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A factorial study of neural network learning
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Abstract. For regression tasks, using neural networks in a supervised
way typically requires to repeatedly (over several iterations called epochs)
present a set of items described by a number of features and the expected
value to the network, so that it can learn to predict those values from
those features. Inspired by case-based reasoning, several previous stud-
ies have made the hypothesis that there could be some advantages in
training such neural networks on differences between sets of features, to
predict differences between values. To test such a hypothesis, we applied
a systematic factorial study on seven datasets and variants of datasets.
The goal is to understand the impact on the performance of a neural
network trained on differences, as compared to one trained in the usual
way, of parameters such as the size of the training set, the number of
epochs of training or the number of similar cases retrieved. We find that
learning from differences achieves similar or better results than the ones
of a neural network trained in the usual way. Our most significant find-
ing however is that, in all cases, difference-based networks start obtaining
good results from a low number of epochs, compared to the one required
by a neural network trained in the usual manner. In other words, they
achieve similar results while requiring less training.

Keywords: case-based reasoning, neural network, case difference heuris-
tic, learning from differences, factorial study

1 Introduction

As described in more details in the related work section of this paper (Sec-
tion 2), the idea of learning from differences in regression is not new. Inspired by
case-based reasoning (CBR), and viewed for example in [4] as a way to acquire
adaptation knowledge, the idea is to estimate an unknown value (the solution)
associated to a target set of features (the problem) by predicting its difference
with the value associated with a known, similar source case from the training
set (the case base). From a machine learning point of view, this corresponds to
training a model (here we focus on neural network models) with differences of
features, to predict differences in target values.

As an example, based on a real dataset used in the experiments later in this
paper, while a neural network trained in the usual way would try to predict the
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sale price of a used car directly based on information such as its age, mileage,
or engine size, the approach of learning from differences consists in building a
similar neural network, but that is able to predict the differences in prices be-
tween similar cars, given the differences in their age, mileage or engine size. Such
a network can therefore be used in a process based on the CBR methodology,
predicting the price difference between the car under consideration and a similar
car retrieved from the case base/training set.

While doing so does not formally increase the amount of information provided
to the neural network for learning, it can be expected to have a number of
advantages. At a meta-level, the results might be more interpretable, since the
prediction of the price of a used car, in our example, might be easier to explain
in reference to a similar car for which the price is known. What we consider
here however is of a different nature: We want to test the hypothesis that CBR-
inspired learning from differences might have advantages with respect to the
training performance of neural network models, and under what circumstances
(size of the data, training time, number of similar cases used) those advantages
might materialise.

To achieve this, we set up a factorial study on seven datasets and variants of
datasets. By factorial study we mean that we systematically train and measure
the performance of neural networks in the usual way (using the original features
of the data) and using case differences, while varying a number of factors: number
of epochs, size of the testing and training sets, etc. This allows us to check in
which way those factors influence the performance of the networks trained in
those two ways. The contributions of this paper therefore include:

– A publicly available python library facilitating the process of training neural
networks (and possibly other machine learning models) from case differences
under various parameters,

– a large set of performance results (also publicly available) from the thousands
of models trained under different sets of parameters,

– the main findings that a key effect of learning from differences requires sig-
nificantly less epochs (from half to two orders of magnitude less) to reach the
same/similar performance results as a neural network trained in the usual
way, and

– a report on which parameter values in the configuration of the training
and prediction processes achieve the best performance on the selected seven
datasets and variants.

We start by describing related works on learning from differences in the next
section. We then describe the process we applied and the parameters that have
been used as varying factors in our factorial study in Section 3. We also describe
the methodology for the factorial study in Section 4 and the results of applying
this methodology in Section 5. Finally, we conclude on the main findings of this
study in Section 6.
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2 Related Work

Many works have addressed the use of neural network in a CBR process, es-
pecially for acquiring adaptation knowledge. These works are based on the ex-
ploitation of the case base, following the idea that adaptation knowledge can be
acquired from differences between pairs of cases using the case difference heuris-
tic (CDH) [2]. The CDH has been applied first outside of the context of neural
networks to produce adaptation rules with various approaches [2,3,6].

More recently, neural networks have been used with CDH to learn the differ-
ences between solutions from the differences between problems [5,4,8]. In these
works, particular points have been studied. [5], which is a preliminary work,
shows the feasibility of using a neural network to correct the solution of the
most similar retrieved case. The impact of the size of the training set is also
studied, showing, unsurprisingly, that using more cases (80% of the case base)
works better than using less cases (20%).

[4] compares 5 systems: nearest neighbour (1-NN) retrieval with copy adapta-
tion, average of the solutions of a 3-NN process (i.e. k Nearest Neighbours, kNN,
with k = 3), a classical neural network which takes problem features as input
to predict the solution, a CBR system inspired from [1] using adaptation rules
generated with CDH in addition to the problem features as context to adapt
the most similar case, a CBR system which adapts the most similar case using
a neural network which has learned how to adapt with CDH (i.e. from differ-
ences). This study concludes that the last system outperforms the two first ones
(without adaptation) and outperforms the system which adapts by rules, being
only outperformed by the neural network which solves the regression problem
directly. This is the closest work to our own, since it provides some elements of
comparison between neural networks learning from differences (last system), and
learning in the usual way (third system). However, this study addresses a very
particular issue: solving novel problems, by removing a certain number of cases
that are the most similar to the target problem (sometimes up to a third of the
case base), and does not therefore report on factors such as the ones studied in
the present paper.

To the best of our knowledge, no work has really examined in details the
impact of parameters usually involved in CBR experiments (case base size for
training, number of cases retrieved for prediction, etc.) in the framework of us-
ing neural network with CDH for case adaptation. Additionally, as the neural
network is central to the process, some parameters of its learning process (e.g.
number of epochs) could also play an important role and deserve to be consid-
ered.

3 Learning from differences for regression

We consider here a dataset as a set D of pairs (Xi, yi) where Xi is a vector of n
numerical values corresponding to the features of a given example in the dataset,
and yi is a value corresponding to the result we expect to be able to predict.
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In the example of the cars, a given set of features Xi includes for example the
brand, model,1 engine size and mileage, and the corresponding value yi is the
price at which that car was sold.

Considering this, the typical process to train and validate a neural network
is the following:

1. Split the datasetD into two subsetsDtrain =
{
(Xtrain

i , ytraini )
}
i
andDtest ={

(Xtest
j , ytestj )

}
j
through random sampling.

2. Fit the neural network to Dtrain over a number of iterations epochs.
3. Use the trained neural network to predict the value corresponding to each

Xtest
j ; the predicted value is denoted by ypredj .

4. Compare ypredj to ytestj to assess the accuracy of the predictions (in our
experiments, we use the R² measure).

We do not detail those steps since they are relatively standard and are im-
plemented using commonly used libraries (in our experiments, keras2 and scik-
itlearn3).

Learning from differences includes similar steps, with additional elements to
prepossess the data in order to transform it into sets of case differences, and to
compute predictions of actual values from predicted case differences. In more
details, the process involves the following:

1. Split the datasetD into two subsetsDtrain =
{
(Xtrain

i , ytraini )
}
i
andDtest ={

(Xtest
j , ytestj )

}
j
through random sampling.

2. For each case Ci = (Xtrain
i , ytraini ) ∈ Dtrain, retrieve ntr similar cases from

Dtrain (the similarity being only computed over the set of problem fea-
tures) and compute their difference with Ci to create ∆Dtrain: for Cj =
(Xtrain

j , ytrainj ) one of the ntr similar cases to Ci, add to ∆Dtrain the case

difference (Xtrain
i −Xtrain

j , ytraini − ytrainj ).
3. Fit the neural network to ∆Dtrain over a number of iterations epochs.
4. For each Xtest

j , retrieve nte similar cases (Xtrain
i , ytraini ) ∈ Dtrain, and com-

pute the differences ∆Xtest
ij = Xtest

j −Xtrain
i . Let ∆Xtest

j =
{
∆Xtest

ij

}
i
be

the set of these differences.
5. Use the trained neural network to predict the differences in values corre-

sponding to each of the difference feature sets ∆Xtest
ij ∈ ∆Xtest

j , calling the

result ∆Xpred
ij . Compute ypredj as the average over i of ytraini + ∆Xpred

ij ,

with ytraini being the value from the original training set associated with the
corresponding similar case to Xtest

i .
6. Compare ypredj to ytestj to assess the accuracy of the predictions.

Several of those steps (splitting of the dataset, training, prediction) can be
implemented in the same way as for the previous process. To facilitate the im-
plementation of steps 2, 4 and 5, we created a python library called deltaML.4

1 those features being one-hot encoded.
2 https://github.com/keras-team/keras
3 https://github.com/scikit-learn/scikit-learn
4 https://github.com/mdaquin/deltaML

https://github.com/keras-team/keras
https://github.com/scikit-learn/scikit-learn
https://github.com/mdaquin/deltaML
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This library uses the NearestNeighbour function from the scikitlearn library
as a reliable implementation for steps 2 and 4. It is worth mentioning that this
process aligns with the one of CBR in the sense that Step 4 corresponds to the
retrieval step of CBR, and Step 5 to the adaptation step.

Our experiments correspond to varying a number of factors, as parameters,
in both those processes to see how the training performance of the resulting
networks is affected. In all experiments, we use the same topology (same number
of hidden layers and same number of neurons in each hidden layer) for the neural
network whether it is trained in the usual way (Process 1) or from differences
(Process 2). The two parameters shared between the two processes are the size
of the training/test sets in percentage of the overall dataset (test size) and the
number of epochs used for training (epochs).

In addition, for the difference-based process, two additional parameters are
included: The number of similar cases used during training (ntr in Step 2), and
the number of similar cases used in prediction (nte in Step 4).

Finally, a variant (originally described in [4]) of the difference-based process
is also tested in which, in addition to the differences between feature sets, the
original feature sets of the considered case are also included as context. In other
words, in Step 2, the created entry in ∆Dtrain corresponds to
((Xtrain

i , Xtrain
i −Xtrain

j ), ytraini −ytrainj ) and a similar change is made in Step 4
to include the context of the difference (i.e. the original set of features).

4 Factorial Study Methodology

The proposed factorial study consists, for each given dataset, in training and
testing a neural network with a range of values for each of the parameters/factors
described above. To do so, a preliminary phase was carried out where for each
of the datasets, we first experimentally identify a network structure (reused for
all tests on that dataset) and a set of parameters that obtained good results
on a network trained in the usual way. In other words, through trial and error
in the application of Process 1 of Section 3, we first identify the kind of neural
network to use (number of layers, size of layers, etc.) so to achieve good results
when training in the usual way. Once those base parameters are established, we
iteratively vary the values of the considered parameters, training and/or testing
a neural network model at each iteration.

We apply this factorial analysis on three different processes to compare their
performance under different conditions:

Base: In this version, we train a neural network in the usual way, using the first
process described in the previous section.

Differences: In this version, we train a neural network to predict differences in
values from differences in features, using the second process described in the
previous section.



6 Mathieu d’Aquin et al.

Differences+context: In this version, we train a neural network to predict
differences in values from differences in features and the features of the orig-
inal case, using the variant of the second process used above, as described
at the end of the previous section.

All the code and configurations to reproduce those tests and the results
obtained are available in the repository hosting the deltaML library. In the
following, we described the datasets used in the experiments, and the range of
values used for each parameter and dataset.

4.1 Datasets

Below is a short description of each dataset used in our experiments, including
their variants. All those datasets come from shared public libraries, and have
been used as downloaded from the links provided. For all datasets, categorical
values were one-hot-encoded and the dataset was standardized. Unless explicitly
stated, no other modification was made. For each dataset, we also specify the
structure of the neural network used in all experiments of that dataset and its
variants. For all neural networks, we only used the ReLu activation function,
and the mean squared error as the loss function.

Used cars: This dataset5 contains information about used cars (model, year, fuel
type, transmission type, fuel consumption, mileage, tax band) and the price at
which they were sold. The goal is to be able to predict the sale price of a car given
those features. The neural network model used for this dataset is a sequential,
feedfoward network including two hidden layers of sizes 50 and 30 respectively.
We tested two variants of this dataset, one for cars of the brand Toyota and one
for cars of the brand Vauxhall, since those gave significantly different results.

Airfoil: This dataset6 provides information about the parameters of tests in
wind tunnels of airfoil blade sections (frequency, angle of attack, chord length,
free-stream velocity, suction side displacement thickness) and the noise emitted
(scaled sound pressure level) as a result. The goal is to predict the level of
noise from those characteristics. The neural network used for this dataset is a
sequential, feedfoward network including two hidden layers of sizes 20 and 10
respectively.

Students: This dataset7 provides information about students in a school in Por-
tugal (demographics, family situation, transport, etc.) and the results of their
tests (intermediary and final) in Math and Portuguese. The goal is to predict
the results of students at the final tests based on the other characteristics. The
neural network used for this dataset is a sequential, feedfoward network includ-
ing two hidden layers both of size 10. We consider the prediction of final test
results in Math and in Portuguese as two separate variants of this dataset.

5 https://www.kaggle.com/code/najibmozahem/used-cars-neural-network/data
6 https://www.kaggle.com/datasets/fedesoriano/airfoil-selfnoise-dataset
7 https://www.kaggle.com/datasets/impapan/student-performance-data-set

https://www.kaggle.com/code/najibmozahem/used-cars-neural-network/data
https://www.kaggle.com/datasets/fedesoriano/airfoil-selfnoise-dataset
https://www.kaggle.com/datasets/impapan/student-performance-data-set


Learning from differences 7

Flights: This dataset8 provides information obtained at a given date (11th Febru-
ary 2022) about flights (date and time, duration, origin and destination, airline,
number of stops) and the price of a single ticket at that date. The goal is to
predict the price of the ticket based on the other characteristics. The neural
network used for this dataset is a sequential, feedfoward network including two
hidden layers of sizes 50 and 10 respectively. Two variants of this dataset are
included: one with the price of tickets in economy class, and one with the price
of tickets in business class. To keep the training time reasonable, we reduced the
dataset, for both variants, to a randomly selected subset of 15,000 flights (from
206,774 flights in economy and 93,487 flights in business).

4.2 Factors and parameters

As mentioned above, the objective of this study is to compare the performance of
the neural networks trained in the usual way and from differences under varying
conditions, and to see how those factors impact on the performance of those
networks. Those factors are represented by the following parameters:

test size: The test size corresponds to the relative amount of data from the
original dataset D which is kept for testing, as opposed to training. In other
words, higher values for the test size imply smaller amounts of data used
in training. It is expected that performance should therefore decrease as
test size increases. This parameter is used for both networks trained in the
usual way and from differences (with and without context).

epochs: The number of epochs corresponds to the number of times the training
process will iterate over the training set to fit the network. The need for a
high number of epochs, when neural networks are trained in the usual way,
highly depends on the task, the structure of the network and the dataset.
We therefore fixed the range of values to be tested based on the best results
obtained through trial and error (as described at the beginning of Section 4).
This parameter is used for both networks trained in the usual way and from
differences (with and without context).

ntr: The number of similar cases used in training corresponds to the number
of retrieved nearest neighbours used during the training phase for each case
included in the training set (see Step 2, Section 3). It is worth mentioning
that ntr can be seen as a multiplier for the size of the training set: for each
case in the original set, ntr case differences will be included in the difference-
based training set. This parameter is only used for networks trained from
differences (with and without context).

nte: The number of similar cases used in testing corresponds to the number
of retrieved nearest neighbours used for prediction (see Step 4, Section 3).
For each of them, the difference in values will be predicted and an average
difference calculated over the nte retrieved cases. This average difference is
then used to compute the final prediction. This parameter is only used for
networks trained from differences (with and without context).

8 https://www.kaggle.com/datasets/shubhambathwal/flight-price-prediction

https://www.kaggle.com/datasets/shubhambathwal/flight-price-prediction
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Table 1 summarises the range of values used for each of the parameters above
when testing using each of the datasets described before. For a given dataset, we
used the same ranges of parameter values for all three kinds of trained networks
(see Section 4) so to be able to compare their performance under the same
conditions. We also used the same ranges of parameter values for any variant of
a given dataset.

Table 1. Ranges of values for each parameter/factor and each dataset in the format
(min, max, increment).

test size epochs ntr nte

Used cars (0.05,0.95,0.05) (1, 20, 1) (1, 5, 1) (1, 5, 1)

Airfoil (0.05,0.95,0.05) (2, 402, 10) (1, 5, 1) (1, 10, 1)

Students (0.05,0.95,0.05) (1, 121, 5) (1, 5, 1) (1, 10, 1)

Flights (0.05,0.95,0.05) (1, 51, 5) (1, 5, 1) (1, 10, 1)

5 Results

In the following, we summarise the results obtained based on the factors con-
sidered in our experiments. In all cases, we use the R2 score to measure the
performance of each of the trained neural networks (Steps 4 and 6 respectively
in the two processes described in Section 3). The summary of the results is that
the same networks trained from differences on the same datasets are in some
circumstances able to outperform the ones trained in the usual way, but the
best achievable performance are generally not significantly different. What is
different however is that the networks trained from differences appear to require
less training than the ones trained in the usual way: They reached close to their
best results from significantly less epochs of training. We also show that the
numbers of similar cases used during training and prediction affect the results,
but that different datasets appear to have different requirements with respect
to those numbers. Finally, we show that adding the context (the features of the
source item) in addition to the differences in training and prediction does not
always have a significant effect on performance, but does in a positive way in
some cases.

5.1 Performance in relation to test size

Figure 1 shows an example of the evolution of the performance (according to the
R2 score) of the neural networks trained in the three different ways according to
the size of the test set (i.e. the portion of the dataset that is reserved for testing,
as opposed to training) for the economy variant of the Flights dataset. As can be
expected, there is for the three versions a general trend downwards (the network
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Fig. 1. Evolution of performance (R2 score) depending on size of the test set for the
Flight/economy dataset. Blue represents Base, red represents Differences and yellow
represents Differences+context. For each, the average R2 score across all other param-
eters than test size is represented by the line, and the minimum and maximum are
represented by the borders of the area around it.

Fig. 2. Best performance obtained by Base (blue), Differences (red) and Differ-
ences+context (yellow) by test size.
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is less accurate with less training data) and they follow a similar shape. Other
than that, no general conclusion can be drawn: In some cases Difference+context
seems to give better results, in other cases it is Differences and in some others
it is Base.

This conclusion on a single example appears to be representative of what
can be observed on the whole set of datasets and variants of datasets, as can
be seen in Figure 2. Indeed, in all cases, the three curves follow a similar trend.
While we can see for both variants of the Students dataset that Differences and
Differences+context both obtain better results overall than Base, it is not true
to a significant extent for all datasets. Used cars/vauxhall appear to be a special
case overall, with lower results for lower test sizes (and therefore higher sizes of
the training dataset), but the same trend is visible for the three training methods.
In other words, whether learning from differences, with or without context, is
more adapted to situations where lower amounts of data are available appears
to depend on the dataset and task under consideration.

5.2 Performance in relation to the number of epochs

Figure 3 shows the example of the toyota variant of the Used Cars dataset
for the evolution of the neural networks performance based on the number of
epochs, i.e. the number of times the training process iterates over the dataset.
As can be expected, Base, the neural network trained in the usual way, sees its
performance increase with the number of epochs. It starts to plateau around 11
epochs and generally reaches its best performance at close to 20 epochs. Also,
it can be noticed that at lower numbers of epochs, the performance of Base is
more affected by other parameters (namely, the test size) than it is at higher
ones (higher spread between minimum and maximum results).

What is however more surprising in this figure is that the trend for both
networks trained from differences is significantly different. In both cases, high
values of the R2 score are achieved as early as Epoch 1, and they remain high.
We can also notice, in this case, that the impact of other parameters (test size,
ntr, nte) is relatively low both in high and low numbers of epochs.

As can be seen in Figure 4, the same conclusion can be drawn for all the
datasets and variants of datasets. In every case, while Base might require any-
thing between 20 and 400 epochs to reach its peak performance, Differences and
Differences+context achieve their best results, or close to their best results, from
a comparatively low numbers of epochs. This is the most surprising result of this
study, as it is hard to explain why, in such a systematic way, the training re-
quirements of a network trained from differences are so significantly lower than
for the same network trained in the usual way. We could imagine that this is due
to the larger amounts of information used to train the network, since if ntr is
greater than 1, several case differences are created for every case in the original
dataset. However, as can be seen in Figure 3 looking at the range of results for
Differences and Differences+context, the stability of the results with respect to
the number of epochs remains even in the worst case. A closer inspection of the
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Fig. 3. Evolution of performance (R2 score) depending on the number of epochs for
the Used cars/toyota dataset. Legend is as per Figure 1.

Fig. 4. Best performance obtained by Base (blue), Differences (red) and Differ-
ences+context (yellow) by number of epochs.



12 Mathieu d’Aquin et al.

results would indeed reveal that even if ntr is 1, the observed phenomena is still
visible.

5.3 Performance in relation to the number of similar cases used

One of the advantages that the approach by difference has is that multiple case
differences can be created by computing the differences in features and results
with multiple similar data entries for every item in the original training set.
This, in practice, means that the amount of training data can be multiplied
without adding any new data. In addition, the ability to aggregate the results
from multiple retrieved cases given a target set of features can also help smooth
out possible outliers and irregularities in the results at prediction time, obtaining
better accuracy. To test this, we varied the number of cases used to create differ-
ences in the training set (ntr) and the number of items retrieved and aggregated
during prediction (nte) to see their effect on performance.

Table 2 shows which values of ntr and of nte obtained the best results on
average and as a maximum over all the other parameters for both Differences
and Differences+context. As can be seen, there does not seem to be a clear
trend in those data. While in some cases, very small numbers of similar cases
are required in training and prediction, in others, the best values were obtained
with the highest number within the ranges tested. There appears to be a slight
trend indicating that Differences+context sometimes require a lower number of
similar cases, especially in training, but this difference does not seem significant
enough to draw conclusions.

In summary, the best number of similar cases to use, both in training and in
prediction, appears to be dependent on the dataset under consideration. Since
the role of using those multiple cases can be seen as enabling a greater use
of the information about the input space available and as helping smooth out
outliers, we can expect those variations to be related to the density of the original
dataset, i.e. how many cases tend to share the same area of that data space that
are relevant to be used in the same context for prediction.

5.4 Peak performance

To get an overview of the main results of the presented factorial study, we look
at the minimal requirements in number of epochs, number of similar cases used
during training and number of similar cases used during prediction to reach peak
performance for each of Base, Differences, and Differences+context. We look at
those results for test sizes of 20% and 80% of the original dataset (consistently
with [5], corresponding to training sets of 80% and 20% of the original dataset
respectively). We consider peak performance to have been reached when the R2

score obtained is within 0.2% of the maximum, to account for the non-significant
variations that naturally appear in those scores. The result of this analysis is
presented in Table 3.

The first result from this table is that, as noticeable in the previous figures,
at least one of the methods using differences often slightly outperforms the base
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Table 2. Number of cases used to create the difference-based training set (ntr) and
number of cases retrieved/aggregated for prediction (nte) obtaining the best results on
average and in the best case.

Differences Differences+context

ntr nte ntr nte

mean best mean best mean best mean best

Used Cars/toyota 4 5 5 4 3 3 5 4

Used Cars/vauxhall 5 5 5 5 2 3 5 5

Airfoil 5 5 2 2 5 2 2 2

Students/maths 4 3 9 10 4 1 10 10

Students/portuguese 5 5 9 10 5 1 8 9

Flight/economy 5 5 8 6 3 5 10 6

Flight/business 5 5 4 2 4 2 5 2

method where the neural network is trained in the usual way. In the few cases
where it does not, the R2 scores actually obtained are very close to the best
results obtained with Base.

What can be noticed as well is that adding the context (the features of
the source item used to construct differences) to the input variables does not
always lead to greater performances. However, if lower, the results of Differ-
ences+context are close to the ones of Differences, while if higher, they can be
significantly higher (e.g. for Airfoil with both 20% and 80% test sizes). In other
words, including the context seems a valid option since it does not generally lead
to drastically lower results, while potentially bringing significant improvements.

As already mentioned in the previous section, it is difficult to find a pattern
of interest in the number of similar cases used in training and prediction to
achieve the best results in Differences and Differences+context. This is true also
when comparing the results between the two difference-based methods: some-
times Differences+context requires slightly more similar cases, and sometimes
slightly less, but the numbers are always relatively similar.

Finally, the most striking result is, as already discussed in Section 5.2, that in
most cases, the methods learning from differences require significantly less train-
ing than the Base method. Indeed, the number of epochs required to achieve a
score close to the best result is in most cases less than half of the one required by
Base. Here too, it is difficult to find a pattern in comparing the required num-
ber of epochs between the two difference-based methods: Differences+context
sometimes require less, and sometimes more. It is worth reminding the reader in
addition that, according to figures 3 and 4, it is not only the case that learning
from differences achieves its best results earlier (in number of epochs), but also
that those results are more stable: While a slight decrease in number of epochs
with Base might result in a significant drop in performance, the R2 score tends
to stay within a short range of the best result even when drastically reducing
the amount of training carried out.
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Table 3. Overview of parameters reaching within 0.2% of the best results for Base,
Differences and Differences+context with sizes of test sets of 20% and 80% (i.e. sizes of
training sets of 80% and 20% respectively). ep. corresponds to the number of epochs.

Base Differences Diff+context

R2 ep. R2 ep. ntr nte R2 ep. ntr nte

20% test size

Cars/toyota 96.5% 10 96.6% 1 3 5 96.8% 6 5 5

Cars/vauxhall 86.6% 17 86.6% 16 3 5 86.1% 3 1 5

Airfoil 88.8% 392 91.4% 152 2 2 96.2% 232 5 10

Students/math 76.7% 96 77.3% 6 5 9 77.4% 66 1 10

Students/port. 85.7% 116 85.2% 21 4 9 84.9% 21 3 10

Flights/economy 51.3% 51 44.6% 46 5 9 52.0% 46 5 9

Flights/business 67.5% 46 73.4% 11 5 3 73.3% 6 5 3

80% test size

Cars/toyota 95.4% 19 95.1% 1 4 5 95.3% 4 4 5

Cars/vauxhall 88.9% 20 89.2% 7 5 5 89.4% 4 4 5

Airfoil 75.5% 262 68.0% 232 5 10 82.1% 382 5 10

Students/math 53.5% 66 78.2% 16 5 9 78.0% 41 3 9

Students/port. 50.3% 111 82.3% 46 5 8 81.2% 76 3 8

Flights/economy 34.7% 51 38.8% 21 5 9 38.2% 11 5 10

Flights/business 63.4% 46 63.2% 31 5 6 62.5% 6 5 10

6 Conclusion

In this paper, we presented a factorial study comparing the influence of the size
of the training set, the number of epochs of training and the number of similar
cases used on the performance of neural networks trained in three different ways
for regression tasks: The usual way (Base), where values are predicted from the
raw input data, from differences (Differences), where differences in values are
predicted from differences of pairs of input vectors, and from differences with
their context (Differences+context), where differences in values are predicted
from differences of pairs of input vectors and the raw feature data.

The main findings from this study are that, from all the seven datasets and
variants of datasets tested: 1- the performance of the difference-based methods
tend to be comparable, and often slightly higher than the performance of the
Base method; 2- there seem to be an advantage in adding the context (in the form
of the original set of features) to case differences as it achieves either very similar
or better results (as already discussed in [4]); 3- Both methods based on learning
from differences in most cases required significantly less epochs of training to
reach their peak performance, and arrive within a short range of that best result
in just a few epochs. This last point is significant since it implies that those
difference-based methods can achieve performances at least as good as the Base
method, while being trained for less time. This, however, has to be considered
carefully since the retrieval of similar cases and the inclusion of multiple case



Learning from differences 15

differences in both training and prediction also comes with a time overhead. It
would therefore be interesting to study in more details the time implications
of those aspects and to test more efficient implementations of similarity based
retrieval than the one used in the deltaML library developed for this study.

In addition, the present study has a number of limitations and would there-
fore benefit from being further expanded. First, we only considered regression
tasks. Since it is not guarantied that the results found here would generalise to
neural networks trained for classification tasks (as in [7]), a similar study on
such networks would be beneficial. Also, while the datasets selected are varied
in size, dimensionality, topics and the results obtained, the neural networks used
on them remain similar. In addition to including classification tasks, the inclu-
sion of datasets and tasks requiring different types of networks and a broader
range of network size/depth would help confirm the results obtained. Finally,
not all of the factors influencing the performance of a neural network have been
considered here. In particular, we deliberately did not vary the structure of the
network in terms of number of layers, neurons per layers, activation functions
and loss function. It could be possible, however, that a different structure be
more suitable for learning from differences than for learning in the usual way,
leading to possibly even better results.
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