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In a turbulent fluid, the time-reversal symmetry is explicitly broken by viscosity, and sponta-
neously broken in the inviscid limit. Recently, Drivas [1] proved the equivalence of two different
local indicators of time-irreversibility: i) an Eulerian one, based on regularity properties of the ve-
locity field [2]; ii) a Lagrangian one, based on symmetry properties of the trajectories under time
reversal [3]. We test this equivalence in a turbulent Von Kármán experiment at a resolution of the
order of the Kolmogorov scale using a high resolution 4D-PTV technique. We use the equivalence
to perform the first joined Eulerian-Lagrangian exploration of the dynamics leading to time irre-
versibility, and find that it is linked with vortex interaction, suggesting a link between irreversibility
and singularity.

In a viscous fluid, the energy dissipation is the sig-
nature of the breaking of the time-reversal symmetry
t → −t, u → −u, where u is the velocity. This sym-
metry of the Navier-Stokes equations is explicitly broken
by viscosity. Yet, in the limit of large Reynolds numbers,
when the flow becomes turbulent, the non-dimensional
energy dissipation per unit mass becomes independent of
the viscosity, meaning that the time-reversal symmetry
is spontaneously broken. In classical equilibrium physics,
spontaneous symmetry breaking is generally associated
with singularities of the free energy. Viscous fluids are
by nature out-of-equilibrium, so that no free energy can
be a priori defined, and the physical origin of the spon-
taneous time-reversal symmetry breaking is still the sub-
ject of active research. In 1949, Onsager conjectured that
this phenomenon could be triggered by the roughness of
the velocity field, provided the flow is characterized by a
Hölder exponent smaller or equal to 1/3 [4–6]. In 2000,
Duchon and Robert used an Eulerian energy balance to
prove the conjecture for weak solutions of the Navier-
Stokes equations [2]. This framework highlights a scalar
quantity, D(u), that only depends on the local veloc-
ity field and is the small scale limit of the energy flux
through scale. D(u) produces local non-viscous dissipa-
tion, in space and time, provided the velocity is singular
enough. Being zero at the location of regular velocity
field, such scalar therefore plays the role of an effective
Eulerian ”order parameter” for the time-reversal symme-
try breaking. One may then add the viscous contribution
to dissipation to get the total local energy dissipation.

Turbulence dynamics can also be considered follow-
ing fluid particles trajectories. This is the so-called
Lagrangian framework[7–9]. It is usually not straight-
forward to find the Lagrangian counterpart of Eulerian
properties. In the case of time reversal symmetry break-
ing, it has long been thought that the correct quantity
was the instantaneous power P = u·du/dt [10, 11]. How-
ever, such single-point statistics is not sensitive to the

energy flux through scale [10, 12], which is believed to be
a fundamental hallmark of irreversibility [13]. A relevant
Lagrangian two point scalar quantity can be built using
the symmetry property of the two-particle dispersion as
a function of time [3]. Indeed, at short times, forward or
backward time particle dispersion is different when time-
symmetry is broken [14, 15]. Thus the difference between
short time forward and backward two-particle dispersion
corresponds to a Lagrangian effective order parameter of
the time-reversal breaking [3, 15–17].

An important step in the direction of understanding
the building of irreversibility in turbulent flow was made
recently by Drivas [1], who proved under suitable lim-
its,that the Eulerian and Lagrangian irreversibility in-
dicators converge to the same quantity ε, the local en-
ergy dissipation. This result is interesting because it
provides two different indicators, one Eulerian and one
Lagrangian, that discriminate between regions where the
fluid is or is not time-irreversible. By tracking dynami-
cally in time and space such regions, one may then get
hints of the physical processes that are responsible for the
symmetry breaking. In this letter, we first test the equiv-
alence of the two indicators on two different experimen-
tal setups of a Von Kármán turbulent flow allowing us to
probe the turbulence roughly at the same measurement
resolution but for two different Reynolds numbers. This
requires time and space resolved simultaneous measure-
ments of velocity fields and particles trajectories, which
is an experimental challenge. We then use the equiva-
lence to perform the first joined Eulerian-Lagrangian ex-
ploration of the dynamics leading to time irreversibility,
and find that it is linked with vortex interaction, suggest-
ing a link between irreversibility and singularity.

Experimental set-ups : 4D-PTV measurements were
performed at the center of two experiments: (i) a small
Von Kármán flow (SVK) with a radius R = 0.1 m and
height 0.18 m [18, 19]; (ii) a five time bigger Von Kármán
(GVK), with radius R = 0.5m and same aspect ratio [20].
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R [m] F [Hz] Re Reλ η [mm] τη [ms] Stτη Fa [Hz] ∆xp/η `
E/η `L/η

SVK 0.1 0.1 6 300 82 0.30 92 6.7 × 10−5 200 1.8 3.6 10

GVK 0.5 0.1 157 000 352 0.14 18 8.1 × 10−5 1 200 3.9 10 10

TABLE I: Table of parameters for the SVK and GVK. R is the radius of the tank, F the impeller rotating frequency, Re and
Rλ the global and Taylor Reynolds number, η and τη are is the Kolmogorov length and time, Stτη the particles Stokes number,

∆xp the measurement resolution, `E and `L, the probed scales for Eulerian and Lagrangian indicators.

Both tanks were filled with water (viscosity ν ≈ 10−6)
maintained at a constant T = 20◦C temperature. The
flow is forced by two counter-rotating impellers at fre-
quency F = 0.1 Hz located at the upper and lower
ends of the tank, resulting in a global Reynolds num-
ber Re = 2πR2F/ν. Average dissipation rate ε was com-
puted from the torque measurements [21, 22], to estimate
the Kolmogorov lengthscale η = (ν3/ε)1/4 and timescale
τη = (ν/ε)1/2. The different experimental parameters are
summarized in Table I. Imaging of a cuboid (40× 40× 6
mm3 for SVK and 50 × 40 × 6 mm3 for GVK) is per-
formed using four high-speed cameras at the middle of
both tanks. The volume is lighted by a 30 mJ pulse high
speed laser Nd-YLG laser. Neutrally buoyant particles
are added to the flow to act as tracers. Each sequence
of measurement is made of 3226 consecutive time-steps
acquired with a acquisition frequency of 200 Hz for SVK
and 1 200 Hz for GVK. We perform statistics over 30
such sequences. 4D-PTV data were obtained through
the Davis10 software using the ”Shake-The-Box” algo-
rithm [23]. They provide positions and trajectories in
the volume per frame of about 49 000 particles in SVK
and 70 000 in GVK, resulting in a mean inter-particle dis-
tance of ∆xp ≈ 1.8η for SVK and ∆xp ≈ 3.9η for GVK.
Post-processing was done using in-house codes. Addi-
tional details including references [24–29] are given in the
supplementary materials.

Lagrangian and Eulerian irreversibility indicators :
From the data, we compute the Eulerian and Lagrangian
irreversibility indicators as follow. Starting from the La-
grangian measurements Xt0,t(x), representing the po-
sition at time t of the particle that was at location
x at time t0, we compute the deviation δrXt0,t(x) =
Xt0,t(x+r)−Xt0,t(x). With this, we define the following
scale dependent quantities:

∆±τ` (x, t) =

∫
dξ φ`(ξ)||δξXt,t±τ (x)−δξXt,t(x)||2, (1)

where φ(x), can be any standard mollifier or smoothing
function compactly supported in the ball of radius `
such that

∫
dr φ(r) = 1 and φ` (r) = `−3φ (r/`). In this

article, we used the local mean in the ball of radius `
as mollifier. The Lagrangian irreversibility indicator at
scale τ and ` and at position x and time t is then given
by ILτ,`(x, t) ≡

(
∆−τ` −∆τ

`

)
/(4τ3). This indicator, first

introduced by [1], is a local version of the indicator of [3].

From the Eulerian velocity measurement, u(x, t),
we compute the velocity increment over a displacement
r δru = u(x + r, t) − u(x, t). With this, we construct
the following scale dependent quantities:

D`I(x, t) =
1

4

∫
dξ ∇ϕ`(ξ) · δξu(δξu)2, (2)

D`ν(x, t) =
ν

2

∫
dξ ∇2ϕ`(ξ)(δξu)2. (3)

with ϕ`(x) = `−3ϕ(x/`), a Gaussian function. In the
limit `→ 0, D`I(x, t) tends to D(u), the non-viscous con-
tribution to dissipation due to velocity roughness [2]. The
Eulerian irreversibility indicator at scale ` and at position
x and time t is then given by IE `(x, t) ≡ D`I +D`ν .

The Drivas theorem [1] then states that for any se-
quence of weak solutions of Navier-Stokes equation in-
dexed by viscosity, that converges strongly as ν → 0, we
have:

lim
`→0

lim
∆x→0

lim
τ→0

lim
ν→0
ILτ,`(x, t) = ε(x, t), (4)

with ε being given by

ε(x, t) = lim
`→0

lim
∆x→0

lim
ν→0
IE `(x, t). (5)

Limits, measurement resolution and probed scales :
The Drivas equivalence is based on mathematical lim-
its, which obviously cannot be satisfied experimentally,
because viscosities and resolutions are necessarily finite.
Physically, sending first viscosity to zero means that we
consider a situation where the velocity field is not reg-
ularized by viscosity [30], so that we are in the inertial
range, which ends at a scale of the order 3 to 10 Kol-
mogorov scales. Therefore, we apply the following pro-
cedure: we first set the viscosity, then set the spatial
resolution at a value ∆x/η ∈ [3, 10], and then choose
the smallest value of ` > ∆x ensuring either conver-
gence of Lagrangian statistics, or sufficient denoising of
the Eulerian quantities. It means replacing the triple
limits lim`→0 lim∆x→0 limν→0 in Eq. (4) and (5) by
lim(`/R)→0/`>∆x,∆x/η∈[3,10]. Given the Lagrangian and
Eulerian resolution in each devices, we used `E = 3.6η
for SVK and `E = 10η for GVK while we obtained good
statistical convergency for `L = 10η in both SVK and
GVK. Note that by going from the small experiment
SVK to the large one GVK, besides achieving a high-
est Reynolds number, we also achieve a ratio `/R five
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(a) (b) (c)

FIG. 1: Instantaneous snapshots of Eulerian (a) and interpolated-Lagrangian (b) irreversible criteria normalized by the mean
energy dissipation ε, computed in the middle plane of the measurement volume of our SVK data set.(c) PDFs of Lagrangian
and Eulerian irreversible criteria for SVK and GVK.

time smaller, therefore improving the limit. Finally, to
meet the τ → 0 limit, we use a fitting procedure : at each
position and each time, we compute

(
∆−τ` −∆τ

`

)
for sev-

eral τ = n∆t, with n ∈ {0, .., 10} and ∆t = 1/Fa. We
then fit the function

(
∆−τ` −∆τ

`

)
by A(x, t)τ3, and get

IL0,`(x, t) = A(x, t)/4. The fit was done on 11∆t to only
keep trajectories of a least 21 time steps, thus limiting
the noise due do erroneous smaller trajectories. In the
sequel, we omit the time dependency of the Lagrangian
criterion since we only focus at times t→ 0.

Instantaneous comparison and statistical analysis :
Figure 1 (a & b) shows an instantaneous comparison of
both Eulerian and Lagrangian irreversibility criteria in
the middle plane of our measurement volume taken from
our SVK data set. The Lagrangian criterion is interpo-
lated linearly on same mesh as the Eulerian criterion.
There is a clear correlation between the two indicators,
with the same spatial structures of intense irreversible
and dissipative events, as well as the same range of val-
ues. The Lagrangian criterion is however more noisy.,
probably due to the sparse and inhomogeneous nature
of the Lagrangian data. Furthermore, while two filters
are applied for the Eulerian criterion, (B-spline and the
mollifier ϕ`), only one is used in the Lagrangian case (φ`).

A statistical comparison is provided in Figure 1 (c)
showing Lagrangian and Eulerian PDFs for both SVK
and GVK data sets. For positive values, the PDFs of
both irreversibility criteria are quite similar. The La-
grangian criterion has stronger negative values than the
Eulerian criterion for both flow cases. For SVK, the
probed scale of the Eulerian indicator is quite close to
the dissipative range, where the positive D`ν term domi-
nates explaining the low probability of negative Eulerian
events - mostly due to noise. In comparison, this proba-
bility is higher for GVK where the probed scale is closer
to the inertial range with stronger (upscale or downscale)
inter-scale transfer. In both cases, the Lagrangian indi-
cator has a higher probability of negative events. The
Lagrangian criterion is however skewed towards positive

values, a signature of turbulence irreversibility in average.
Negative events corresponds to situations where forward
dispersion is larger than backward dispersion. We have
checked that such events correspond to meaningful tra-
jectories, associated with trajectories around vortices or
near stagnation points. Examples are provided in the
supplementary movies and in Figure 3. Negative events
nevertheless are forbidden by the Drivas theorem in the
sense that the limit ν → 0, ` → 0, of the Eulerian dis-
sipation -the limit of the Lagrangian indicator- should
remain positive. This observation does not change when
we go to higher Reynolds number by increasing the size
of our experiment, i.e. increase the inertial range. We
can then infer that negative events are caused by our
finite value of viscosity, which sets an interesting con-
straints on the geometry of coherent structures in tur-
bulence, see below. Finally, both indicators, though at
roughly the same probed scale, increase in intensity with
the Reynolds number. This is a signature of the multi-
fractal character of the energy dissipation[30], resulting
in a power-law increase of the variance with Reλ, that
was already observed for Lagrangian power [10]. Addi-
tional measurements are needed to quantify the corre-
sponding exponent.
A finer test of the equivalence between irreversibility in-
dicators is via the joint PDFs (Figure 2)(a & aa). Both
joint PDFs are skewed towards the x = y axis for posi-
tive values of Eulerian and Lagrangian irreversibility in-
dicators, which shows that the two indicators tend to be
equivalent for positive values. This trend is even more
visible when comparing the indicators maxima of each
3D snapshots as shown in Figure 2 (b & bb). Further-
more, strong negative Lagrangian criterion are also rel-
atively well correlated to positive Eulerian criterion of
same absolute intensity as seen in Figure 2 (c & cc).
Such correlation is not predicted by Drivas theorem but
confirms that highly irreversible Lagrangian trajectories
occur at locations of large Eulerian dissipation.



4

(a) (b) (c)

(aa) (bb) (cc)

FIG. 2: Joint PDF of Lagrangian and Eulerian irreversibility indicators for SVK (a) and GVK (aa). The dotted line has
equation y = x. Joint PDF of Lagrangian and Eulerian maxima found at each snapshots for SVK (b) and GVK (bb). Joint
PDF of snapshots minima of Lagrangian criterion and the corresponding value of the Eulerian criterion at the same position
for SVK (c) and GVK (cc).

Discussion : Our measurements show that, at a fixed
resolution slightly above the Kolmogorov length scale,
there is a clear correlation between Eulerian and La-
grangian irreversibility indicators when both are positive.
This result does not change when increasing the Reynolds
number from one order of magnitude. This results pro-
vides the first experimental confirmation of the Drivas
theorem, and provides an interpretation of dissipation
in terms of short time asymmetry between forward and
backward pair dispersion. Whether such interpretation
extends to asymmetry over longer time scale and bal-
listic cascade phenomenology [31] is an open question.
Our findings open new perspective regarding the under-
standing of the building of the irreversibility. Indeed, we
may combine both Lagrangian and Eulerian criterion to
understand where and how irreversible events form, and
which particle trajectories are responsible for them. We
then define a criterion to select a set I of strongly irre-
versible Lagrangian trajectories based on a thresholding
procedure : a trajectory is in the set I if it includes a
times t such that |IL`(xn, t)| ≥ T∗. The selected tra-
jectories are compared with iso-surfaces of strong Eu-
lerian irreversibility in Figure 3. This particular event
is the most intense event that we have over more than
96 000 snapshots corresponding to about 7000τη. The
event corresponds to the interaction of two vortices at
the edge of our measurement domain. The Eulerian ir-

FIG. 3: 3D visualization of Eulerian irreversiblity iso-surfaces
(in red) at T∗ ≈ 6ε and highly irreversible trajectories selected
from the Lagrangian criterion with T∗ ≈ 10ε. This event was
taken from the SVK data set.There are 19 time-step plotted
for each trajectory. Positive Lagrangian indicators are showed
in black as negative values are coded in blue-green. For rep-
resentation purposes, the Lagrangian indicator was fitted on
trajectory segments of 5∆t. The Lagrangian scale is `L = 10η
and the Eulerian scale is `E = 3.8η

reversible areas can be seen at the edges of vortices or
inside them, while the Lagrangian trajectories wind up
around the vortices. We can also see a jet of flow from
below interacting with the two vortices and separating in
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two directions, creating a stagnation point and a strong
irreversible event, which is positive in the Eulerian frame-
work, but negative in the Lagrangian framework as seen
in Figure 3. This events being bound to vanish in the
inviscid limit, this sets interesting constrains about vor-
tices interactions. We have observed similar features for
at least the 5 strongest events in SVK data set. Tempo-
ral animations are provided in supplementary materials.
In any case, the correlation between highly irreversible
Lagrangian and Eulerian areas, and vortex interaction
suggests a possible link between irreversibility and singu-
larity. Indeed, close interaction of vortices frequently lead
to vortex reconnection. High resolution numerical simu-
lations [32] or ideal models of vortex reconnection based
on Biot-Savart formula show the building of a singularity
or quasi-singularity at the location of vortex interaction
[33, 34]. The spontaneous breaking of irreversibility may
then be interpreted as a non-equilibrium phase transi-
tion, mediated by a (quasi) singularity of the field itself.
Whether this translates into a singularity of a suitable
large deviation function (the non-equilibrium equivalent
of a free energy) is an interesting open question.
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