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The fractional Gaussian noise/fractional Brownian motion framework (fGn/fBm) has been widely used for modeling and
interpreting physiological and behavioral data. The concept of 1/f noise, reflecting a kind of optimal complexity in the underlying
systems, is of central interest in this approach. It is generally considered that fGn and fBm represent a continuum, punctuated by
the boundary of “ideal” 1/f noise. In the present paper, we focus on the correlation properties of discrete-time versions of these
processes (dfGn and dfBm). We especially derive a new analytical expression of the autocorrelation function (ACF) of dfBm. We
analyze the limit behavior of dfGn and dfBm when they approach their upper and lower limits, respectively. We show that, as H
approaches 1, the ACF of dfGn tends towards 1 at all lags, suggesting that dfGn series tend towards straight line. Conversely, as H
approaches 0, the ACF of dfBm tends towards 0 at all lags, suggesting that dfBm series tend towards white noise.These results reveal
a severe breakdown of correlation properties around the 1/f boundary and challenge the idea of a smooth transition between dfGn
and dfBm processes. We discuss the implications of these findings for the application of the dfGn/dfBm model to experimental
series, in terms of theoretical interpretation and modeling.

1. Introduction

During the last decades, there has been a considerable interest
in the use of stochastic fractal models for interpreting phys-
iological or behavioral data. These models have been applied
to various processes, including in the physiological domain
heart-beat variability [1, 2], brain activity [3, 4], respiratory
fluctuations [5], or blood flow [6]. Studies on sensorimotor
processes included isometric force production [7], visual
search [8], finger tapping [9, 10], or bimanual coordination
[11]. Recent research has motivated the use of fractal models
in medical and rehabilitation devices, in order to conceive
efficient noninvasive stimuli for living organisms [12].

The most popular formalization of this approach refers
to the concepts of fractional Brownian motion (fBm) and
fractional Gaussian noise (fGn), initially introduced by
Mandelbrot and Van Ness [13]. fBm and fGn represent
two families of correlated stochastic processes, possessing
powerful statistical properties, which seem able to provide
relevant models for a wide range of empirical observations
in various domains.

The success of the fGn/fBm concept is mainly related to
the presence, in some parts the model, of series possessing
long-range correlation properties. Long-range correlations
are characterized by a very slow decay of the autocorrelation
function and suggest that the system possesses a long-term,
multiscale memory of its previous states that affects its cur-
rent behavior. Long-range correlations have been popularized
through the concept of 1/𝑓 noise, thought of as a narrow
range in the fGn/fBm model where long-range correlations
reach maximal values. 1/𝑓-like fluctuations have been dis-
covered in the behavior of a number of physiological and
behavioral systems (see references above) and also in several
physical and nonliving systems [14–16]. In living systems,
1/𝑓 fluctuations have been evidenced in the behavior of
young, healthy, and perennial organisms, and aging or disease
seems to be characterized by an alteration of this long-range
correlated behavior [1, 17]. This ubiquity has represented a
very intriguing phenomenon in various scientific domains
and its understanding has been a major challenge during
the last decades. Long-range correlations are supposed to
reflect the complexity of the underlying system, and 1/𝑓noise
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a kind of optimal complexity, a compromise between order
and disorder [1, 2].

Most analysismethods of long-range correlated processes
are based on the statistical properties of fGn and fBm.
However, we think that a number of issues about these
processes remain unclear, often leading to erroneous inter-
pretations. In this paper, we propose a formal analysis of
the correlational properties of fBm and fGn, focusing on the
limit behavior of these processes when approaching their
definition boundaries. Considering the state of the art about
this model, our main aim is to derive an analytical expression
of the autocorrelation function of the discrete version of fBm.

2. The fBm/fGn Model

Fractional Brownian motion (fBm), denoted by 𝐵𝐻
𝑡
, was

initially introduced by Mandelbrot and Van Ness [13] as a
continuous stochastic process 𝑡 ranging over all nonnegative
real values. A fundamental property of fBm is that in such
process variance is a power function of the time span over
which it is computed:

Var (𝐵𝐻
𝑡
) ∝ 𝑡

2𝐻
, (1)

where𝐻 is the Hurst exponent, which can take any real value
within the interval ]0, 1[.

In experimental and engineering applications, research-
ers often deal with sampled data, and such sampling leads
to a discrete-time version of fBm, 𝐵𝐻

𝑖
, 𝑖 ∈ N, referred to as

dfBm. We focus in this paper on this discrete version, which
corresponds tomost analyses performed in physiological and
behavioral experiments. Discrete-time fractional Gaussian
noise (dfGn), denoted by 𝐺𝐻

𝑖
, is defined as the series of

increments in a dfBm (𝐺𝐻
𝑖
= 𝐵
𝐻

𝑖
− 𝐵
𝐻

𝑖−1).
By definition, a dfGn is the difference of a dfBm, and

conversely the cumulative sum of dfGn gives a dfBm. Each
dfBm series is then related to a specific dfGn, and both are
characterized by the same𝐻 exponent. dfBm are nonstation-
ary processes, as suggested by (1), whereas dfGn series present
stationary mean and variance over time.

For 𝐻 = 0.5, 𝐵𝐻
𝑖

corresponds to ordinary Brownian
motion, its variance is proportional to series length (normal
diffusion), and 𝐺𝐻

𝑖
is a white noise process. For 𝐻 < 0.5,

𝐵
𝐻

𝑖
is subdiffusive, and successive values in𝐺𝐻

𝑖
are negatively

correlated (antipersistent). In contrast, for 𝐻 > 0.5, 𝐵𝐻
𝑖
is

overdiffusive and successive values in 𝐺𝐻
𝑖

are positively
correlated (persistent).

dfBm and dfGn are characterized by some essential
basic properties [18]. Consider a dfBm process 𝐵𝐻

𝑖
, 𝑖 =

0, 1, 2, . . . , 𝑁, and its corresponding dfGn𝐺𝐻
𝑖
, 𝑖 = 1, 2, . . . , 𝑁.

𝐵
𝐻

𝑖
is the sum of 𝑖 first 𝐺𝐻

𝑖
(𝐵𝐻
𝑖
= 𝐺
𝐻

1 + 𝐺
𝐻

2 + ⋅ ⋅ ⋅ + 𝐺
𝐻

𝑖
).

Let 𝜎2 be the variance of the dfGn process (𝜎2 = Var(𝐺𝐻
𝑖
) =

𝐸[(𝐵
𝐻

𝑖
− 𝐵
𝐻

𝑖−1)
2
]). For large𝑁, the expected value of dfBm is

zero (𝐸(𝐵𝐻
𝑖
) = 0), as well as the expected values of differences

within dfBm (𝐸(𝐵𝐻
𝑖
− 𝐵
𝐻

𝑗
) = 0). dfBm is characterized by

self-similarity properties, which can be expressed at different
levels. First, and similar to the property expressed in (1) for

fBm, the variance of a sample path of length 𝑛 of a dfBm is a
power function of 𝑛:

Var (𝐵𝐻
𝑛
) = Var {𝐵𝐻0 , 𝐵

𝐻

1 , . . . , 𝐵
𝐻

𝑛
} = 𝐶𝑛

2𝐻
, (2)

where 𝐶 is the scaling coefficient, depending on both𝐻 and
𝜎
2.
Another self-similarity property characterizes the vari-

ance of a fixed lag difference between dfBm values:

Var (𝐵𝐻
𝑖
−𝐵
𝐻

𝑗
) = 𝐸 [(𝐵

𝐻

𝑖
−𝐵
𝐻

𝑗
)
2
] = 𝜎

2
(𝑖 − 𝑗)

2𝐻
. (3)

The autocovariance function of a dfGn is given by [18, 19]

𝐸 (𝐺
𝐻

0 𝐺
𝐻

𝑘
) =
𝜎
2

2
(|𝑘 + 1|2𝐻 + |𝑘 − 1|2𝐻 − 2 |𝑘|2𝐻) , (4)

yielding a simple expression for the autocorrelation function
of dfGn:

𝜌dfGn (𝑘) =
1
2
(|𝑘 + 1|2𝐻 + |𝑘 − 1|2𝐻 − 2 |𝑘|2𝐻) . (5)

3. The Autocorrelation Function of dfBm

The main aim of this paper is to derive an expression of the
autocorrelation function of fBm in the discrete-time case.
A well-known expression of the expected covariance of a
continuous-time fBm series between two times 𝑡 and 𝑠 was
given by Beran [18]:

𝐸 [𝐵
𝐻

𝑡
𝐵
𝐻

𝑠
] =
𝜎
2

2
[𝑡

2𝐻
+ 𝑠

2𝐻
− |𝑠 − 𝑡|

2𝐻
] . (6)

This autocovariance function depends explicitly on 𝑡 and
𝑠, and not only on (𝑡 − 𝑠), fBm being nonstationary [20].
Here we aim at deriving an approximate expression of the
autocorrelation in the discrete-time case, depending only on
𝑘 and series length.

The autocorrelation of lag 𝑘 of dfBm is given by the ratio
between the corresponding covariance and the variance of the
process:

𝜌 (𝐵
𝐻

𝑖
, 𝐵
𝐻

𝑖+𝑘
) =
𝛾 (𝐵
𝐻

𝑖
, 𝐵
𝐻

𝑖+𝑘
)

Var (𝐵𝐻
𝑖
)
=
𝐸 [(𝐵

𝐻

𝑖
𝐵
𝐻

𝑖+𝑘
)
2
]

Var (𝐵𝐻
𝑖
)

=
𝐸 [(𝐵

𝐻

𝑖
)
2
] + 𝐸 [(𝐵

𝐻

𝑖+𝑘
)
2
] − 𝐸 [(𝐵

𝐻

𝑖+𝑘
− 𝐵
𝐻

𝑖
)
2
]

2Var (𝐵𝐻
𝑖
)

=
𝐸 [(𝐵

𝐻

𝑖
)
2
] + 𝐸 [(𝐵

𝐻

𝑖+𝑘
)
2
] − 𝜎

2
𝑘
2𝐻

2Var (𝐵𝐻
𝑖
)

,

(7)

which could be approximated for large 𝑖 as

𝜌 (𝐵
𝐻

𝑖
, 𝐵
𝐻

𝑖+𝑘
) = 1− 𝜎

2
𝑘
2𝐻

2Var (𝐵𝐻
𝑖
)
. (8)

For simplifying (8), we need an exact expression of
Var(𝐵𝐻

𝑖
), as a function of𝜎2 and𝐻. Consider a sample path of
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𝐵
𝐻

𝑖
of length 𝑛. The variance of this sample path, considering

the nonbiased estimator, can be expressed as

Var (𝐵𝐻
𝑖
) =

𝑛

𝑛 − 1
𝐸 [𝐵
𝐻

𝑖
−𝐸 (𝐵

𝐻

𝑖
)]

2

=
𝑛

𝑛 − 1
𝐸(𝐵
𝐻

𝑖
−
1
𝑛

𝑛−1
∑
𝑖=0
𝐵
𝐻

𝑖
)

2

.

(9)

In the simplest case (𝑛 = 2), we have

Var (𝐵𝐻
𝑖
) = 2𝐸 [𝐵𝐻

𝑖
−𝐸 (𝐵

𝐻

𝑖
)]

2
=
2
2

⋅ 𝐸{[(𝐵
𝐻

𝑖
−
𝐵
𝐻

𝑖
+ 𝐵
𝐻

𝑖+1
2

)

2

]

+𝐸[(𝐵
𝐻

𝑖+1 −
𝐵
𝐻

𝑖
+ 𝐵
𝐻

𝑖+1
2

)

2

]} = 𝐸 [(𝐵
𝐻

𝑖
)
2
]

+𝐸 [(𝐵
𝐻

𝑖+1)
2
] + 2𝐸[(

𝐵
𝐻

𝑖
+ 𝐵
𝐻

𝑖+1
2

)

2

]

− 2𝐸[𝐵𝐻
𝑖
(
𝐵
𝐻

𝑖
+ 𝐵
𝐻

𝑖+1
2

)]

− 2𝐸[𝐵𝐻
𝑖+1 (
𝐵
𝐻

𝑖
+ 𝐵
𝐻

𝑖+1
2

)] .

(10)

Developing the preceding equation, we get

Var (𝐵𝐻2 ) =
1
2
𝐸 [(𝐵
𝐻

𝑖
)]

2
+
1
2
𝐸 [(𝐵

𝐻

𝑖+1)
2
]

−𝐸 (𝐵
𝐻

𝑖
𝐵
𝐻

𝑖+1) .

(11)

And replacing 𝐵𝐻
𝑖+1 by 𝐵

𝐻

𝑖
+ 𝐺
𝐻

𝑖
,

Var (𝐵𝐻
𝑖
) =

1
2
𝐸 [(𝐵
𝐻

𝑖
)]

2
+
1
2
𝐸 [(𝐵

𝐻

𝑖
+𝐺
𝐻

𝑖
)
2
]

−𝐸 [𝐵
𝐻

𝑖
(𝐵
𝐻

𝑖
+𝐺
𝐻

𝑖
)]

=
1
2
𝐸 [(𝐵

𝐻

𝑖
)
2
] +

1
2
𝐸 [(𝐵

𝐻

𝑖
)
2
]

+
1
2
𝐸 [(𝐺

𝐻

𝑖
)
2
] +𝐸 (𝐵

𝐻

𝑖
𝐺
𝐻

𝑖
)

−𝐸 [(𝐵
𝐻

𝑖
)
2
] −𝐸 (𝐵

𝐻

𝑖
𝐺
𝐻

𝑖
) .

(12)

All terms containing 𝐵𝐻
𝑖
vanishing in the previous equa-

tion, we obtain

Var (𝐵𝐻
𝑖
) =

1
2
𝐸 [(𝐺

𝐻

𝑖
)
2
] . (13)

Using similar calculations for 𝑛 = 3, 𝑛 = 4, and 𝑛 = 5, we
get, respectively,

𝑛 = 3 Var (𝐵𝐻
𝑖
) =

1
6
{4𝐸 [(𝐺𝐻

𝑖
)
2
] + 2𝐸 (𝐺𝐻

𝑖
𝐺
𝐻

𝑖+1)} , (14)

𝑛 = 4 Var (𝐵𝐻
𝑖
) =

1
12
{10𝐸 [(𝐺𝐻

𝑖
)
2
] + 8𝐸 (𝐺𝐻

𝑖
𝐺
𝐻

𝑖+1) + 2𝐸 (𝐺
𝐻

𝑖
𝐺
𝐻

𝑖+2)} , (15)

𝑛 = 5 Var (𝐵𝐻
𝑖
) =

1
20
{20𝐸 [(𝐺𝐻

𝑖
)
2
] + 20𝐸 (𝐺𝐻

𝑖
𝐺
𝐻

𝑖+1) + 8𝐸 (𝐺
𝐻

𝑖
𝐺
𝐻

𝑖+2) + 2𝐸 (𝐺
𝐻

𝑖
𝐺
𝐻

𝑖+3)} . (16)

Replacing 𝐸[(𝐺𝐻
𝑖
)
2
] by 𝜎2 and incorporating (4), we

finally obtain

𝑛 = 2 Var (𝐵𝐻
𝑖
) =

1
2
𝜎
2
,

𝑛 = 3 Var (𝐵𝐻
𝑖
) =

1
6
𝜎
2
[2 + 22𝐻] ,

𝑛 = 4 Var (𝐵𝐻
𝑖
) =

1
12
𝜎
2
[3 + 2 (22𝐻) + 32𝐻] ,

𝑛 = 5

Var (𝐵𝐻
𝑖
) =

1
20
𝜎
2
[4 + 3 (22𝐻) + 2 (32𝐻) + 42𝐻] ,

(17)

suggesting the extension, for a sample path of length 𝑛:

Var (𝐵𝐻
𝑖
) =

1
𝑛 (𝑛 − 1)

𝜎
2
𝑛−1
∑
𝑖=1
[(𝑛 − 𝑖) 𝑖

2𝐻
] . (18)

One can easily show that if (18) is true for 𝑛, then it also
works for 𝑛 + 1. In passing, we obtain an exact expression for
the diffusion coefficient 𝐶 (2):

𝐶 =
Var (𝐵𝐻

𝑛
)

𝑛2𝐻
=

𝜎
2

(𝑛 − 1) 𝑛2𝐻+1
𝑛−1
∑
𝑖=1
[(𝑛 − 𝑖) 𝑖

2𝐻
] . (19)
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Combining (8) and (18), we get an expression for the
autocorrelation function of dfBm:

𝜌dfBm (𝑘) = 1−
𝜎
2
𝑘
2𝐻

2Var (𝐵𝐻
𝑛
)

= 1− 𝑛 (𝑛 − 1) 𝑘2𝐻

2∑𝑛−1
𝑖=1 [(𝑛 − 𝑖) 𝑖

2𝐻]
.

(20)

4. Limit Behaviors of dfBm and dfGn

Equations (5) and (20) allow analyzing the limit behaviors of
dfBm and dfGn, when 𝐻 reaches the limits of the interval
]0, 1[. Considering the upper limit of the 𝐻 interval, (5)
predicts that when𝐻 tends towards 1, 𝜌dfGn(𝑘) tends towards
1.0 for all 𝑘 ≥ 0. In other words, when𝐻 tends towards 1, 𝐺𝐻

𝑖

tends towards a straight line.
One can easily show that

𝑛−1
∑
𝑘=1
(𝑛 − 𝑘) =

𝑛 (𝑛 − 1)
2

. (21)

When 𝐻 tends towards 0, 𝑖2𝐻 tends towards 1. Then, for
all lag 𝑘,

𝜌dfBm (𝑘) → 1− 𝑛 (𝑛 − 1)
2∑𝑛−1
𝑘=1 (𝑛 − 𝑘)

→ 1− 𝑛 (𝑛 − 1)
2 [𝑛 (𝑛 − 1) /2]

→ 0,
(22)

suggesting that 𝐵𝐻
𝑛

tends towards white noise as 𝐻 tends
towards 0. Accordingly, if one determines, on the basis of (5),
the limit values of the autocorrelation function of dfGn when
𝐻 tends toward 0 [17, page 281], one obtains 𝜌dfGn(0) = 1,
𝜌dfGn(1) = 2−1 − 1 = −1/2, and, for 𝑘 > 1, 𝜌dfGn(𝑘) = 0. This
autocorrelation function corresponds to that of a differenced
white noise [21].

We present in Figures 1(a) and 1(b) the theoretical values
of 𝜌dfGn(1) and 𝜌dfBm(1), obtained from (5) and (20), respec-
tively, for𝐻 values ranging from 0 to 1 in both families. This
figure shows a clear breakdown in the correlation structures
from dfGn to dfBm. As expected, 𝜌dfGn(1) starts at −0.5 for
𝐻 = 0, and it reaches 1.0 for 𝐻 = 1. 𝜌dfBm(1) is 0 for 𝐻 = 0
and grows asymptotically towards 1.0 as𝐻 increases.

5. Discussion

dfGn and dfBm were originally defined as two distinct
families, which can be considered superimposed, with their
relationships of summing/differencing. A number of authors,
however, have proposed to consider these two families as a
continuum, surrounding the mythical border of “ideal” 1/𝑓
noise [22–25].

This conception has been favored by the existence of
analysis methods which can be applied indifferently on both
families and provide continuous metrics for characterizing
the series. One of these methods is theDetrended Fluctuation

Analysis, introduced by Peng et al. [26]. In this method, the
analyzed series is first summed, and this summed series is
divided into nonoverlapping intervals of length 𝑛. Within
each interval, the data are linearly detrended, and the average
rootmean square (𝐹(𝑛)) of this summed and detrended series
is computed. Typically, 𝐹(𝑛) increases with interval length 𝑛.
A power law is expected, as

𝐹 (𝑛) ∝ 𝑛
𝛼
. (23)

dfGn series are characterized by 𝛼 exponents ranging
from 0 to 1 and dfBm by exponents ranging from 1 to 2. Note
that the scaling law expressed in (23) just derives from the
original definition of fBm (1). If the series 𝑥

𝑖
is a dfGn, 𝑋

𝑖
is

the corresponding dfBm and 𝛼 is theHurst exponent. If 𝑥
𝑖
is a

dfBm,𝑋
𝑖
belongs to another family of overdiffusive processes,

characterized by 𝛼 exponents ranging from 1 to 2, and in that
case 𝛼 = 𝐻 + 1 [26].

In this methodological framework, 𝐺1
𝑖
and 𝐵0

𝑖
are sup-

posed to be equivalent, both characterized by 𝛼 = 1,
representing “ideal” 1/𝑓 noise, or “pink” noise. From this
point of view, dfGn and dfBm are clearly considered linked by
a smooth transition, and the dfGn/dfBmmodel is considered
as a continuum from roughness to smoothness [22–25, 27].
Das [28] argued that “pink noise is important because this
is a kind of threshold between the persistent stable noise
(0.5 < 𝐻 < 1, 0 < 𝛽 < 1) and the nonstationary noise
𝛽 > 1” (page 246). Eke et al. [23] considered 1/𝑓 noise as
the boundary between fGn and fBm families.

In contrast, our present results suggest a clear disconti-
nuity between dfGn and dfBm, around this supposed 1/𝑓
boundary. Note that this breakdown was mainly apparent
because we explored correlations up to the limits of the
theoretical interval over which𝐻 is defined.Most studies that
attempted to assess fractal analysis methods on exact signals
worked on dfGn and/or dfBm signals with 𝐻 exponents
ranging from 0.1 to 0.9, by steps of 0.1, then excluding the
intervals ]0.9, 1[ for dfGn and ]0, 0.1[ for dfBm [23, 29].
Figure 1 shows that the breakdown in correlation structure
mainly occurs within these intervals, indicated by the vertical
dashed lines in both panels, and this could explain why this
phenomenonwas never reported in the literature.We present
in Figure 2 the evolution of the autocorrelation function (up
to lag 30), within these two intervals. This figure illustrates
the strong divergence of dfGn and dfBm, when approaching
the supposed 1/𝑓 boundary.

Stochastic fractal processes can also be defined in the
frequency domain, on the basis of a scaling law that relates
power (i.e., squared amplitude) to frequency according to an
inverse power function, with an exponent 𝛽 [23, 29]:

𝑆 (𝑓) ∝
1
𝑓𝛽
. (24)

This scaling law defines a family of processes called
1/𝑓𝛽 processes, which is generally considered equivalent to
dfGn/dfBm processes. dfGn series correspond to 1/𝑓𝛽 series
with 𝛽 exponents ranging from −1 to 1 and dfBm to 1/𝑓𝛽
series with 𝛽 exponents ranging from 1 to 3, and 𝛽 is linearly
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Figure 1: Theoretical lag-one autocorrelation for dfGn (a), based on (5), and for dfBm (b), based on (20), for𝐻 values ranging from 0 to 1.
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Figure 2: Theoretical autocorrelation functions, up to lag 30, for dfGn for 𝐻 values ranging from 0.9 to 1 (a) and for dfBm for 𝐻 values
ranging from 0 to 0.1 (b).

related to the 𝛼 exponent: 𝛽 = 2𝛼 − 1 [22]. This linear
relationship is generally considered as a logical consequence
of theWiener-Khinchin theorem, which states that the power
spectrum of a stationary stochastic process is analogous to
the Fourier transform of the corresponding autocorrelation
function [30].

For 𝛽 = 1, power appears proportional to period, a
property which was at the origin of the name “1/𝑓 noise.”
The formal definition of 1/𝑓𝛽 processes suggests a clear
continuity of the correlation properties over the whole range

of 𝛽 exponents, and especially around the 1/𝑓 boundary.
This continuity contrasts with the discontinuity we evidenced
in the dfGn/dfBm model.

The present paper essentially questions the supposed
equivalence between the dfGn/dfBm and the 1/𝑓𝛽 models.
It is interesting to note that, within each framework, specific
methods have been proposed for generating series with
known exponents. Davies and Harte [31] proposed a method
for generating dfGn signals with autocorrelation function
corresponding to (5), and the spectral synthesis method
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produces 1/𝑓𝛽 signals with the power law behavior of (24)
[32]. However, Eke et al. [23] noted that the Davies-Harte
method generated series whose power spectra failed to follow
the expected power law of (24) at high frequencies, and con-
versely for series generated by the spectral synthesis method
the autocorrelation tended to zero at high frequencies. These
results show that series generated from the fGn/fBm or
the 1/𝑓𝛽 frameworks possess different properties. Here we
evidence a major difference between the two models: the
1/𝑓𝛽 model supports the hypothesis of a smooth transition
between stationary and nonstationary processes through the
1/𝑓 boundary, while the dfGn/dfBm model does not.

Beyond its theoretical interest, this result has interesting
implications in more applied perspectives. Fractal models
currently find useful applications in biomedical engineering,
especially for conceiving real-timemonitoring devices allow-
ing analyzing physiological fluctuations, for example, in brain
activity, heart rate, or gait [33–36]. A deeper understanding of
the underlyingmodels is necessary for selecting relevant algo-
rithms of analysis and improving their efficiency. Another
important domain is the conception of virtual environments,
especially for gait rehabilitation. A number of recent works
showed that instructing a patient to synchronize to a fractal
environment might induce an enhancement of gait dynamics
[37–39]. For that purpose, the generation of appropriate
signals, close to 1/𝑓 noise, represents an essential step.
Considering the behavior of the dfGn/dfBm model around
the 1/𝑓 boundary, one could suggest to favor 1/𝑓𝛽 inspired
methods in such applications.

6. Conclusion

This paper highlighted some formal aspects of discrete-time
fractional processes, whichwere rarely considered in the liter-
ature, which generally focuses on continuous processes. The
derivation of expressions for dfBm variance (see (18)), scaling
coefficient (see (19)), and dfBm autocorrelation function (see
(20)) represent at this level useful results.

Our main claim is that the dfGn/dfBm model cannot be
considered a continuum. This point is clearly evidenced by
the formal analysis of the correlation properties of the two
classes of processes. dfGn converges towards a straight line
process as 𝐻 reaches its upper limit, dfBm tends towards
white noise as𝐻 approaches its lower bound, and neither can
be considered as what is commonly referred to as 1/𝑓 noise.
The supposed continuity between these two classes appears
to be just an illusion induced by the methods of analysis that
provided continuous metrics, and the concept of “ideal” 1/𝑓
noise seems hardly sustainable within this model.
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