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ABSTRACT 
In the field of experimental aeroacoustics in wind tunnel, the number of existing methods is important and is 
increasing continuously so that it becomes difficult for Industrials to have a clear view of the respective 
advantages of each of them and make appropriate choice. Benchmark works are also plentiful and often focus 
on the performance of these methods in terms of spatial localization and computing time, more rarely in terms 
of quantitative estimation. We are interested here by these deconvolution methods that we aim to classify, 
and even to show in what extent all of these methods are equivalent. The approach adopted is to define a 
common protocol for controlling and monitoring the different algorithms: define same initial condition, same 
convergence parameters and same exit conditions. All of the considered deconvolution algorithms are 
implemented with respect to the same protocol. Convergence and calculation time are monitored at each 
frequency. Finally acoustic power of source area are extracted from the resulting maps and compared together. 
Indeed, it is observed that within the range of few dBs the results are quite similar and we propose to classify 
the algorithms with their equivalent Lp-norm minimization function. 
 
Keywords: Microphone array technique, Deconvolution, Aeroacoustics, Wind tunnel measurements, 
Airframe noise 

1. INTRODUCTION 
Aeroacoustic measurements based on acoustic arrays in wind tunnels can provide a detailed 

understanding of complex noise sources. In particular for airframe noise in aeronautics, wind tunnel 
tests help to investigate new aircraft concepts, verify performance of innovative designs and validate 
prediction models. Indeed, thanks to increasing computational power, more and more CFD models are 
used in design phases, and wind tunnel testing is the ultimate way to validate these models long before 
the aircraft can actually fly. However, wind tunnel testing is often very expensive and must be 
performed efficiently to get the most out of the limited testing time.  

Microphone array techniques provide a considerable amount of data from which it is possible to 
extract valuable information on the origin of sound such as location or power of acoustic sources. The 
most common microphone array method is certainly the conventional beamforming algorithm (CBF 
[1], also known as “delay-and-sum” [2]) because of its simplicity, robustness and computational 
efficiency. However it suffers from a lack of resolution in the low frequency range and from the 
inability to properly quantify the source power, especially in the case of  complex source distributions 
like those generally encountered in aeroacoustics. These drawbacks have been tackled in the 2000’s 
with advanced beamforming-based algorithms such as deconvolution techniques. In the field of 
experimental aeroacoustics in wind tunnel, the number of existing deconvolution methods is important 
(Clean-PSF [3], DAMAS [4], SEM [5], Clean-SC [6] and NNLS [7], and the many derived versions). 
All of these methods in fact share the same theoretical basis. Indeed the physical model is the same 
and the techniques only differ from the final inversion algorithm, while, in aeroacoustics, the model 
in general assumes an uncorrelated monopole distribution in free field [8].  

We are interested here by these deconvolution methods that we aim to classify, and even to show 
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in what extent all of these methods are equivalent. The approach adopted is to define a common 
protocol for controlling and monitoring the different algorithms: define same initial condition, same 
convergence parameters and same exit conditions. The DLR1 case (Dornier-728 half model) [9] taken 
from the Array Analysis Benchmark [10] is used. All of the already mentioned deconvolution 
algorithms are implemented with respect to the same protocol. Convergence and calculation time are 
monitored at each frequency. Finally acoustic power of source area are extracted from the obtained 
maps and compared together. Indeed, it is observed that within the range of 1-2dB the results are quite 
similar and we propose to classify the algorithms with their equivalent Lp-norm minimization function.  

2. MICROPHONE ARRAY TECHNIQUES 

2.1 General principles 
Many acoustic imaging techniques have been developed over the past 30 years. These techniques 

have in common the formalization of the theoretical problem which is to estimate the position and 
power level of acoustic sources from pressure measurements on a microphone array.  

The principle of identifying sources consists in positioning a microphone array facing the object 
to study and try to locate the main noise areas through specific processing of microphone signals, 
based on a source model chosen a priori. For aeroacoustic applications, the usual hypothesis is to 
assume that the phenomena are well represented by a distribution of uncorrelated monopoles [8]. This 
can be justified by the fact that the pressure correlation scales are lower than the spatial resolution of 
the method in general. One then seeks the model adequacy to the measurement data. 

One distinguishes far field and near field zones of the array (respectively Fraunhofer and Fresnel 
zones). It is admitted [8] that it is advantageous to measure a source in the near field of the array, in 
particular to overcome the background noise. The source emission is then spherical and one performs 
a focused array processing where the position of the source is sought, that is to say the emission center 
of the spherical wave. This model is the most commonly used (in aeroacoustics anyway) and usually 
provides interesting and useful results. But it must be noticed that this is an approximation of the 
propagation model and that the differences between the actual acoustic propagation and  the 
propagation model can result in errors, especially on the source amplitudes.  

In practice, one chooses a region of the scan area, where the presence of sources is sought for. For 
practical reasons linked to mechanical design, one generally arrange the microphones on a plane. For 
a typical 2D configuration, an area of candidate source points is then defined in a plane parallel to the 
microphone array. 

2.2 Expression of the direct problem 
By solving the wave equation in the frequency domain for a source in an open field and discretizing 

the solution, the complex pressure vector   received at the  microphones of the array at 
frequency  can be expressed as: 

G , (1) 
where  is the complex amplitude of a source at point  and G  is the Green function vector 

 in free space between the source and the microphones  at points , . The frequency 
dependence of the equations is omitted in the notation of this paper.  

In the presence of strong background noise perturbation, as often it is the case in aeroacoustics, it 
is wise to proceed with ensemble averages in the frequency domain, assuming stationarity property of 
signals. For this, one uses the cross spectral matrix (CSM) of the measured signals on the array, matrix 
of complex values, expressed as: 

, (2) 
with  designating the ensemble average and the superscript  being the Hermitian complex 
conjugate operator. 

Applying this to equation (1), in the presence of  sources and assuming uncorrelated source 
model, i.e. incoherent sources, leads to the following expression of the modelled CSM:  

G G , (3) 
with  being the power spectral density of the sources at each considered point . Methods 
considering other source models also exist, see [11] and [12] for a review. 
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2.3 Expression of the inverse problem 
Starting from equation (3), the sound source identification consists in the estimation of the power 

spectral density of the sources knowing the measured CSM  (measured pressure signals on the 
array). This is an inverse problem that can be solved using a classical optimization procedure. For 
that, an objective function - error function or cost function - is defined, traducing the adequacy of the 
model to the measurement data. A L2-norm is chosen here to quantify the difference between the 
measured CSM and the modelled CSM, i.e.:  

. (4) 
The objective is then to minimize this cost function by considering its gradient regarding the 

unknown, i.e. searching an estimation of unknown  satisfying: 

 or , subject to  for all considered candidate source point . (5) 

All deconvolution methods intend to solve the optimization problem (5), or close forms of it.  What 
differentiates them lies in the algorithms that are implemented to find a solution. The conventional 
beamforming method and general principles of deconvolution methods are presented hereafter. 

2.4 Conventional Beamforming method 
The most commonly used method in the industry for the identification of acoustic sources is the 

conventional beamforming (CBF) for which an estimate of the power spectral density is searched for 
each source point scanned one after the other among the chosen set of candidate points. This means 
considering the following modelled CSM : 

G G . (6) 
Deriving the optimization procedure leads to the following estimate of the source power spectral 

density  at the considered scan point  : 

w w , (7) 
where w G G G  is viewed as a spatial filter. 

In the case of a unique real source at point , the linear regression determines  is the best 
estimation of the power spectral density of the real source [8]. 

2.5 Deconvolution methods 
The conventional beamforming method suffers from severe limitations. The beamforming process 

in fact performs a spatial convolution between the true source distribution and the response of the 
array to a unique point source, called Point Spread Function, PSF, whose shape depends on the number 
of microphones, their spatial arrangement, the frequency and the relative position of the center of the 
array to the scan point. This generates artefacts as main lobes, side lobes and grating lobes that po llute 
the resulting source map. These non-physical artefacts may render physical interpretation difficult. 
The PSF at point  due to a source at point  can be expressed as:  

R w G G w w G . (8) 
It is then possible to express the CBF result  as a product of the array directivity pattern R  

and the true power spectral density :  
R . (9) 

Considering a set of  candidate points the CBF map result,  vector , is expressed as 
the product of the complete PSF, i.e.  matrix R, and the  vector of source candidates 

, thus forming a second linear system assuming incoherent sources (also called in the field as the 
DAMAS problem [4]): 

R , (10) 
which requires a second inversion method of a linear system. The special feature of equation (10) thus 
obtained is that all terms of the system are real and positive. A positivity constraint thus has to be 
considered on the unknowns . 
It is necessary to introduce here a quantity used in the optimization algorithm, called the residue and 
defined by : 

R . (11) 
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It is interesting to note at this point that starting from equation (4) but considering all  scanned 
points at once, i.e. considering equation (3) for the modelled CSM instead of equation (6) (as for 
conventional beamforming), Blacodon and Elias [5] derived the optimization process (as shortly 
described in section 2.3), and resulted in the same linear system to be solve as equation (10). 
A fundamental question arises about this problem. Indeed some consider a linear system and others a 
quadratic system (nonlinear), both under constraint, depending on considering the unknown vector  
as linear or as a quadratic quantity, what it is physically. This question has no answer within the 
community to our knowledge, and should have a consequence on the choice of solving algorithms. 
Whatever, it is expected that the positivity constraint has a strong regularizing effect and tends to 
foster sparsity of the solution. Thus any algorithm used in applied mathematics should find 
equivalently a local minimum even without any penalty (regularization). 

To overcome artefacts due to the directivity of the array, the deconvolution process consists in two 
steps: 1/ estimate the CBF result at each point of the chosen scan grid with  equation (7) and 2/ estimate 
the source power density taking into account all the scanning points  at the same time by solving 
equation (10), iteratively in general. 

2.5.1 Approach adopted  
For this study, we consider 5 deconvolution algorithms: Clean-PSF [3], DAMAS [4], SEM [5], 

NNLS [7] and CIRA [13]. Even if Clean-SC [6] is one of the most popular deconvolution methods in 
the field of aeroacoustics, it isn’t considered here because it differs from the others in the sense that 
it modifies steering vector during the iterative process. Note that for SEM, the selected algorithm is a 
simple Conjugate Gradient (easier to modify) as chosen initially (CONMIN) and instead of LBFGS 
as finally proposed by the authors. 

The implementation in an industrial context of this type of algorithm requires a lot of attention in 
particular with regard to the initial condition, the management of convergence and positivity 
constraint, and the exit conditions of the algorithm. Our experience is that the initial condition have 
no important impact on the convergence speed and the result, the final map. On the other hand 
management of convergence and exit conditions of the algorithm have a more crucial impact. 

There are also other implementation tricks useful for aeroacoustics (CSM diagonal removal (DR), 
consideration of convection effects on acoustic propagation (Amiet)) that are actually applied in this 
work. Note that the DR option requires consistent operations to be applied in the algorithm, 
particularly with regard to the positivity constraint to be applied to the initial CBF map or to the 
positive matrix R. All of these implementation details are not detailed in this publication. 

After a literature revue on the methods and algorithms, the approach adopted, based on making 
compromise and synthesis, is to define a common protocol for controlling and monitoring the chosen 
algorithms during the different parts of a deconvolution algorithm: 
 initial condition 

There’s two options for the initial map (also called clean map in C lean-PSF): either set to zero or 
initialized by the CBF map, possibly renormalized. In the literature, the initial map is set to zero 
or to the CBF map. For all algorithms we choose here the first option for the sake of consistency 
between algorithms, because Clean-PSF algorithm can’t support the other choice. 

 management of convergence 
We are talking about the convergence parameter which can be called sometimes relaxation 
parameter, step factor, loop factor or energy injection factor, and about the positivity constraint.  
Convergence parameter is certainly the most delicate part to settle in this work because the chosen 
algorithms consider this kind of parameter in very different ways. SEM (CG) and NNLS contain 
a convergence parameter that is automatically calculated at each iteration. The convergence 
parameter for CIRA is defined once at each frequency but several options exist. And, finally, 
Dougherty proposed to integrate a convergence parameter in Clean-PSF to counteract somehow 
the spatial extent of aeroacoustic sources, parameter settled empirically (typically between 0.1 
and 0.25). In the end, harmonization between algorithms is not feasible and we choose to apply 
the best/optimized know-how concerning the convergence parameter, for the algorithms that 
require a user defined choice.  
Imposition of positivity is an absolute necessity for our deconvolution methods. The most 
consistent option is to zero all negative solutions founded in the map at each iteration. It was 
possible to impose this constraint on all the algorithms chosen in this work.  

 exit conditions of the algorithm 
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This is the most confusing part encountered in the bibliography or even the less well documented. 
There is no consensus on this issue. In summary we usually find two associated criteria for the 
exit of the algorithm: an energy criterion and a maximum number of iterations, a safety condition 
that sets the limit of the exit condition. In terms of energy criterion we can list non-exhaustively 
the following conditions. We then propose to evaluate in this work the following energy criteria 
at each iteration : 

 the L0-norm of the resulting map (clean map), called here , 
 the L1-norm of the clean map, called here . Note that because of the quadratic nature 

of the physical quantity to identify, this represents in fact the squared L2-norm of the 
source level in the map, 

 the L2-norm of the clean map, called here , 
 the value of the cost function (equation (4) at iteration ) , eventually normalized by 

the energy in the CSM , i.e. . A special care must be taken 
in case of DR option is selected, for the calculation of , 

 going back to the optimization procedure (§2.3), a local minimum can be founded when 
equation (5) is satisfied. In Fact equation (5) is equal to the residue (equation (11)), 
expressed in the iterative process as R . Then the L2-norm of the residue, 
defined by , can be used.  

The question of defining a relevant threshold for each criteria then arise. Threshold values of 
energy criteria are often chosen empirically. To try to clarify this question, the solution adopted 
here is to observe also the evolution of the criteria between two successive iterations, i.e. for 
example .  

Reminding that it is expected to compare and classify the 5 algorithms, following a (as much as) 
common and global protocol, it seems necessary to consider also the industrial process of analyzing 
acoustic imaging results. Indeed, in general, engineers are interested in the integrated source power 
on areas related to components to optimize. That’s why it is decided to monitor also the source power 
integrate in the following areas [9]: FLAP INT, SLAP INT and FLAP TIP. It defined finally all the 
criteria we have monitored in this study (next section). 

All of the considered deconvolution algorithms are implemented with respect to the same pseudo-
code. 

2.5.2 Modus operandi adopted 
The study is composed of two parts. Firstly the chosen algorithms will be monitored for several 

discrete frequencies: 2021Hz, 3018Hz, 4394Hz, 5010Hz, 6006Hz, 7002Hz and 8496Hz. A maximum 
number of iterations is fixed arbitrarily from 200 in the lowest frequency band to 100 in the highest) 
and the energy convergence criteria (previous section) are monitored at each iteration. The objective 
is to observe the behavior of each algorithm and try to identify the most relevant exit criteria for each 
algorithm, finding supposed local minima. Then, secondly, more complete calculation will be done in 
third octave bands and integrated energy on defined areas will be compared.  

3. IMPLEMENTATION 

3.1 Test case description 
The test case selected here is the AIAA array analysis benchmark case DLR 1, Aircraft Half Model 

in closed wind tunnel. This benchmark problem consists of a test configuration with a Dornier -728 
half model of scale 1:9.24 in high-lift configuration (landing) placed in the center of the cryogenic 
wind tunnel at the DLR Kryo-Kanal Koeln (DNW-KKK), refer to [9] and [10] for a more complete 
description of the test case. 

The microphone array has a diameter of 1 m and is composed of 135 microphones arranged in 
spiral arms mounted onto the sidewall. The sampling frequency of microphone signals is 120 kHz.  

The benchmark data is acquired for 9 couples of parameters: 3 model angles of attack (3°, 5° and 
9°) and 3 free stream velocities (Mach numbers M=0.15, 0.2 and 0.25) during 30 seconds each. The 
region of interest of the half model, defined in the frame of the benchmark, is a 1.05 m x 1.45 m 
observation plane at a distance of y = 1.045 m (position of the wing root) from the microphone array.  

Three grid resolutions of the source maps have been proposed in the frame of the benchmark: 1 
cm, 2 cm and 5 cm leading to different numbers of equidistant scanning points respectively of 15476, 
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3869 and 660.  
In this paper, results for the case of M=0.25 (88m/s) and 3° angle are presented, for a grid of 2 cm 

resolution (3869 points). 

3.2 Algorithms monitoring 
The adopted mode of analysis of all the results begins with the observation of the source power by 

area. Indeed, in general, we observe a relatively rapid convergence on these quantities [4]. We then 
deduce a number of iterations that could be considered as sufficient or satisfying a convergence 
criterion (to be determined). We note that the source powers by area are quite coherent between them 
from one algorithm to another. Then we observe the criteria L0, L1 and L2 (calculated on the source 
map at each iteration) and finally the relevant criteria on the value of the functional and on the residue.  

Not surprisingly, two groups of algorithms are identified. The first (view as a L2-norm class of 
algorithm) composed of CG (SEM), CIRA and NNLS (very close but with NNLS a little more sparse) 
and DAMAS (even more sparse) and the other group (view as a L1-norm class of algorithm) composed 
of Clean-PSF which provides the sparsest maps (often impossible to visualize). The degree of sparsity 
is observed with criterion L0 which always decreases for the first group and always increases for the 
second, as expected. Thus, CG(SEM), CIRA and NNLS find a variable number of sources depending 
on the frequency. This is not the case for DAMAS and Clean-PSF (see Figure 1). 

Figure 1 – Evolution of criteria L0-norm (left) and L1-norm (right) over frequencies at a converge 
state (judged as such). 

L0-norm criterion is never used as an exit conditions of a deconvolution algorithm as far as we 
know. Although imposing a number of lighted source points is difficult to conceive for engineers, the 
number of sources being unknown a priori and can be one of the unknowns of the problem, we observe 
a great similarity of the visual representation by doing so. Figure 2 shows maps calculated at 8496Hz 
imposing a number of visible source around 360 (determined according to the power level dynamics) 
for CG(SEM), CIRA and NNLS algorithms. It is interesting to note then that the number of iterations 
is quite different, respectively 100, 26 and 10. This highlights the intrinsic tendency to sparsity  of 
each algorithm.  

Criterion L1 is interesting to observe: there is generally fast convergence towards a stable value 
but whose value depends on the frequency. Similarly, criterion L2 is always increasing with 
asymptotic behavior. It's interesting regarding the number of sources: for the first group the more 
iterates, the less we have enlightened source points, the more we tend towards sparsity but the energy 
of the map increases slightly. We therefore operate a concentration of energy on identified source 
points. For the other criteria, we observe a relatively good consistency of the  criterion for DAMAS 
and  for CG(SEM), CIRA, NNLS and even Clean-PSF. But the evidence is less clear than for 
L1-norm criteria. 

Generally, we therefore observe the regularizing effect and the tendency to sparsity of the positivity 
constraint with a gradation toward sparsity from CG(SEM), CIRA, NNLS, DAMAS to Clean-PSF. In 
our view, the effect is essentially of the order of the visualization of the maps because the powers per 
areas are consistently estimated between the 5 algorithms. 

The analysis of those criteria showed that it is difficult to define common thresholds for all 
algorithms and each energy criterion defined in §2.5.1. However the evolution of the criteria  over 
iterations seemed more suited to that. Thus we finally selected commonly to the 5 algorithms three 
criteria and defined three thresholds constant on the frequency band. Indeed, the intention was to drive 
the algorithms in the most unified way and the thresholds have been chosen the least restrict ive so as 
to be suitable for all algorithms over a wide frequency band. The choice of the three criteria was based 
on the greatest representativeness of the quantities of interest of the problem (refer to §2.5.1): 
adequacy of the model to the measurement on the array ( ), source map energy considering 
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the physical quantity of interest ( ) and minimization of the residue error in the 
convolution problem ( ).  

Then it has been possible to roll out the calculations throughout the complete frequency band.  

   
Figure 2 – Comparison of maps obtained using CG(SEM) (left), CIRA (middle) and NNLS (right) 

algorithms by imposing a fixed number of lighted source points (~360) at 8496Hz . 

3.3 1/3 octave calculation analysis 
Calculations were done on the third octave bands from 2kHz to 8kHz, monitoring the source power 

levels on the three areas defined on the map (FLAP INT, SLAP INT and FLAP TIP), the average 
iteration number and the average CPU time each per third octave band. 

  
Figure 3 – Source power level par area (FLAP INT left, SLAP INT in the middle and FLAP TIP in 

the right).  

The behavior already observed during fine-band calculations for monitoring (§3.2) is confirmed 
with third octave calculations: the source power level per area is quite well uniformly founded by 
each algorithms (figure 3), within the range of few dBs, while the visual representation of the source 
map is very different, highlighting the nature of each algorithm in terms of sparsity representation of 
the sources. Only the CLEAN-PSF algorithm deviates from the general trend. We believe that this is 
not due to the intrinsic nature of the algorithm, its natural tendency to sparsity (L1-norm class of 
algorithm). The experience gained during this study indeed encourages us to think that the iteration 
number is not enough high. In other words, the exit conditions defined in a common way to all the 
algorithms are not restrictive enough for this algorithm. It may well be that the differentiation of the 
algorithms adopted in this work (L2-norm class vs. L1-norm class) is not valid in the end. 

Concerning the average iteration number and the average relative CPU time per third octave band 
observed during calculations, we see that they are relatively independent of frequency excepting for 
DAMAS. Note that CPU time is calculated relatively to the CBF CPU time calculation.  The 
monitoring also indicates that sparsity of the source model has a computational cost . 

4. CONCLUSIONS 
With the aim of classifying the microphone array deconvolution methods in aeroacoustics, a 

common protocol for controlling and monitoring the different algorithms selected has been defined 
and applied to a use case taken from the Array Analysis Benchmark (DLR1).  

We actually observe that the necessary positivity constraint of the deconvolution problem 
considered here has a strong regularizing effect and tends to foster sparsity of the solution. Thus the 
5 selected algorithms coming from applied mathematics find equivalently sound power levels on areas 
defined in the source map for industrial analysis process, both in fine band as in third octave band. 
This is a comforting result that must convince engineers that when we want to solve an inverse 
problem, the most important is not the choice of the algorithm as such but rather the way we define 
the inverse problem and the way the algorithm is controlled. Thus the classification of the algorithms 
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deduced from this work lies in the sparsity of the obtained source model (and of its consequence in 
terms of visual representation) and in the computation time. The intuition of the classification of the 
algorithms on the Lp-norm nature is not demonstrated, for the selected algorithms and with the applied 
protocol. 

The importance of the algorithm exit conditions is highlighted through this work. The intention to 
drive the algorithms in the most unified way (on the threshold choice at least) probably does not make 
much sense except for the demonstration proposed here. A more rigorous study of the convergence of 
the deconvolution algorithms should be done now. 

Finally, we must also keep in mind that the observation conducted in this work may probably be 
strongly linked to the test case itself. Thus for a generalization of the conclusions, it is necessary to 
apply this protocol to others aeroacoustic use cases. 
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