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Larger geographical areas contain more species –an observation raised to a law in ecology. 57 

Less explored is whether biodiversity changes are accompanied by a modification of 58 

interaction networks. We use data from 32 spatial interaction networks from different 59 

ecosystems to analyse how network structure changes with area. We find that basic 60 

community structure descriptors (number of species, links, and links per species) increase 61 

with area following a power-law. Yet, the distribution of links per species varies little with 62 

area, indicating that the fundamental organization of interactions within networks is 63 

conserved. Our null model analyses suggest that the spatial scaling of network structure is 64 

determined by factors beyond species richness and the number of links. We demonstrate 65 

that biodiversity–area relationships can be extended from species counts to higher levels of 66 

network complexity. Therefore, the consequences of anthropogenic habitat destruction 67 

may extend from species loss to wider simplification of natural communities. 68 

 69 

INTRODUCTION 70 

Biotic interactions, the missing link  71 

Research on the spatial scaling of biodiversity has historically focused on the increase of species 72 

richness with area1–3 and on other components of biodiversity, such as functional or 73 

phylogenetic diversity4–6. The Species Area Relationship (SAR) is essential to estimate species 74 

richness in a region and species loss following habitat destruction and range contraction7–9. 75 

Ecological communities are, however, more than disconnected collections of species. Instead, 76 

they can be represented as networks, with species as nodes and interactions among species as 77 

links10. Ecological interactions are fundamental to predict ecosystem responses to environmental 78 

changes11–13 and to sustain important ecosystem functions14–16. Understanding how the structure 79 

of interaction networks changes with area is, thus, crucial to fully characterize the spatial scaling 80 

of biodiversity and to predict ecosystem responses to human activities.  81 

The influence of spatial processes on the organization of interaction networks has long 82 

interested ecologists17–19. However, research on the spatial scaling of network structure has been 83 
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scarce20–22. This scaling concerns two hierarchical levels: the number of building blocks within 84 

communities (species and their interactions) and the relationships between them. The scaling of 85 

the number of links (i.e., biotic interactions) with area has been previously predicted20 by 86 

unifying the SAR with the well-established scaling of the number of links with species 87 

richness23–26. Similarly, recent theoretical research has shown that a number of network–area 88 

relationships (NARs) can emerge from different spatial mechanisms and assembly processes, 89 

such as different SARs across trophic levels or dispersal limitation21. Yet, empirically 90 

documenting the specific shape of these relationships and assessing their potential universality 91 

across biomes, interaction types, and spatial domains remains a major challenge.  92 

The power function of the form S~ cAz has been found to describe the increase in 93 

species richness with area A across all ecosystem types1,27, with parameter z varying 94 

substantially with the spatial extent studied27–29. Whether other aspects of network complexity 95 

can be captured by the same functional form, and how the parameters of such scaling vary with 96 

network properties and spatial extent, are questions of fundamental importance for 97 

characterizing the effects of area loss on biodiversity. Similarly, as many aspects of network 98 

structure can change with species diversity and network connectance30–33 (i.e., the proportion of 99 

realised interactions among all potential ones), it is important to determine whether the spatial 100 

scaling of  network structure is a trivial consequence of the increase of species richness with 101 

area, or whether such scaling of network properties follow rules beyond those applying to 102 

species richness. 103 

A unique dataset across ecosystems and biomes 104 

We compiled 32 datasets from different ecosystems across the globe describing 105 

interaction networks (including both mutualistic and antagonistic interactions) within two 106 

spatial domains: regional and biogeographical. The regional domain represents communities for 107 

which sampling was conducted locally in a replicated fashion within narrow spatial extents (i.e., 108 

maximum spatial extent of ca. 1000 km2). The biogeographical spatial domain includes datasets 109 

for which the sampling units span much broader areas, encompassing multiple biomes (see 110 
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Methods and Supplementary Text 1). Thus, biogeographical data comprise communities 111 

exposed to larger environmental heterogeneity, stronger dispersal barriers and historical 112 

contingencies, which combine to produce diversity patterns at large spatial scales. Hence, we 113 

expected a priori the scaling relationships for the biogeographical domain to be steeper than 114 

those for the regional domain, as within the biogeographical domain, species assemblages can 115 

be evolutionary less related and exhibit greater turnover of species and links. Each dataset 116 

contained interaction data, using different methodologies to document pairwise interactions. To 117 

characterise changes in network properties with changes in area, we sequentially aggregated the 118 

sampling units available, scoring the structure of the network at each step of the aggregation 119 

procedure (see Methods). 120 

RESULTS & DISCUSSION 121 

Links or species: which one is gained faster? 122 

We found that network complexity increased with area at all levels: at the level of the number of 123 

building blocks (species and links) and at the level of their combinations (links per species; 124 

Figure 1; Table 1 and Supplementary Table 1). For all datasets, the relationships followed a 125 

power-law function, regardless of the spatial extent of observation or interaction type. Within 126 

both the regional and biogeographical domain, we found that an extended power function best 127 

describes the scaling of network complexity with area (see Methods and Supplementary Table 128 

1). This function has the form 𝑁 = 𝑐𝐴!"#!"$, where N is a given network property, A is area, 129 

and c, z and d are fitted parameters, where z represents the slope of a given NAR in log-log 130 

space (i.e., the scaling exponent) and d controls the strength of the asymptotic flattening.  131 

 We found systematic differences in the shape of the scaling relationships between the 132 

regional and biogeographical domains. All measures of network complexity followed a linear-133 

concave increase with area size in the regional domain (i.e. z >>d >0) while in the 134 

biogeographical domain, the increase was convex for most datasets (z >0>d) (but see 135 

Supplementary Figure 7 and Supplementary Figure 8). The biogeographic domain also showed 136 
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larger variability across datasets than the regional domain, suggesting lower predictability at 137 

larger spatial extents (Supplementary Table 3). 138 

The number of links increased faster with area than the number of species, within both 139 

the regional and biogeographical domains. Importantly, whether links increase faster than 140 

species with area will depend on how the number of links scales with species richness20,21. 141 

Previous empirical studies23–26 have used a power function to relate the increase of the number 142 

of links with species richness, and found the value of the scaling exponents to lie between 1 and 143 

225,26 – coining the expressions of the “link-species scaling law” 34 versus “constant connectance 144 

hypothesis”24, respectively. Consistent with previous work, we found the increase in the number 145 

of links with an increase in species richness to follow a power law in all data sets (Figure 2, 146 

Supplementary Table 2). The exponents were larger for the biogeographical (mean ± SD: z = 147 

1.78 ± 0.20) than for the regional domain (z = 1.60 ± 0.20). For both spatial domains, the 148 

scaling exponents of the links-per-species relationship were thus clustered between 1.5 and 2, 149 

but with substantial variability in specific values (Figure 2, Supplementary Table 2). The high 150 

variation observed suggests that the species richness of a community may carry little 151 

information on how the number of links will change with area. Instead, the scaling of the 152 

number of links with species richness may need to be established on a network-specific basis20. 153 

The unpredictability of vertical diversity 154 

Within a network, the links can be organized in multiple ways. In our dataset, the mean number 155 

of resources used by a consumer (i.e. mean indegree: Links/Speciesconsumer) increased with area. 156 

The general shape of the relationship was similar to that of the other complexity measures 157 

analysed, i.e. linear-concave in the regional domain and convex in the biogeographical domain 158 

(Figure 3, Supplementary Table 1). Still, compared to the relationships observed for other 159 

network properties, we observed greater variability in indegree-area relationships within spatial 160 

domains (Supplementary Table 3). This variability is partially driven by the variability in 161 

changes in consumer to resource ratios with area observed across datasets (Supplementary Table 162 

1). Although previous studies have shown a consistent increase of the slope of SARs with 163 
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trophic level35,36, we did not observe any consistent increase nor decrease of the 164 

consumer:resource richness ratio with area at any of the spatial domains (Supplementary Table 165 

1). These findings suggest that the spatial scaling of vertical diversity properties, such as the 166 

proportion of species per trophic level, might be system-specific. 167 

The scale-invariance of degree distributions 168 

Beyond the network properties considered above, other network properties were more consistent 169 

across scales. The degree distribution of ecological networks is typically highly skewed, with 170 

many specialist species and few generalists37,38. This skewness may influence the stability and 171 

robustness of communities38 and it is tightly linked to widely studied network properties, such 172 

as nestedness39,40, (i.e. the degree to which specialist species interact with subsets of the species 173 

interacting with generalists). Previous theoretical work has suggested that the skewness of 174 

ecological networks is preserved across spatial scales21, an expectation borne out in our data. 175 

Despite variability in the degree distribution across datasets, the same function provided a good 176 

fit to the degree distribution of most ecological networks across the full range of areas (see 177 

Methods and Figure 3). Although we observed variation in the parameters of the functions 178 

(Supplementary Figure 4), the consistency in the fundamental shape suggests that community 179 

robustness to species loss (independently of whether it is high or low) may be maintained across 180 

spatial scales.  181 

Disentangling the effect of species richness 182 

Given the influence of species richness and network connectance on many aspects of network 183 

structure30–33, we aimed to investigate whether network structure changes with area beyond 184 

those changes associated to the increase in species richness and links with area. To do so, we 185 

generated random networks with two different null models, as reflecting the case where the 186 

spatial scaling of network structure emanates from the spatial scaling of species richness alone 187 

(with no change in links per species), or the spatial scaling of both species richness and links, 188 

respectively. In both models, we started from the metaweb (i.e. the overall network pooled 189 

across all original networks within each specific study), then randomly drew the same number 190 
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of species as observed in the original, local networks. In null model 1, local random networks 191 

were drawn as random subsets of the metaweb, picked to have the same species richness as the 192 

observed local networks. In other words, after randomly selecting a given number of species 193 

from the metaweb, we only kept interactions among this subset of species, thereby determining 194 

the number of links of the network generated. Thus, this procedure mimics a scenario where 195 

random local networks have the same number of species as the observed local networks, but the 196 

number of links and the associated network properties may differ. In null model 2, we preserved 197 

both species richness and the number of interactions observed in the original networks, but 198 

distributed the links randomly among the species (see Methods). Accordingly, null model 2 199 

mimics a scenario where a change in area causes a potential change in indegree and network 200 

degree distribution, while not affecting either the number of species or links. For each of the 201 

100 randomizations under each scenario, we then scored each of the complexity metrics defined 202 

above: species, links, links per species, indegree and network degree distribution.  203 

The observed spatial scaling of network structure in the original networks differed 204 

significantly from the results generated by the null models. The number of links in empirical 205 

networks increased more slowly with an increase in the number of species than expected from a 206 

random sample of species from the metaweb (i.e. null model 1) (Supplementary Figure 5). This 207 

slower increase is driven by the fact that local original networks show greater complexity (i.e. 208 

more links per species) than random networks. This result suggests that the scaling of the 209 

number of links is shaped by factors beyond the species richness of a community, such as 210 

evolutionary constraints, phenological matching or competition. In contrast, other structural 211 

properties, such as mean indegree and degree distributions, are consistent with the pattern 212 

derived from null model 1 (Supplementary Figure 5 and Supplementary Figure 6; 213 

Supplementary Table 5 and Supplementary Table 6). The latter consistency indicates that these 214 

particular network properties might be inherited from the metaweb, and that the particular co-215 

occurrence structure of species in the empirical data is not meaningfully impacting the degree 216 

distribution. This interpretation is supported by patterns observed under null model 2. When 217 
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links are reshuffled randomly amongst selected species from the metaweb, the pattern is 218 

substantially different from the observed one: here, both the mean indegree and network degree 219 

distributions of the randomized networks strongly deviate from that of their original 220 

counterparts (Supplementary Figure 5 and Supplementary Figure 6; Supplementary Table 5 and 221 

Supplementary Table 6). Similarly, the observed spatial scaling of the consumer:resource ratio 222 

was poorly predicted by both null models.  223 

Overall, our null model analyses suggest that the spatial scaling of network structure is 224 

determined by factors beyond species richness and the number of links. With a change in area, 225 

we see changes in important features of ecological networks – such as vertical diversity, 226 

consumer specialisation, and degree distribution – well beyond those expected if changes were 227 

driven by the number of species and/or links alone. 228 

The fragility of biotic interactions 229 

In conclusion, our analyses of multiple interaction networks from different biomes, 230 

interaction types, and spatial domains allowed us to explore the generality in the spatial scaling 231 

of several structural properties of ecological networks. Our results demonstrate how previously-232 

established biodiversity–area relationships can be extended from species counts2,3,27 to higher 233 

levels of network complexity. The increase in the number of interactions in which each species 234 

is involved when area increases indicates that trophic interactions might be more vulnerable to 235 

habitat loss than species richness41,42. Therefore, the consequences of anthropogenic habitat 236 

destruction may extend from species loss to wider simplification of natural communities43–45, 237 

with further consequences for the functioning of ecosystems14–16,46,47. The systematic scaling of 238 

network complexity with area suggests that trophic interactions will be lost with habitat 239 

destruction in a predictable manner, and describing the factors shaping this sequence allows us 240 

to better anticipate the effects for ecosystem functioning. Importantly, the scaling of the number 241 

of interactions with species richness proved variable across datasets, and our null model 242 

analysis indicated that other complexity metrics cannot be predicted from species richness 243 
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alone. Both of these patterns suggest that we need network-specific knowledge on the 244 

relationship between links and species to accurately predict the effects of habitat loss on 245 

network complexity. To estimate the spatial scaling of the number of links, a general 246 

understanding of the species-area relationship may still suffice, if it is supplemented by 247 

informed assumptions regarding the scaling exponent of the links-species relationship. For such 248 

assumptions, our current results will form a useful point of departure, given their foundation in a 249 

wide set of scales and biomes.  250 

Future studies should put effort towards unravelling the potential ecological 251 

mechanisms affecting the slopes of NARs, as well as disentangling the importance of the 252 

methodological aspects (Supplementary Figure 7 and Supplementary Figure 8; Supplementary 253 

Table 7), as has been widely done for SARs27. Explicitly investigating the effect of habitat 254 

heterogeneity, for instance, would help elucidate the effect of area, not only on network size and 255 

the number of links, but also on its modular structure. Such insight is urgently needed, given 256 

that heterogeneous landscapes are likely to promote the emergence of compartments within 257 

networks48,49. Similarly, it is important to investigate how our observations could inform 258 

predictions about the effects of habitat loss caused, for instance, by link extinction debt or 259 

changes in trophic regulation41,42. Yet, it is also fundamental to understand how our predictions 260 

of the effects of habitat loss on network structure would resemble those obtained by direct 261 

experiments of habitat destruction. Gaining a deeper understanding of the mechanisms behind 262 

NARs will allow us to not only anticipate the potential consequences of habitat loss, but to also 263 

provide management recommendations with a solid foundation in the structure and functioning 264 

of natural ecosystems. 265 

METHODS  266 

To measure network-area relationships (NARs) for ecological communities from different 267 

biomes across the world, we used 32 empirical datasets comprising species recorded in different 268 

localities, and with different types of interactions. This is the most comprehensive synthesis of 269 

spatial interaction network datasets to date. Depending on the study, local observations span 270 
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either a regional or biogeographical spatial extent. Our analysis allowed us to identify 271 

universalities in the ways that network properties change with area, for datasets comprising 272 

different interaction types. To evaluate whether there are universalities in the ways that 273 

networks of ecological interactions scale across space, we quantified the exponents of the 274 

relationships between all network properties analysed with area when fitted to a power function. 275 

The spatial scaling of network degree distributions was assessed by fitting four different 276 

distributions at each spatial domain and comparing the best fit across the entire range of areas. 277 

Additionally, we used two different null models to disentangle the effects of the spatial scaling 278 

of species richness on the patterns observed in other complexity metrics. 279 

 280 

Data classification 281 

32 datasets comprising species distributions and their interactions were obtained from different 282 

sources and classified into two categories according to the geographical extent covered: regional 283 

or biogeographical spatial domains. The main features of the type of data considered in each 284 

category, including sampling method, location, and interaction types, are briefly described 285 

below. Additional details about each dataset can be found in Supplementary Text 1. 286 

 287 

Regional spatial domain. Datasets in this category are distinguished from biogeographical 288 

networks by their geographical extent and sampling methods. Regional-domain data were 289 

collected with locally replicated samples over relatively narrow spatial extents up to ca. 1000 290 

km2. Sample units are generally the same size or a series of localities of roughly equal size. A 291 

total of 19 datasets were considered in the regional domain, covering different ecosystems and 292 

geographical locations across the globe. The datasets are: networks describing plant-pollinator 293 

interactions and host-parasitoid interactions from Mediterranean scrublands located in Garraf (3 294 

datasets50,51), and forests located in the Natural Parks of Montseny (1 dataset52) and Olot (1 295 

dataset53) in Catalonia, Spain; host-parasite interactions networks describing insect herbivores 296 

(gallers and leaf miners) of the Pedunculate Oak (Quercus robur) and their parasites in a 297 

temperate forest in Finland (1 dataset54); plant-pollinator interactions from a temperate forest in 298 
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Argentinian Patagonia (1 dataset55); soil food webs from agroecosystems across The 299 

Netherlands (7 datasets56); terrestrial food webs within small islands of a temperate saltmarsh 300 

mudflat in south-eastern England (1 dataset57); intertidal food webs from the Northeastern 301 

Pacific in Alaska, USA (1 dataset58); networks of plant-pollinator interactions and host-302 

parasitoid interactions in fragmented calcareous grasslands in central Germany (2 datasets59); 303 

and networks of plant-leafminer-parasitoid interactions from forest fragments embedded in an 304 

agricultural matrix landscape in central Argentina (1 dataset60). 305 

 306 

Biogeographical spatial domain. Datasets from this category span broad (i.e. biogeographical) 307 

spatial extents. There are two types of biogeographical datasets: can be comprised of either (1) 308 

datasets where local communities are built based on the information of the presence of all 309 

species found in each location and where the interactions between species have been inferred 310 

from literature review and expert knowledge; and (2) datasets where local communities are built 311 

based on direct observations of ecological interactions at each locality. The datasets of type (1) 312 

comprise: the European terrestrial vertebrate trophic network (food web, 61) divided among 10 313 

biogeographical regions that characterise each region according to its climatic conditions. Local 314 

communities for this dataset are defined at the 10km × 10km grid level (10 datasets); and the 315 

terrestrial vertebrate food web of the Catalan Pyrenees (1 dataset;12), where local communities 316 

are also defined at the 10km × 10km grid level. The datasets of type (2) comprise networks of 317 

plant-herbivore interactions and herbivore-parasitoid interaction sampled from plants of the 318 

genus Salix and spanning a large latitudinal gradient from Italy to northern Norway (2 319 

datasets;62). 320 

 321 

Building network-area relationships 322 

To analyse the spatial scaling of network structure we built NARs for each dataset described 323 

above. The procedure to generate NARs was slightly different between spatial domains. 324 

 325 
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Regional spatial domain. The spatial extent was rescaled for each dataset. The smallest spatial 326 

scale considered was a single sampling unit. The spatial scaling of network structure was 327 

defined by sequentially aggregating each of the sampling units available until all replicated 328 

samples were considered. The aggregated sampling units are not contiguous, given that the 329 

specific location of each of them was not considered. We analysed network structure at each 330 

step of the aggregation procedure. Given that the order in which sampling units (i.e. local 331 

communities) are aggregated might generate a bias in the aggregation procedure, we replicated 332 

the procedure 100 times for each dataset where the aggregation order was randomly generated 333 

without replacement. 334 

 335 

Biogeographical spatial domain. The fundamental difference between the two spatial domains 336 

considered is that biogeographical data span large spatial extents, thus comprising communities 337 

exposed to large environmental gradients. This environmental heterogeneity suggests potential 338 

differences in scaling patterns, when compared to communities sampled regionally, which cover 339 

smaller geographical extents. Due to the large spatial extent covered by these datasets, an 340 

aggregation procedure where each aggregated sampling unit is randomly selected in space, 341 

independently of its location, would generate a fast accumulation of species and links at small 342 

areas due to the large heterogeneity among the sampling units (Supplementary Figure 8 and 343 

Supplementary Table 7), generating a fast accumulation of species and links at small areas. For 344 

this reason, we employ an aggregation method based on neighbouring cells, while still 345 

preserving the statistical power of randomising across replicated aggregation instances (here, we 346 

refer the reader to Supplementary Figure 8 and Supplementary Table 7 for results based on the 347 

random aggregation of sites). Two types of data comprise this category: those for which species 348 

presences and their interactions were recorded in the field from single georeferenced locations 349 

across the latitudinal gradient62; and those where species presences were extracted from species 350 

distributions maps and interactions were inferred based on the joint condition of species co-351 

occurrence in space and an indication that the two species interact, as extracted from the 352 

literature61. The latter datasets, therefore, include all potential interactions between species, 353 
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which are not necessarily realised locally. Local sampling units of these latter datasets were 354 

defined as the 10×10 km cells on a gridded map. The spatial scaling of network structure is thus 355 

simulated by merging adjacent cells of the map in an increasing manner. Starting from a 356 

randomly chosen cell, subsequent communities occupying larger areas were defined as 357 

collections of neighbouring cells forming increasingly larger clusters of cells, chosen in counter-358 

clockwise fashion from the starting cell (i.e., spiral fashion). Thus, the sampling units that are 359 

aggregated are contiguous. We measured network properties at each step of the aggregation 360 

procedure. We repeated the aggregation procedure 100 times. For datasets with georeferenced 361 

locations, the spatial scaling of network structure was defined by sequentially aggregating the 362 

closest communities (in terms of Euclidean distance) to the starting point.  363 

 364 

Network properties 365 

We analysed the spatial scaling of network complexity at both spatial scales measuring the 366 

number of species (S), the total number of links (i.e. biotic interactions; L) present in the 367 

network and the number of links per species (L/S). We also quantified the relationship between 368 

species richness and the total number of links in the network (i.e. links-species scaling). 369 

Specialisation was measured at the network level by computing the mean in-degree (mean 370 

number of resources utilized by a consumer; L/Sc) of the community (also known as generality 371 

or diet breadth in food webs).  372 

 373 

To further assess how the structure of ecological networks scales across space in different 374 

ecosystems, we examined their degree distribution. The degree distribution P(k) of a network is 375 

defined as the probability of finding a species that has k links to resources in the network. 376 

Degree distributions provide a notion of how links are structured across the network, and their 377 

shape has been related to different aspects of community stability46,63–65. In particular, scale-free 378 

degree distributions are considered the hallmark of network organisation; conferring stability 379 

properties to ecological communities. We fitted four different functions that have been 380 

identified as typical of the shapes observed in degree distributions in ecological networks: 381 
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power law, truncated power law, lognormal and exponential63,66. After fitting these distributions 382 

to the network of interactions built for each spatial scale analysed, for each dataset, the most 383 

parsimonious one as measured by Akaike Information Criterion (AIC) was recorded as the best 384 

representation of the data. We did that for each replicate of each dataset, selecting the 385 

distribution that was best ranked in most of the replicates. Looking at whether the top-ranked 386 

distribution (i.e., the lowest AIC) changes with area provides insights into the scale invariance 387 

of this network property. Additionally, we looked at the changes of the parameters involved in 388 

each function with area (Supplmentary Figure 4). 389 

 390 

Network-Area relationships fitting 391 

After constructing NARs based on the 100 replicates for each dataset, we analysed the scaling 392 

relationships by fitting a suite of functions that have traditionally been used to quantify species-393 

area relationships67,68 (see Supplementary Table 4 for the full set of functions tested). These 394 

scaling functions incorporate in different ways the network property as the response variable 395 

and area as the predictor variable, using a characteristic exponent, or a variation of it, to define 396 

the relationship of network properties to area size. For example, the power law (𝑁 = 𝑐𝐴%), 397 

relates 𝑁 (a network property), to area (𝐴) using a constant c and a scaling exponent (z). 398 

Similarity in the fitted parameters obtained for different datasets was then used to evaluate 399 

universalities in NARs. Scaling functions in Supplementary Table 4 were fitted to each dataset 400 

(after network properties were calculated at each spatial extent) using the sar package in R68. 401 

We used R2 and p-values to assess goodness of fit. Comparison across models and selection of 402 

the best supported model was done with AIC. Amongst all fitted functions, we focused on the 403 

top five models that were best supported and selected (if possible) the best ranked model from 404 

the power family to facilitate comparisons among datasets. We note that the functions were 405 

fitted to the original data in arithmetic space and that the re-scaling of the properties to start at 0 406 

was performed for visualisation purposes alone. 407 

 408 

Null models 409 
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To understand the contribution of species richness and the number of links for the spatial 410 

scaling of the associated network properties analysed we used two null models. For null model 411 

1, we checked for each dataset the number of species present in each spatial unit and we 412 

randomly picked the same number of species from the corresponding metaweb. We then built 413 

the network for those species taking from the metaweb all the interactions present between the 414 

selected species. Thus, the resulting assemblages can differ from the original networks in the 415 

number of links between species and, in turn, in the associated network properties analysed. In 416 

contrast, for null model 2, we checked that the number of species is present in each spatial unit 417 

but also the number of links present and randomly distributed those links between the selected 418 

species. While networks built with null model 1 can potentially preserve part of the structure 419 

from each metaweb given that the selected species preserve the links they have in the metaweb, 420 

networks built with null model 2 can be considered random networks given that there is no 421 

inherited structure from the metaweb. Thus, null model 1 allows us to determine the 422 

contribution of the identity of the species (with their respective links) to the observed patterns, 423 

while null model 2, allows us to further test whether there is any contribution of area into 424 

network structure beyond species richness and the number of links. For both null models, we 425 

generated networks of different sizes by adding the number of species of the subsequent spatial 426 

units of each dataset. At each step of species addition, we calculated all network metrics. We 427 

replicated the procedure 100 times for each dataset. We evaluate the resulting network-area 428 

relationships (where area is the number of spatial units from which we extracted the number of 429 

species) by fitting a power function, as we did for the original networks. We finally compared 430 

the spatial scaling of network properties with those obtained in the original networks 431 

(Supplementary Figure 5 and Supplementary Figure 6; Supplementary Table 5 and 432 

Supplementary Table 6).   433 

Code availability. Custom code used to perform the analyses are available online here: 434 
https://doi.org/10.5061/dryad.zcrjdfndg, here: https://github.com/nuriagaliana/Ecological-435 
network-complexity-scales-with-area or here: https://github.com/mlurgi/global-network-area. 436 

Data availability. All datasets analysed during the current study are available online here: 437 
https://doi.org/10.5061/dryad.zcrjdfndg, here: https://github.com/nuriagaliana/Ecological-438 
network-complexity-scales-with-area or here: https://github.com/mlurgi/global-network-area.  439 



 16 

 440 

441 



 17 

Acknowledgements 442 

We thank J.-F. Arnoldi, M. Barbier and Y. Zelnik for numerous discussions which improved the 443 
quality of this paper. We also thank Steffano Allesina for his criticism and suggestions. This work 444 
was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41 and 394 ANR-11-445 
IDEX-002-02) to JMM, by a Region Midi-Pyrenees project (CNRS 121090) to JMM, and by the 446 
FRAGCLIM Consolidator Grant (726176) to JMM from the European Research Council under 447 
the European Union’s Horizon 2020 Research and Innovation Program. The study was also 448 
supported by Spanish MICINN projects CGL2009-12646, CSD2008-0040 and CGL2013-41856 449 
to JB and AR. CE was funded through the São Paulo Research Foundation (FAPESP 2015/15172-450 
7). VAGB was funded by National Funds through FCT - Foundation for Science and Technology 451 
under the Project UIDB/05183/2020. WT received funding from the ERA-Net BiodivERsA - 452 
Belmont Forum, with the national funder Agence National pour la Recherche (FutureWeb: ANR-453 
18-EBI4–0009 & BearConnect: ANR-16-EBI3-0003).  454 
 455 

Author contributions 456 

NG, JMM and ML designed research with contributions from all co-authors. NG and ML 457 
conducted research and analysed the data. JB, LC, BCL, CE, IG, CHC, FJ, DM, CM, SOC, SR, 458 
AR, ISD, AT, DV, SW, TR and WT contributed the data. JMM, VAB, KC, MJF, SL, KM, AM, 459 
DG, TR, SV and WT supported research. NG and JMM wrote the manuscript with substantial 460 
contributions from DG, TR and WT, and feedback from all co-authors. 461 

Competing interests  462 

The authors declare no competing interests.  463 

Additional information  464 

Supplementary information is available for this paper. 465 

Correspondence and requests for materials should be addressed to NG 466 
(galiana.nuria@gmail.com) 467 

 468 

 469 

 470 

 471 

  472 



 18 

Table 1. Parameter estimates for the fit of the extended power model (𝑁 = 𝑐𝐴!"#!"$) to the 473 

network properties analysed. Mean and standard deviation of d and z are shown for each 474 

network property analysed in both spatial domains. The model fit was performed on the original 475 

data in arithmetic space and not on the rescaled properties. 476 

Network property Parameter 
Spatial Domain 

Regional Biogeographical 

Species 
d 0.08 ± 0.03 -0.38 ± 0.78 

z 0.48 ± 0.12 0.05 ± 0.41 

Links 
d 0.07 ± 0.03 -0.19 ± 0.13 

z 0.72 ± 0.10 0.41 ± 0.63 

Links/Species 
d 0.05 ± 0.11 -0.31 ± 0.57 

z 0.26 ± 0.10 0.08 ± 0.11 

Indegree 
d 0.04 ± 0.12 -0.27 ± 0.22 

z 0.31 ± 0.13 0.07 ± 0.19 
 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 
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 493 

Figures 494 

Fig 1. Spatial scaling of network complexity. The relationship of species (a,d), links (b,e), and 495 

links/species (c,f) with area for regional (top) versus biogeographical (bottom) networks. For 496 

each dataset, each point represents the mean value of the analysed network property across the 497 

total amount of replicates in the aggregation procedure, for a given area. For all datasets, all 498 

network properties have been re-scaled to start at 0 for visualisation purposes. In the 499 

biogeographical domain, three datasets show a linear-concave increase of the number of species, 500 

network links and links per species with area, similar to those observed in the regional domain; 501 

these differences may be explained by differences in sampling methods among datasets (see 502 

Methods and Discussion; Supplementary Text 1).    503 

 504 

Fig 2. Scaling of the number of links with species richness. For networks spanning both 505 

regional (a) and biogeographical (b) spatial domains, the number of links scales with species 506 

following a power law (Supplementary Table 2). Each point represents the mean values across 507 

all replicates in the aggregation procedure. Note that for visualisation purposes, all x- and y-508 

values in all datasets have been re-scaled to start at 0. To allow convenient comparison with the 509 

constant connectance hypothesis and the link–species scaling law, the slope of each log-log 510 

relationship is provided in Supplementary Table 2. Note that for constant connectance, the slope 511 

equals 2, as the number of links in a web increases approximately as the square of the number of 512 

trophic species: L ≈ S2. For the link–species scaling law, the slope equals 1, as the number of 513 

links per species in a web is constant and scale invariant at roughly two: L ≈ 2S). 514 

 515 

Fig 3. Spatial scaling of mean indegree and network degree distribution. The mean number 516 

of resources per consumer (i.e., mean indegree) increases with area within both regional (left) 517 

and biogeographical (right) spatial domains (a-b). Each point represents the mean value across 518 

every replicate in the aggregation procedure at a given area. Note that for visualisation purposes, 519 

all x- and y-values in all datasets have been re-scaled to start at 0. The shape of the network 520 
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degree distributions is consistent across area at both regional and biogeographical domains. In 521 

(c-d) two datasets are shown as illustration: Garraf-PP and Galpar, respectively (see 522 

Supplementary Text 1).  The cumulative probabilities of finding a species in the network that 523 

has k links to resources in the network, are normalized by the mean number of links per species 524 

in the network. One replicate for a subset of areas is shown for each dataset to facilitate 525 

visualization. Each colour represents network degree distribution for a given area. From dark 526 

blue, representing the smallest area (i.e. 1 spatial unit), to yellow, representing the largest area 527 

for each dataset (40 spatial units for Garraf-PP and 373 spatial units for Galpar).  Notice that 528 

the starting point of each distribution changes with area, indicating that at smaller spatial scales, 529 

the most specialized species of the network have more interacting partners than at larger spatial 530 

scales. Yet, the shape of the degree distribution is preserved. The top-ranked model describing 531 

the degree distribution of each ecological network across the area range (e-f). Although the 532 

degree distribution of most ecological networks was characterised by the same function along 533 

the range of areas, the specific shape of each function changed with area (see Supplementary 534 

Figure 4). Area values were re-scaled between 0 and 1. 535 

 536 

 537 

 538 

  539 
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Figure 1  695 

0.0

0.5

1.0

0 1 2 3 4
log10(area)

lo
g1
0(
sp
ec
ie
s)

Alpine

Anatolian

Arctic

Atlantic

BlackSea

Boreal

Continental

Mediterranean

Pannonian

Steppic

galpar

pyrenees

salgal

0.0

0.5

1.0

1.5

0 1 2 3 4
log10(area)

lo
g1
0(
lin
ks
)

Alpine

Anatolian

Arctic

Atlantic

BlackSea

Boreal

Continental

Mediterranean

Pannonian

Steppic

galpar

pyrenees

salgal

0.0

0.2

0.4

0.6

0 1 2 3 4
log10(area)

lo
g1
0(
lin
ks
/s
pe
ci
es
) Alpine

Anatolian

Arctic

Atlantic

BlackSea

Boreal

Continental

Mediterranean

Pannonian

Steppic

galpar

pyrenees

salgal

0.00

0.25

0.50

0.75

1.00

0 1 2
log10(area)

lo
g1
0(
sp
ec
ie
s)

Bristol

Chaco

Garraf HP

Garraf PP

Garraf PP2

Gottin HP

Gottin PP

Montseny

Nahuel

Olot

Quercus

Sanak

Soil 1

Soil 2

Soil 3

Soil 4

Soil 5

Soil 6

Soil 7
0.0

0.4

0.8

1.2

0 1 2
log10(area)

lo
g1
0(
lin
ks
)

Bristol

Chaco

Garraf HP

Garraf PP

Garraf PP2

Gottin HP

Gottin PP

Montseny

Nahuel

Olot

Quercus

Sanak

Soil 1

Soil 2

Soil 3

Soil 4

Soil 5

Soil 6

Soil 7
0.0

0.1

0.2

0.3

0 1 2
log10(area)

lo
g1
0(
lin
ks
/s
pe
ci
es
)

Bristol

Chaco

Garraf HP

Garraf PP

Garraf PP2

Gottin HP

Gottin PP

Montseny

Nahuel

Olot

Quercus

Sanak

Soil 1

Soil 2

Soil 3

Soil 4

Soil 5

Soil 6

Soil 7

a b c

d e f

R
eg
io
na
l

B
io
ge
og
ra
ph
ic
al

0.0

0.1

0.2

0.3

0 1 2
log10(area)

lo
g1
0(
lin
ks
/s
pe
ci
es
)

Bristol

Chaco

Garraf HP

Garraf PP

Garraf PP2

Gottin HP

Gottin PP

Montseny

Nahuel

Olot

Quercus

Sanak

Soil 1

Soil 2

Soil 3

Soil 4

Soil 5

Soil 6

Soil 7

0.0

0.2

0.4

0.6

0 1 2 3 4
log10(area)

lo
g1
0(
lin
ks
/s
pe
ci
es
) Alpine

Anatolian

Arctic

Atlantic

BlackSea

Boreal

Continental

Mediterranean

Pannonian

Steppic

galpar

pyrenees

salgal



 25 

 696 

 697 
Figure 2 698 
  699 
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