
HAL Id: hal-03765471
https://hal.science/hal-03765471v1

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Can we reconcile safety objectives with machine learning
performances?

Lucian Alecu, Hugues Bonnin, Thomas Fel, Laurent Gardes, Sébastien
Gerchinovitz, Ludovic Ponsolle, Franck Mamalet, Éric Jenn, Vincent Mussot,

Cyril Cappi, et al.

To cite this version:
Lucian Alecu, Hugues Bonnin, Thomas Fel, Laurent Gardes, Sébastien Gerchinovitz, et al.. Can we
reconcile safety objectives with machine learning performances?. ERTS 2022, Jun 2022, TOULOUSE,
France. �hal-03765471�

https://hal.science/hal-03765471v1
https://hal.archives-ouvertes.fr

1

Can we reconcile safety objectives with machine

learning performances?

Lucian Alecu, Continental

Hugues Bonnin, Continental

Thomas Fel, SNCF

Laurent Gardes, SNCF

Sébastien Gerchinovitz, IRT Saint Exupéry and IMT

Ludovic Ponsolle, Apsys Airbus

Franck Mamalet, IRT Saint Exupéry

Eric Jenn, IRT Saint Exupéry and Thalès Avionics

Vincent Mussot, IRT Saint Exupéry

Cyril Cappi, SNCF

Kevin Delmas, ONERA

Baptiste Lefevre, Thalès

Lucian.Alecu@continental-corporation.com

hugues.bonnin@continental-corporation.com

thomas.fel@sncf.fr

l.gardes@sncf.fr

sebastien.gerchinovitz@irt-saintexupery.com

ludovic.ponsolle@apsys-airbus.com

franck.mamalet@irt-saintexupery.com

eric.jenn@irt-saintexupery.com

vincent.mussot@irt-saintexupery.com

cyril.cappi@sncf.fr

Kevin.Delmas@onera.fr

baptiste.lefevre@fr.thalesgroup.com

Abstract— The strong demand for more automated transport

systems with enhanced safety, in conjunction with the explosion

of technologies and products implementing machine learning

(ML) techniques, has led to a fundamental questioning of the

trust placed in machine learning. In particular, do state-of-the-art

ML models allow us to reach such safety objectives? We explore

this question through two practical examples from the railway

and automotive industries, showing that ML performances are

currently far from those required by safety objectives. We then

describe and question several techniques aimed at reducing the

error rate of ML components: model diversification, monitoring,

classification with a reject option, conformal prediction, and

temporal redundancy. Taking inspiration from a historical

example, we finally discuss when and how new ML-based

technologies could be introduced.

Keywords— machine learning, safety, certification, probabilistic

assessment, trustworthiness.

I. INTRODUCTION

Recent efforts in developing next generation transportation

systems bet on significant contributions from machine

learning-based predictive models to implement highly

automated functions. Yet, despite the impressive progress seen

in recent years, many questions remain open in regard to the

capacity of such statistical models to comply with existing

safety standards. Here we focus on one such central question:

is the error rate of current state-of-the-art ML models low

enough to allow the implementation of safety-critical

functions?

In this paper, we explore this question through two examples

from the railway and automotive industries and make the

following contributions:

- In Section II, we note that the performances of ML-based

detection systems used in each of the two use-cases is orders

of magnitude lower than that required to reach safety

objectives (or at least for now, or to reach it directly, i.e.,

without non-ML software components).

- In Section III, we describe potential directions for safe

integration of ML models: can we use several redundant ML

models in parallel? Can the ML component be monitored by

rejecting specific inputs or changing the (confidence of the)

outputs when needed? Can we improve ML performances with

temporally redundant inputs? We report experimental results

from the ML literature indicating that these solutions can be

useful, but are currently not at all sufficient to reach safety

objectives. Since some of these techniques reduce the

availability of the ML component, we also discuss the

availability-reliability trade-off that naturally appears.

- Finally, in Section IV, we take a historical perspective on

how technologies were introduced in the past and try to relate

it to (and differentiate it from) how ML-based technologies

can be introduced.

From a pedagogical viewpoint, this paper targets a mixed

audience of safety engineers and ML researchers. We hope it

can help highlight some key concepts and refocus research

efforts on relevant topics from the safety perspective.

In this document we focus our analysis exclusively on the

performance of ML models, since they have recently shown

considerable success in many complex tasks, and they

currently represent the dominant AI paradigm used in many

industrial applications. Other AI-flavored techniques are not

discussed here, even if they may partly address some of the

issues raised in this paper.

Related works. The question of ML reliability and

trustworthiness for integration to safety-critical systems has

received a lot of attention recently. Many projects, institutes or

working groups (e.g., ANITI, DEEL, SafeAI, the EUROCAE

WG-114 and SAE G-34, ISO TC22/SC32/WG14, ISO-IEC

JTC1/SC42/WG3, RISE SMILE), as well as workshops or

conferences (e.g., AAAI-SafeAI, MLCS, WAISE, ERTS,

Future Intelligence) were created to address these challenges.

Though several reports and papers have been published very

recently (e.g., white paper from DEEL [1], CoDANN II [2],

[3]), many questions remain open.

Authors from the DEEL project [3] provide a thorough review

of existing methods aimed towards the certification of ML-

based software in critical systems.

Work by authors from RISE SMILE project series [4] provides

another review of verification and validation methods that aim

to embed ML technologies into automotive critical systems.

The authors highlight the gap between current standards and

the ML-based software engineering and conclude that "ISO

26262 largely contravenes the nature of DNNs". They

enumerate and discuss several challenges and directions

towards new methods and norms for certifying critical systems

based on ML.

2

A similar assessment is provided by [5], which claims that ISO

26262 cannot appropriately manage ML-based software and

propose new measures to adapt the current norms.

From the side of ML literature, many papers have addressed

properties such as generalization, robustness, or explainability

[6], [7], [8], [9], [10], yet we argue that none of these results

alone can layout the necessary safety foundations for ML-

based critical systems, at least for now.

II. FROM ML PERFORMANCE TO SAFETY OBJECTIVES

A. ML performance and safety objectives

In ML parlance a model refers to a software implementation of

some stochastic function which provides predictions on unseen

samples from a given input domain. In the context of system

engineering, a function implements a decision to be taken,

given the available information and constraints. Its role is to

implement the necessary logic in order to alter or to maintain

the current state of the system, according to a given

specification.

Safety analysis seeks to establish causal links between the

erroneous components, the decisions taken by the system and

the foreseeable failures.

Safety objectives can be formulated in terms of acceptable

failure rates for each critical function implemented by a

system. In industrial standards the acceptable failure rates are

expressed as number of average failures per hour of operation.

In addition, assurance levels are considered: e.g., DAL (Design

Assurance Level) for aviation industry, as introduced by

ARP4754 [11] [12] [13] [14], SIL (Safety Integrity Level) for

industry in IEC 61508 standard [15], adapted for Railway

systems in EN 50126 [16] [17] [18], and tailored in ASIL

(Automotive Safety Integrity Level) in ISO 26262 [19]. Least

stringent levels of performance require less than 10-3 failures

per hour for such functions, while the strictest one generally

require less than 10-9 failures per hour on average1.

In order to assess whether an ML-based function complies

with the safety objectives it is thus essential to estimate its

failure rate. While everyone can acknowledge that there is a

close dependency between the error rate usually reported in the

ML literature and the failure rate of the system relying on ML

predictions in operation, the exact relationship is far from

obvious to describe analytically. Moreover, this relation is use-

case dependent.

In this section we consider ML-based components for which

every decision relies on a single prediction provided by the

ML model. To conduct a rigorous safety assessment of a ML-

based component it is key to estimate its error rate per hour of

operation of the system, based on some set of assumptions and

empirical observations.

We can draw here a parallel between the methods used to

compute error rates for hardware components and for ML-

based components. At first glance the comparison seems

appropriate as both types of components are characterized by

stochastic processes.

For most ML models these estimates can be computed from

observational data, by sampling the operational domain.

1 ML technologies are not completely covered by any safety

standard/norm today, even recent ones like SOTIF [53]. In this

paper, we consider that, due to its probabilistic nature, it makes

sense to allocate to the ML components some probabilistic

objectives, based on the analogy with HW components, or the

system level components.

Depending on the sampling schemes and other assumptions

used to compute it, statistical guarantees can be obtained with

respect to the gap between the empirical error rate (i.e.

computed from the sampled observations) and the true error

rate (the one that would have resulted by performing the

computation on all possible observations of the entire

operational domain).

On the other hand, error rates of hardware components are

reported after performing experiments in various regimes

(normal operation, operation under stress, accelerated aging,

etc.) and calibrating some expected distributions for the error

rates as to closely match this empirical evidence. Failure rates

of the system embedding them are then estimated according to

various failure analysis tools and methods (FTA, FMEA,

Human Factor Analysis, Functional Hazard Analysis, etc.).

Most of these methods rely on assumptions and practices that

must be used with a lot of attention for ML components (e.g.,

sub-components may not be independent as shown in

Section III.A, the error distribution in operation is unknown,

etc). Thus, in order to make accurate estimations of error rates

for ML-based functions, one must rely almost exclusively on

empirical observations (for now) of the actual behavior of

these functions in operation-like scenarios. In order for these

to be statistically significant, they require a large number of

samples to be collected in real-life scenarios. For example, this

would require at least 100 000 hours of operational testing

(obviously simulation can help to accelerate the time) to

decide whether the expected failure rate of a ML-based system

function is lower than 10-5 errors per hour, and this under the

stringent assumption that all the predictions provided by the

ML model are i.i.d. over training and operation. The further we

are from these assumptions, the more samples we would need

to gather in order to reach such conclusions. Unless prior

knowledge regarding mathematical properties of the

operational domain and / or of the ML model, we are required

to perform extensive testing in order to be able to guarantee

statistically sound estimations of the error rate. In spite of

these challenges, it can be useful to estimate the error rate

under idealized assumptions. If the safety objectives are met in

these conditions, further refinements (i.e., under realistic

assumptions) should be conducted, but if they are far from

being satisfied, the negative conclusion is a good indication

that safety objectives are difficult to prove in realistic

conditions.

B. Two examples from the railway and automotive domains

To illustrate the large gap between the performance of ML

system and the targeted safety objectives, let us consider two

examples: a computer vision system used in the railway

domain, and a weather prediction system used in the

automotive domain.

1) Railway and computer vision

Functional description. In our first example, we consider a

railway automatic signal reading system. This system aims at

recognizing the state of a light signal applicable to a train, a

task that is currently performed by train drivers.

Figure 1 gives an overview of the actions performed by a train

driver. The system shall determine the indication of the signal

automatically. The system must be able to operate in any

environmental conditions in the open world of a typical

railway infrastructure. This includes scenarios where the signal

can be partially occluded by vegetation or due to some weather

condition (fog, snow, etc.) or damaged. The recognition

system relies on a ML-based computer vision model. The

system takes in input an image (coming from a camera in front

of the train) in which the approximate location of the signal is

3

known. This allows us to use a bounding box and thus to limit

the detection effort of the signal in the complete image. In the

end, the ML model has to cope with a small image containing

only one signal that shall be classified.

This use-case features two interesting properties with respect

to the objective of our study: it implements a simple task

(recognizing a light signal) and it operates in an open and

weakly structured environment.

Figure 1 : Action performed by a train driver.

Safety objective. The analysis of the current human-operated

system leads to an average target of maximum 10-5 failures per

hour, which is the observed number of failed recognitions of a

red signal per hour of driving on average. This in turn

corresponds to 10-5 failures for red signal recognition if we

consider the number of red signals that a train driver usually

encounters during a journey, which is one red signal per hour

on average. The red signals are the most critical ones, and this

consideration determines the safety objectives that we consider

here for the ML system that shall recognize the signals, in

particular red signals.

ML performances compared with safety objective. As of today,

in the performance results carried out on test sets deemed

representative of real-world situations the best classification

models achieve on average 10-2 errors per signal.

Compared with the safety objective, the order of magnitude of

the observed performance is clearly insufficient.

2) Automotive and weather prediction

Functional description. Let us consider an assisted driving

service using weather data to enhance the safety of the driving

experience. Concretely, this service predicts the state of the

road surface (icy, wet or dry) from various weather-related

indicators (e.g., air temperature, humidity and water level on

the road surface) available at any given location. This ML-

based predictive system is used to implement an assisted speed

management system as a highly automated driving function

(HAD). The system takes control from the driver and handles

the vehicle accordingly in scenarios deemed safe, while

handling the control to the driver in the remaining situations.

Safety objective. The proposed ML-based service is expected

to introduce some risks, especially when the predictions of the

road conditions are erroneous (e.g., the road surface is deemed

dry instead of wet or icy and the vehicle moves at high

speeds). In such scenarios, due to its autonomous nature, the

HAD function reduces the controllability of the vehicle, which

potentially increases the risks of collisions. For this reason, the

expected failure rate that would qualify as minimally safe by

current automotive standards is 10-5 errors per hour2.

2 This requirement mainly arises from two assumptions: 1) as

explained in II.A a probabilistic objective is allocated to the

ML performances compared with safety objective. The

described service relies on an ML-based prediction model

which computes periodically the road conditions in the near

future based on recently observed weather-related data, for

each square tile of size S of the Earth's surface. Each vehicle

having enabled such a service would make a request for a new

prediction periodically, depending on its geographical

position. A very simplistic model in which the vehicle is

considered to move at a constant speed, a periodic tile change,

and an error rate per prediction (ML error rate) of 0.01, leads

to a failure rate of 0.5 failure per hour. Again, to reach the

required safety objectives, it would be necessary for this error

rate to be orders of magnitude lower.

C. The Gap

We concluded in the two use-cases above that the ML

performances are several orders of magnitude below those that

would be required to reach the safety objectives. Such a gap

should not be omitted by the new guidelines aiming for the

integration of ML into safety-critical systems.

In addition, neither rigorous software development efforts nor

properly documented data collection rules are sufficient to

reduce the gap between the actual performance of ML

components and the safety objectives. Even a properly coded

ML model trained on properly collected data could lead to

unacceptable error rates—at least for now.

Does this mean there are no hopes for integration of ML

components into safety-critical systems? We believe not but

urge to pursue research efforts.

III. RECONCILING SAFETY OBJECTIVES WITH MACHINE

LEARNING PERFORMANCES?

Generally speaking, the prediction performances of ML

models can be enhanced either by improving the data

management and processing or the model’s engineering.

Enhancing performances with data can be done by collecting

more data, by improving their quality, by including more

diverse sources of data (e.g., sensors), by exploiting certain

constraints or properties of the operational domain, etc.

Obviously, more data usually means dealing with more

uncertainty, therefore obtaining overall better performances is

not guaranteed.

From the model's engineering viewpoint, we can apply various

techniques to improve, e.g., robustness, generalization or

explainability of the models.

Next, we focus on possible solutions to decrease the error rate

of ML components. We first question the possibility of using

several redundant ML systems in parallel (Section A). Then,

we describe methods that either detect inputs potentially

leading to erroneous predictions (Sections B and C.1), or that

are allowed to output less precise predictions for hard-to-

classify inputs (Section C.2). We finally question the

possibility of using temporally redundant inputs (Section D).

Part of these methods reduce the ML model’s availability by,

e.g., ignoring its predictions in some situations. We thus also

discuss the availability-reliability trade-off that arises there.

A. Model diversification

Using several redundant components in parallel is a classical

way to reduce the failure rate of a system when the

ML component 2) the predicted state of the road is not the

only information used by the envisaged system, this particular

contribution being considered as ASIL C or B.

4

components' failures are independent (and when the costs

incurred by the additional components are justified from the

safety perspective). Though it is very natural to implement

redundant ML systems, it is now known that the independence

assumption is hard to ensure in practice. As an illustration,

Figure 2 below shows on the ImageNet dataset how the joint

error rate of 𝑛 ML models in parallel would decrease as a

function of 𝑛 if the models' errors were independent

(exponential decrease, in blue), and how this joint rate actually

decreases in practice (slow decrease, in red). For any value

of 𝑛 , we considered the first 𝑛 models in the list

{EfficientNet,DenseNet121,ResNet50V2,

MobileNet,VGG16models}, which are state-of-the-art deep

learning models for this dataset. We say we have a joint error

if all 𝑛 models make a prediction error simultaneously.

Figure 2: joint error rate versus number of redundant ML models

Of course, we cannot conclude from Figure 2 that it is

impossible to build independent (and accurate) deep learning

models. What if we tried to get more diverse models, such as

models trained with different hyperparameters, loss functions

or optimization procedures, models with different

architectures, or models trained on different datasets? Though

somewhat negative answers were formulated by [20] (about

standard ImageNet deep learning models) and by [21] (about

bootstrapping deep learning models), the very recent paper

[22] provides a more positive answer. The authors show that

significantly different training methodologies can in fact lead

to models with partially uncorrelated errors or, equivalently,

models that err on partially disjoint test points. More precisely,

for a pair of models, let us call "error inconsistency" the

proportion of test points for which only one model errs (while

the other is correct). On ImageNet, the authors show that two

different optimization objectives (supervised versus

contrastive learning) can yield an error inconsistency of around

13%, while it can go up to approximately 20% for models that

are trained on two different datasets.

Though the results of [22] indicate that it is possible to build

diverse models, they do not reach the diversity level that

independent models would do: for two models with around

𝑝 = 25% test error rate (as was the case in that paper), if the

two models were independent, the error inconsistency would

be of 2𝑝(1 − 𝑝) = 0.375, which is larger than the proportions

of 13% or 20% mentioned above. Nonetheless, as shown by

[22], producing diverse ensembles of deep learning models can

help increase the ensemble test accuracy. For instance, two

very diverse models trained with supervised learning on the

one hand and contrastive learning on the other hand, both with

about 75-76% test accuracy on ImageNet, were shown to

achieve about 83% after ensembling. The main reason seemed

that these diverse models specialize to two (partially) different

subdomains of the data. Note that the gain in accuracy is

however not as high as the one we could hope to get with

independent models and remains orders of magnitude worse

than that prescribed by safety objectives.

Two natural yet important-for-safety remarks should be made.

First, the fact that two ML models do not have independent

test errors is not at all surprising, since the two models are

evaluated on the same test points, with the same inputs. There

can be test points that are easy to classify with both models,

while other points can be hard to classify for both models (e.g.,

occluded images for which the ground truth is not at all

readable), even if these two models were trained on different

datasets. This indicates that their failure modes are typically

not independent. Second, if we accept to work only with

`partially independent’ models, estimating their error

correlation accurately seems at least as hard as estimating the

error rate of the ensemble itself (that is, the model after

consolidation). It is thus not obvious a priori how one could

leverage partial independence to prove safety at system level

by combining low-reliability ML components. While the

independence assumption is common in many safety analysis

methods when combining various components, and helps

prove a small system failure rate by, e.g., multiplying

individual error rates, the formula to combine individual error

rates is not known a priori when ML is involved.

B. Monitoring

Monitoring techniques are common means for detecting

unexpected inputs or conditions that could lead to erroneous

output of a system. Once those events are detected, prevention,

recovery, or passivation actions can be taken to prevent an

unsafe failure of the system. Those events may be due to the

activation of intentional (cyber attack with malicious purpose)

or unintentional errors, as shown in the following table.

Category External Internal

Intentional Spoofing,

adversarial attacks

Not relevant

Unintentional Out Of Distribution

inputs

Lack of robustness,

Inconsistent behavior

Different monitoring approaches can be used:

• ODD (Operational Design Domain) Monitoring [23]
verifies that the ML-based system is operated in its
usage domain (e.g., range of brightness, temperature,
speed…)

• OOD (Out Of Distribution) Monitoring [24] [25]
ensures that the ML Model operates in the distribution
defined during the training process. Monitoring
techniques include distance-based approaches, One-
class classification, probabilistic approaches,
reconstruction approaches, etc.

• Attacks monitoring [26] allows to detect adversarial
attacks. It can be based on Input source diversification,
properties imposed at design phase, ML adversarial
detector, prediction inconsistency, etc.

• Robustness monitoring ensures that the ML Model is
used in a stable area. Robustness can be verified using
constraint programming, abstract interpretation,
geometrical approaches, statistical approaches, etc.

• Consistency monitoring analyzes the consistency of
outputs with the inputs. In particular, inconsistent
sequences of outputs can be detected using Detection
of unstable states, Functional rules, etc.

5

In this paper, for reason of space, we will focus on OOD and

Robustness monitoring, presenting an overview of State-of-

the-Art techniques and their application for monitoring.

1) OOD Monitoring

The monitoring of Out-of-distribution (OOD) is a complex

topic, often related to the detection of anomalies and to the

underlying question of input normality. OOD inputs

correspond to samples that seem to be drawn from a

distribution different from the one used during training.

Indeed, the use of a training data distribution representative of

the real-world data is crucial for the quality of the learning

process and the adequacy with the operational domain.

However, the capabilities of the trained model to fulfill its task

and the probabilistic guarantees on the model performances

can only be ensured for the same type of data that it has seen

during training. Therefore, OOD monitoring focuses on the

detection of inputs that do not correspond to the normality

represented by this training distribution. This led to families of

OOD detection techniques relying on an estimation of the

similarity between a sample and the ones seen during training,

such as distance-based approaches [27] or one-class

classification [28]. This kind of techniques can be used for

obvious tasks like detecting major anomalies in the data, for

instance when the expected task cannot be performed on the

input (e.g., a picture of a dog given to classifier trained on

digits). However, it can be harder to specify for elements

belonging to the tail of the distribution, where we could also

expect to rely on the generalization capability of the model.

For this reason, these techniques always use a form of

threshold on the similarity to discriminate OOD from ID

inputs, and this choice of threshold will have a direct impact

on the availability of the function.

Furthermore, we also need to consider the question of the

performance of OOD detection methods, which is addressed in

a few papers [29, 30]. These articles compare the various

techniques of the literature on dedicated datasets, typically

with various images corruptions and noises, or representing

industrial defects. It is worth noting that one major result of

these comparisons is the inconsistency of most techniques,

which may perform exceptionally well on specific types of

simple corruptions (up to 100% detection) but may perform

below average on others. Moreover, on complex tasks, or in

high dimension, the average accuracy of the best methods

remains particularly low, typically below 80% for realistic

settings.

In the railway use case, we considered primarily the detection

of OOD inputs as a means to detect unreadable signals, which

could be caused by several things:

• An occlusion by an environmental element (e.g., a

pole, a bird, or a tree) which makes the signal

partially or entirely unreadable. We also consider

other environmental elements such as fog or

brightness issues, even if these could be easily

associated with other types of monitoring such as the

ones based on robustness.

• A failure in the cropping algorithm (e.g., crop of a

wrong area of the picture, an issue in the crop size, a

crop of the wrong signal, etc.), which may result in

the absence of the expected signal on the input

• A defective sensor, (e.g., a failure of the camera lens),

could be detected with a robustness monitoring, but

the resulting ML images will be unreadable, and the

OOD detection should trigger as well in this case.

In fact, most of these root causes can be monitored separately

from the ML component, but the OOD detection appears to be

valuable, as it can cover all these cases independently from the

cause. However, the rate of potential OOD inputs is an

important factor, as it is considered to be very low in our case

(less than 10-4). Moreover, it is important to remember that an

input classified as OOD does not necessarily mean that the

model will not be able to perform its task correctly, only that

the model performances cannot be guaranteed. This is

especially true for partial occlusions, for which there is no way

to define how much of the signal needs to be occluded before

considering it unreadable.

If we take into account the poor performances of OOD

detection methods, we can safely consider that a method

providing a true positive rate of 80% or 90% with a detection

threshold chosen to have 1% false alarms is an excellent

method in this realistic setting. In our use case, if we consider

an expected OOD rate of 10-4, the benefits of the OOD

detection appear to be very limited: the few OOD inputs

detected will not change significantly the accuracy of the

model, but the availability will drop from 100% to 99% due to

the false alarms. In this situation, the use of OOD monitoring

mechanism will be damaging the availability without

improving the reliability, but it should not be the same for

systems with higher expected OOD rates. A general formula

will be detailed in the following section with a numeric

analysis on Robustness monitoring for which the conclusions

are transferable to other types of monitoring.

2) Robustness Monitoring

According to the CODANN [2], two types of robustness can

be considered; either the capability of the learning algorithm to

produce “similar” models for “close” training datasets; or the

model stability e.g., if inputs, x and x’ are close then

predictions f(x) and f(x’) are also close. In this paper, we

address the runtime monitoring of a trained ML component

hence we focus the remainder of this section on the state-of-

the-art approaches enabling model stability assessment.

The model stability is classically specified w.r.t. a measure |. |
on inputs and outputs to formally capture the “closeness”, thus

a stable model ensures that for any delta-close inputs (x,x’),

predictions (f(x),f(x’)) are epsilon-close, that is:

| 𝑥 − 𝑥′| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥′)| < 𝜖

According to [31], a poor robustness radius may indicate a use

of the component in an unstable decision area hence a potential

erroneous inference. This instability can typically be exploited

by errors adversarial attacks. For our use case this may

indicate that slight modifications of the image may change its

classification.

Numerous methods propose to perform at runtime a formal

robustness checking centered on the received input. Many of

these methods are founded on the abstract interpretation that

provides an over-approximation of the ML-component output

domain for a given input domain i.e., the studied robustness

ball. The main challenge encountered by these methods is the

computation resources and the computation time needed to

compute the output domain. We can especially consider the

works [32] proposing GPU-based implementation of the

abstract interpretation to speed-up the analysis process (less

than 1s second for MNIST). Other works like [33] promote

new abstract domains to increase both the accuracy and

efficiency of the computation (1-100s for MNIST). Such

approaches suffer from over-approximation, thus may consider

that an input is non-robust whereas it is.

6

Quite different approaches like [34] provide some statistical

robustness guarantees of local robustness. These methods

usually rely on the sampling of a set of inputs within the

studied robustness ball. Such methods could provide a quite

simple way to assess the local robustness. But as the authors of

[35] has identified, the main problem is to justify the

representativeness of the computed statistical bounds since the

sampling must be performed in conformity with the

operational input distribution.

To apply these techniques, one may specify the requested local

model stability that will be monitored at runtime. At the best

of our knowledge, very little works propose methods to

identify the requested robustness radius. One may consider

that the robustness radius should be derived from the

specifications of the ML component. Nevertheless, in many

cases the selection of a robustness radius is difficult to argue

and even more to relate to the specification. Hopefully, the

authors of [31] propose a method to identify the expected

robustness radius out of the training and test data sets. The

capability of the requested robustness radius to identify

instability areas at inference time has been assessed in their

experiments.

Just like OOD monitoring, the performance of robustness-

based runtime monitoring is paramount to ensure that a safety

benefit can be achieved with an acceptable impact on system’s

availability. To address this aspect, we propose a simple

formulation of the safety/availability tradeoff problem and

illustrate it thanks to the experiments made by [31].

3) Safety/Availability Tradeoff

Let 𝑆 be a simple system containing: 𝑚𝑙 , a ML component

(e.g., a classifier) and 𝑚 a mechanism validating (or rejecting)

𝑚𝑙 decisions (e.g., an external monitor). We consider that 𝑚

can only be triggered (i.e., the prediction of 𝑚𝑙 is not trusted)

or not (i.e., the prediction of ml is trusted).

So, for a given input the system generates three possible

outcomes:

• a correct output

• an erroneous-safe output, which covers a) the

situation where ml generates an incorrect but safe

output while m has not triggered, and b) the situation

where the monitor triggers.

• an erroneous-unsafe output.

Let us assume that the ML system is free of implementation

errors and is executed on a error-free hardware. Even with a

perfect implementation and hardware we consider here that:

a) ml can produce an incorrect output; b) the occurrence of an

error (e.g., an OOD input), denoted F, may prevent ml to

properly process the input.

In addition, we consider that m is unable to detect any failure

caused by something else than F. This assumption is

conservative since a monitoring mechanism, typically output

monitoring, may also detect other errors like implementation

or hardware errors.

The issue is to find the appropriate sensitivity level for m

allowing complying with both safety and availability

requirements. To assess the appropriate sensitivity level, one

must formalize the notion of unsafe and unavailable system.

Let us consider that ml can either produce a correct result, fail

safely or unsafely (event 𝑈𝑚𝑙) and m can either be triggered

(denoted T) or not. Let

• 𝑃(𝑈𝑚𝑙|¬𝐹) = α𝑚𝑙 be the conditional probability

that the component fails unsafely knowing the

failure F does not occur.

• 𝑃(𝐹) = 𝜆 be the probability of occurrence of F on

demand

• 𝑃(𝑇|¬ 𝐹) = 𝛿 be the false positive rate

• 𝑃(¬ 𝑇|𝐹) = 𝛾 be false negative rate.

a) General case

The scenarios leading to an unsafe failure (Unsa) are (a.1) F

occurs and (a.2) m fails to detect it and (a.3) ml fails unsafely

or (b.1) F does not occur and (b.2) ml fails unsafely and (b.3)

m does not spuriously detect F, i.e.

 𝑃(𝑈𝑛𝑠𝑎) = 𝑃(𝐹, 𝑈𝑚𝑙 , ¬ 𝑇) + 𝑃(¬ 𝐹, 𝑈𝑚𝑙 , ¬ 𝑇)

= 𝑃(𝑈𝑚𝑙 , ¬𝑇|𝐹)𝜆 + 𝑃(𝑈𝑚𝑙 , ¬𝑇|¬𝐹)(1 − 𝜆)

Similarly, S is unavailable (Unav) when m is triggered.

Among these scenarios some are expected since ml must not

be used when F occurs. So, we propose to consider the

scenarios where S is unavailable even if F did not occur, that

is:

𝑃(𝑈𝑛𝑎𝑣) = 𝑃(¬𝐹, 𝑇) = 𝛿(1 − 𝜆)

b) Simplifications

Correlation between 𝑈𝑚𝑙 and F. If ml is likely to produce an

unsafe output when F occurs that is 𝑃(𝑈𝑚𝑙 , ¬𝑇|𝐹) ≃
 𝑃(¬𝑇|𝐹), then:

𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝑃(𝑈𝑚𝑙 , ¬𝑇|¬𝐹)(1 − 𝜆)

Correlation between 𝑈𝑚𝑙 , ¬𝑇 and ¬𝐹 . Additionally if we

consider that the ability of ml to produce an unsafe output

when F does not occur is similar when F does not occur and

the m confirms it, that is 𝑃(𝑈𝑚𝑙|¬𝐹) ≃ 𝑃(𝑈𝑚𝑙|¬𝑇, ¬𝐹) then:

𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝛼𝑚𝑙(1 − 𝛿)(1 − 𝜆)

Robustness monitoring. Let us consider that F is an input in an

unstable area for ml. We will consider that the ml component

is very likely to produce an erroneous output if F occurs.

Additionally, we assume that the robustness monitor does not

significantly reject robust data.

Hence one may use the following formula for Unsa and Unav:

𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝛼𝑚𝑙(1 − 𝛿)(1 − 𝜆)

𝑃(𝑈𝑛𝑎𝑣) = 𝛿(1 − 𝜆)

Concerning abstract interpretation-based monitoring; some

numerical values can be extrapolated from the Figure 1a of

[31]. Let us consider a robustness radius of 10−2 , if we

assume that their experiments (made over 100 images) can be

generalised then we have:

𝑃(𝐹|¬𝑈𝑚𝑙) = 3.6 ⋅ 10−2 𝑃(𝐹|𝑈𝑚𝑙) = 6.3 ⋅ 10−1

The initial accuracy of the FNN-MNIST is 95.8%, let us

consider that any misclassification is unsafe we have:

𝑃(𝑈𝑚𝑙) = 4. 2 ⋅ 10−2

One may estimate 𝜆 as follows:

𝑃(𝐹) = 𝑃(𝐹|𝑈𝑚𝑙)𝑃(𝑈𝑚𝑙) + 𝑃(𝐹|¬𝑈𝑚𝑙)(1 − 𝑃(𝑈𝑚𝑙))

= 6.1 ⋅ 10−2

The performance of the ML model without F can be computed

as follows:

𝛼𝑚𝑙 = 𝑃(𝑈𝑚𝑙|¬𝐹) = 𝑃(¬𝐹|𝑈𝑚𝑙)
𝑃(𝑈𝑚𝑙)

𝑃(¬𝐹)
= 1.65 ⋅ 10−2

Let us consider that we are using the approximate robustness

radius computation whose performance are depicted on the

Figure 1b of [31]. This monitor will compute an under-

7

approximation of the exact robustness ball (i.e., it is a

pessimistic monitor) so there are only false positives w.r.t. F

that is images that are rejected even if their true robustness is

above the threshold. So, we have

𝛼𝑚𝑙 = 1.65 ⋅ 10−2 𝛿 = 1.5 ⋅ 10−2

 𝜆 = 6.1 ⋅ 10−2 𝛾 = 0

The resulting unavailability and safety measures are:

 𝑃(𝑈𝑛𝑠𝑎) = 1.53 ⋅ 10−2 𝑃(𝑈𝑛𝑎𝑣) = 1.4 ⋅ 10−2

Thus, according to the experiments of [31], adding the online

robustness monitoring enhances slightly the integrity (𝑃(𝑈𝑚𝑙)

/ 𝑃(𝑈𝑛𝑠𝑎) ratio is approximately 2.7) with a one percent

availability loss. In this example, the measures quantify the

probability of misclassification (and lack of classification) per

image. Let us translate these results for the use-cases of the

section II.B. For the signal recognition system, the measures

are expressed per signal. If we assume that the errors are not

correlated to the signal’s color, we obtain an error rate of

1.53 ⋅ 10−2 per red signal that is higher than the expected

10−2 rate. For the automotive use case, the resulting error rate

with a very simple vehicle model is 7.6 ⋅ 10−1 per hour that is

not in the same order of magnitude than the expected error

rate. Note that these numerical values have been obtained

through experiments considering idealized assumptions [31]

and there is no conclusive evidence that such detection

performances could be met during the operation.

Even if the previous assessment of a robustness monitoring

technique is overly simplistic, it provides and illustrates a

simple method to assess the contribution of monitoring

techniques to the safety-availability trade-off. This illustration

shows that monitoring slightly improves the safety of the

system but also affects the system’s availability in a non-

negligible way.

C. Reject option and conformal prediction

We now describe two other mechanisms that allow to detect or

temper ML errors, by either filtering out some inputs

(classification with a reject option) or by outputting less

informative predictions (conformal prediction). From a system

architecture viewpoint, the reject option is similar to OOD

monitoring (it filters out inputs that can lead to erroneous

predictions), though the reject option is meant to be used for

typical (in-distribution) yet hard-to-classify inputs.

1) Classification with a reject option

This setting, also known as selective classification, is an

extension of the multi-class classification setting and has been

studied for many decades; e.g., [36], [37], [38].

Given a new input 𝑋 (e.g., an image), the goal is to predict the

associated label 𝑌 out of several possible labels. An algorithm

with reject option can decide to predict or not. More formally,

such an algorithm is given by a selective function 𝑔 and a

classification model 𝑓. When 𝑔(𝑋) = 1 the algorithm predicts

the unknown label 𝑌 with 𝑓(𝑋) . When 𝑔(𝑋) = 0 , the

algorithm refrains from predicting. There are two competing

objectives, which correspond to the reliability-availability

trade-off:

- minimize the selective risk, i.e., the average number

of errors when the ML algorithm predicts:

𝑃(𝑌 ≠ 𝑓(𝑋)|𝑔(𝑋) = 1)

- maximize the coverage, i.e., the proportion of inputs

for which the ML algorithm outputs a prediction:

𝑃(𝑔(𝑋) = 1)

For instance, in the railway use-case described earlier, the

algorithm could predict or not predict the state 𝑌 of the light

signal on the input image(s) 𝑋 . A small selective risk

corresponds to making few errors among the predicted light

signals. A large coverage corresponds to predicting most light

signals, leading to a large availability of the ML system.

Intuitively, there is a trade-off between selective risk and

coverage: we can reduce the selective risk by rejecting hard-to-

classify inputs 𝑥, but this also reduces coverage. This trade-off

has been studied theoretically for binary labels and sometimes

simple models (e.g., [37], [39], [40], [41]), but also empirically

for multiple labels and deep learning models. For instance, on

classical benchmarks such as CIFAR-10 or Cats vs. Dogs,

empirical results from [42], [43] typically show an

improvement of up to a factor of 2 in the risk when coverage is

reduced to around 90 – 95%, and up to a factor of 20 for

around 70% coverage. For other datasets such as CIFAR-100,

SVHN, and ImageNet, the empirical results from [42] are of

the same order of magnitude, but the trade-off is less

favorable: a smaller coverage is needed to achieve the same

risk reduction. In any case, even on CIFAR-10 for which the

SelectiveNet algorithm [43] is reported to reduce the risk from

around 6.7% at full coverage to around 0.3% at around 70%

coverage, the value of 0.3% is still orders of magnitude larger

than what would be required from a safety perspective if the

ML algorithm errors could not be compensated in a drastic

way. Therefore, the reject option is likely not a sufficient

solution to fill the gap between safety objectives and ML

predictive performances, though it should be considered as an

interesting component towards ML error reduction.

We should also note that in many safety-related applications

some errors may be considered more costly than others (i.e.

carry a higher risk). For example, in our railway use-case, if

the problem is cast as a binary classification (detect whether

the image contains a red signal or not), then the type II error

(missing a red signal) has a far higher risk than the type I error

(falsely reporting a non-existent red signal). The theoretical

formalism presented above can be extended to take into

account this distinction between the types of errors by

associating a different cost (also known as risk or loss) with

each one. The new risk minimization criterion then reads:

minimize 𝑃(𝑓(𝑋) ≠ 𝑟𝑒𝑑, 𝑌 = 𝑟𝑒𝑑|𝑔(𝑋) = 1) +
𝜆𝑃(𝑓(𝑋) = 𝑟𝑒𝑑, 𝑌 ≠ 𝑟𝑒𝑑|𝑔(𝑋) = 1)

where 𝜆 is the relative cost of making a type I error as a

fraction of the cost of making a type II error. The coverage

criterion we seek to maximize remains unchanged. Statistical

guarantees for this asymmetric cost or risk formulation have

been explored in the literature and have been successfully

applied to the medical domain [39].

2) Conformal prediction

Conformal prediction is another way to reduce the risk. It

consists in post-processing an ML algorithm and predicting a

set 𝐶(𝑥) of possible labels for each new input 𝑥, instead of a

single prediction 𝑓(𝑥). Now, predictions are made at all times,

but the fact that 𝐶(𝑥) can contain more than one element is a

way to reduce the probability of making an error: 𝑃(𝑌 ∉
𝐶(𝑋)).

In our railway use-case, this means we allow the ML system to

make predictions with less information (e.g., this light signal

can be this or that), but with the benefit of making fewer

errors. This can prove useful as long as labels in the predicted

set 𝐶(𝑥) do not often correspond to very different decisions.

Several algorithms have been proposed; see, e.g., [44], [45].

Typically, 𝐶(𝑥) is defined as the set of labels with highest

probability scores at the output of a deep learning model, using

8

a data-driven threshold, and possible regularization when tail

probabilities are poorly calibrated [46].

The aforementioned methods enjoy theoretical guarantees that

are typically of the following form: given a risk level 𝛼 ∈
(0,1), we can tune the `size’ of 𝐶(𝑋) so that

𝑃(𝑌 ∉ 𝐶(𝑋)) ≤ 𝛼

Importantly, this guarantee relies on statistical assumptions

(i.i.d. or exchangeable data), the verification of which can be a

very difficult task. Furthermore, the probability above is an

average error which does not imply a guarantee for each

image, but a guarantee for most images (as those seen in the

calibration dataset).

The fact that virtually any ML model can be conformalized (as

a post-processing step) to yield a probabilistic guarantee as

above makes conformal prediction an appealing technique for

safety purposes. This field is currently receiving a lot of

attention from the ML community, and we hope efforts will be

made to incorporate safety-specific considerations.

D. Temporal redundancy

If we focus on the case of systems that may process sequences

of inputs (e.g., consecutive video frames), it is natural to

consider exploiting temporal redundancy to consolidate

decisions or to exclude sporadic errors. This principle is

applicable to ML-based systems, where consecutive inputs can

be fed to a single ML model. These inputs are usually

correlated; therefore independence cannot always be claimed.

Nevertheless, a gain can be expected from such approach when

consecutive inputs vary (for instance when the train is

running).

In order to understand that gain, let us denote by 𝑋𝑡 the correct

classification at time 𝑡 . Then the probability of two

consecutive failures can be decomposed as follows:

𝑃(𝑋𝑡
̅̅ ̅ ∩ 𝑋𝑡+𝑑𝑡

̅̅ ̅̅ ̅̅ ̅) = 𝑃(𝑋𝑡
̅̅ ̅) × 𝑃(𝑋𝑡+𝑑𝑡

̅̅ ̅̅ ̅̅ ̅|𝑋𝑡
̅̅ ̅)

If 𝑃(𝑋𝑡+𝑑𝑡
̅̅ ̅̅ ̅̅ ̅|𝑋𝑡

̅̅ ̅) < 1, that is to say if the inputs are not fully

correlated, then the consideration of two consecutive inputs

instead of one single input can increase the reliability.

Considering the ML component, two categories of events can

affect single input performance:

• Extrinsic events concerning the environment of the

system as perceived by its sensor (here, a camera). A

typical example is the masking of the signal by a

pole, or a bird, etc. that lead to a reduction of the

recognition performance and possibly to an erroneous

decision. So, by considering a series of predictions

with an appropriate interval, the effects of these

events will be filtered out and the capability to take a

good decision will be improved.

• Intrinsic events concerning the capability of the

system to take a good decision for some input. In that

case, the event lasts as long as the input stays in the

domain where the ML performance is bad. Temporal

redundancy does not improve the capability to take a

good decision.

The simplest approach to take advantage of the potential gain

on extrinsic events is to use a voting scheme mechanism: the

decision resulting of a sequence of predictions is taken as the

majority vote of the single predictions.

Alternately, recurrent neural networks (LSTM or GRU [47]

[48]) can also be used and show encouraging results for taking

decision with time series. The principle is to feed over time a

Neural Network with a feedback connexion. The input can

either be the raw data (for instance the video sequence), or

features extracted from each step in the sequence. The gain in

sequence classification accuracy is of several percentage

points. For instance, [49] for an action video classification use

case obtain a 3% accuracy gain with LSTM compared to a

voting scheme.

For safety purpose, we suggest an algorithm based on Finite

State Machines (FSMs): each time a new input is received, the

output of the ML classifier is used to update the state of a

FSM, according to the logic depicted on Figure 3. This logic

requires 𝑁 (𝑁 = 4 for illustration purpose only on the figure)

consecutive consistent classifications to make a decision.

Otherwise, the output remains undefined.

Figure 3: FSM for the classification of a yellow traffic light.

Temporal redundancy suffers from a correlation bias: it is not

unusual to face situations where a ML model consistently

misclassifies several consecutive inputs that are part of the

same image sequence. Indeed, the variation of the input image

depends essentially on the variation of the train pose.

Unfortunately, if the speed of the train is low, or if the signal is

close to the track, the variation of the pose will be low too.

Additionally, the mechanism that extracts the relevant part of

the image may also filter out variations of the image since it

crops and scale it in order to keep the signal in a given

bounding box.

In order to estimate the correlation bias and its impact, a

simple testing approach is suggested. It consists in comparing

the rate of occurrence of the following two events: (1) "N

consecutive wrong outputs in the same sequence" and (2) "one

wrong output". The former measures the failure rate with

temporal redundancy, whereas the latter measures the failure

rate without temporal redundancy. A reduced failure rate

proves the added value in terms of reliability of this temporal

redundancy mechanism.

Additionally, hybridization of various mitigation techniques

could also be used. It consists in mixing the algorithm with

other methods listed in this paper, in order to compensate for

any identified weaknesses.

E. Concluding remarks

As we presented in this section, various methods can be

considered (and even combined) to attempt to fill the gap

identified between ML performances and safety requirements.

Even if most of these methods rely to a certain degree on the

independence hypothesis, which is often impossible to

guarantee, these solutions still deserve a serious attention as

their improvement and their potential combination could

become sufficient in the future.

At ML level typically, structural redundancy remains

interesting and could help exploiting the partial independence

9

of ML errors. Moreover, methods for monitoring ML

components for instance, such as robustness or OOD

monitoring, may be difficult to specify, but they also represent

a promising direction to explore. However, for now, the

variability of their performances and their poor reliability often

negatively impacts the tradeoff between safety and availability.

Other ML-based approaches may also be used, such as

selective classification, or conformal prediction, which address

the reliability-availability trade-off from a statistical viewpoint

are able to provide specific statistical guarantees on ML

predictions. Finally, when a system processes sequences of

inputs, temporal redundancy can also be leveraged either

through specific algorithms or ML architectures, to improve

the overall results. However, here again, the fact that temporal

independence cannot be guaranteed represents a serious

impediment.

IV. DISCUSSION: A HISTORICAL PERSPECTIVE

A. Typical stages in the introduction of a new technology

At first sight, the performance gap stated above seems to

indicate that ML-based systems are not able to be the core part

of a safety-critical system at least for complex tasks [50] [51].

Nevertheless, looking carefully at the history of typical safety-

critical systems, we can observe how new technologies can be

introduced smoothly in safety-critical systems.

We can distinguish these main stages:

- First, the bonus: the new technology is only used to mitigate

a risk that is not yet addressed at all, or to help address it

beside some existing solution. The risks introduced by the

technology itself are considered either negligible or mitigated

by other means.

- Second, the integration: when the technology is used in the

market, there are a lot of opportunities of feedbacks. In fact,

there are two sides for this feedback: the overall risk reduction

impact, and the adoption by the users. The feedback on the

first aspect is given by the facts that some specific new risk

could appear only during the operation phase, given that these

new risks are (hoped to be) at a low level. This phase is the

opportunity to accumulate data, in order to quantify the global

balance between risk reduction and risk introduction.

Meanwhile, the users have time to use the technology and to

adopt it, to ask for modification or to reject it. It could be that

he misuses it, too, which could generate a new type of risks,

which will be added to the overall risk impact seen before.

- Third, the acceptability change: when a technology serving

safety purposes is more and more used, it is more and more

demanded, and can at some point become mandatory. It means

that the mitigation of the risk that was an option at the

beginning, becomes a requirement, which is asked by some

norms. Afterwards, it could be that the acceptability level is

raised (i.e., the failure rate has to be lowered).

In order to figure out this three-phases safety related systems

evolution, let’s take the example of the ABS (Anti-blocking

Brake System) in the automotive field. In the last seventies,

this system was introduced as an option in the premium cars.

The market proposition was to reduce the risk of slipping

because of wheels blocking due to a too strong braking

regarding the road condition (e.g., driving on snow or very wet

road). At this moment in the car’s history, the road users

accept the fact that, in certain conditions, a car could slip when

the driver brakes too hard. Then having an equipment that has

the ability to avoid this slipping situation was really a safety

improvement, a bonus to the safety. At the same time, if this

new equipment failed by not avoiding the slipping, then it was

not less safe than the accepted current situation. Obviously, it

was introduced from the beginning by taking care at least as

safely as before to the other risks like keeping the ability to

brake or to move (i.e., not blocking or releasing the brake

unintendedly).

After this phase, it was the phase of integration, in the 80’s

and 90’. The product was more and more used, allowing to

know how it really helped the drivers to overcome slipping

situations, and what it brought as new effects, that were not

expected in the first versions of the new product. For example,

the first ABS equipments were not usable on roads with

cobblestones, because of the periodic loss of wheel-road

contact, which could be unfortunately at the same rhythm that

the ABS order to release the brake: this behavior was not

expected and was discovered with the usage on the road. More

largely, this usage phase allowed to measure the impact of the

ABS on the overall road safety, and to quantify all the

expected and unexpected benefits and losses, and their

balance.

This integration phase resulted in the acceptability change

phase. This system has clearly been adopted by the users, and

the balance of risks is positive. For this reason, for example in

Europe in 2004, the ABS equipment was made mandatory by

the regulation. The promulgation of this regulation shows that

at this time the society considered that the ABS system was

adopted by the users and had a positive risk balance. But it

shows one more thing: it was not anymore accepted by the

society that the accident due to slipping on the road because of

a too strong braking application; in other words, the

acceptability bar on the danger of slipping has been raised. It

means that the risks that were accepted as normal risk in the

early 80’s, were not anymore accepted, and need to be

mitigated, in the 2000’s.

B. Are such stages applicable to ML?

In the case of ML-based systems, it is obviously too early to

predict that this technology will follow this kind of cycle. In

particular, the current rapid evolution of these technologies

necessarily modifies the way they are integrated and adopted,

since no sooner is the technology on the market than it is

rendered obsolete by the next version. Furthermore, the nature

of the products that can embody ML is much broader than in

the case of ABS where the product is confused with the

technology.

Having said that, the interesting point is that one can envisage

ML-based products that improve overall safety in a domain,

even if it is not a safety critical product. The underlying

principle is that the new technology will not do worse than the

existing one, and therefore if the existing one is acceptable

then the new technology will be acceptable. This principle has

obvious limitations related to the fact that important changes

can also generate fears, and therefore the perceived risk could

be different from the real risk. But let's leave that aside and

take a few examples of what ML can bring today in a safety

critical context.

The anticipation aids that ML can provide are an interesting

category. They are based on two principles: it is about helping

a human operator (pilot, driver, etc.), and therefore the

operator will fully play his role as the main risk mitigation

means; it is about helping anticipation, and therefore a

potential failure of the system is far in the causal chain from

the realization of the risk, which makes it completely

legitimate to rely on the operator as a risk mitigation (i.e., he

will have time and ability to react). In this case, as in all the

others, we remind that we assume that the technology

introduced to help mitigate a risk does not increase any other

risk simultaneously. Incidentally, this category corresponds to

10

the category 1A that the EASA has identified in their recently

released roadmap [2] as the first to be addressed.

As noted above, how precisely these technologies will be

integrated into products, and even more how they will

influence their acceptability, is unknown at this time.

Typically, it seems unreasonable to think that their integration

into products will fundamentally improve their reliability to

such an extent that the orders of magnitude are changed, and

that the compatibility of this criterion with the requirements of

safety critical systems is made possible. But this conjecture is

not to be totally rejected either, because an operational life can

allow the development of a way to select training data whose

representativeness and quantity would allow to reach this

necessary reliability.

These considerations lead us to formulate a line of research. It

appears that the cycle described above is not formalized at all

today. It seems interesting to study a formalization so that

these system evolutions can be anticipated, or even

programmed, and that this would allow the identification of

clear steps for a system to become "safety-critical", or even,

why not, to obtain a continuum between non-critical systems

and critical systems.

V. CONCLUSION

In this paper we address the complex problem of integrating

ML predictive models into safety-critical systems. Through the

lens of two practical use-cases we highlight the discrepancy

between the performances of current ML models and the

acceptable failure rates required by the industrial safety

standards.

We observe that initiatives that are trying to propose

adjustments of current practices to produce safety-critical

software do not address the failure rate question. Therefore, we

present several techniques from both domains (ML and safety)

and analyze their potential application or extension to address

the challenges raised by this assessment.

Throughout our analysis we note that many of these problems

can be viewed as a reliability-availability trade-off and each of

these techniques can address it from a different perspective.

We further investigate analogies with current practices and

norms, as well as historical perspectives on the introduction of

pioneering technical innovations.

While we take inspiration from many such precedents, we

conclude that none of the enumerated techniques or norms

offer satisfactory solutions, at least for now. The introduction

of ML components in safety-critical systems remains an open

question very much.

Nevertheless, we argue that ML can still contribute to the

safety enhancement of current critical systems when

implemented as "smart assistant solutions", which address

otherwise unmitigated risks while ensuring they do not

introduce additional ones (e.g., without any negative impact on

the controllability of the system or the human capacity

required for safe operation).

In addition to these technical aspects, our aim is to bring

together the two communities (ML and safety), in order to

build a common and solid foundation for the engineering of

future intelligent safety systems. We hope that the discussions

and the research directions presented here will motivate other

contributors in this challenging endeavor.

VI. APPENDIX: DEFINITIONS OF KEY CONCEPTS

To help the reader unfamiliar with safety terminology, but also

to avoid any ambiguities, we provide definitions of key safety

concepts below. These definitions tend to be as generic as

possible in order to be field-independent and focus on

principles more than on normative (implementation) details. In

fact, this paper is mainly about transportation systems, trying

to be independent of its type (aeronautical, railway,

automotive). We also refer the reader to [52] for further

definitions.

1. Failure: Inability of a system or component to

perform required function according to its

specification and may have severe consequence on its

usage.

2. Risk: in this document we only deal with safety risk.

A safety risk is the potentiality of a system to provoke

some injuries or even death to a person, due to its

failures or insufficiencies. It is described essentially

by its severity and frequency and can be associated

to their mathematical product.

3. Severity: the impact level of a risk, in terms of

number of deaths, number or type of injuries, number

or type of other effect leading indirectly to injuries or

death. The severity is a discrete (resp. scalar) value,

on a finite (resp. bounded) set of values.

4. Frequency: the number of occurrences of the

failures associated to a risk in a given time unit. This

measured frequency is the reliability.

5. Acceptability: the fact that a society is keen to

authorize the use of a product, because the residual

risks are considered sufficiently low (i.e., under the

acceptability level).

6. Risk mitigation means: the means to decrease a risk,

by acting on its severity or its frequency. It can be

technical, organizational, or procedural.

7. Norm/Standard: a norm or a standard is a reference

document (or set of documents) where the

acceptability level is defined, and the recognized

risk mitigation means are described. This document

is written by a community of people that agree on

what they accept as risk and what they do not accept,

given the usage of a product. For example, the

International community defines through the ISO

26262 what they accept as risk regarding the failures

of the electric and electronic equipments for road

vehicles (See [11] [12] [13] [14] [15] [16] [17] [18]

[19] [53]).

8. Error: the occurrence of the state of a part of the

system which is not compliant to the specified or

intended state. An error can be the unique or the

partial cause of a failure (or causes no failure at all).

9. Exposure: one aspect of the frequency of a failure,

to help quantify operational situations for which it can

occur. It allows to treat differently the rare and the

frequent situations, from a safety point of view. This

parameter is more used in the automotive field than in

the others; the smaller the exposure, the smaller the

frequency.

10. Controllability: the ability for a user of the product

to avoid the dangerous situation provoked by a

failure, or at least to decrease its effects. This

parameter is more used in the automotive field than in

the others; the higher the controllability, the smaller

the frequency.

11

VII. REFERENCES

[1] H. Delseny, C. Gabreau, A. Gauffriau, B. Beaudouin, L.

Ponsolle, L. Alecu, H. Bonnin, B. Beltran, D. Duchel, J.-

B. Ginestet, A. Hervieu, G. Martinez, S. Pasquet, K.

Delmas and Pag, "White Paper Machine Learning in

Certified Systems," 2021.

[2] J. M. Cluzeau, X. Henriquel, G. Rebender, G. Soudain,

L. van Dijk, A. Gronskiy, D. Haber, C. Perret-Gentil et

R. Polak, Concepts of Design Assurance for Neural

Networks, 2020.

[3] F. T. Laviolette, L. Gabriel, A. Le, N. Amin, S. N. M.

Paulina, P. Yann, K. Foutse, A. Giulio and M. Ettore,

How to Certify Machine Learning Based Safety-critical

Systems? A Systematic Literature Review, 2021.

[4] M. Borg, C. Englund, K. Wnuk, B. Duran, C.

Levandowski, S. a. T. Y. Gao, H. Kaijser, H. Lönn et J.

Törnqvist, «Safely Entering the Deep: A Review of

Verification and Validation for Machine Learning and a

Challenge Elicitation in the Automotive Industry,»

Journal of Automotive Software Engineering, n° %11,

pp. 1-19, 2019.

[5] R. Salay et K. Czarnecki, Using Machine Learning

Safely in Automotive Software: An Assessment and

Adaption of Software Process Requirements in ISO

26262, 2018.

[6] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A.

Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López,

D. Molina, R. Benjamins et et al., «Explainable artificial

intelligence (XAI): Concepts, taxonomies, opportunities

and challenges toward responsible AI,» Information

Fusion, vol. 58, pp. 82-115, 2020.

[7] C. Molnar, Interpretable Machine Learning, 2019.

[8] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay et

D. Mukhopadhyay, «Adversarial Attacks and Defences:

A Survey,» CAAI Transactions on Intelligence

Technology, vol. 6, 2021.

[9] A. Mehta et S. Kumar, «A Survey on Resilient Machine

Learning,» 2017. [En ligne]. Available:

https://arxiv.org/abs/1707.03184.

[10] D. Carvalho, E. V., M. Pereira et J. Cardoso, «Machine

learning interpretability: A survey on methods and

metrics,» Electronics, vol. 8, n° %18, 2019.

[11] SAE/EUROCAE, ARP4754A/ED-79A, Certification

considerations for highly-integrated or complex aircraft

systems, 2010.

[12] SAE/EUROCAE, ARP4761/ED-135, Guidelines and

Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment, 1996.

[13] RTCA/EUROCAE, ED-80/DO-254, Design Assurance

Guidance for Airborne Electronic Hardware, 2000.

[14] RTCA/EUROCAE, DO-178C/ED-12C, Software

considerations in airborne systems and equipment

certification, 2012.

[15] IEC, 61508, Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-

related Systems, 2010.

[16] CENELEC, EN-50127, Railway Applications - The

Specification and Demonstration of Reliability,

Availability, Maintainability and Safety (RAMS), 2017.

[17] CENELEC, EN-50128, Railway applications -

Communication, signalling and processing systems -

Software for railway control and protection systems,

2020.

[18] CENELEC, EN-50129, Railway applications -

Communication, signalling and processing systems –

Safety related electronic systems for signalling, 2020.

[19] ISO, 26262, Road vehicles -- Functional safety, 2018.

[20] H. Mania, J. Miller, L. Schmidt, M. Hardt and B. Recht,

"Model Similarity Mitigates Test Set Overuse," in

Advances in Neural Information Processing Systems 32

(NeurIPS 2019) , 2019.

[21] J. Nixon, B. Lakshminarayanan and D. Tran, "Why Are

Bootstrapped Deep Ensembles Not Better?," in ICBINB

Workshop at NeurIPS 2020, 2020.

[22] R. Gontijo-Lopes, Y. Dauphin and E. D. Cubuk, "No

One Representation to Rule Them All: Overlapping

Features of Training Methods," 2021.

[23] SAE, J3016, Taxonomy and Definitions for Terms

Related to On-Road Motor Vehicle Automated Driving

Systems, 2018.

[24] G. Pang, C. Shen, L. Cao et A. V. D. Hengel, «Deep

learning for anomaly detection: A review,» ACM

Computing Surveys (CSUR), vol. 54, n° %12, pp. 1-38,

2021.

[25] R. Lukas, R. K. Jacob, A. V. Robert, M. Grégoire, S.

Wojciech, K. Marius, G. D. Thomas et M. Klaus-Robert,

A unifying review of deep and shallow anomaly

detection, 2021.

[26] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett et M.

J. Kochenderfer, Algorithms for verifying deep neural

networks, 2019.

[27] M. Breunig, H.-P. Kriegel, R. Ng et J. Sander, Lof:

identifying density-based local outliers, ACM SIGMOD

international conference on Management of Data, 2000.

[28] J. Hansi, W. Haoyu, H. Wenhao, K. Deovrat et C. Arin,

Fast incremental svdd learning algorithm with the

gaussian kernel, AAI Conference on Artificial

Intelligence, 2019.

[29] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen et G.

Montavon, A unifying review of deep and shallow

anomaly detection, IEEE, 2021.

[30] S. Alireza, S. Mark et J. L. James, A Less Biased

Evaluation of Out-of-distribution Sample Detectors,

arXiv:1809.04729, 2019.

[31] J. Liu, L. Chen and A. Miné, "Input validation for

neuralnetworks via runtime local robustness

verification," in CoRR, 2020.

[32] C. Müller, F. Serre, G. Singh, M. Püschel et M. Vechev,

«Scaling polyhedral neural network verification on

gpus,» chez Proceedings of Machine Learning and

Systems, 2021.

[33] M. Niklas, C. Müller, G. Makarchuk, F. Serre, G. Singh,

M. Püschel et M. Vechev, «Prima: Precise and general

neural network certification via multi-neuronconvex

relaxations,» chez arXiv preprint arXiv:2103.03638,

2021.

[34] J. Cohen, E. Rosenfeld et Z. Kolter, «Certified

adversarial robustness viarandomized smoothing,» chez

International Conference on Machine Learning, 2019.

[35] A. Fromherz, K. Leino, M. Fredrikson, B. Parno et C.

Pasareanu, «Fast geometric projections for local

12

robustness certification,» chez International

Conferenceon Learning Representations, 2020.

[36] C. K. Chow, "An optimum character recognition system

using decision functions," IRE Transactions on

Electronic Computers, pp. 247-254, 1957.

[37] C. K. Chow, "On optimum recognition error and reject

tradeoff," IEEE Transactions on Information Theory, pp.

41-46, 1970.

[38] M. E. Hellman, "The Nearest Neighbor Classification

Rule with a Reject Option," IEEE Transactions on

Systems Science and Cybernetics, vol. 6, no. 3, pp. 179-

185, 1970.

[39] R. Herbei and M. H. Wegkamp, "Classification with

Reject Option," The Canadian Journal of Statistics / La

Revue Canadienne de Statistique, vol. 34, no. 4, pp. 709-

721, 2006.

[40] R. El-Yaniv and Y. Wiener, "On the Foundations of

Noise-free Selective Classification," Journal of Machine

Learning Research, vol. 11, no. 53, pp. 1605-1641, 2010.

[41] J. Lei, "Classification with confidence," Biometrika, vol.

101, no. 4, pp. 755-769, 2014.

[42] Y. Geifman and R. El-Yaniv, "Selective Classification

for Deep Neural Networks," in Proceedings of NeurIPS

2017, 2017.

[43] Y. Geifman and R. El-Yaniv, "SelectiveNet: A Deep

Neural Network with an Integrated Reject Option," in

Proceedings of ICML 2019, 2019.

[44] Y. Romano, M. Sesia and E. Candes, "Classification with

Valid and Adaptive Coverage," in Proceedings of

NeurIPS 2020, 2020.

[45] M. Cauchois, S. Gupta and J. C. Duchi, "Knowing what

You Know: valid and validated confidence sets in

multiclass and multilabel prediction," Journal of

Machine Learning Research, vol. 22, no. 81, pp. 1-42,

2021.

[46] A. Angelopoulos, S. Bates, J. Malik and M. I. Jordan,

"Uncertainty Sets for Image Classifiers using Conformal

Prediction," in Proceedings of ICLR 2021, 2021.

[47] S. Hochreiter and J. Schmidhuber, "Long Short-Term

Memory," Neural Computation, vol. 9, no. 8, p. 1735

1780, 1997.

[48] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk et Y. Bengio, «Learning

Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation,» 2014.

[49] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia et A.

Baskurt, «Sequential Deep Learning for Human Action

Recognition,» chez 2nd International Workshop on

Human Behavior Understanding (HBU), Amsterdam,

Netherlands, 2011.

[50] G. Katz, G. W. Barrett, D. L. Dill, K. Julian et M. J.

Kochenderfer, «Reluplex: An efficient SMT solver for

verifying deep neural networks,» chez CoRR, 2017.

[51] M. Damour, F. De Grancey, C. Gabreau, A. Gauffriau,

J.-B. Ginestet, A. Hervieu, T. Huraux, C. Pagetti, L.

Ponsolle et A. Claviere, «Towards Certification of a

Reduced Footprint ACAS-Xu System: A Hybrid ML-

Based Solution,» chez International Conference on

Computer Safety, Reliability, and Security

(SAFECOMP), 2021.

[52] A. Avizienis, J. Laprie and B. Randell, "Fundamental

Concepts of Dependability," 2000. [Online]. Available:

https://www.researchgate.net/publication/2408079_Fund

amental_Concepts_of_Dependability.

[53] ISO, PAS 21448, Road vehicles - Safety of the intended

functionality (SOTIF), 2019.

	I. Introduction
	II. From ML performance to Safety objectives
	A. ML performance and safety objectives
	B. Two examples from the railway and automotive domains
	1) Railway and computer vision
	2) Automotive and weather prediction

	C. The Gap

	III. Reconciling safety objectives with machine learning performances?
	A. Model diversification
	B. Monitoring
	1) OOD Monitoring
	2) Robustness Monitoring
	3) Safety/Availability Tradeoff
	a) General case
	b) Simplifications

	C. Reject option and conformal prediction
	1) Classification with a reject option
	2) Conformal prediction

	D. Temporal redundancy
	E. Concluding remarks

	IV. Discussion: a historical perspective
	A. Typical stages in the introduction of a new technology
	B. Are such stages applicable to ML?

	V. Conclusion
	VI. Appendix: definitions of key concepts
	VII. References

