on robustness. 

• A failure in the cropping algorithm (e.g., crop of a 

wrong area of the picture, an issue in the crop size, a 

crop of the wrong signal, etc.), which may result in 

the absence of the expected signal on the input 

• A defective sensor, (e.g., a failure of the camera lens), 

could be detected with a robustness monitoring, but 

the resulting ML images will be unreadable, and the 

OOD detection should trigger as well in this case. 

 

In fact, most of these root causes can be monitored separately 

from the ML component, but the OOD detection appears to be 

valuable, as it can cover all these cases independently from the 

cause. However, the rate of potential OOD inputs is an 

important factor, as it is considered to be very low in our case 

(less than 10-4). Moreover, it is important to remember that an 

input classified as OOD does not necessarily mean that the 

model will not be able to perform its task correctly, only that 

the model performances cannot be guaranteed. This is 

especially true for partial occlusions, for which there is no way 

to define how much of the signal needs to be occluded before 

considering it unreadable.  

If we take into account the poor performances of OOD 

detection methods, we can safely consider that a method 

providing a true positive rate of 80% or 90% with a detection 

threshold chosen to have 1% false alarms is an excellent 

method in this realistic setting. In our use case, if we consider 

an expected OOD rate of 10-4, the benefits of the OOD 

detection appear to be very limited: the few OOD inputs 

detected will not change significantly the accuracy of the 

model, but the availability will drop from 100% to 99% due to 

the false alarms. In this situation, the use of OOD monitoring 

mechanism will be damaging the availability without 

improving the reliability, but it should not be the same for 

systems with higher expected OOD rates. A general formula 

will be detailed in the following section with a numeric 

analysis on Robustness monitoring for which the conclusions 

are transferable to other types of monitoring. 

 

2) Robustness Monitoring 

According to the CODANN [2], two types of robustness can 

be considered; either the capability of the learning algorithm to 

produce “similar” models for “close” training datasets; or the 

model stability e.g., if inputs, x and x’ are close then 

predictions f(x) and f(x’) are also close. In this paper, we 

address the runtime monitoring of a trained ML component 

hence we focus the remainder of this section on the state-of-

the-art approaches enabling model stability assessment. 

The model stability is classically specified w.r.t. a measure |. | 
on inputs and outputs to formally capture the “closeness”, thus 

a stable model ensures that for any delta-close inputs (x,x’), 

predictions (f(x),f(x’)) are epsilon-close, that is: 

 

| 𝑥 − 𝑥′| < 𝛿 ⇒  |𝑓(𝑥) − 𝑓(𝑥′)|  < 𝜖 

 

According to [31], a poor robustness radius may indicate a use 

of the component in an unstable decision area hence a potential 

erroneous inference. This instability can typically be exploited 

by errors adversarial attacks. For our use case this may 

indicate that slight modifications of the image may change its 

classification.  

Numerous methods propose to perform at runtime a formal 

robustness checking centered on the received input. Many of 

these methods are founded on the abstract interpretation that 

provides an over-approximation of the ML-component output 

domain for a given input domain i.e., the studied robustness 

ball. The main challenge encountered by these methods is the 

computation resources and the computation time needed to 

compute the output domain. We can especially consider the 

works [32] proposing GPU-based implementation of the 

abstract interpretation to speed-up the analysis process (less 

than 1s second for MNIST). Other works like [33] promote 

new abstract domains to increase both the accuracy and 

efficiency of the computation (1-100s for MNIST). Such 

approaches suffer from over-approximation, thus may consider 

that an input is non-robust whereas it is.  
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Quite different approaches like [34] provide some statistical 

robustness guarantees of local robustness. These methods 

usually rely on the sampling of a set of inputs within the 

studied robustness ball. Such methods could provide a quite 

simple way to assess the local robustness. But as the authors of 

[35] has identified, the main problem is to justify the 

representativeness of the computed statistical bounds since the 

sampling must be performed in conformity with the 

operational input distribution. 

To apply these techniques, one may specify the requested local 

model stability that will be monitored at runtime. At the best 

of our knowledge, very little works propose methods to 

identify the requested robustness radius. One may consider 

that the robustness radius should be derived from the 

specifications of the ML component. Nevertheless, in many 

cases the selection of a robustness radius is difficult to argue 

and even more to relate to the specification. Hopefully, the 

authors of [31] propose a method to identify the expected 

robustness radius out of the training and test data sets. The 

capability of the requested robustness radius to identify 

instability areas at inference time has been assessed in their 

experiments. 

Just like OOD monitoring, the performance of robustness-

based runtime monitoring is paramount to ensure that a safety 

benefit can be achieved with an acceptable impact on system’s 

availability. To address this aspect, we propose a simple 

formulation of the safety/availability tradeoff problem and 

illustrate it thanks to the experiments made by [31]. 

 

3) Safety/Availability Tradeoff 

Let 𝑆  be a simple system containing: 𝑚𝑙 , a ML component 

(e.g., a classifier) and 𝑚 a mechanism validating (or rejecting) 

𝑚𝑙 decisions (e.g., an external monitor). We consider that 𝑚 

can only be triggered (i.e., the prediction of 𝑚𝑙 is not trusted) 

or not (i.e., the prediction of ml is trusted). 

So, for a given input the system generates three possible 

outcomes: 

• a correct output 

• an erroneous-safe output, which covers a) the 

situation where ml generates an incorrect but safe 

output while m has not triggered, and b) the situation 

where the monitor triggers. 

• an erroneous-unsafe output. 

Let us assume that the ML system is free of implementation 

errors and is executed on a error-free hardware. Even with a 

perfect implementation and hardware we consider here that: 

a) ml can produce an incorrect output; b) the occurrence of an 

error (e.g., an OOD input), denoted F, may prevent ml to 

properly process the input. 

In addition, we consider that m is unable to detect any failure 

caused by something else than F. This assumption is 

conservative since a monitoring mechanism, typically output 

monitoring, may also detect other errors like implementation 

or hardware errors. 

The issue is to find the appropriate sensitivity level for m 

allowing complying with both safety and availability 

requirements. To assess the appropriate sensitivity level, one 

must formalize the notion of unsafe and unavailable system.  

Let us consider that ml can either produce a correct result, fail 

safely or unsafely (event 𝑈𝑚𝑙) and m can either be triggered 

(denoted T) or not. Let 

• 𝑃(𝑈𝑚𝑙|¬𝐹) = α𝑚𝑙  be the conditional probability 

that the component fails unsafely knowing the 

failure F does not occur. 

• 𝑃(𝐹) = 𝜆 be the probability of occurrence of F on 

demand 

• 𝑃(𝑇|¬ 𝐹)  = 𝛿 be the false positive rate  

• 𝑃(¬ 𝑇|𝐹) = 𝛾 be false negative rate.  

 

a) General case 

The scenarios leading to an unsafe failure (Unsa) are (a.1) F 

occurs and (a.2) m fails to detect it and (a.3) ml fails unsafely 

or (b.1) F does not occur and (b.2) ml fails unsafely and (b.3) 

m does not spuriously detect F, i.e. 

 

    
 𝑃(𝑈𝑛𝑠𝑎) = 𝑃(𝐹, 𝑈𝑚𝑙 , ¬ 𝑇) +  𝑃(¬ 𝐹, 𝑈𝑚𝑙 , ¬ 𝑇)

= 𝑃(𝑈𝑚𝑙 , ¬𝑇|𝐹)𝜆 + 𝑃(𝑈𝑚𝑙 , ¬𝑇|¬𝐹)(1 − 𝜆)
 

 

Similarly, S is unavailable (Unav) when m is triggered. 

Among these scenarios some are expected since ml must not 

be used when F occurs. So, we propose to consider the 

scenarios where S is unavailable even if F did not occur, that 

is: 

 

𝑃(𝑈𝑛𝑎𝑣)  =  𝑃( ¬𝐹, 𝑇)  = 𝛿(1 − 𝜆) 

 

b) Simplifications 

Correlation between 𝑈𝑚𝑙  and F. If ml is likely to produce an 

unsafe output when F occurs that is 𝑃(𝑈𝑚𝑙 , ¬𝑇|𝐹) ≃
 𝑃(¬𝑇|𝐹), then: 

 

𝑃(𝑈𝑛𝑠𝑎)  = 𝛾𝜆 +  𝑃(𝑈𝑚𝑙 , ¬𝑇|¬𝐹)(1 − 𝜆) 

 

Correlation between 𝑈𝑚𝑙 , ¬𝑇  and ¬𝐹 . Additionally if we 

consider that the ability of ml to produce an unsafe output 

when F does not occur is similar when F does not occur and 

the m confirms it, that is 𝑃(𝑈𝑚𝑙|¬𝐹) ≃  𝑃(𝑈𝑚𝑙|¬𝑇, ¬𝐹) then: 

𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝛼𝑚𝑙(1 − 𝛿)(1 − 𝜆) 

 

Robustness monitoring. Let us consider that F is an input in an 

unstable area for ml. We will consider that the ml component 

is very likely to produce an erroneous output if F occurs. 

Additionally, we assume that the robustness monitor does not 

significantly reject robust data. 

Hence one may use the following formula for Unsa and Unav: 

 

𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝛼𝑚𝑙(1 − 𝛿)(1 − 𝜆) 

𝑃(𝑈𝑛𝑎𝑣) = 𝛿(1 − 𝜆) 

 

Concerning abstract interpretation-based monitoring; some 

numerical values can be extrapolated from the Figure 1a of 

[31]. Let us consider a robustness radius of  10−2 , if we 

assume that their experiments (made over 100 images) can be 

generalised then we have: 

𝑃(𝐹|¬𝑈𝑚𝑙)  =  3.6 ⋅ 10−2       𝑃(𝐹|𝑈𝑚𝑙) =  6.3 ⋅ 10−1 

The initial accuracy of the FNN-MNIST is 95.8%, let us 

consider that any misclassification is unsafe we have: 

𝑃(𝑈𝑚𝑙)  =  4. 2 ⋅ 10−2 

One may estimate 𝜆 as follows: 

𝑃(𝐹) =  𝑃(𝐹|𝑈𝑚𝑙)𝑃(𝑈𝑚𝑙) + 𝑃(𝐹|¬𝑈𝑚𝑙)(1 − 𝑃(𝑈𝑚𝑙))

=  6.1 ⋅ 10−2 

The performance of the ML model without F can be computed 

as follows: 

𝛼𝑚𝑙 = 𝑃(𝑈𝑚𝑙|¬𝐹) = 𝑃(¬𝐹|𝑈𝑚𝑙)
𝑃(𝑈𝑚𝑙)

𝑃(¬𝐹)
=  1.65 ⋅ 10−2 

Let us consider that we are using the approximate robustness 

radius computation whose performance are depicted on the 

Figure 1b of [31].  This monitor will compute an under-
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approximation of the exact robustness ball (i.e., it is a 

pessimistic monitor) so there are only false positives w.r.t. F 

that is images that are rejected even if their true robustness is 

above the threshold. So, we have 

𝛼𝑚𝑙 = 1.65 ⋅ 10−2          𝛿 =  1.5 ⋅ 10−2 

     𝜆 =  6.1 ⋅ 10−2        𝛾 =  0 
 

The resulting unavailability and safety measures are: 

     𝑃(𝑈𝑛𝑠𝑎) = 1.53 ⋅ 10−2      𝑃(𝑈𝑛𝑎𝑣) = 1.4 ⋅ 10−2    
 

Thus, according to the experiments of [31], adding the online 

robustness monitoring enhances slightly the integrity (𝑃(𝑈𝑚𝑙) 

/ 𝑃(𝑈𝑛𝑠𝑎)  ratio is approximately 2.7) with a one percent 

availability loss. In this example, the measures quantify the 

probability of misclassification (and lack of classification) per 

image. Let us translate these results for the use-cases of the 

section II.B. For the signal recognition system, the measures 

are expressed per signal. If we assume that the errors are not 

correlated to the signal’s color, we obtain an error rate of 

1.53 ⋅ 10−2  per red signal that is higher than the expected 

10−2 rate. For the automotive use case, the resulting error rate 

with a very simple vehicle model is 7.6 ⋅ 10−1 per hour that is 

not in the same order of magnitude than the expected error 

rate. Note that these numerical values have been obtained 

through experiments considering idealized assumptions [31] 

and there is no conclusive evidence that such detection 

performances could be met during the operation. 

 

Even if the previous assessment of a robustness monitoring 

technique is overly simplistic, it provides and illustrates a 

simple method to assess the contribution of monitoring 

techniques to the safety-availability trade-off. This illustration 

shows that monitoring slightly improves the safety of the 

system but also affects the system’s availability in a non-

negligible way. 

 

C. Reject option and conformal prediction 

We now describe two other mechanisms that allow to detect or 

temper ML errors, by either filtering out some inputs 

(classification with a reject option) or by outputting less 

informative predictions (conformal prediction). From a system 

architecture viewpoint, the reject option is similar to OOD 

monitoring (it filters out inputs that can lead to erroneous 

predictions), though the reject option is meant to be used for 

typical (in-distribution) yet hard-to-classify inputs. 

 

1) Classification with a reject option 

This setting, also known as selective classification, is an 

extension of the multi-class classification setting and has been 

studied for many decades; e.g., [36], [37], [38].  

Given a new input 𝑋 (e.g., an image), the goal is to predict the 

associated label 𝑌 out of several possible labels. An algorithm 

with reject option can decide to predict or not. More formally, 

such an algorithm is given by a selective function 𝑔  and a 

classification model 𝑓. When 𝑔(𝑋) = 1 the algorithm predicts 

the unknown label 𝑌  with 𝑓(𝑋) . When 𝑔(𝑋) = 0 , the 

algorithm refrains from predicting. There are two competing 

objectives, which correspond to the reliability-availability 

trade-off: 

- minimize the selective risk, i.e., the average number 

of errors when the ML algorithm predicts: 

𝑃(𝑌 ≠ 𝑓(𝑋)|𝑔(𝑋) = 1) 

- maximize the coverage, i.e., the proportion of inputs 

for which the ML algorithm outputs a prediction: 

𝑃(𝑔(𝑋) = 1) 

For instance, in the railway use-case described earlier, the 

algorithm could predict or not predict the state 𝑌 of the light 

signal on the input image(s) 𝑋 . A small selective risk 

corresponds to making few errors among the predicted light 

signals. A large coverage corresponds to predicting most light 

signals, leading to a large availability of the ML system. 

Intuitively, there is a trade-off between selective risk and 

coverage: we can reduce the selective risk by rejecting hard-to-

classify inputs 𝑥, but this also reduces coverage. This trade-off 

has been studied theoretically for binary labels and sometimes 

simple models (e.g., [37], [39], [40], [41]), but also empirically 

for multiple labels and deep learning models. For instance, on 

classical benchmarks such as CIFAR-10 or Cats vs. Dogs,  

empirical results from [42], [43] typically show an 

improvement of up to a factor of 2 in the risk when coverage is 

reduced to around 90 – 95%, and up to a factor of 20 for 

around 70% coverage. For other datasets such as CIFAR-100, 

SVHN, and ImageNet, the empirical results from [42] are of 

the same order of magnitude, but the trade-off is less 

favorable: a smaller coverage is needed to achieve the same 

risk reduction. In any case, even on CIFAR-10 for which the 

SelectiveNet algorithm [43] is reported to reduce the risk from 

around 6.7% at full coverage to around 0.3% at around 70% 

coverage, the value of 0.3% is still orders of magnitude larger 

than what would be required from a safety perspective if the 

ML algorithm errors could not be compensated in a drastic 

way. Therefore, the reject option is likely not a sufficient 

solution to fill the gap between safety objectives and ML 

predictive performances, though it should be considered as an 

interesting component towards ML error reduction. 

We should also note that in many safety-related applications 

some errors may be considered more costly than others (i.e. 

carry a higher risk). For example, in our railway use-case, if 

the problem is cast as a binary classification (detect whether 

the image contains a red signal or not), then the type II error 

(missing a red signal) has a far higher risk than the type I error 

(falsely reporting a non-existent red signal). The theoretical 

formalism presented above can be extended to take into 

account this distinction between the types of errors by 

associating a different cost (also known as risk or loss) with 

each one. The new risk minimization criterion then reads: 

minimize 𝑃(𝑓(𝑋) ≠ 𝑟𝑒𝑑, 𝑌 = 𝑟𝑒𝑑|𝑔(𝑋) = 1) +
𝜆𝑃(𝑓(𝑋) = 𝑟𝑒𝑑, 𝑌 ≠ 𝑟𝑒𝑑|𝑔(𝑋) = 1) 

where 𝜆  is the relative cost of making a type I error as a 

fraction of the cost of making a type II error. The coverage 

criterion we seek to maximize remains unchanged. Statistical 

guarantees for this asymmetric cost or risk formulation have 

been explored in the literature and have been successfully 

applied to the medical domain [39]. 

 

2) Conformal prediction 

Conformal prediction is another way to reduce the risk. It 

consists in post-processing an ML algorithm and predicting a 

set 𝐶(𝑥) of possible labels for each new input 𝑥, instead of a 

single prediction 𝑓(𝑥). Now, predictions are made at all times, 

but the fact that 𝐶(𝑥) can contain more than one element is a 

way to reduce the probability of making an error: 𝑃(𝑌 ∉
𝐶(𝑋)). 

In our railway use-case, this means we allow the ML system to 

make predictions with less information (e.g., this light signal 

can be this or that), but with the benefit of making fewer 

errors. This can prove useful as long as labels in the predicted 

set 𝐶(𝑥) do not often correspond to very different decisions. 

Several algorithms have been proposed; see, e.g., [44], [45].  

Typically, 𝐶(𝑥)  is defined as the set of labels with highest 

probability scores at the output of a deep learning model, using 
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a data-driven threshold, and possible regularization when tail 

probabilities are poorly calibrated [46]. 

The aforementioned methods enjoy theoretical guarantees that 

are typically of the following form: given a risk level 𝛼 ∈
(0,1), we can tune the `size’ of 𝐶(𝑋) so that 

𝑃(𝑌 ∉ 𝐶(𝑋)) ≤  𝛼 

Importantly, this guarantee relies on statistical assumptions 

(i.i.d. or exchangeable data), the verification of which can be a 

very difficult task. Furthermore, the probability above is an 

average error which does not imply a guarantee for each 

image, but a guarantee for most images (as those seen in the 

calibration dataset). 

The fact that virtually any ML model can be conformalized (as 

a post-processing step) to yield a probabilistic guarantee as 

above makes conformal prediction an appealing technique for 

safety purposes. This field is currently receiving a lot of 

attention from the ML community, and we hope efforts will be 

made to incorporate safety-specific considerations. 

 

D. Temporal redundancy 

If we focus on the case of systems that may process sequences 

of inputs (e.g., consecutive video frames), it is natural to 

consider exploiting temporal redundancy to consolidate 

decisions or to exclude sporadic errors. This principle is 

applicable to ML-based systems, where consecutive inputs can 

be fed to a single ML model. These inputs are usually 

correlated; therefore independence cannot always be claimed. 

Nevertheless, a gain can be expected from such approach when 

consecutive inputs vary (for instance when the train is 

running). 

 

In order to understand that gain, let us denote by 𝑋𝑡 the correct 

classification at time 𝑡 . Then the probability of two 

consecutive failures can be decomposed as follows: 

𝑃(𝑋𝑡
̅̅ ̅ ∩ 𝑋𝑡+𝑑𝑡

̅̅ ̅̅ ̅̅ ̅) = 𝑃(𝑋𝑡
̅̅ ̅) × 𝑃(𝑋𝑡+𝑑𝑡

̅̅ ̅̅ ̅̅ ̅|𝑋𝑡
̅̅ ̅) 

 

If 𝑃(𝑋𝑡+𝑑𝑡
̅̅ ̅̅ ̅̅ ̅|𝑋𝑡

̅̅ ̅) < 1, that is to say if the inputs are not fully 

correlated, then the consideration of two consecutive inputs 

instead of one single input can increase the reliability. 

 

Considering the ML component, two categories of events can 

affect single input performance: 

• Extrinsic events concerning the environment of the 

system as perceived by its sensor (here, a camera). A 

typical example is the masking of the signal by a 

pole, or a bird, etc. that lead to a reduction of the 

recognition performance and possibly to an erroneous 

decision. So, by considering a series of predictions 

with an appropriate interval, the effects of these 

events will be filtered out and the capability to take a 

good decision will be improved. 

• Intrinsic events concerning the capability of the 

system to take a good decision for some input. In that 

case, the event lasts as long as the input stays in the 

domain where the ML performance is bad. Temporal 

redundancy does not improve the capability to take a 

good decision. 

 

The simplest approach to take advantage of the potential gain 

on extrinsic events is to use a voting scheme mechanism: the 

decision resulting of a sequence of predictions is taken as the 

majority vote of the single predictions. 

 

Alternately, recurrent neural networks (LSTM or GRU [47] 

[48] ) can also be used and show encouraging results for taking 

decision with time series.  The principle is to feed over time a 

Neural Network with a feedback connexion. The input can 

either be the raw data (for instance the video sequence), or 

features extracted from each step in the sequence. The gain in 

sequence classification accuracy is of several percentage 

points. For instance, [49] for an action video classification use 

case obtain a 3% accuracy gain with LSTM compared to a 

voting scheme. 

 

For safety purpose, we suggest an algorithm based on Finite 

State Machines (FSMs): each time a new input is received, the 

output of the ML classifier is used to update the state of a 

FSM, according to the logic depicted on Figure 3. This logic 

requires 𝑁 (𝑁 = 4 for illustration purpose only on the figure) 

consecutive consistent classifications to make a decision. 

Otherwise, the output remains undefined. 

 
Figure 3: FSM for the classification of a yellow traffic light. 

  

Temporal redundancy suffers from a correlation bias: it is not 

unusual to face situations where a ML model consistently 

misclassifies several consecutive inputs that are part of the 

same image sequence. Indeed, the variation of the input image 

depends essentially on the variation of the train pose. 

Unfortunately, if the speed of the train is low, or if the signal is 

close to the track, the variation of the pose will be low too. 

Additionally, the mechanism that extracts the relevant part of 

the image may also filter out variations of the image since it 

crops and scale it in order to keep the signal in a given 

bounding box. 

 

In order to estimate the correlation bias and its impact, a 

simple testing approach is suggested. It consists in comparing 

the rate of occurrence of the following two events: (1) "N 

consecutive wrong outputs in the same sequence" and (2) "one 

wrong output". The former measures the failure rate with 

temporal redundancy, whereas the latter measures the failure 

rate without temporal redundancy. A reduced failure rate 

proves the added value in terms of reliability of this temporal 

redundancy mechanism. 

Additionally, hybridization of various mitigation techniques 

could also be used. It consists in mixing the algorithm with 

other methods listed in this paper, in order to compensate for 

any identified weaknesses. 

E. Concluding remarks 

As we presented in this section, various methods can be 

considered (and even combined) to attempt to fill the gap 

identified between ML performances and safety requirements. 

Even if most of these methods rely to a certain degree on the 

independence hypothesis, which is often impossible to 

guarantee, these solutions still deserve a serious attention as 

their improvement and their potential combination could 

become sufficient in the future.  

At ML level typically, structural redundancy remains 

interesting and could help exploiting the partial independence 
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of ML errors. Moreover, methods for monitoring ML 

components for instance, such as robustness or OOD 

monitoring, may be difficult to specify, but they also represent 

a promising direction to explore. However, for now, the 

variability of their performances and their poor reliability often 

negatively impacts the tradeoff between safety and availability. 

Other ML-based approaches may also be used, such as 

selective classification, or conformal prediction, which address 

the reliability-availability trade-off from a statistical viewpoint 

are able to provide specific statistical guarantees on ML 

predictions. Finally, when a system processes sequences of 

inputs, temporal redundancy can also be leveraged either 

through specific algorithms or ML architectures, to improve 

the overall results. However, here again, the fact that temporal 

independence cannot be guaranteed represents a serious 

impediment. 

IV. DISCUSSION: A HISTORICAL PERSPECTIVE 

A. Typical stages in the introduction of a new technology 

At first sight, the performance gap stated above seems to 

indicate that ML-based systems are not able to be the core part 

of a safety-critical system at least for complex tasks [50] [51]. 

Nevertheless, looking carefully at the history of typical safety-

critical systems, we can observe how new technologies can be 

introduced smoothly in safety-critical systems.  

We can distinguish these main stages: 

- First, the bonus: the new technology is only used to mitigate 

a risk that is not yet addressed at all, or to help address it 

beside some existing solution. The risks introduced by the 

technology itself are considered either negligible or mitigated 

by other means. 

- Second, the integration: when the technology is used in the 

market, there are a lot of opportunities of feedbacks. In fact, 

there are two sides for this feedback: the overall risk reduction 

impact, and the adoption by the users. The feedback on the 

first aspect is given by the facts that some specific new risk 

could appear only during the operation phase, given that these 

new risks are (hoped to be) at a low level. This phase is the 

opportunity to accumulate data, in order to quantify the global 

balance between risk reduction and risk introduction. 

Meanwhile, the users have time to use the technology and to 

adopt it, to ask for modification or to reject it. It could be that 

he misuses it, too, which could generate a new type of risks, 

which will be added to the overall risk impact seen before. 

- Third, the acceptability change: when a technology serving 

safety purposes is more and more used, it is more and more 

demanded, and can at some point become mandatory. It means 

that the mitigation of the risk that was an option at the 

beginning, becomes a requirement, which is asked by some 

norms. Afterwards, it could be that the acceptability level is 

raised (i.e., the failure rate has to be lowered).  

In order to figure out this three-phases safety related systems 

evolution, let’s take the example of the ABS (Anti-blocking 

Brake System) in the automotive field. In the last seventies, 

this system was introduced as an option in the premium cars. 

The market proposition was to reduce the risk of slipping 

because of wheels blocking due to a too strong braking 

regarding the road condition (e.g., driving on snow or very wet 

road). At this moment in the car’s history, the road users 

accept the fact that, in certain conditions, a car could slip when 

the driver brakes too hard. Then having an equipment that has 

the ability to avoid this slipping situation was really a safety 

improvement, a bonus to the safety. At the same time, if this 

new equipment failed by not avoiding the slipping, then it was 

not less safe than the accepted current situation. Obviously, it 

was introduced from the beginning by taking care at least as 

safely as before to the other risks like keeping the ability to 

brake or to move (i.e., not blocking or releasing the brake 

unintendedly). 

After this phase, it was the phase of integration, in the 80’s 

and 90’. The product was more and more used, allowing to 

know how it really helped the drivers to overcome slipping 

situations, and what it brought as new effects, that were not 

expected in the first versions of the new product. For example, 

the first ABS equipments were not usable on roads with 

cobblestones, because of the periodic loss of wheel-road 

contact, which could be unfortunately at the same rhythm that 

the ABS order to release the brake: this behavior was not 

expected and was discovered with the usage on the road. More 

largely, this usage phase allowed to measure the impact of the 

ABS on the overall road safety, and to quantify all the 

expected and unexpected benefits and losses, and their 

balance.  

This integration phase resulted in the acceptability change 

phase. This system has clearly been adopted by the users, and 

the balance of risks is positive. For this reason, for example in 

Europe in 2004, the ABS equipment was made mandatory by 

the regulation. The promulgation of this regulation shows that 

at this time the society considered that the ABS system was 

adopted by the users and had a positive risk balance. But it 

shows one more thing: it was not anymore accepted by the 

society that the accident due to slipping on the road because of 

a too strong braking application; in other words, the 

acceptability bar on the danger of slipping has been raised. It 

means that the risks that were accepted as normal risk in the 

early 80’s, were not anymore accepted, and need to be 

mitigated, in the 2000’s. 

B. Are such stages applicable to ML? 

In the case of ML-based systems, it is obviously too early to 

predict that this technology will follow this kind of cycle. In 

particular, the current rapid evolution of these technologies 

necessarily modifies the way they are integrated and adopted, 

since no sooner is the technology on the market than it is 

rendered obsolete by the next version. Furthermore, the nature 

of the products that can embody ML is much broader than in 

the case of ABS where the product is confused with the 

technology. 

Having said that, the interesting point is that one can envisage 

ML-based products that improve overall safety in a domain, 

even if it is not a safety critical product. The underlying 

principle is that the new technology will not do worse than the 

existing one, and therefore if the existing one is acceptable 

then the new technology will be acceptable. This principle has 

obvious limitations related to the fact that important changes 

can also generate fears, and therefore the perceived risk could 

be different from the real risk. But let's leave that aside and 

take a few examples of what ML can bring today in a safety 

critical context.  

The anticipation aids that ML can provide are an interesting 

category. They are based on two principles: it is about helping 

a human operator (pilot, driver, etc.), and therefore the 

operator will fully play his role as the main risk mitigation 

means; it is about helping anticipation, and therefore a 

potential failure of the system is far in the causal chain from 

the realization of the risk, which makes it completely 

legitimate to rely on the operator as a risk mitigation (i.e., he 

will have time and ability to react). In this case, as in all the 

others, we remind that we assume that the technology 

introduced to help mitigate a risk does not increase any other 

risk simultaneously. Incidentally, this category corresponds to 
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the category 1A that the EASA has identified in their recently 

released roadmap [2] as the first to be addressed. 

As noted above, how precisely these technologies will be 

integrated into products, and even more how they will 

influence their acceptability, is unknown at this time. 

Typically, it seems unreasonable to think that their integration 

into products will fundamentally improve their reliability to 

such an extent that the orders of magnitude are changed, and 

that the compatibility of this criterion with the requirements of 

safety critical systems is made possible. But this conjecture is 

not to be totally rejected either, because an operational life can 

allow the development of a way to select training data whose 

representativeness and quantity would allow to reach this 

necessary reliability. 

These considerations lead us to formulate a line of research. It 

appears that the cycle described above is not formalized at all 

today. It seems interesting to study a formalization so that 

these system evolutions can be anticipated, or even 

programmed, and that this would allow the identification of 

clear steps for a system to become "safety-critical", or even, 

why not, to obtain a continuum between non-critical systems 

and critical systems. 

 

 

V. CONCLUSION 

In this paper we address the complex problem of integrating 

ML predictive models into safety-critical systems. Through the 

lens of two practical use-cases we highlight the discrepancy 

between the performances of current ML models and the 

acceptable failure rates required by the industrial safety 

standards. 

We observe that initiatives that are trying to propose 

adjustments of current practices to produce safety-critical 

software do not address the failure rate question. Therefore, we 

present several techniques from both domains (ML and safety) 

and analyze their potential application or extension to address 

the challenges raised by this assessment. 

Throughout our analysis we note that many of these problems 

can be viewed as a reliability-availability trade-off and each of 

these techniques can address it from a different perspective. 

We further investigate analogies with current practices and 

norms, as well as historical perspectives on the introduction of 

pioneering technical innovations. 

While we take inspiration from many such precedents, we 

conclude that none of the enumerated techniques or norms 

offer satisfactory solutions, at least for now. The introduction 

of ML components in safety-critical systems remains an open 

question very much. 

Nevertheless, we argue that ML can still contribute to the 

safety enhancement of current critical systems when 

implemented as "smart assistant solutions", which address 

otherwise unmitigated risks while ensuring they do not 

introduce additional ones (e.g., without any negative impact on 

the controllability of the system or the human capacity 

required for safe operation). 

In addition to these technical aspects, our aim is to bring 

together the two communities (ML and safety), in order to 

build a common and solid foundation for the engineering of 

future intelligent safety systems. We hope that the discussions 

and the research directions presented here will motivate other 

contributors in this challenging endeavor. 

VI. APPENDIX: DEFINITIONS OF KEY CONCEPTS  

To help the reader unfamiliar with safety terminology, but also 

to avoid any ambiguities, we provide definitions of key safety 

concepts below. These definitions tend to be as generic as 

possible in order to be field-independent and focus on 

principles more than on normative (implementation) details. In 

fact, this paper is mainly about transportation systems, trying 

to be independent of its type (aeronautical, railway, 

automotive). We also refer the reader to [52] for further 

definitions. 

1. Failure: Inability of a system or component to 

perform required function according to its 

specification and may have severe consequence on its 

usage. 

2. Risk: in this document we only deal with safety risk. 

A safety risk is the potentiality of a system to provoke 

some injuries or even death to a person, due to its 

failures or insufficiencies. It is described essentially 

by its severity and frequency and can be associated 

to their mathematical product. 

3. Severity: the impact level of a risk, in terms of 

number of deaths, number or type of injuries, number 

or type of other effect leading indirectly to injuries or 

death. The severity is a discrete (resp. scalar) value, 

on a finite (resp. bounded) set of values. 

4. Frequency: the number of occurrences of the 

failures associated to a risk in a given time unit. This 

measured frequency is the reliability. 

5. Acceptability: the fact that a society is keen to 

authorize the use of a product, because the residual 

risks are considered sufficiently low (i.e., under the 

acceptability level).  

6. Risk mitigation means: the means to decrease a risk, 

by acting on its severity or its frequency. It can be 

technical, organizational, or procedural. 

7. Norm/Standard: a norm or a standard is a reference 

document (or set of documents) where the 

acceptability level is defined, and the recognized 

risk mitigation means are described. This document 

is written by a community of people that agree on 

what they accept as risk and what they do not accept, 

given the usage of a product. For example, the 

International community defines through the ISO 

26262 what they accept as risk regarding the failures 

of the electric and electronic equipments for road 

vehicles (See [11] [12] [13] [14] [15] [16] [17] [18] 

[19] [53]). 

8. Error: the occurrence of the state of a part of the 

system which is not compliant to the specified or 

intended state. An error can be the unique or the 

partial cause of a failure (or causes no failure at all). 

9. Exposure: one aspect of the frequency of a failure, 

to help quantify operational situations for which it can 

occur. It allows to treat differently the rare and the 

frequent situations, from a safety point of view. This 

parameter is more used in the automotive field than in 

the others; the smaller the exposure, the smaller the 

frequency. 

10. Controllability: the ability for a user of the product 

to avoid the dangerous situation provoked by a 

failure, or at least to decrease its effects. This 

parameter is more used in the automotive field than in 

the others; the higher the controllability, the smaller 

the frequency. 
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