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Abstract—With the increasing use of Machine Learning (ML)
in critical autonomous systems, runtime monitors have been
developed to detect prediction errors and keep the system in
a safe state during operations. Monitors have been proposed
for different applications involving diverse perception tasks and
ML models, and specific evaluation procedures and metrics are
used for different contexts. This paper introduces three unified
safety-oriented metrics, representing the safety benefits of the
monitor (Safety Gain), the remaining safety gaps after using
it (Residual Hazard), and its negative impact on the system’s
performance (Availability Cost). To compute these metrics, one
requires to define two return functions, representing how a given
ML prediction will impact expected future rewards and hazards.
Three use-cases (classification, drone landing, and autonomous
driving) are used to demonstrate how metrics from the literature
can be expressed in terms of the proposed metrics. Experimental
results on these examples show how different evaluation choices
impact the perceived performance of a monitor. As our formalism
requires us to formulate explicit safety assumptions, it allows us
to ensure that the evaluation conducted matches the high-level
system requirements.

Index Terms—Machine learning safety, Runtime monitoring,
Evaluation

I. INTRODUCTION

Recent breakthroughs in Machine Learning (ML) slowly
allow autonomous systems to operate in the real world, where
failures can be catastrophic, e.g., self-driving cars [1]. This
work focuses on ML-based perception functions that interpret
complex sensor signals to estimate state [2], e.g., pedestrian
detection [3], for which there is currently no valid alternative
to complex ML models. However, the use of ML has raised
new dependability challenges such as the lack of well-defined
specification, the black-box nature of the models, the data
high-dimensionality, and the over-confidence of neural net-
works [4], [5]. Consequently, offline actions are not sufficient
to guarantee the safety of such critical autonomous systems.
As an alternative, recent research investigated online fault
tolerance mechanisms, which we refer to as runtime monitors,
to maintain an acceptable behavior during operation despite
perception errors.

Runtime monitors are safety components acting close to
the perception function of interest, in charge of detecting
hazardous errors and raising alert to the system accordingly [6]
(Figure 1). A good monitor should increase the system’s
safety (absence of hazardous situations) without decreasing its

availability (ability to perform its mission). Recent works have
proposed to develop specific runtime monitors for a variety
of visual perception tasks (e.g., classification [7], [8], [9],
object detection [10], semantic segmentation [11], steering
angle regression [12], [13]). Depending on the application
context, distinct evaluation procedures and metrics have been
used to quantify the performance of runtime monitors. Such
evaluation choices actually reflect safety assumptions about the
system of interest, which are rarely explicit. For example, the
most common assumption for classification tasks is that any
misclassification has the same impact on the system’s safety
(see subsection III-A). This paper aims to unify the evaluation
methodology for runtime monitors across tasks and applica-
tion contexts by defining evaluation metrics that: 1) capture
the safety benefits of the evaluated monitor, 2) capture the
remaining safety gaps despite using the monitor, 3) capture
the negative impact of the monitor on system’s availability,

Evaluation metrics for generic non-ML runtime monitors
(or checkers) were discussed in [14]. The concept of checker
coverage was introduced to represent the probability of failure
of a primary-checker fault-tolerant architecture. However, in
their formulation, they assume that an output of the monitored
component is either a success or a failure and that this
binary status fully determines the resulting hazard. The output
can be partially correct for ML-based perception functions,
e.g., a pedestrian detection model locates only a subset of
individuals in an image. In addition, all errors from an ML
model do not lead to equally hazardous situations, e.g., an
autonomous vehicle not detecting a pedestrian on the sidewalk.
Our proposed metrics are sufficiently flexible to model these
specificities of ML-based functions.

An attempt of generic formulation for ML functions was
proposed among the selective prediction community [15].
Their evaluations introduce the notions of coverage and selec-
tive risk, representing the size of the region of the input space
where the monitor does not activate and the hazard associated
with this region. By introducing a customizable loss function
to represent hazard, this formulation is well suited to define
the safety impact of a wrong acceptance. However, unlike our
approach, these evaluation metrics lack the flexibility to model
the potential negative effects of wrong rejections on safety
(relevant example in subsection III-C) and system availability.

To address the above limitations, in Section II, we introduce



Fig. 1: Machine Learning-based system. This representation is well suited to describe an autonomous system relying on ML
for state estimation. The ML function can be enhanced with a runtime safety monitor to detect hazardous errors.

new generic metrics called Safety Gain, Availability Cost and
Residual Hazard that present the desired properties. These
metrics consist in estimating future cumulative safety and
mission rewards following a given prediction. Then, in Sec-
tion III, we demonstrate in three distinct use-cases that diverse
evaluation metrics from the literature can easily be expressed
in terms of the proposed metrics. These examples show that
using our formalism helps to ensure that the evaluations
conducted are in line with the actual safety requirements of
the system. Finally, in Section IV, we discuss the benefits and
limitations of this work.

II. PROPOSED EVALUATION FORMALISM

This section presents unified evaluation metrics for runtime
safety monitors in their generic form. Relaxations are also
introduced to make them usable in practice. Note that practical
examples of usage are presented in Section III.

A. Context and notations

Let f be a predictive model, in charge of approximating
an unknown function f∗ over an operational design domain
D1. In particular, this paper focuses on complex perception
functions used in critical autonomous systems to estimate
the state of the agent and/or its environment, e.g., pedestrian
detection. In other words, the system uses the outputs of f
to decide what actions to take in the real world, and these
actions can impact the safety of the agent and its surroundings.
Figure 1 presents a simplified generic architecture for such a
system, which can be used to better understand our notations.
A set of initial conditions, fully defining the state of the system
and its environment in a given world, is called a scenario. In

1Set of all situations under which the system is expected to work, e.g.,
for autonomous vehicles it can be described by roadway types, geographic
characteristics, speed ranges, and weather conditions, among others [16].

this work, we consider that the behavior of the autonomous
system is optimal if f works perfectly, i.e., if for all possible
scenarios and time steps t, f processes the sensor input xt

as expected (f(xt) = f∗(xt)), then the actions performed are
safe and allow to fulfill the system’s mission.

However, for such perception tasks, f is often built using
complex ML models such as deep neural networks, which
are known to make errors that are difficult to predict. Let
zt+1|f(xt) be the world state (system + environment) at time
step t+ 1, when the autonomous system follows its policy π
after receiving a prediction f(xt) from the perception model.
To simplify notations, we assume that xt is representative of
the world state zt, and that the system satisfies the Markov
property, i.e., the environment’s response at t+1 depends only
on the state and action at t. Let rM(z) be the mission reward,
which associates a score to a configuration z, representing
the progress of the system with respect to its mission. Like-
wise, let rS(z) be the safety reward, representing the safety
of configuration z. In practice, the function rM is defined
during the design phase, and the function rS results from the
safety analysis of the system (the safety score is inversely
proportional to the residual hazards of a configuration). For
example, if an autonomous vehicle is running normally on the
road at time step t, rS(zt) should be high, but if it collides with
a pedestrian at time step t′, rS(zt′) should be very low. Some
concrete examples of how rS can be defined are presented in
Section III.

Then, we define the mission return associated with f after
a given prediction at time step t:

RM
f (xt) =

T∑
k=t+1

rM(zk|f(xt)), (1)



where T is the length of the episode2. RM
f (xt) represents the

cumulative mission reward resulting from f(xt). Likewise, the
safety return is defined as:

RS
f (xt) =

T∑
k=t+1

rS(zk|f(xt)). (2)

A low RM
f (xt) means that the prediction f(xt) will decrease

the availability of the system, and a low RS
f (xt) means

that f(xt) may lead to an unsafe state. Under these notations,
we assume that the unknown function f∗ always makes the
best possible predictions, that is, ∀t:

f∗ = argmaxf RM
f (xt),

f∗ = argmaxf RS
f (xt).

We acknowledge that the sequence of consecutive states
{zt+1|f(xt), ..., zT |f(xt)} is not known a priori and is most
likely non-deterministic. However, we will see later how this
formulation can be used in practice to evaluate the impact of
the predictions of f .

B. General formulation of the proposed metrics

As it is hard to guarantee that f is valid across the entire
operational design domain D, it is essential to equip such
complex ML perception functions with appropriate runtime
monitoring mechanisms to detect errors of f and maintain the
system in a safe state. Let mf be such a monitor for f , i.e.,
for a given input x ∈ D, mf should detect when f(x) will be
erroneous and raise an alert accordingly. The remaining of the
system can then modify its actions, thus defining a new for-
ward state sequence {zt+1|(f,mf )(xt), ..., zT |(f,mf )(xt)}.
This way, RM

(f,mf )
(xt) and RS

(f,mf )
(xt) depend not only

on the values returned by f(xt), but also on the status of
the monitor mf (xt). In this paper, we only consider binary
monitors that activate and raise alerts when they judge that
f(xt) is hazardous for the system (mf (xt) = 1), and do
nothing otherwise (mf (xt) = 0).

When evaluating the performance of a monitor mf , we are
interested in quantifying the three following measures detailed
hereafter:
SGmf

: The safety improvements resulting from mf .
RHmf

: The remaining hazard in the system after using mf .
ACmf

: The system performance decrease because of mf .
1) Safety Gain: To know the overall safety added by mf

across the operational design domain D, one needs to compare
the safety of the monitored system (f,mf ) against the safety
of the initial system f . This objective is captured by the Safety
Gain metric defined as:

SGmf
=

∫
D
p(x)

(
RS

(f,mf )
(x)−RS

f (x)
)
dx, (3)

where p(x) represents the likelihood of x when randomly
sampling D. SGmf

represents the “amount of hazard” that was

2In this paper, the formalism is presented in the finite-horizon setting, but
extension to infinite-horizon should be straightforward.

Fig. 2: Representation of the proposed metrics. The Safety
Gain (SG), Residual Hazard (RH) and Availability Costs (AC)
are computed with respect to the returns of the predictive
function f , its runtime monitor mf and the ground truth
function f∗.

removed from the system by implementing mf . Integrating
over D corresponds to averaging across all possible scenarios,
noting that a state zt ̸=0 for be used as initial conditions to
define another scenario. A good monitor should have SGmf

as high as possible. If the safety scores of the different threats
identified during the preliminary safety analysis of the system
are scaled in [0, 1], then SGmf

ranges between −1 and 1. If
it is not the case, we can still scale it by dividing the results
by

∫
D(r

S
max) dx, where rSmax is the maximum possible safety

reward of an event.
2) Residual Hazard: To model the hazard still present in

the system despite mf , one needs to compare the safety of the
monitored system (f,mf ) against the safety of the optimal
model f∗. This objective is captured by the Residual Hazard
metric defined as:

RHmf
=

∫
D
p(x)

(
RS

f∗(x)−RS
(f,mf )

(x)
)
dx. (4)

It represents the “amount of hazard” that is still present in
the system, despite implementing mf . A good monitor should
have RHmf

as low as possible. Regarding scaling of RHmf
,

considerations defined above are also valid.
3) Availability Cost: To model the decrease in system’s

performance due to mf across D, one needs to compare
the availability of the monitored system (f,mf ) against the
availability of the initial system f . This objective is modeled
by the Availability Cost metric defined as:

ACmf
=

∫
D
p(x)

(
RM

f (x)−RM
(f,mf )

(x)
)
dx. (5)

It represents the “amount of mission reward” that was lost
by implementing mf . A good monitor should have ACmf

as low as possible. Regarding scaling of ACmf
, similar

considerations apply. A visual representation of SG, AC and
RH can be seen in Figure 2.

We also note that ACmf
and RHmf

are complementary.
One represents the amount of existing hazard that was removed



by mf , while the other is the amount that was not handled by
mf . Their sum represents the hazard associated with f :

SGmf
+RHmf

=

∫
D
p(x)

(
RS

f∗(x)−RS
f (x)

)
dx. (6)

C. Relaxations

For most practical applications, the metrics defined above
cannot be computed. In this section, we will explain why and
propose relaxations of these metrics to make them usable in
practice. Practical examples to show how diverse evaluation
approaches from the literature can be expressed using these
relaxations are presented in Section III.

The first issue is most of the relevant problems are too
complex to derive an exact model of the behavior of the
system and its entire environment under all possible external
conditions (weather, illumination, etc.). This is particularly
true for autonomous systems with diverse long-term behavior.
For a given x ∈ D, the subsequent states cannot be computed
precisely, which makes RM

(f,mf )
(x) and RS

(f,mf )
(x) almost

impossible to compute. A solution to this problem is to develop
an alternative way to approximate these returns using what-
ever information is available. We note such approximations
R̂M

(f,mf )
(x) and R̂S

(f,mf )
(x). In Section III, we show how

very different evaluation approaches from the literature can
be presented simply as procedures to compute the safety and
mission returns.

The second issue is that the boundaries of the operational
design domain D, and by extension, the optimal function
f∗ are unknown a priori. This lack of specification of the
perception function is precisely why ML was used in the first
place. Without formal knowledge of D and f∗, it is impossible
to compute any of the metrics defined in Equations 3, 4 and 5.
To address this limitation, one can conduct an evaluation on a
predefined dataset, where true values of f∗ are available for a
specific subset of points in D. In other words, the evaluation is
conducted on a labeled dataset Deval = {(x1, y1), ..., (xn, yn)}
such that ∀i ∈ {1, ..., n}, xi ∈ D, yi = f∗(xi). The
underlying assumption for this relaxation is that Deval is
representative of the operational design domain, i.e., it is
large enough and was sampled from the expected application
context (distribution of D). Characterizing the test coverage
of a specific dataset is an active field of research [17], but it
is beyond the scope of this paper.

Combining the two relaxations above, one can then proceed
to compute estimates of the three evaluation metrics:

ŜG
Deval

mf
=

1

n

n∑
i=1

(
R̂S

(f,mf )
(xi)− R̂S

f (xi)
)
, (7)

R̂H
Deval

mf
=

1

n

n∑
i=1

(
R̂S

f∗(xi)− R̂S
(f,mf )

(xi)
)
, (8)

ÂC
Deval

mf
=

1

n

n∑
i=1

(
R̂M

f (xi)− R̂M
(f,mf )

(xi)
)
, (9)

where R̂S
f∗(x) is computed using the values of the yi’s.

D. Practical use

To recap, two steps are required to compute the proposed
evaluation metrics for a safety monitor in a specific application
context. First, one needs to build/select a test dataset repre-
sentative of the operational design domain and labeled with
the correct values of f∗. Second, one need to design a pro-
cedure to compute R̂M

(f,mf )
(x) and R̂S

(f,mf )
(x), respectively

representing the expected cumulative mission reward and
safety reward from a given prediction and monitoring output.
These choices are of utmost importance as they represent the
underlying assumptions made about our system. Indeed, to
guarantee the safety of an autonomous system using ML,
one should not only ensure that it performs well under the
chosen metrics, but also that the assumptions used to define the
evaluation procedure are valid. As we will show in Section III,
in most research dealing with ML monitoring, the latter is
often disregarded. We believe that properly formulating these
evaluation choices in the formalism proposed in this paper can
help to understand the underlying assumptions made and, by
extension, evaluate their validity.

We emphasize that the proposed metrics are only valid
to assess the performance of a monitor mf with respect to
specific D and f . There is no guarantee that using the same
monitoring approach with a different model and/or application
context would result in similar performance. For safety-critical
applications requiring monitoring, we do not believe that it is
realistic to define application-agnostic and/or model-agnostic
evaluation procedures.

III. EXAMPLES FROM THE LITERATURE

This section presents three applications of runtime monitors
to different types of perception functions. For each of these
examples, we discuss how monitors have been evaluated pre-
viously, and we show how different evaluation approaches can
be expressed in terms of our metrics. In particular, we show
how to compute R̂S

(f,mf )
(x) and R̂M

(f,mf )
(x). By extension,

R̂S
f (x) and R̂M

f (x) can be computed by setting mf to be
the null monitor (always returning zero), and R̂S

f∗(x) and
R̂M

f∗ (x) are computed by replacing f(x) by its corresponding
ground truth labels. For each use case, we also conduct
practical experiments and compute the proposed metrics (SG,
RH, AC) under different evaluation assumptions. We note
that the objective of this section is not to design the most
efficient monitors for each use case, but rather to demonstrate
the use of the proposed metrics. Studying these applications
through the prism of the formalism presented in Section II
allows to highlight the underlying safety assumptions about
the evaluated systems. The complete code to reproduce these
experiments has been made publicly available3.

Before diving into the use cases, we remind the reader that
the design of the evaluation dataset Deval is a crucial step
to properly assess the performance of a perception system
(Section II-C). It represents the assumptions made about the

3https://github.com/jorisguerin/MLSafetyMonitors-unifiedEvaluation-
experiments



actual operational design domain D, i.e., the conditions that
a system can encounter during execution. Here, we focus on
demonstrating the usage of our metrics, and assume that the
evaluation datasets used in our experiments are representative
of their respective operational design domain, but in practice
this claim would require strong justifications.

A. Use Case 1 – Classification

Classification is the machine learning problem consisting in
building a function f mapping an input x ∈ D to an output
y ∈ [1, ...,K] among a predefined discrete set of K categories.
For classification, the generic goal of a runtime monitor is to
identify “bad input data”. Despite the simplicity of this defini-
tion, researchers have used different evaluation approaches to
assess the performance of classification monitors. This section
presents two popular evaluation schemes from the literature
and shows how both can be expressed in terms of the proposed
metrics. Preliminary experiments are proposed to compare
these evaluations, and illustrate how changing the definition
of the approximate return can lead to different results.

1) Evaluation 1: Detect Model Errors: For classification,
the predictions of a model f are either right or wrong (unlike
other ML problems where correctness can be more gradual,
e.g., object detection, semantic segmentation). This way, sev-
eral works about runtime monitoring of classification functions
have evaluated their monitors based on their ability to detect
errors of f [7], [8], [9], [18], [19]. Hence, the monitor is
viewed as a simple binary classifier and all traditional metrics
from binary classifications (precision, recall, etc.) can be used
to evaluate mf on Deval.

We now show how these traditional metrics can be ex-
pressed in terms of our proposed metrics. For classification
monitors, we consider that missed detections decrease safety
and wrong activations decrease availability. In our formalism,
this translates by computing the safety return for x ∈ Deval as

R̂S
(f,mf )

(x) =

{
0 if f(x) ̸= y and mf (x) = 0,

1 else.
(10)

And the mission return as

R̂M
(f,mf )

(x) =

{
0 if f(x) = y and mf (x) = 1,

1 else.
(11)

In upcoming discussions, we consider that evaluation metrics
are always computed on Deval and drop the exponents to
simplify notations.

In the above definitions, the Safety Gain is only impacted
by the true positives of mf (Equations 7 and 10). If we divide
ŜGmf

by the fraction of wrong predictions of f , which is
independent of mf ), the safety gain becomes the recall of the
binary classifier mf . Similarly, the Residual Hazard is only
impacted by false negatives of mf , and R̂Hmf

divided by the
fraction of incorrect predictions of f is the false negative rate
of mf . The Availability Cost only depends on false positives
of mf , and if we divide ÂCmf

by the fraction of correct
predictions of f , it becomes the false positive rate of mf .

The main shortcoming of this evaluation scheme is that
it does not allow to include additional knowledge about the
system application context (e.g., from the hazard analysis).
Indeed, Equations 10 and 11 only require information about
the labeled evaluation data Deval and the associated predic-
tions of f . In other words, the estimates of the returns are
independent of the system in which f is integrated. This way,
every misclassification of f has an equal impact on both the
safety and availability of the system. This assumption does
not hold for many critical systems using classification, e.g.
for an autonomous car road sign classifier, misclassifying a
”speed limit 30” as a “speed limit 20” is not as severe as
misclassifying a ”stop” as a ”speed limit 30”. A tree-based
approach for safety analysis of classification functions was
proposed in [20]. It can be used within our formalism to extend
this evaluation scheme and account for the asymmetry of the
safety impact of different misclassifications.

2) Evaluation 2: Detect Runtime Threats: Instead of pre-
dicting model errors, other works have evaluated classification
monitors on the surrogate problem of identifying specific kinds
of runtime threats. A threat is defined as a change in the
input data encountered at runtime, which can hinder model
performance. In practice, researchers have tested their moni-
tors on different types of threats such as Novelty [21], [22],
[23] (label does not belong to any of the predefined classes),
Distributional Shift [24], [25] (image was not drawn from the
training distribution, e.g., changes in external conditions, noisy
sensors), Adversarial Attacks [26], [27] (image was modified
intentionally to deceive the monitored model).

In this evaluation setup, the dataset is composed of normal
images and threats. For an image x ∈ Deval, a binary label τ
represents whether it is a threat (τ = 1) or not (τ = 0). Then,
one can define the safety return for x as

R̂S
(f,mf )

(x) =

{
0 if τ = 1 and mf (x) = 0,

1 else.
(12)

And the mission return as

R̂M
(f,mf )

(x) =

{
0 if τ = 0 and mf (x) = 1,

1 else.
(13)

Then, computing ŜGmf
, R̂Hmf

and ÂCmf
is straightfor-

ward. The strong assumption under this setting is that the
threat labels (τ ’s) represent the hazard associated with a
prediction. In other words, we assume that f can be trusted for
in-distribution data (τ = 0) and that it should never be used
under the identified threats (τ = 1). The second assumption is
that the hazard associated with a prediction comes only from
a specific characteristic of the input image and not the model
being monitored. Indeed, in this setting, both the mission and
safety returns are independent of f (Eq. 12 and 13). Hence,
this evaluation setting seems unable to account for safety cases
when f does not present perfect accuracy on in-distribution
data.

3) Experiments: To illustrate the influence of these eval-
uation choices, we conduct experiments on the CIFAR10



(a) Images from the CIFAR10 test dataset.

(b) Corresponding images after brightness modification.

Fig. 3: Example images to illustrate the threat generation
process used in our experiments.

dataset [28]. First, a neural network f (3 convolutional layers
followed by two dense layers) is fitted to the training set of
CIFAR10, reaching a test accuracy of 0.79. Then, to monitor
this model, we consider two simple approaches: 1) Features
representing the training images are extracted from f , and
several one-class classification (OCC) models are fitted inde-
pendently to each class. In practice, we use features from the
third layer of f and an Isolation Forest [29] for OCC. To foster
conservativeness, the rejection threshold on the OCC scores
is set such that 30% of the training data are discarded. At
runtime, features are extracted from new input images, and the
OCC model decides whether to accept or reject them. 2) An
auto-encoder is fitted to the CIFAR10 training set, such that
the encoding part has the same structure as the convolutional
block of the classifier. Then, the same monitoring approach is
implemented using the features from the encoder.

For evaluation, we generated distributional shift threats by
modifying lighting conditions of the ten thousand test images
of CIFAR10 (Figure 3). The proposed metrics are computed
using both evaluation schemes presented above: predicting
model errors (E1) and detecting runtime threats (E2). E1
evaluates the ability of a monitor to recover errors of the neural
network, while E2 evaluates its ability to recover images with
modified brightness.

The results obtained are presented in Table I. We can see
that the choice of the approximate return functions influences
greatly the values of the proposed metrics. For example, under
E1, the auto-encoder monitor has a higher Availability Cost
than the Classifier monitor. This makes sense as the auto-
encoder is independent of f and does not contain information
regarding its predictions. On the other hand, under E2, the
auto-encoder monitor has a much higher Safety Gain than its
classifier counterpart, which means that auto-encoder features
are better at detecting runtime images with modified bright-
ness.

This example highlights the importance of defining evalua-
tion goals (R̂M and R̂S ) aligned with the high-level objectives
of the monitored system. Indeed, by studying two popular
evaluation schemes from the literature, we showed how these
choices could alter our perception of the safety and availability

TABLE I: Results of our classification experiments.

Auto-encoder Classifier
SG RH AC SG RH AC

E1 0.184 0.140 0.304 0.074 0.251 0.154
E2 0.344 0.156 0.144 0.086 0.414 0.142

of a given monitor. We do not claim here that one evaluation
scheme is better than the other. However, we believe that
following our formalism to evaluate a runtime monitor is a
good way to ensure compliance with the application objec-
tives. At the same time, the proposed metrics allowed us to
gain a unified and interpretable insight regarding the monitor
performance.

B. Use Case 2 – Object Detection for Pedestrian Avoidance

Our second example is an autonomous driving scenario
that we designed on the CARLA simulator [30]. A car is
equipped with an object detection model (YOLO-v5 [31]
trained on COCO [32]), which is used to locate pedestrians
within an emergency braking system. The scenario is designed
as follows: the car drives normally in a city road, and after
a few seconds, a pedestrian appears suddenly in front of
the vehicle after crossing between parked cars (Figure 4).
The emergency braking system receives information from the
pedestrian detector, and stops the vehicle whenever a pedes-
trian bounding box overlaps with a predefined safety-critical
region (green region in Figure 4). The scenario presented here
runs for a fixed number of steps (episodes of T frames). We
also add a runtime monitor to this system, consisting of two
modules:

1) The contrast variation in the input images is monitored,
and if it falls below a predefined threshold, the monitor is
activated. The objective of this module is to detect faulty
images due to harsh environmental conditions (e.g., fog),
or sensor failures (e.g., blur).

2) A plausibility checker ensures that bounding boxes in
consecutive frames are consistent, e.g., no sudden ap-
pearance of bounding boxes in front of the vehicle. Such
inconsistencies can indicate ghost detections.

When the monitor detects an anomaly, the emergency breaking
system immediately stops the vehicle. For this use case as well,
we propose two different ways of computing the safety and
mission rewards, and compare their influence on the proposed
evaluation metrics.

1) Evaluation 1: Detect ML Errors: This evaluation scheme
is the adaptation of Section III-A for object detection. To
identify errors of an object detector, one must compare ground
truth bounding boxes to bounding boxes predicted by the
model. To boxes are considered to match if their labels are
identical, and both the prediction score and their intersection
over union are above fixed thresholds. The binary variable τ
represents the error status of the monitored object detector for
an image x. We consider that there is an error (τ = 1) if
there is either a false positive (prediction without correspond-



(a) No perturbation. No pedes-
trian detection error.

(b) Smoke. No pedestrian de-
tection error.

(c) Grid dropout. No pedestrian
detection error.

(d) Sun flare. False Negative of
the pedestrian detector.

Fig. 4: Pedestrian avoidance use case. Each image represents
a different perturbation.

ing ground truth) or a false negative (ground truth without
prediction). Then, the safety and mission returns are

R̂S
(f,mf )

(x) =

{
0 if τ = 1 and mf (x) = 0,

1 else.
(14)

R̂M
(f,mf )

(x) =

{
0 if τ = 0 and mf (x) = 1,

1 else.
(15)

2) Evaluation 2: Prevent accidents: This second approach
aims to assess the ability of a monitor to prevent accidents.
Conducting evaluations in a simulation environment such as
Carla presents several advantages. First, we are able to know
the exact location of every object of interest at each time
step, which allows to define the mission and safety rewards in
terms of the exact world state. Second, any initial conditions
can be reproduced to test the system’s behavior with different
perception function (e.g., with or without the monitor). Hence,
the proposed evaluation metrics can be defined directly from
the values of reward functions at individual time steps.

The mission reward rM(zt), associated with configuration
zt is defined to be 0 when the car is stopped and 1 when
it is running. In our experiments, we make the simplifying
assumption that, when requested, the emergency braking sys-
tem stops the vehicle instantly (from one frame to the next).
Hence, the predictions obtained at time step t only impact the
mission reward at t + 1, and to compute the mission return,
Equation 1 can be adapted as:

R̂M
(f,mf )

(x) = rM(zt+1|(f,mf )(xt)). (16)

Finally, we also consider that when emergency braking is
triggered, the episode ends and the mission rewards for all
consecutive steps is 0. This way, for a given episode, the
availability cost is the average difference in the number of
running frames with and without the monitor.

TABLE II: Results of our pedestrian avoidance experiments.

SG RH AC
E1 0.187 0.060 0.065
E2 0.075 0.075 0.800

The safety reward rS(zt) is defined slightly differently. It
is -1 for frames when there is a collision with the pedestrian
and 0 for all other frames. Hence, the safety return is:

RS
(f,mf )

(xt) =

T∑
k=t+1

rS(zk|(f,mf )(xt)), (17)

In other words, a prediction (f,mf )(xt) gets a nega-
tive safety reward if there is an accident in its future
({zt+1|(f,mf )(xt), ..., zT |(f,mf )(xt)}).

3) Experiments: Our experimental evaluation consist in
running the same simulation scenario several times, while
injecting different kinds of faults. In particular, we generate
twelve types of image perturbation presented in [19], [33],
[34]: smoke, sun flare, rain, row add logic, shifted pixel,
coarse dropout, grid dropout, channel shuffle, channel dropout,
contrast, brightness, and Gaussian noise (see Figure 4 for
examples). For most perturbations, several intensity levels are
tested, resulting in a total of 53 simulations. The fixed number
of time steps is set to T = 220.

The proposed metrics are computed using both evaluation
schemes: detect ML errors (E1) and prevent accidents (E2).
The results are presented in Table II. Using E1, it seem that
the monitor allows to handle most of the hazards present
in the system (high SG and low RH) and does not impact
much model performance (low AC). However, when the true
temporal behavior of the system is considered (E2), the results
appear much less enthusiastic. Our experiments included 15%
of scenarios with an accident (SG + RH), and the monitor
allowed to avoid only half of them. In the meantime, the
availability was decreased by 80%.

C. Use Case 3 – Semantic Segmentation for UAV Emergency
Landing

Our last use case is built on recent work about emergency
landing of Unmanned Aerial Vehicles (UAV) in urban en-
vironments [11]. This module is triggered when the UAV
loses its localization capabilities. Then, it collects an onboard
image, reduces its resolution, and process it with a semantic
segmentation model f that classifies each pixel in one of the
following categories: building, road, car, tree, low vegetation,
humans, and background. Following the safety analysis con-
ducted in [35], the binary safety flag φk is defined to represent
when a category Ck is too dangerous to land (φk = 1).
Here, the goal is to avoid roads and buildings. In addition, a
hazard score hk ∈ [0, 1] is defined for all accepted categories
(φk = 0).

A candidate landing area is a circular region of fixed size
radius, containing only safe pixels (Figure 5). The candidate
with the lowest hazard score (

∑
hk) is selected for landing.

To increase confidence in f , we use the “local high definition”



Fig. 5: Example outputs for Emergency Landing. Circles
are candidates identified by the main model, colors indicate
runtime monitor status. The default action consists in opening
a parachute without moving. Source: [11].

monitor. It consists in using the full resolution image to refine
the semantic segmentation of small patches containing the
candidates, allowing to improve critical predictions, while still
controlling computation time. The monitor rejects a candidate
if its new segmentation contains a forbidden pixel (φk = 1).
If no suitable candidate was found by the (f,mf ) pair, the
default action consists in stopping the motors and opening
a parachute at the current location. Figure 5 illustrates the
outputs of emergency landing on an example image.

1) Evaluation 1 – Detect wrong candidates: As its name
implies, emergency landing is an emergency procedure which
only goal is to ensure people’s safety. Hence, for this ap-
plication, we are not concerned with mission progress and
availability cost is not a relevant metric. The safety return of
a candidate can be computed using Equation 14, where τ = 1
for candidates containing unsafe pixels. Then, the safety return
for the entire image is simply the average across candidates.

2) Evaluation 2 – Compare selected landing zones: An-
other way of evaluating a monitor is to compare the final
candidate that was actually selected for landing with and
without it. Let (x, y) be an input image and its associated
ground truth segmentation image, and let y(p) be the ground
truth class of pixel p. The safety score of a landing candidate
Lc in x is

S(x[Lc]) =

{
0 if ∃p ∈ x[Lc] s.t. φy(p) = 1,

κ+ (1− κ)Ep[1− hy(p)] else,
(18)

where κ ∈ [0, 1] defines a gap to separate unsafe candidates
from others. From this definition, R̂S

(f,mf )
(x) can be defined

as the value of S(x[Lc]) when (f,mf )(x) selects landing zone
Lc.

3) Experiments: The proposed experiments are conducted
on the 70 images of the validation set of UAVid [36]. Five
types of perturbations are applied (brightness, fog, motion
blur, pixel trap and shifted pixels), leading to a total of 420
images. Both evaluation schemes are compared to evaluate

TABLE III: Results of our emergency landing experiments.

SG RH
E1 0.805 0.195
E2 0.108 0.212

the performance of the proposed monitor on the emergency
landing application.

Results are presented in Table III. Once again, we observe
that evaluating the monitor as a regular binary classifier (E1)
is much more optimistic than considering its performance at
system level (E2). For this specific example, this discrepancy
comes from the fact that rejecting a valid landing zone can
severely impact safety, as other safe options might not exist.
This subtlety of emergency landing is well captured by E2, but
not by E1, which ignores false positives. We also note that,
using E2, the safety gain can sometimes be negative when the
monitor rejects good options.

IV. CONCLUSION

This paper presents new evaluation metrics for runtime
monitoring of ML perception, called Safety Gain (SG), Resid-
ual Hazard (RH), and Availability Cost (AC). These metrics
represent different aspects of the system in which the ML
function is used: the safety benefits of using the monitor
(SG), the remaining threats despite the monitor (RH), and the
negative impact of the monitor on the system’s performance
(AC). This formulation relies on expressing the future returns
(cumulative rewards) for safety and mission objectives. To
show that these metrics are generic and flexible, we demon-
strated how they can be used for three independent use cases,
representing different application contexts. Experiments on
each use case demonstrate the importance of properly for-
mulating the assumptions about the system evaluated. Indeed,
we show that different definition of the return functions can
drastically change the perceived performance of the monitor.
In summary, this work is a step towards unifying the field
of ML runtime monitoring, allowing to compare approaches
across different scenarios using common criteria. Using our
formalism helps to ensure that evaluation is aligned with the
actual system requirements.

A possible future work direction would consist in building a
set of evaluation scenarios representing real-world applications
of ML, using both simulated environments and real-world
data. This would allow a proper benchmark study of existing
runtime monitoring techniques using the metrics introduced
in this paper. Such natural extensions of our work has the
potential to play a major role in the development of future
autonomous systems, as it allows for a better assessment of
the safety of such critical ML-based functions.
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X. Huang, J. Hernández-Orallo, and M. Castillo-Effen, Eds., vol. 2301.
CEUR-WS.org, 2019. [Online]. Available: http://ceur-ws.org/Vol-2301/
paper 6.pdf

[17] J. Chen, M. Yan, Z. Wang, Y. Kang, and Z. Wu, “Deep neural network
test coverage: How far are we?” arXiv preprint arXiv:2010.04946, 2020.

[18] C.-H. Cheng, G. Nührenberg, and H. Yasuoka, “Runtime monitoring
neuron activation patterns,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 300–303.

[19] R. S. Ferreira, J. Arlat, J. Guiochet, and H. Waeselynck, “Benchmarking
safety monitors for image classifiers with machine learning,” in 2021
IEEE 26th Pacific Rim International Symposium on Dependable Com-
puting (PRDC). IEEE, 2021, pp. 7–16.

[20] R. Salay, M. Angus, and K. Czarnecki, “A safety analysis method
for perceptual components in automated driving,” in 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2019, pp. 24–34.

[21] Y. Sun, C. Guo, and Y. Li, “React: Out-of-distribution detection with
rectified activations,” Advances in Neural Information Processing Sys-
tems, vol. 34, 2021.

[22] C. Schorn and L. Gauerhof, “Facer: A universal framework for detecting
anomalous operation of deep neural networks,” in 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2020, pp. 1–6.

[23] A. Lukina, C. Schilling, and T. A. Henzinger, “Into the unknown: Active
monitoring of neural networks,” in International Conference on Runtime
Verification. Springer, 2021, pp. 42–61.

[24] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-
of-distribution image detection in neural networks,” in International
Conference on Learning Representations, 2018.

[25] Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting
out-of-distribution image without learning from out-of-distribution data,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 951–10 960.

[26] Y. Kantaros, T. Carpenter, S. Park, R. Ivanov, S. Jang, I. Lee, and
J. Weimer, “Visionguard: Runtime detection of adversarial inputs to
perception systems,” arXiv preprint arXiv:2002.09792, 2020.

[27] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang, “Adversarial sample
detection for deep neural network through model mutation testing,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1245–1256.

[28] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[29] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–422.

[30] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[31] G. Jocher, A. Stoken, A. Chaurasia, J. Borovec, NanoCode,
TaoXie, Y. Kwon, K. Michael, L. Changyu, J. Fang, A. V,
Laughing, tkianai, yx NONG, P. Skalski, A. Hogan, J. Nadar,
imyhxy, L. Mammana, A. Wang, C. Fati, D. Montes, J. Hajek,
L. Diaconu, M. T. Minh, Marc, albinxavi, fatih, oleg, and wang
haoyang, “Yolov5: v6.0,” [Online; accessed 21-January-2022]. [Online].
Available: https://doi.org/10.5281/zenodo.5563715

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[33] F. Secci and A. Ceccarelli, “On failures of rgb cameras and their effects
in autonomous driving applications,” in 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2020,
pp. 13–24.

[34] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, “Albumentations: fast and flexible image augmenta-
tions,” Information, vol. 11, no. 2, p. 125, 2020.
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