
HAL Id: hal-03765430
https://hal.science/hal-03765430

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building an Operable Graph Representation of a Java
Program as a basis for automatic software

maintainability analysis
Sébastien Bertrand, Pierre--alexandre Favier, Jean-Marc André

To cite this version:
Sébastien Bertrand, Pierre--alexandre Favier, Jean-Marc André. Building an Operable Graph Rep-
resentation of a Java Program as a basis for automatic software maintainability analysis. 20èmes
Rencontres des Jeunes Chercheurs en Intelligence Artificielle, Jun 2022, Saint-Etienne, France. �hal-
03765430�

https://hal.science/hal-03765430
https://hal.archives-ouvertes.fr

Building an Operable Graph Representation of a Java Program as
a basis for automatic software maintainability analysis

Sébastien Bertrand1,2, Pierre-Alexandre Favier1,3, and Jean-Marc André1,3

1IMS Laboratory, University of Bordeaux, UMR 5218 CNRS, France
2onepoint, Sud-Ouest, France

3ENSC, Bordeaux INP, France

s.bertrand@groupeonepoint.com, {pierre-alexandre.favier, jean-marc.andre}@ensc.fr

Résumé
Dans le cadre d’un projet de recherche concernant
l’évaluation de la maintenabilité logicielle en collabora-
tion avec l’équipe de développement, nous nous sommes
intéressés à l’utilisation fréquente de métriques comme
prédicteurs. De nombreuses métriques existent, souvent
avec des implémentations opaques et discutables. Nous
affirmons que les métriques mélangent l’évaluation de la
présentation, de la structure et du modèle. Afin de se con-
centrer sur les vrais défauts de maintenabilité détectables,
nous avons calculé des métriques uniquement basées sur
la structure du programme. Notre approche a consisté à
analyser le code source de programmes Java comme un
graphe, et calculer les métriques dans un langage de re-
quête déclaratif. À cette fin, nous avons développé Javanal-
yser et implémenté 34 métriques en utilisant Spoon pour
analyser les programmes Java, et Neo4j comme base de
données de graphes. Nous allons montrer que le graphe
de programme constitue une base solide pour calculer les
métriques et mener de futures études d’apprentissage au-
tomatique pour évaluer la maintenabilité.

Mots-clés
Maintenabilité logicielle, Analyse de programme, Graphe
de programme.

Abstract
As a part of a research project concerning software main-
tainability assessment in collaboration with the develop-
ment team, we were interested in the frequent use of met-
rics as predictors. Many metrics exist, often with opaque
and arguable implementations. We claim metrics mix the
assessment of presentation, structure and model. In order
to focus on true detectable maintainability defects, we com-
puted metrics solely based on the structure of the program.
Our approach was to parse the source code of Java pro-
grams as a graph, and to compute metrics in a declara-
tive query language. To this end, we developed Javanalyser
and implemented 34 metrics using Spoon to parse Java pro-
grams and Neo4j as graph database. We will show that the
program graph constitutes a steady basis to compute met-

rics and conduct future machine-learning studies to assess
maintainability.

Keywords
Software Maintainability, Program Analysis, Program
Graphs.

1 Introduction
Software maintainability is paramount to reducing the cost
of systems in time [15, 17]. Our research project concerns
software maintainability assessment working in collabora-
tion with the development team [13]. As part of this effort,
we began to reproduce a study from Schnappinger et al.
[33], because their work is based on a recent, high qual-
ity software maintainability dataset [32]. This introduction
presents what maintainability and metrics are, before con-
tinuing on the importance of the program structure and hav-
ing clear and unambiguous metrics. Finally, we will present
Javanalyser, the tool we developed to answer our research
questions.

Maintainability is defined as the efficiency with which the
software can be corrected, improved or adapted to changes
in the system or in the specifications, either technical or
functional. According to the ISO 25010 [25], maintainabil-
ity is composed of five subcharacteristics:

• Modularity: degree of decoupling between compo-
nents;

• Reusability: degree of potential reuse of a component;

• Analysability: degree to which the implementation of
a component can be understood and debugged;

• Modifiability: degree to which a component can be
modified without introducing defects in other compo-
nents;

• Testability: degree to which a component can be tested
against a set of technical and functional specifications.

Most studies try to predict maintainability by using metrics
as predictors [11, 20]. There is a great number of existing

metrics [19], which can be broadly categorized in product
metrics relating to the structure of the software, for exam-
ple the number of lines of code, and process metrics relating
to the activity of developing the software, for example the
number of hours needed to correct a bug [22]. Product met-
rics are trying to pinpoint the intrinsic cause of maintain-
ability defects, and process metrics are extrinsic giveaways
of these defects. We can metaphorise that product metrics
are the disease while process metrics are the symptoms.

The development of a software in general, and maintain-
ability in particular, can also be approached from three an-
gles:

• The presentation of the source code, encompassing
all the style rules applied to write the program, for
instance how many classes there is per file, where a
blank line should be inserted for clarity, or the naming
convention of classes and methods;

• The structure of the source code, characterized by the
components of the program, their responsibilities, and
the relationships that exist between them;

• The model of the problem the program is trying to
solve, which can be highlighted or not by the organ-
isation of the code, for instance the Domain Driven
Design [21] explicitly puts the model forward.

The presentation of the source code can be a true issue in
some context, as shown by obfuscation tools that can mod-
ify all named elements to reduce readability. But when
developing an application, presentation can be put under
control, as there exist many tools that enforce formatting
and naming convention, such as Prettier [5] for Javascript
or Pylint [6] for Python.
The modelisation of the problem to solve is not only re-
lated the implementation of the program, but to the whole
development process and the business maturity of the de-
velopment team. Despite being an important stake in soft-
ware development, problems related to modelisation go be-
yond the scope of program analysis. A program that per-
fectly respects the subcharacteristics of maintainability de-
fined above can implement a model completely out of phase
with the business, thus making it very difficult to evolve
when new requirements emerge [18]. Typically, in this
case, product metrics would remain stable and process met-
rics would drastically increase. The modelisation angle can
be viewed as the goal the team is trying to reach, when the
goal is wrong for any reason the risks are high to encounter
maintainability problems.
On the other hand, the internal structure of the program can
be very different for equivalent modelisation of the business
(i.e. the same functional scope), thus harbouring maintain-
ability flaws. Analysability is obviously related to the pre-
sentation of the code, but bad encapsulation or factorisation
can also lead to readability issues, such as methods with
too many arguments or very big classes difficult to appre-
hend. It seems legitimate to relate the modularity, reusabil-
ity and modifiability to the sole structure of the program,

because their main concerns are about the components of
the program. Testability is related to both the model and the
structure implemented by the source code, because tests are
designed to check that the implementation (the program)
matches the specifications (the model).
Then, however related to the presentation and the model, it
seems that the structural design of the program is the main
factor impacting the maintainability.

Moreover, while reproducing the study from Schnap-
pinger et al. [33], we encountered many problems col-
lecting metrics. Many tools exist and many metrics have
been studied [12, 28]. Some studies are based on unmain-
tained or deprecated tools, and each tool implements met-
rics computation differently, often with very little documen-
tation available.

We make the assumption that focusing on the structural
analysis of a program will allow us to detect predictable
maintainability defects, that depend solely on the program
and not an external context such as the chosen modelisation.
We developed our tool called Javanalyser, that parses the
abstract syntax tree of a Java program and load its structure
as a graph within a graph database (Neo4j [4]). We focused
on having an operable graph and tested it by implementing
a set of 34 product metrics as Cypher queries [23], leverag-
ing declarative programming to have concise, mutable and
explicit definition of metrics. Javanalyser is available un-
der the open-source MIT licence. The goal is to build a
steady basis to conduct machine-learning studies to assess
maintainability.

2 Method
This section explains in detail how we built Javanalyser to
process a Java program and the design choices we made.
Basically, our approach was to parse the source code, com-
pute the corresponding graph, and load it into a graph
database. When implementing the metrics, we had to man-
age external references towards the projects’ dependencies
and define how to walk along the relationships of the graph.
Finally, we were able to compute metrics based solely on
the graph.

Parsing Java. We used Spoon [31] to parse Java programs,
it produces an abstract syntax tree designed to be both com-
plete and understandable for Java developers. Before, we
considered two other parsers. At first, we wanted to use
directly the Eclipse Java Development Tools [1], which is
internally used by Spoon, but it was very difficult to make
it run outside an Eclipse environment, and its documenta-
tion is sparse on this issue. Then, we tried JavaParser [2],
which was simple to install within our solution. However,
code references to external dependencies (typically speci-
fied by the CLASSPATH) were not properly parsed by its
symbol solver in our tests. On the other hand, Spoon is able
to parse properly all external references within a Java pro-
gram. This point was paramount for being able to compute
a graph from the abstract syntax tree (AST), as we must be
able to detect that two leaves from the AST are referencing

the same type (a Class or an Enum in Java). An atomic
element of the Spoon meta-model is a CtElement, which
we encapsulated within a ProgramElement for easy ma-
nipulation. Hereafter, we will call “program element” the
nodes from the AST produces by Spoon.

The graph. Internally, we implemented a Scanner in
Javanalyser to walk through the AST produced by Spoon
and compute a graph by collecting additional edges be-
tween references and referenced elements. The Scanner
from Spoon do not automatically walk along these relation-
ships to avoid infinite loop when scanning the AST. In this
process, we also implemented some simplifications within
the graph, for instance:

• we avoided creating vertices for TypeReference
by linking the referencing program element to the ref-
erenced type directly;

• we chose not to specify obvious relationships such as
ThisAccess which can be inferred from context;

• we avoided creating extraneous vertices for very sim-
ple elements, such as a VariableAccess without Cast,
Annotation or Comment, that is only a reference
to a Variable.

We only implemented reversible simplifications, that allow
to infer the correct AST from the graph. These simplifica-
tions were designed to produce a graph that matches more
intuitively the code. However, the trade-off of these simpli-
fications was that the graph produced has a database schema
depending on the context. We accepted this matter of fact,
as our ultimate goal is to assess maintainability, we wanted
to produce a graph that matches more closely the “point of
view” of a developer.

Graph database. We used Neo4j [4] as the graph database.
Neo4j allows to use a flexible property graph schema. A
property graph is a labeled directed multigraph, sometimes
called labeled multidigraph. A multigraph allows self-loop
edges and parallel edges between nodes. A labeled mul-
tidigraph has labeled vertices and arcs. In Neo4j, ver-
tices can have multiple labels although edges can only have
one label called type. That is why Neo4j matched per-
fectly our requirements, each program element of the AST
from Spoon being precisely typed (for instance CtClass
or CtConstructor), and having a defined role in its
parent’s program element (for instance FOR_INIT or
EXPRESSION). The trickiest part was to load the data as
quickly as possible, because parsing an actual Java program
from scratch involves a huge graph.

External references. There are two types of references,
internal and external to the parsed Java program. Internal
references are declared in another part of the parsed Java
program. External references reference program elements
declared in dependencies (sometimes called libraries) used
by the parsed Java program, typically passed along the
CLASSPATH variable for a Java program. We paid par-
ticular attention to parse and identify each of these depen-
dencies. If there is a missing Jar within the CLASSPATH,

the corresponding external references are flagged as broken
references. But if these external references are known, we
implemented a walk along their parents’ nodes within the
AST to provide potential useful additional information. Fi-
nally, we flagged external references as “shadow”, which is
the term used by Spoon. Identifying external references is
useful when implementing metrics, according to their defi-
nition.

Walking the graph. There are many types of relationships
within the graph. Because we lost the presentation infor-
mation conveyed by the segregation of code in files, we had
to define how to walk along relationships within the graph.
In other words, we wanted to be able to query program ele-
ments belonging to a class, leaving apart program elements
belonging to other classes. Actually, we classified relation-
ships’ types in six sets:

• organisational: describing the structure of modules,
packages and classes;

• inner: describing how nodes belong to one another, for
instance a local variable belongs to a method which
belongs to a class;

• type: linking typed elements to their type (Class,
Enum, . . .);

• outer: describing references to potential outer ele-
ments, which are typically members of other classes;

• comment: linking program elements to their com-
ment;

• flow: describing the control and data flow of the code.

These sets of relationships were instrumental for the design
of the metrics queries.

Metrics. We implemented the computation of metrics in
Cypher [23], the declarative query language for property
graphs associated with Neo4j. To ensure that the implemen-
tation of our metrics was correct, we qualitatively compared
our results with SonarQube [7] and SourceMeter [8] to de-
tect potential defects within our queries. This whole pro-
cess helped us to iteratively design Javanalyser. Moreover,
every metric we planned was successfully implemented and
tuned to our expectation. This final task showed the flexi-
bility and versatility of the computation of metrics based on
the graph.

3 Results
Foremost, the goal is to build a steady basis to conduct
machine-learning studies to assess maintainability. As
we focus on the structure of the program, we want to
have a presentation-independent representation. This is
why we build Javanalyser to represent code as a graph,
depending only on the structure of the code, and al-
lowing to easily extract data such as metrics. Javanal-
yser parses a Java program, produces a Neo4j [4] graph,
and outputs metrics in a CSV file. The source code

Figure 1: Screenshot of the graph of the singleton pattern

of Javanalyser is available under the free (as in free-
dom) MIT licence on GitLab at https://gitlab.
com/onepoint/research/javanalyser.

Figure 1 presents an example of the singleton pattern
implementation from listing 1. The graph is a labeled
directed multigraph. Each node represents an element
from the source code. There are 89 existing node labels,
for instance there is “Class”, “LocalVariable” or
“While”. Edges represent oriented relationship between
nodes, for instance in our example the class “A” has four
members. There are 93 existing relationship’s types, for
instance “TYPE_MEMBER”, “DEFAULT_EXPRESSION”
or “EXPRESSION”. All names (node label and relation-
ship type) comes from the Spoon [31] meta-model, except
“STATEMENT_ORDER” which we introduced to obviously
keep track of the execution flow within a block.
package fr.onepoint.javanalyser.tests.singleton;

public class A {

private static final A instance = new A();

private A() {
}

public static A getInstance() {
return instance;

}

public void someMethod() {
// This is a method

}
}

Listing 1: A singleton pattern in Java

Thirty-four metrics have been implemented as Cypher
queries. Listing 2 shows an example with the implementa-
tion of the cyclomatic complexity. Javanalyser aggregates
the results of these metrics for each class of the parsed Java
program. Then, it produces a CSV file listing classes and
associated metrics. Metrics computations are only based on
the graph, no pre-computation is done by Javanalyser.
//Cyclomatic Complexity
CALL {
MATCH (class:Class)
OPTIONAL MATCH (class)-[:ANNOTATION|ARGUMENT|ASSIGNED|

ASSIGNMENT|BODY|CASE|CATCH|CONDITION|

DEFAULT_EXPRESSION|DIMENSION|ELSE|EXPRESSION|
FINALIZER|FOREACH_VARIABLE|FOR_INIT|FOR_UPDATE|
LEFT_OPERAND|NESTED_TYPE|PARAMETER|RIGHT_OPERAND|
STATEMENT|TARGET|THEN|TYPE_MEMBER|TYPE_PARAMETER|
VALUE *0..]->(node)

RETURN class, node
}
WITH class, node
WHERE
(node:Constructor AND NOT node.implicit)
OR node:Method
OR node:AnonymousExecutable
OR node:If
OR node:Conditional
OR node:For
OR node:ForEach
OR node:While
OR node:Do
OR (node:Case AND EXISTS((node)-[:EXPRESSION]->()))
OR node:Catch
OR (node:BinaryOperator AND (node.operator = "AND" OR

node.operator = "OR"))
RETURN class.id AS id, class.name AS class, count(

distinct(node)) AS cyc

Listing 2: Cyclomatic Complexity Query

Implemented metrics include:

• Number of children [16], which is the number of
classes that directly inherit from the class;

• Depth of Inheritance Tree [16], which is the number
of parents the class inherits;

• Number of nodes from the class, which is the graph
analog of the number of lines of code;

• Maximum of methods’ number of nodes;

• Number of nodes within methods;

• Average methods’ number of nodes;

• Nesting Level Else-If, which measure complexity as
the depth of the maximum embeddedness of its condi-
tional, iteration and exception handling block scopes;

• Cyclomatic complexity [29], which corresponds to the
number of linearly independent paths;

• Maximum length of loops;

• Number of loops;

• Number of outgoing invocation, which is actually the
number of executable referenced;

• Coupling between objects [16], which counts the num-
ber of non-inheritance related classes, i.e. the classes
that are acted upon by the class or act upon the class
(e.g. calling methods or holding instance variables);

• Maximum nesting depth;

• Number of methods [27];

• Cognitive complexity [14], which is an evolution of
the cyclomatic complexity;

• Number of local attributes and methods declared in the
class [27];

https://gitlab.com/onepoint/research/javanalyser
https://gitlab.com/onepoint/research/javanalyser

• Message-passing coupling [27], which is the number
of call statements from the class to other classes;

• Response for a class [16], which is the cardinality of
the set of local methods and the methods called by
these;

• Lack of cohesion in methods [16, 24], which is the
number of sets of methods bound by at least one com-
mon instance variable;

• Number of nodes embedded in blocks deeper than 4;

• Data Abstraction Coupling [27], which is the number
of variables defined in the class and having an abstract
data type.

Moreover, Javanalyser outputs two other CSV files. The
first lists broken references, which denotes there was some
missing dependencies that need to be passed as an argument
to the command-line. The second represents the schema of
the graph, i.e. the effective relationships between nodes’
types. These relationships are weighted by counting the
number of instances. This weighted schema can be used to
compare at a large scale the programming style of different
Java programs.

Figure 2 presents an extract from the graph produced by
parsing Art of Illusion1, which is around 100 kilo lines of
code. This extraction presents an overview of the Java
packages (in brown), and most classes (in green) and in-
terfaces (in pink) from the project. Javanalyser parses this
project and computes all metrics within approximately 5
minutes on an average computer2. A lot of the develop-
ment effort was put into optimizing the processing speed,
ultimately dividing the total execution time by 50. To date,
we worked around 130 days and wrote about 1700 lines
of code to develop Javanalyser, which we shared to the
community under the open-source MIT licence. Javanal-
yser is a console application that can be pipelined within a
more global process, and more Cypher queries can be eas-
ily added. This allows to use this tool for batch processing
large datasets such as the GitHub Java Corpus [10].

4 Discussion
We designed our work as a unified maintainability-analysis
framework, spanning from metrics computation to program
representation. This discussion begins with the stakes of the
definition of metrics, then we focus on how to count com-
plexity with the case of Optional in Java. Finally, we
will discuss program representation by covering jQAssis-
tant [3], ontology-based program analysis, and graph rep-
resentations.

Definition of Metrics. When we compared our metrics to
SonarQube [7] and SourceMeter [8], it jumped out their
implementations of metrics often differ. Even for a metric
as plain as the number of lines of code, we counted many

1https://github.com/ArtOfIllusion/ArtOfIllusion
2Intel(R) Core(TM) i7-1185G7 @ 3.00GHz, 16 Go of RAM

Figure 2: An extract of the graph produced by Javanalyser
when parsing Art of Illusion

variations with none being equal as shown by an example
from Art of Illusion in table 1. Moreover, reading doc-
umentations is nor practical nor always sufficient to grab
all the subtleties of metrics computation. For instance the
documentation of SourceMeter does not state the computa-
tion of cyclomatic complexity ignores nested classes, which
is most surprising because the declaration on-the-fly of a
nested class is clearly a source of complexity, and a back-
door for masking complexity if ignored.
Whether open-source or well documented, imperative im-
plementations of metrics remains opaque, hard to discuss
and hard to adapt according to the context. On the other
hand, our declarative implementations of metrics within
Cypher queries [23] embodies formal definitions and are all
at once univocal, transparent, easily shareable and mutable.

Tool Metric name Value

Lines 480
SonarQube Lines of Code 368

Comment Lines 28
Lines of Code 314
Total Lines of Code 453
Logical Lines of Code3 233

SourceMeter Total Logical Lines of Code3 357
Comment Lines of Code 23
Documentation Lines of Code 16
Total Comment Lines of Code 34

Table 1: Example of lines of code metrics on the class
ActorEditorWindow

How to count complexity. Most product metrics are basi-
cally specialized counters of some sort, for instance the cy-
clomatic complexity [29] counts the number of predicates4,
the depth of inheritance tree [16] counts the number of par-
ent classes, or the message passing coupling [27] counts
the number of “foreign” calls. Some metrics use different
top-level aggregation operations, like the average methods’
number of nodes that computes an average of counts. In
all cases, these metrics base their computation on simply

3A logical line of code correspond to an executable statement.
4An operator or function that returns either true or false.

https://github.com/ArtOfIllusion/ArtOfIllusion

Figure 3: Screenshot of withOptional graph

counting targeted program elements. Interestingly, the lack
of cohesion in methods [24] is more complex, as it is as-
sociated with the independent subsets of methods within a
class.
However, deciding what to count for a given metrics is
not obvious. Do we count indiscriminately each node
or a subset of so-called statement nodes? Do we count
external references? Do we count nested classes or in-
ner classes? We can go even further by considering the
Optional in Java versus the classic if-then-else struc-
ture. Listing 3 presents two methods, withOptional
and withoutOptional. These methods have intrinsi-
cally the same behaviour but their computed cyclomatic
complexity differ. We argue this difference is not legiti-
mate, especially considering that the cyclomatic complex-
ity was built to count the number of paths within a piece
of code. Figures 3 and 4 show the use of Optional does
not decrease the number of paths, which is coherent with
the fact that these methods implement the same behaviour.
The same reasoning can be made with Java Stream versus
classic for loop.
Our approach allows to easily take into account new struc-
tures contributing to complexity by adding the correspond-
ing selectors to the query (within WHERE clauses).

package fr.onepoint.javanalyser.tests.optional;

import java.util.Optional;

public class A {

// Cyclomatic Complexity = 1
String withOptional(String a, String b) {
return Optional.of(a).orElse(Optional.of(b).
orElseGet(this::defaultValue));

}

// Cyclomatic Complexity = 3
String withoutOptional(String a, String b) {
return a != null ? a : b != null ? b : defaultValue
();

}

String defaultValue() {
return "Default Value";

}
}

Listing 3: Code with or without optional

Figure 4: Screenshot of withoutOptional graph

Program Representation. The cyclomatic complexity is
built by considering the complexity of the associated pro-
gram graph. Computationally, through graph theory, it can
be reduced at counting the number of predicates. But its
inception is based on a graph representation of the control
flow of the program [29]. Lemberger and Morel use cy-
clomatic complexity to define a scale-invariant measure of
complexity [26]. They also emphasize the idea that summa-
tion of metrics is not a natural condition to compute higher-
level metrics, i.e. the complexity of a class is not the sum-
mation of the complexity of its methods.
This leads us to consider program representation, which
must be first complete and accurate, possibly opinionated,
but also freely interpretable to allow discussion and sub-
sequent exploration by machine-learning algorithms. Our
approach was to build a complete program graph based on
a carefully simplified structure and leaving aside presenta-
tion. Müller et al. [30] have a similar approach, based on
Neo4j [4] and jQAssistant [3]. However jQAssistant does
not feed the graph with the content of the methods, making
it impossible to compute low-level metrics.
Another approach involves ontology-based program anal-
ysis. Graph4Code [9] exploits RDF graphs where each
program is represented in a separate graph, which are
interconnected by fully-qualified function names (pack-
age.classname.function). Documentation resources, as well
as StackOverflow and StackExchange posts are also repre-
sented in separate graphs and connected to program graphs
by fully-qualified function names. Applications such as
anti-pattern detection or a debugging tool are implemented
via smart SPARQL queries on the RDF graph. Zhao et al.
[34] propose a solution that uses the SWI-Prolog reason-
ing engine and custom APIs to exploit and possibly up-
date a knowledge base. The authors also argue that among
implementations of program analysis, those based on a
declarative approach are easier to implement and maintain
than those based on an imperative approach. Actually, our
Cypher queries were a bit messy, for instance due to the
systematic repetition of the set of inner relationships. The
use of ontologies could simplify our implementation and
be more powerful than mere Neo4j queries, as it will permit
the introduction of more general concepts.

5 Conclusions
In order to focus on true detectable maintainability defects,
we built Javanalyser to represent code as a graph, depend-
ing only on the structure of the code and allowing to eas-
ily extract data such as metrics. Thirty-four metrics were
implemented as Cypher queries [23], embodying a formal
definition of these metrics. Moreover, declarative queries
allow taking into account the complexity of up-to-now ig-
nored Java structures such as Optional or Stream. Ja-
vanalyser foreshadows a unified maintainability-analysis
framework to conduct machine-learning studies to assess
maintainability.

Future works include testing our graph and metrics against
the software maintainability dataset [32]. Leveraging
ontology-based program analysis [34] could also sim-
plify our implementation and be more powerful than mere
Cypher queries, as it will permit the introduction of more
general concepts, thus allowing higher level analysis. Fi-
nally, studying the graph simplifications we designed would
be required to ascertain the graph is faithful to the devel-
oper’s cognitive representation of the program.

Acknowledgments
We thank our collaborators at onepoint5 for their insightful
advices, in particular Damien Bonvillain, Alexandra Del-
mas, Jérôme Fillioux, and Jérôme Lelong.

References
[1] Eclipse Java Development Tools. https://www.

eclipse.org/jdt/.

[2] JavaParser. https://javaparser.org/.

[3] jQAssistant. https://jqassistant.org/.

[4] Neo4j. https://neo4j.com/.

[5] Prettier. https://prettier.io/.

[6] Pylint. https://pylint.org/.

[7] SonarQube. https://www.sonarqube.org/.

[8] SourceMeter. https://www.sourcemeter.
com/.

[9] Ibrahim Abdelaziz, Julian Dolby, James P. Mc-
Cusker, and Kavitha Srinivas. Graph4Code: A
Machine Interpretable Knowledge Graph for Code.
arXiv:2002.09440 [cs], May 2020. https://
arxiv.org/abs/2002.09440.

[10] Miltiadis Allamanis and Charles Sutton. Mining
source code repositories at massive scale using lan-
guage modeling. In 2013 10th Working Conference
on Mining Software Repositories (MSR), pages 207–
216, May 2013.

5https://www.groupeonepoint.com/

[11] Hadeel Alsolai and Marc Roper. A systematic lit-
erature review of machine learning techniques for
software maintainability prediction. Information and
Software Technology, 119:106214, March 2020.

[12] Luca Ardito, Riccardo Coppola, Luca Barbato, and
Diego Verga. A Tool-Based Perspective on Software
Code Maintainability Metrics: A Systematic Litera-
ture Review. Scientific Programming, 2020:1–26, Au-
gust 2020.

[13] Sébastien Bertrand, Pierre-Alexandre Favier, and
Jean-Marc André. Pragmatic Software Maintainabil-
ity Management Using a Multi-agent System Work-
ing in Collaboration with the Development Team. In
Sara Rodríguez González, Alfonso González-Briones,
Arkadiusz Gola, George Katranas, Michela Ricca,
Roussanka Loukanova, and Javier Prieto, editors, Dis-
tributed Computing and Artificial Intelligence, Spe-
cial Sessions, 17th International Conference, Ad-
vances in Intelligent Systems and Computing, pages
201–204, Cham, 2020. Springer International Pub-
lishing.

[14] G. Ann Campbell. Cognitive complexity: An
overview and evaluation. In Proceedings of the
2018 International Conference on Technical Debt,
TechDebt ’18, pages 57–58, New York, NY, USA,
May 2018. Association for Computing Machin-
ery. https://doi.org/10.1145/3194164.
3194186.

[15] Celia Chen, Reem Alfayez, Kamonphop Srisopha,
Barry Boehm, and Lin Shi. Why Is It Important to
Measure Maintainability and What Are the Best Ways
to Do It? In 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-
C), pages 377–378, May 2017.

[16] Shyam R. Chidamber and Chris F. Kemerer. Towards
a Metrics Suite for Object Oriented Design. In OOP-
SLA ’91: Conference Proceedings on Object-oriented
Programming, Systems, Languages, and Applications,
volume 26, pages 197–211, Phoenix, Arizona, USA,
November 1991. Association for Computing Machin-
ery.

[17] Don Coleman, Bruce Lowther, and Paul Oman. The
application of software maintainability models in in-
dustrial software systems. Journal of Systems and
Software, 29(1):3–16, April 1995.

[18] Ward Cunningham. The WyCash portfolio manage-
ment system. ACM SIGPLAN OOPS Messenger,
4(2):29–30, December 1992.

[19] Sara Elmidaoui, Laila Cheikhi, and Ali Idri. Towards
a Taxonomy of Software Maintainability Predictors.
In Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis, and

https://www.eclipse.org/jdt/
https://www.eclipse.org/jdt/
https://javaparser.org/
https://jqassistant.org/
https://neo4j.com/
https://prettier.io/
https://pylint.org/
https://www.sonarqube.org/
https://www.sourcemeter.com/
https://www.sourcemeter.com/
https://arxiv.org/abs/2002.09440
https://arxiv.org/abs/2002.09440
https://www.groupeonepoint.com/
https://doi.org/10.1145/3194164.3194186
https://doi.org/10.1145/3194164.3194186

Sandra Costanzo, editors, New Knowledge in Infor-
mation Systems and Technologies, volume 930 of Ad-
vances in Intelligent Systems and Computing, pages
823–832. Springer, 2019.

[20] Sara Elmidaoui, Laila Cheikhi, Ali Idri, and Alain
Abran. Empirical Studies on Software Product Main-
tainability Prediction: A Systematic Mapping and Re-
view. e-Informatica Software Engineering Journal,
13(1):141–202, 2019.

[21] Eric Evans. Domain-Driven Design: Tackling Com-
plexity in the Heart of Software. Addison-Wesley,
Boston, 2004.

[22] Norman E Fenton and Shari Lawrence Pfleeger. Soft-
ware Metrics: A Rigorous and Practical Approach.
International Thomson, second edition, 1996.

[23] Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. Cypher: An Evolving Query Lan-
guage for Property Graphs. In Proceedings of the
2018 International Conference on Management of
Data, SIGMOD ’18, pages 1433–1445, New York,
NY, USA, May 2018. Association for Computing Ma-
chinery.

[24] Martin Hitz and Behzad Montazeri. Measuring Cou-
pling and Cohesion In Object-Oriented Systems. In
Proceedings of the International Symposium on Ap-
plied Corporate Computing, page 10, Mexico, Mon-
terrey, 1995.

[25] ISO/IEC. Systems and software engineering — Sys-
tems and software Quality Requirements and Eval-
uation (SQuaRE) — System and software quality
models. Standard ISO/IEC 25010:2011, ISO/IEC,
2011. https://www.iso.org/standard/
35733.html.

[26] Pirmin Lemberger and Médéric Morel. Two Measures
of Code Complexity. pages 195–206. January 2013.

[27] Wei Li and Sallie Henry. Object-Oriented Metrics
that Predict Maintainability. Journal of Systems and
Software, 23(2):111–122, November 1993. http:
//www.sciencedirect.com/science/
article/pii/016412129390077B.

[28] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe.
Comparing software metrics tools. In Proceedings of
the 2008 International Symposium on Software Test-
ing and Analysis - ISSTA ’08, page 131, Seattle, WA,
USA, 2008. ACM Press.

[29] Thomas J. McCabe. A Complexity Measure. IEEE
Transactions on Software Engineering, SE-2(4):308–
320, December 1976.

[30] Richard Müller, Dirk Mahler, Michael Hunger, Jens
Nerche, and Markus Harrer. Towards an Open Source
Stack to Create a Unified Data Source for Software
Analysis and Visualization. In 2018 IEEE Work-
ing Conference on Software Visualization (VISSOFT),
pages 107–111, Madrid, September 2018. IEEE.

[31] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez,
Carlos Noguera, and Lionel Seinturier. Spoon: A li-
brary for implementing analyses and transformations
of Java source code. Software: Practice and Experi-
ence, 46(9):1155–1179, September 2016.

[32] Markus Schnappinger, Arnaud Fietzke, and Alexan-
der Pretschner. Defining a Software Maintainability
Dataset: Collecting, Aggregating and Analysing Ex-
pert Evaluations of Software Maintainability. In 2020
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pages 278–289, Ade-
laide, Australia, September 2020. IEEE.

[33] Markus Schnappinger, Arnaud Fietzke, and Alexan-
der Pretschner. Human-level Ordinal Maintainability
Prediction Based on Static Code Metrics. In EASE
2021: Evaluation and Assessment in Software Engi-
neering, pages 160–169, Trondheim, Norway, June
2021. ACM.

[34] Yue Zhao, Guoyang Chen, Chunhua Liao, and Xipeng
Shen. Towards Ontology-Based Program Analy-
sis. In Shriram Krishnamurthi and Benjamin S.
Lerner, editors, 30th European Conference on Object-
Oriented Programming, volume 56 of Leibniz In-
ternational Proceedings in Informatics, pages 26:1–
26:25. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2016.

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
http://www.sciencedirect.com/science/article/pii/016412129390077B
http://www.sciencedirect.com/science/article/pii/016412129390077B
http://www.sciencedirect.com/science/article/pii/016412129390077B

	Introduction
	Method
	Results
	Discussion
	Conclusions

