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Out of all existing frameworks for surgical workflow analysis in endoscopic videos, ac-
tion triplet recognition stands out as the only one aiming to provide truly fine-grained
and comprehensive information on surgical activities. This information, presented as
(instrument, verb, target) combinations, is highly challenging to be accurately identi-
fied. Triplet components can be difficult to recognize individually; in this task, it re-
quires not only performing recognition simultaneously for all three triplet components,
but also correctly establishing the data association between them. To achieve this task,
we introduce our new model, the Rendezvous (RDV), which recognizes triplets directly
from surgical videos by leveraging attention at two different levels. We first introduce
a new form of spatial attention to capture individual action triplet components in a
scene; called Class Activation Guided Attention Mechanism (CAGAM). This technique
focuses on the recognition of verbs and targets using activations resulting from instru-
ments. To solve the association problem, our RDV model adds a new form of seman-
tic attention inspired by Transformer networks; called Multi-Head of Mixed Attention
(MHMA). This technique uses several cross and self attentions to effectively capture
relationships between instruments, verbs, and targets. We also introduce CholecT50 -
a dataset of 50 endoscopic videos in which every frame has been annotated with labels
from 100 triplet classes. Our proposed RDV model significantly improves the triplet
prediction mAP by over 9% compared to the state-of-the-art methods on this dataset.
© 2022 Elsevier B. V. All rights reserved.

1. Introduction

(Pucher et al., 2018) over its open surgery counterpart. As a
minimally invasive procedure, it significantly alleviates some

Laparoscopic cholecystectomy, as one of the most commonly
performed surgical procedures in the world (Shaffer, 2006; Ma-
jumder et al., 2020), has become the gold standard approach

*Corresponding author: Tel.: +33 (0) 3 904 13 535;
e-mail: nwoye@unistra.fr (Chinedu Innocent Nwoye),
npadoy@unistra.fr (Nicolas Padoy)

of the preoperative, intraoperative, and postoperative burden:
the patient generally experiences decreased odds of nosoco-
mial infection, less pain, less bleeding, and faster recovery
times (Velanovich, 2000). Yet, this success comes at a price
for the surgeon, who now has to deal with increased technical
difficulty coming from the indirect vision and laparoscopic in-
struments (Ballantyne, 2002), especially during complex cases

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
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>> grasper retract gallbladder

>> grasper retract gallbladder
>> hook dissect gallbladder

>> clipper clip cystic-duct

>> grasper retract gallbladder
>> bipolar coagulate cystic-artery

>> grasper retract gallbladder

>> scissors cut cystic-duct >> irrigator clean fluid

Fig. 1: Some examples of action triplets from CholecT50 dataset. The localization is not part of the dataset, but a representation of the weakly-supervised output of

our recognition model.

(Felli et al., 2019). The elevated complexity of laparoscopy
is one of the motivations driving the development of context-
aware support systems for surgery (Maier-Hein et al., 2017);
i.e. systems capable of assisting surgeons, for example via au-
tomated warnings (Vercauteren et al., 2019), based on their dy-
namic perception and understanding of the surgical scene and
workflow.

Developing this understanding is the focus of surgical work-
flow analysis methods: given a scene from surgery, what is hap-
pening in it? The finer-grained the answer becomes, the more
value it gains in terms of clinical utility: for instance accord-
ing to Mascagni et al. (2021), an automated surgical safety sys-
tem would benefit from the ability to identify individual actions
such as a clipper applying a clip to the cystic-artery or other
blood vessels.

Methods from the literature have so far only given incom-
plete answers, with our previous work as the only exception
(Nwoye et al., 2020). The main task studied by the commu-
nity, surgical phase recognition (Ahmadi et al., 2006; Lo et al.,
2003a), only describes scenes at a very coarse level. As an ex-
ample the clipping and cutting phase (Twinanda et al., 2017)
in cholecystectomy contains a multitude of important actions:
graspers holding anatomical landmarks, a clipper applying sev-
eral clips, laparoscopic scissors cutting the cystic-duct and so
on. The phase information on its own does not, by any means,
provide an accurate picture of the activities taking place. Even
finer-grained workflow divisions such as steps (Ramesh et al.,
2021) are composed of multiple individual actions. Limited at-
tempts were made in other works (Khatibi and Dezyani, 2020;
Rupprecht et al., 2016) as well as in MICCAI 2019’s Endo-
scopic Vision challenge' to capture those actions focusing on
key verbs such as dissect, cut, or coagulate. This type of frame-
work, however, overlooks interactions with the anatomy.

To obtain a comprehensive account of a surgical scene,
simultaneous recognition of the instruments, verbs, target
anatomy and the relationships between them needs to be
achieved. This goes beyond the conventional action recogni-
tion used in the EndoVis 2019 sub-challenge to a deeper under-
standing of visual semantics that depicts the complex relation-
ships between instruments and tissues. Kati¢ et al. (2014) pro-
posed the surgical action triplet as the most detailed and expres-
sive formalism for surgical workflow analysis. However, while
Kati¢ et al. (2014, 2015) leveraged triplet formulation provided
by manual annotation to better recognize surgical phases, no

1htt:ps ://endovissub-workflowandskill.grand-challenge.org/

attempt outside of our previous work (Nwoye et al., 2020) has
been made to directly recognize those triplets from surgical im-
ages or videos.

Nonetheless, the difficulty of this recognition task, for all
its utility, is not to be overlooked. First, action triplets are
instrument-centric: meaning that visibility alone does not de-
termine the consideration of an anatomy as a part of a triplet,
but also their involvement in an interaction carried out by an
instrument. For instance, the liver, which is visible most of the
time in laparoscopic cholecystectomy, is labeled a target only
when being acted upon by an instrument. Similarly, a verb is
defined by the instrument’s action, and so, without an instru-
ment, there cannot be a verb. Furthermore, the level of spatial
reasoning involved is highly challenging: given an instrument,
its role (verb) with respect to a given target can imperceptibly
change: (grasper, retract, gallbladder), {(grasper, grasp, gall-
bladder), {(grasper, dissect, gallbladder) are tough to distin-
guish even for experienced surgeons and require careful obser-
vation of the area surrounding the tooltip. The applications of
the surgical instruments vary according to the surgeon’s inten-
tion for use. Multiplicity and semantic reasoning are the other
major challenges. Overlaps are found between different instru-
ments used for the same action (or verb), e.g. dissection per-
formed by bipolar, grasper, hook, irrigator, and scissors (see
Table 2). Similarly, when operating on an organ or structure,
multiple instruments can interact with the target. Thus, a target
can be simultaneously involved in multiple distinct actions, e.g.
(grasper, retract, cystic-duct) and (hook, dissect, cystic-duct)
happening at the same time. Since multiple triplets can occur in
one frame, associating the matching components of the triplets
is akin to solving a complex tripartite data association problem
between the entities. The model from our previous work, as a
first attempt to tackle the triplet recognition problem, addresses
those challenges in a limited manner, without explicit spatial
focus or an advanced enough model of the instrument - verb -
target relationships.

In this paper, we extend Nwoye et al. (2020), our conference
paper published in MICCAI 2020. Our extension is both in
data and in methods. On the data contribution, we introduce
the CholecT50 dataset, which is a quantitative and qualitative
expansion of the CholecT40 dataset (Nwoye et al., 2020). The
dataset consists of 50 videos of cholecystectomy annotated with
161K instances from 100 triplet classes. Examples of such ac-
tion triplets include: {grasper, retract, gallbladder), (hook, dis-
sect, cystic-plate), {clipper, clip, cystic-artery), {scissors, cut,
cystic-duct), (irrigator, aspirate, fluid), etc, as also shown in
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Fig 1.

Method-wise, we develop a new recognition model called
Rendezvous (RDV), which is a transformer-inspired neural net-
work for surgical action triplet recognition. RDV improves on
the existing Tripnet model proposed in Nwoye et al. (2020) by
leveraging the attention mechanism to detect the various com-
ponents of the triplets and learn their association. Our first ef-
fort at exploiting attention mechanisms in this task led to the
development of a Class Activation Guided Attention Mecha-
nism (CAGAM) to better detect the verb and target components
of the triplet, which are instrument-centric. The CAGAM is
achieved by redesigning the saliency-guided attention mecha-
nism in (Ji et al., 2019; Yao and Gong, 2020) to utilize a more
adequate and easier to learn class activation map (CAM). While
our approach is similar in the attention guiding principle, it dif-
fers in three respects: (a) our attention network is guided by the
instrument’s activations which are learnable in the same net-
work, using a global pooling layer without relying on a third-
party saliency generation network, (b) our attention guide im-
plements a combination of position and channel attention for
the target and verb detection tasks respectively, (c) we employ
cross-attention from the instrument domain to the other task do-
mains (i.e.: verb and target) as opposed to self-attention in Yao
and Gong (2020). Meanwhile, the CAGAM is an improve-
ment on the class activation guide (CAG) module introduced
in Nwoye et al. (2020) which is simply a concatenation of the
model’s intermediary features with the instrument’s activation
features. As an ablation experiment, we show the improved per-
formance of our previous Tripnet model, only upgraded with
the CAGAM. This upgraded model is called Attention Tripnet.

The proposed RDV uses the CAGAM unit as part of its en-
coder and a multiple heads of mixed attention MHMA) decoder
to learn the action triplets. The MHMA in RDV is inspired
by the Transformer model (Vaswani et al., 2017) used in Nat-
ural Language Processing (NLP), particularly, its multi-head
attention mechanism. Unlike in the NLP Transformer, which
implements a multi-head of self-attention, we design a novel
multi-head attention module that is a mixture of self- and cross-
attention suitable for the action triplet recognition task. As op-
posed to Transformers in NLP which use multi-head attention
temporally (i.e. focusing on a sequence of words in a sentence),
and the Vision Transformer (Dosovitskiy et al., 2020) which
uses it spatially (by forming its sequence from different patches
of an image), our RDV model takes a different approach by
employing it semantically, with redesigned multi-head model-
ing attention across the discriminating features of various com-
ponents that are interacting to form action triplets. With this
method, we outperform the state-of-the-art models significantly
on triplet recognition. We plan to release our source code along
with the evaluation script on our public github®3:* upon accep-
tance of this paper. The dataset will also become public on the
CAMMA team’s website’.

*https://github.com/CAMMA-public/tripnet
3https://github.com/CAMMA-public/rendezvous
“https://github.com/CAMMA-public/attention-tripnet
Shttp://camma.u-strasbg.fr/datasets

In summary, the contributions of this work are as follows:

1. We present a comprehensive study on surgical action
triplet recognition directly from videos.

2. We propose a Class Activation Guided Attention Mecha-
nism (CAGAM) for detecting the target and verb compo-
nents of the triplets conditioned on the instrument’s ap-
pearance cue.

3. We propose a Multi-Head of Mixed Attention (MHMA) by
modeling self- and cross-attention on semantic sequences
of class-wise representations to learn the interaction be-
tween the instrument, verb, and target in a surgical scene.

4. We develop Rendezvous (RDV). a transformer-inspired
neural network model that utilizes CAGAM and MHMA
for surgical triplet recognition in laparoscopic videos.

5. We present a large endoscopic action triplet dataset,
CholecT50, for this task.

6. We analyze the surgical relevance of our methods and re-
sults, setting the stage for clinical translation and future
research.

2. Related Work

2.1. Surgical Workflow Analysis

The paradigm shift brought by Artificial Intelligence (AI)
across several fields has seen the application of deep learning
techniques for the recognition of surgical workflow activities
to provide assisted interventions in the operating room (OR).
However, compared to other fields such as natural Vision, NLP,
Commerce, etc., there has been a delay in introducing large-
scale data science to interventional medicine. This is partly
due to the unavailability of large annotated dataset (Maier-Hein
et al., 2017) and the particular need for precision in medicine.
Some research focuses on detecting elements such as instru-
ments/tools used during surgery (Al Hajj et al., 2018; Garcia-
Peraza-Herrera et al., 2017; Nwoye et al., 2019; Sznitman et al.,
2014; Vardazaryan et al., 2018; Voros et al., 2007), while others
model the sequential workflow by recognizing surgical phases
either from endoscopic videos (Blum et al., 2010; Dergachy-
ova et al., 2016; Funke et al., 2018; Lo et al., 2003a; Twinanda
et al., 2017; Yu et al., 2018; Zisimopoulos et al., 2018) or from
ceiling-mounted cameras (Chakraborty et al., 2013; Twinanda
et al.,, 2015). Some works go deeper in the level of granu-
larity, recognizing the steps within each surgical phase (Char-
riere et al., 2014; Lecuyer et al., 2020; Ramesh et al., 2021),
while others learn phase transitions (Sahu et al., 2020). Another
work (Lo et al., 2003b) investigated the four major events in
minimally invasive surgery (MIS) and categorized these events
into their main actions; namely, idle, retraction, cauterization,
and suturing. From the perspective of robotic surgery, simi-
lar research focused more on gesture recognition from kine-
matic data (DiPietro et al., 2016, 2019), and robotized surg-
eries (Kitaguchi et al., 2019; Zia et al., 2018), system events
(Malpani et al., 2016), and the recognition of other events, such
as the presence of smoke or bleeding (Loukas and Georgiou,
2015). These surgical events are explored for the recognition
of surgeon’s deviation from standard processes in laparoscopic
videos (Huaulmé et al., 2020).
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Aside the coarse-grained activities, some works (Khatibi and
Dezyani, 2020; Rupprecht et al., 2016) explored fine-grained
action in laparoscopic videos, however, the recognition task is
limited to verb classification. Within the EndoVis challenge at
MICCALI 2019, Wagner et al. (2021) introduced a similar ac-
tion recognition task for only four prevalent verbs in surgery
(cut, grasp, hold, and clip), however, this does not consider
the target anatomy or the instrument performing the action.
In the SARAS-ESAD challenge organized within MIDL 2020,
the proposed action labels encompass 21 classes (Bawa et al.,
2021). The EASD challenge dataset is an effort to capture more
details in surgical action recognition. While this dataset pro-
vides spatial labels for action detection, just like some human-
object interaction (HOI) datasets, it formalizes action labels as
verb-anatomy relationship such as clippingTissue, pullingTis-
sue, cuttingTissue, etc., and thus, do not take into account the
instrument performing the actions. Although humans are not
categorized in the general vision HOI problem, it is imperative
to recognize the surgical instruments by their categories as they
play semantically different roles; their categories are informa-
tive in distinguishing the surgical phases. Recognizing surgical
actions as single verbs is also being explored in other closely re-
lated procedures such as gynecologic laparoscopy (Khatibi and
Dezyani, 2020; Kletz et al., 2017; Petscharnig et al., 2018).

For a more detailed workflow analysis, Nwoye et al. (2020)
proposed to recognize surgical actions at a fine-grained level
directly from laparoscopic cholecystectomy videos, modeling
them as triplets of the used instrument, its role (verb), and its
underlying target anatomy. Such fine-grained activity recog-
nition gives a detailed understanding of the image contents in
laparoscopic videos.

2.2. Surgical Action Triplet Recognition

In the existing surgical ontology, an action is described as
a triplet of the used instrument, a verb representing the action
performed, and the anatomy acted upon (Neumuth et al., 2006;
Kati¢ et al., 2014). Earlier works such as Kati¢ et al. (2014,
2015) used triplet annotation information to improve surgical
phase recognition. Recently, Nwoye et al. (2020) introduced
CholecT40, an endoscopic video dataset annotated with action
triplets. Tripnet (Nwoye et al., 2020) is the first deep learn-
ing model designed to recognize action triplets directly from
surgical videos. The model relies on a class activation guide
(CAG) module to detect the verb and target in triplets, lever-
aging instrument appearance cues. It models the final triplet
association by projecting the detected components to a 3D in-
teraction space (3Dis) to learn their association while maintain-
ing a triplet structure. In this paper, we improve on the verb
and target detections using an attention mechanism. The triplet
dataset (Nwoye et al., 2020) is also expanded and refined.

With fine-grained action recognition now gaining momen-
tum, a recent work in robotic surgery (Xu et al., 2021) extended
two robotic surgery datasets, MICCAI’s robotic scene segmen-
tation challenge (Allan et al., 2020) and Transoral Robotic
Surgery (TORS), with 11 and 5 semantic relationship labels re-
spectively. They in turn proposed a cross-domain method for
the two datasets generating surgical captions that are compara-
ble to action triplets.

Detecting multi-object interaction in natural images/videos
is widely explored by the research on human-object interaction
(HOI) (Hu et al., 2013; Mallya and Lazebnik, 2016) where ac-
tivities are formulated as triplets of (human, verb, object) (Chao
et al., 2015). Detecting or recognizing HOI is enabled by triplet
datasets with spatial annotations (e.g. HICO-DET (Chao et al.,
2018), VCOCO (Lin et al., 2014)) or simply binary presence
labels (e.g. HICO (Chao et al., 2015)). CNN models with sim-
ple (Mallya and Lazebnik, 2016) or multi-stream architectures
(Chao et al., 2018) are widely used to model human and ob-
ject detections as well as resolving spatial relationships between
them. Considering the often large number of possible combina-
tions, Shen et al. (2018) proposed a zero-shot method to predict
unseen verb-object pairs at test time.

2.3. Attention Mechanism

Since the advent of the attention mechanism (Bahdanau et al.,
2014), many deep learning models have exploited it in various
forms: from self (Vaswani et al., 2017) to cross (Mohla et al.,
2020), and from spatial (Fu et al., 2019) to temporal (Sankaran
et al., 2016). Methods relying on attention mechanisms (Wang
et al., 2019; Kolesnikov et al., 2019) are proposed to focus the
HOI detection networks only on crucial human and object con-
text features. An action-guided attention mining loss (Lin et al.)
has also been used in HOI recognition tasks; however, all these
attention models rely on expensive spatial annotations.

Recently, Ji et al. (2019) proposed a form of attention that
rely on saliency features without requiring additional super-
vision. While Ji et al. (2019) used a combination of spatial
and textual attention modules to capture fine-grained image-
sentence correlations, another work by Yao and Gong (2020)
utilized image saliency to guide an attention network for weakly
supervised object segmentation. In medical imaging, Attention
U-Net (Oktay et al., 2018) is used to focus on target structures
for pancreas segmentation.

Action triplets are instrument-centric: the instrument is the
verb’s subject, and a visible anatomical part is only consid-
ered a target if an instrument operates on it; therefore learning
the verb and target are conditioned on the instrument’s pres-
ence and position. Nwoye et al. (2020) addressed this with an
activation guide layer named CAG, where the verb and target
features are each attuned to instrument activation maps. Even
for HOI detection, which is human-centric, human appearance
cues are leveraged to predict action-specific densities over tar-
get object locations, albeit fully supervised on human bound-
ing boxes (Gkioxari et al., 2018). Ulutan et al. (2020) opined
that attention modeling is superior to feature concatenation in
terms of spatial reasoning. We improve on the CAG principle
with a class activation-guided attention mechanism (CAGAM)
achieved by redesigning the saliency-guided attention mecha-
nism in (Ji et al., 2019; Yao and Gong, 2020) to utilize a more
adequate and easier to learn class activation map (CAM). Our
implementation combines both channel and position attention
mechanisms for the verb and target detections respectively.

The Transformer model (Vaswani et al., 2017) introduced in
NLP shows that attention can be expanded to capture long-
range dependencies without recurrence. The Vision Trans-
former (Dosovitskiy et al., 2020) explored this technique for
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image understanding with encouraging performance. Another
Transformer with end-to-end self-attention (Zou et al., 2021,
Kim et al., 2021) modeled long-range attentions for both HOI
components detection and their interaction association. In sur-
gical data science, transformers have been explored for surgical
instrument classification (Kondo, 2020) and recently for phase
recognition (Gao et al., 2021; Czempiel et al., 2021). Sim-
ilarly, we propose Rendezvous (RDV), a transformer-inspired
method, for online surgical action triplet recognition. The nov-
elty of RDV is found in the powerful way it incorporates self-
and cross-attentions in its multi-head layers to decode the in-
teractions between the detected instruments and tissues in a la-
paroscopic procedure.

The Transformer, as used in Natural Language Processing
(Vaswani et al., 2017), learns attention maps over a temporal
sequence, considering a sentence to be a sequence of words.
In computer vision, many works have tried to replicate this by
modeling input sequence over temporal frames (Girdhar et al.,
2019). A single image, however, can be as informative as
a complete sentence. Even the Vision Transformer (Dosovit-
skiy et al., 2020) shows that an image is equivalent to 16 X 16
words, modeled as a sequence of patches from a single im-
age. Many works have followed similar approaches in image
understanding (Dosovitskiy et al., 2020), object detection (Car-
ion et al., 2020), segmentation (Chen et al., 2021; Valanarasu
etal., 2021), captioning (Liu et al., 2021; Sundaramoorthy et al.,
2021), and activity recognition (Bertasius et al., 2021; Gavri-
lyuk et al., 2020). Alternatively, the hybrid architecture of the
Vision Transformer (Dosovitskiy et al., 2020) shows that, aside
from the raw image, the input sequence can also be obtained
from CNN features. It also shows that a patch can have a 1 X 1
spatial size which is akin to using an image with no explicit
sequence modeling. We propose another hybrid approach to
obtain the appropriate feature, one that can preserve the spa-
tial and class-wise relationships of the interacting triplet com-
ponents in a surgical image frame, a semantic sequence in this
regard. While our attention input features are extracted from
a CNN as done in the hybrid Vision Transformer, our atten-
tion is design to leverage the CNN'’s features in a manner that
helps the attention network benefit from the learned class rep-
resentations. This means we preserve the spatial relationship in
the grid of features without breaking it up into patches. This
provides further insight into the decision-making of attention
networks.

3. CholecT50: Cholecystectomy Action Triplet Dataset

CholecT50 is a dataset of endoscopic videos of laparoscopic
cholecystectomy surgery introduced to enable research on fine-
grained action recognition in laparoscopic surgery. It is anno-
tated with triplet information in the form of (instrument, verb,
target). The dataset is a collection of 50 videos consisting of 45
videos from the Cholec80 dataset (Twinanda et al., 2017) and 5
videos from an in-house dataset of the same surgical procedure.
It is an extension of CholecT40 (Nwoye et al., 2020) with 10
additional videos and standardized classes.

The cholecystectomy recordings were annotated by two sur-
geons using the software Surgery Workflow Toolbox-Annotate

Table 1: Statistics of the triplet’s component labels in the dataset

instrument Verb Target

Label Count Label Count Label Count
bipolar 6697 aspirate 3122 abd-wall/cavity 847
clipper 3379 clip 3070 adhesion 228
grasper 90969 coagulate 5202 blood-vessel 416
hook 52820 cut 1897 cystic-artery 5035
irrigator 5005 dissect 49247 cystic-duct 11883
scissors 2135 grasp 15931 cystic-pedicle 299
irrigate 572 cystic-plate 4920

null-verb 10841 fluid 3122

pack 328 gallbladder 87808

retract 70795 gut 719

liver 17521

null-target 10841

omentum 9220

peritoneum 1227

specimen-bag 6919

from the B-com institute®. Annotators set the beginning and
end on a timeline for each identified action, then assigned to
the corresponding instrument, verb and target class labels. An
action ends when the corresponding instrument exits the frame,
or if the verb or target changes. Out-of-frame actions are not re-
ported, and video frames that are recorded outside the patient’s
body are zeroed out.

We then define classes for the triplet. Due to the number of
instruments, verbs, and targets available, the theoretical number
of all possible triplet configurations (900) is prohibitively high.
Even limiting those configurations to the approximately 300 ob-
served in the dataset has little clinical relevance due to the pres-
ence of many spurious classes. To have a reasonable number of
classes with maximum clinical utility, a team of clinical experts
selected the top relevant labels for the triplet dataset. This is
achieved in two steps. In the first instance, class grouping (U) is
carried out to super-class triplets that are semantically the same.
Some examples of triplets grouped include:

1. (irrigator, aspirate, bile) U (irrigator, aspirate, fluid) U (irriga-
tor, aspirate, blood) — (irrigator, aspirate, fluid)

2. (grasper, pack, gallbladder) U {grasper, store, gallbladder) —
(grasper, pack, gallbladder)

3. (grasper, retract, gut) U {(grasper, retract, duodenumy U (grasper,
retract, colon)y — (grasper, retract, gut)

4. (bipolar, coagulate, liver) U (bipolar-grasper, coagulate, liver)
U (bipolar, coagulate, liver-bed)y — (bipolar, coagulate, liver)

5. (grasper, grasp, gallbladder-fundus)y U (grasper, grasp,
gallbladder-neck) U {grasper, grasp, gallbladder) U (grasper,
grasp, gallbladder-bodyy — {grasper, grasp, gallbladder)

In addition to class grouping, surgical relevance rating and
label mediation of the annotated data are carried out by three
clinicians. For the rating, the clinicians assigned a score from a
range of [1-5] to each triplet composition based on their possi-
bility and usefulness in the considered procedure. Their average
scores, as well as the triplet’s number of occurrences, is used to
order the triplet classes, after which the top relevant classes are

Shttps://b-com.com/
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Table 2: Dataset statistics showing the number of occurrences of the triplets

Name Count Name Count Name Count
bipolar,coagulate,abdominal-wall/cavity 434 grasper,grasp,cystic-artery 76 hook,dissect,gallbladder 29292
bipolar,coagulate,blood-vessel 251 grasper,grasp,cystic-duct 560 hook,dissect,omentum 3649
bipolar,coagulate,cystic-artery 68 grasper,grasp,cystic-pedicle 26 hook,dissect,peritoneum 337
bipolar,coagulate,cystic-duct 56 grasper,grasp,cystic-plate 163 hook,null-verb,null-target 4397
bipolar,coagulate,cystic-pedicle 77 grasper,grasp,gallbladder 7381 hook,retract,gallbladder 479
bipolar,coagulate,cystic-plate 410 grasper,grasp,gut 33 hook,retract,liver 179
bipolar,coagulate,gallbladder 343 grasper,grasp,liver 83 irrigator,aspirate,fluid 3122
bipolar,coagulate,liver 2595 grasper,grasp,omentum 207 irrigator,dissect,cystic-duct 41
bipolar,coagulate,omentum 262 grasper,grasp,peritoneum 380 irrigator,dissect,cystic-pedicle 89
bipolar,coagulate,peritoneum 73 grasper,grasp,specimen-bag 6834 irrigator,dissect,cystic-plate 10
bipolar,dissect,adhesion 73 grasper,null-verb,null-target 4759 irrigator,dissect,gallbladder 29
bipolar,dissect,cystic-artery 187 grasper,pack,gallbladder 328 irrigator,dissect,omentum 100
bipolar,dissect,cystic-duct 183 grasper,retract,cystic-duct 469 irrigator,irrigate,abdominal-wall/cavity 413
bipolar,dissect,cystic-plate 54 grasper,retract,cystic-pedicle 41 irrigator,irrigate,cystic-pedicle 29
bipolar,dissect,gallbladder 353 grasper,retract,cystic-plate 1205 irrigator,irrigate,liver 130
bipolar,dissect,omentum 176 grasper,retract,gallbladder 48628 irrigator,null-verb,null-target 573
bipolar,grasp,cystic-plate 8 grasper,retract,gut 686 irrigator,retract,gallbladder 30
bipolar,grasp,liver 95 grasper,retract,liver 13646 irrigator,retract,liver 350
bipolar,grasp,specimen-bag 85 grasper,retract,omentum 4422 irrigator,retract,omentum 89
bipolar,null-verb,null-target 632 grasper,retract,peritoneum 289 scissors,coagulate,omentum 17
bipolar,retract,cystic-duct 8 hook,coagulate,blood-vessel 57 scissors,cut,adhesion 155
bipolar,retract,cystic-pedicle 9 hook,coagulate,cystic-artery 10 scissors,cut,blood-vessel 21
bipolar,retract,gallbladder 32 hook,coagulate,cystic-duct 41 scissors,cut,cystic-artery 613
bipolar,retract,liver 164 hook,coagulate,cystic-pedicle 15 scissors,cut,cystic-duct 808
bipolar,retract,omentum 69 hook,coagulate,cystic-plate 9 scissors,cut,cystic-plate 20
clipper,clip,blood-vessel 51 hook,coagulate,gallbladder 217 scissors,cut,liver 90
clipper,clip,cystic-artery 1097 hook,coagulate,liver 189 scissors,cut,omentum 27
clipper,clip,cystic-duct 1856 hook,coagulate,omentum 78 scissors,cut,peritoneum 56
clipper,clip,cystic-pedicle 13 hook,cut,blood-vessel 15 scissors,dissect,cystic-plate 12
clipper,clip,cystic-plate 53 hook,cut,peritoneum 92 scissors,dissect,gallbladder 52
clipper,null-verb,null-target 309 hook,dissect,blood-vessel 21 scissors,dissect,omentum 93
grasper,dissect,cystic-plate 78 hook,dissect,cystic-artery 2984 scissors,null-verb,null-target 171
grasper,dissect,gallbladder 644 hook,dissect,cystic-duct 7861

grasper,dissect,omentum 31 hook,dissect,cystic-plate 2898 Total 161005

Table 3: Statistics of the dataset split

Data split Videos Frames Labels
Training 35 72815 113884
Validation 5 6797 10267
Testing 10 21251 36854
Total 50 100863 161005

selected. Moreso, the third clinician performed label mediation
in the case of label disagreement.

The final dataset comprises 100 triplet classes that follow the
format of (instrument, verb, target). The triplets are composed
from 6 instruments, 10 verbs and 15 target classes, presented
with their instance counts in Table 1. We present the CholecT50
dataset triplet labels including their number of occurrences in
Table 2. We also present the co-occurrence statistics for (in-
strument, target) and (instrument, verb) pairs within triplets in
the supplementary material.

For our experiment, we down-sampled the videos to 1fps
yielding 100.86K frames annotated with 161K triplet instances.
The video dataset is split into training, validation, and testing
sets as in Table 3. The videos in the dataset splits are distributed

in the same ratio to include annotations from each surgeon.

4. Methodology

Action triplet recognition is a complex and challenging task,
since it requires: (1) simultaneously solving three multi-label
classification problems, and (2) performing associations while
accounting for multiple triplet instances. In this work, we pro-
pose two methods that tackle each aspect of these tasks.

We address the first point with the class activation guided at-
tention mechanism or CAGAM, which explicitly uses tool type
and location information to highlight discriminative features for
verbs and targets respectively. We demonstrate its utility by re-
placing our previous Tripnet (Nwoye et al., 2020) model’s class
activation guide (CAG) with CAGAM, resulting in a prelimi-
nary model which we call Attention Tripnet.

The second point is addressed by the multi-head of mixed
attention (MHMA), as an advanced model of semantic atten-
tion for triplet association, and a successor to the previous state-
of-the-art Tripnet’s more primitive 3D interaction space (3Dis).
The MHMA resolves the triplet’s components association using
multiple heads of self and cross attention mechanisms.
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Fig. 2: Architecture of the Rendezvous: meeting of attentions, a transformer-
inspired model with channel and position spatial attention for triplet compo-
nents detection and a multi-head of self amd cross semantic attention for action
triplet recognition.

Our final model is called the Rendezvous (RDV): a
transformer-inspired neural network for surgical action triplet
recognition. The RDV combines the CAGAM in its encoder
with the MHMA in its Transformer-inspired decoder for en-
hanced triplet component detection and association respec-
tively. This model provides the highest performance on action
triplet recognition.

The proposed RDV network is conceptually divided into four
segments: feature extraction backbone, encoder, decoder, and
classifier as shown in Fig. 2.

4.1. Feature Extraction

We model the visual feature extraction using the ResNet-18
base model. Our choice is motivated by the excellent perfor-
mance of residual networks in visual object classification tasks.
To facilitate more precise localization, the strides of the last two
blocks of the ResNet are lowered to one pixel providing higher
output resolution.

The Resnet-18 base model takes an RGB image frame from
a video as input and extracts its visual features X € R32X30x312,
The extracted feature is triplicated into (X;, Xy, X7) for multi-

Weakly-Supervised Localization (WSL) module
Conv Conv | CAM |:|
X 1 p= Y,
3x3 1x1 0)
HxWx512 CI 1xC,
Hx W x 64 HXxWxC,
H,

HxWxC,

Fig. 3: Weakly supervised localization (WSL) layer for instrument detection.
Feature dimension (height H = 32, width W = 56, depth (class size) C; = 6).

task learning of the instrument, verb, and target components of
the triplets respectively.

4.2. Components Encoding

The encoder is responsible for detecting the various compo-
nents of the triplets, while the decoder resolves the relation-
ships between them. The encoder is composed of the weakly-
supervised localization (WSL) module for instrument detection,
class activation guided attention mechanism (CAGAM) module
for verb and target recognition, and a bottleneck layer collecting
unfiltered low-level features from Resnet-18’s lower layer.

4.2.1. Weakly Supervised Localization (WSL)

While this work primarily focuses on recognizing surgical
action triplets, localizing actions -similarly to HOI tasks- is an
interesting addition. We therefore go beyond simply detecting
the presence of surgical instruments by locating their position,
which represents the region of interaction. In the absence of
spatial annotations we achieve this with weak supervision.

As shown in Fig. 3, the WSL module consists of a 3 x 3
convolution layer (Conv) of 64 channels, then followed by a
1 X 1 Conv of C; = 6 channels for instrument localization in
form of class activation maps (CAM).

Specifically, the WSL module takes X; from the feature
extraction layer as input and returns the instruments’ CAM,
marked as (H;), from its last Conv layer. The output CAM (H;)
are trained for localization via their Global Maximum Pooled
(GMP) values Y; representing instrument class-wise presence
probabilities similar to Vardazaryan et al. (2018).

The discriminative CAM features (H;) alongside these re-
maining extracted features (Xy, Xr) are passed to the CAGAM
for verb and target detection.

4.2.2. Class Activation
(CAGAM)

Surgical action triplets are instrument-centric. Detecting the
correct verbs and target anatomies is very challenging, because
the visibility as well as the subtly involvement of a tool and
anatomy in an action have to be taken into consideration.

A limited effort is made in our previous method, Tripnet
(Nwoye et al., 2020), to handle this using a CAG module con-
ditioning the detection of verbs and targets on the instruments
activations, via concatenated features. Since attention modeling
is found to be superior to feature concatenation (Ulutan et al.,
2020), we explore several types of attention and propose a new
form of spatial attention, named CAGAM.

Guided Attention Mechanism
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Fig. 4: Class Activation Guided Attention Mechanism (CAGAM): uses the at-
tention learned from the instrument’s CAM to highlight the verb class (left) and
the anatomy in contact with the instrument (right). Feature dimension (height
H = 32, width W = 56, depth D = 64, instrument’s class size C; = 6, verb’s
class size Cy = 10, target’s class size Ct = 15).

According to Vaswani et al. (2017), an attention function can
be described as matching a query (Q) and a set of key-value
(K, V) pairs to form an output. The output is computed as a
weighted sum of the values (wV), where the weight (w = QK)
is computed by an affinity score function of the query with the
corresponding key. CAGAM is a new form of spatial attention
mechanism that propagates attention from known to unknown
context features, thereby enhancing the unknown context for
relevant pattern discovery. It is an adaptation of the saliency-
guided attention mechanism in (Ji et al., 2019; Yao and Gong,
2020) to utilize a more adequate and easier to learn class ac-
tivation map (CAM) suitable for action triplet recognition. It
is used, in this case, to discover the verbs and targets that are
involved in tool-tissue interactions leveraging the instrument’s
contextual dependencies, by propagating attention from the dis-
criminative H; to the non-discriminative Xy and Xy features.
The CAM (H;) serves as the known context features in this re-
gard, since they are already discriminated class-wise and local-
ized for the instruments.

As shown in Fig. 4, we model the CAGAM to enhance
the verb’s and target’s unfiltered features by element-wise addi-
tion of an enhancement: this enhancement is a computed spa-
tial attention A from the instrument affinity maps (Pp) as well
as the component affinity maps (Py) themselves. The Pp are
termed discriminative because they originate from the instru-
ment CAM features, whereas Py are termed non-discriminative
because they are formed from the unfiltered component fea-
tures.

We observe that verbs and targets behave differently with re-
gards to their instrument; that is, verbs are mostly affected by
the instrument’s type, while targets tend to be determined by
instrument’s position. This distinction is a key factor in the
choices of attention mechanism in the CAGAM which indeed
combines channel attention for verb detection (Fig. 4: left)
and position attention for target detection (Fig. 4: right). Both
types of spatial attention mechanisms are similar, except for the
dimensions used, and therefore the nature of the information
attended to. The channel attention is captured in the C; X C;
channel dimensions, informed by instrument type, whereas the
position attention is captured in the HW x HW spatial dimen-
sions, informed by instrument location. This choice is well val-
idated in ablation studies shown further (Table 4).

CAG channel attention for verbs

As illustrated in Fig. 4 (left), verb features are first remapped
to Xz € R7*WxCi which we call the context features. Following
two separate 1 X 1 Conv and reshapings, mapping it to a query
Q and a key K of size HW x C/, the non-discriminative affinity
map Py € RE¥C! is obtained via matrix multiplication of the
transposed Q by K as illustrated in Equation 1:

Py = Q'K. (1

Applying a similar process to the CAM results in the dis-
criminative affinity map: Pp € R*C . As done in Yao and
Gong (2020), an element-wise product of the two affinity maps,
scaled by a factor & and passed through red softmax (o) gives
the attention A:

PpPy )

3

Meanwhile, we obtain the value features V € R¥"*Ci by re-
shaping the verb context Xz to R”W>C/ Next, we obtain an
enhancement by matrix multiplication of A by V, weighted by
a learnable temperature 8. This enhancement is reshaped to
RA*WXCr and added back to Xz to produce the enhanced fea-
tures, E.

A=0'( 2

E = B(VA) + Xz. 3)

The features E are transformed into per-verb activation maps
Hy € RPW*Cv yvig a 1x1 Conv. Finally, verb logits Yy € R!XCv
are obtained by global average pooling of Hy, where Cy = 10
is the number of verb classes.

CAG position attention for targets

As illustrated in Fig. 4 (right), obtaining the Q, K, and V
terms for the CAG position attention is similar to the CAG
channel attention mechanism. However to obtain an instrument
location-aware attention, we multiply Q by K (instead of Q
by K as done for verbs in Equation 1) producing affinity maps
(Pp,Py) and a subsequent attention map A of the desired size
HW x HW, informed by instrument position rather than instru-
ment type.

Furthermore, we obtain enhanced target features (E), which
we also feed to a 1 x 1 Conv of Cr = 15 channels to obtain
the per-target activation maps Hy € R¥*WXCr Using a global
pooling on Hz, we then obtain the target logits Y7 € R¢7,
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To ensure that the H;, Hy and Hy class maps properly cap-
ture their corresponding components, we train their global
pooled logits (Y, Yy, Yr) as auxiliary classification tasks.

4.2.3. Bottleneck Layer

In addition to these refined, component-specific features
(H;,Hy,Hr), a global context feature is also necessary for
modeling their contextual relationship; which is why we also
draw a unfiltered low-level feature X, from the first block
of ResNet and feed it to the bottleneck layer that consists of
3x3x256and 1 x 1 X C convolution layers, where C = 100
is the number of triplet classes. This gives the global context
feature for triplets H;y7, with channels matched to the triplet
classes.

The unfiltered triplets feature H;y7 as well as the triplet com-
ponent’s class maps (H;, Hy, Hy) are fed to the decoder layer
for decoding the triplet association.

4.3. Interaction Decoding

We describe here the modeling of the triplet components’
relationship in the RDV decoder. An existing approach at-
tempts to model every triplet possibility from the outer prod-
uct combination of the three components using a 3D feature
space (Nwoye et al., 2020). This design models more than the
required triplets, including irrelevant and impossible combina-
tions, making the module hard to train. Hence, we follow a
Transformer-like architecture (Vaswani et al., 2017; Dosovit-
skiy et al., 2020; Chen et al., 2021) leveraging long-range at-
tention to efficiently model the required relationships. To take
into consideration the constituting components of the triplets
(Nwoye et al., 2020), we utilize the semantic features of each
component, captured in their class maps (H;, Hy, Hy). Unlike
the Vision Transformer (Dosovitskiy et al., 2020), however, we
do not break class maps into patches. As shown by ablation
results in the supplementary material, the patch sequence de-
grades representations, especially information on instruments
that is important for locating actions.

Hence, we model the RDV attention decoder on the semantic
sequence of learnt class-wise representations. From H;, Hy, Hy
and the global triplet feature H;y7, RDV decodes all the self-
and cross-interactions between the triplet’s global context fea-
ture and the three features corresponding to individual compo-
nents, using scaled dot-product attention (Vaswani et al., 2017)
without using recurrence. In addition to self-attention, cross-
attention adds the capability to better model the relationships
with components participating in the action triplet. This is im-
portant when resolving interactions: for instance, an anatomical
part can appear in the frame without being a target, often mak-
ing the interaction with the instrument ambiguous.

To understand the attention decoder used in this work, we
explain the decoding-by-attention concept below:

1. Firstly, attention decoding is described as a search process
whereby a query (Q), that is issued by a user (sink or re-
ceiver), is used to retrieve data from a repository (source).
Normally, Q is a user’s abridged description of the re-
quested data also known as search terms.

Concat ]

T N
Scaled Scaled

Dot-Product Dot-Product
Cross Attention Self Attention

[ [

Scaled Scaled
Dot-Product 3 Dot-Product
Cross Attention | Cross Attention

E
]

| Query

Query
Key
Value

H, Hyr

Fig. 5: Architecture of the multi-head of mixed attention (MHMA): showing
the feature projection into Q, K and V, and subsequent multiple heads of self
and cross attentions using scale-dot product attention mechanism.

2. The source context consists of a key-value (K,V) pair
where V is a collection of several data points or records
and K is the mean descriptor for each record also known
as keywords.

3. To retrieve the requested data, the issued Q is matched
with the available Ks to create an affinity (P), also known
as the attention weight.

4. The P, when matched with V, creates an attention map (A)
which helps retrieve the most appropriate data to the sink.

We implement a transformer-inspired decoder that is com-
posed of a stack of L = 8 identical layers as shown in Fig. 2.
Each layer receives the triplet features H;yr and the encoded
class maps (H;, Hy, Hr) as inputs which are processed succes-
sively by its two internal modules: MHMA and feed-forward,
to produce refined triplet features, H;y7. The output of each
module is followed by a residual connection and a layer nor-
malization (AddNorm) as it is done in other multi-head atten-
tion networks. The entire cycle repeats, with a more refined
H;y; output, until the L™ layer.

4.3.1. Multi-head of Mixed Attention (MHMA)

The multi-head attention combines both self- and cross-
attentions, encouraging high-level learning of triplets from the
interacting components as shown in Fig. 5. It starts with a
projection function, pf, which generates a set of value V, key
K, and/or query Q for each context feature (H;, Hy, Hy, H;y7).
In the implementation as shown in Equation 4, the pf function
generates vectors of Q € RC and K € R'# that represent
the abridged mean descriptors of the contexts by leveraging
the global average pooling (GAP) operation. Here, C = 100
for triplet, whereas Cz = [6, 10, 15, 100] for either instrument,
verb, target, or triplet classes, respectively. We map each de-
scriptor to a feature embedding layer where we mask (dropout
A = 0.3) parts of Q to avoid repeating the same query in the
L alternating layers. Using the pf function, we also obtain the
V € R#*WXCz by a convolution operation on the feature context
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and reshape to R7"W>Cz Hence, the extracted Q, K, and V fea-
tures follow the aforementioned decoding-by-attention concept
(items 1 & 2). The pf function generates each K and Q using
FC layers as done in (Vaswani et al., 2017; Dosovitskiy et al.,
2020), and generates the V using convolution layers as done in
(Fu et al., 2019; Wang et al., 2018; Huang et al., 2019).

Q:  FC(DROPOUT (GAP(H))),
pf(H)={K:  FC(GAP(H)), 4)
V:  CONV(H).

Next, we build 4 attention heads for the instrument, verb, tar-
get, and triplet attention features. In the existing Transformer
and Transformer-based models, each of the heads learns a self-
attention. Self-attention helps a model understand the underly-
ing meaning and patterns within its own feature representation.
This is needed for initial scene understanding. However, when
each feature representation (such as a class-map) has been dis-
criminated to attend to only one component in an image scene,
understanding their underlying relationship requires a cross-
attention across the component features. In a cross-attention
mechanism, the attention built from one context (the source)
is used to highlight features in another context (the sink) as
done in Mohla et al. (2020). While the self-attention mecha-
nism computes the focal representation on the same triplet fea-
tures, cross attentions learn the triplet representations by draw-
ing attention from the individual components: namely instru-
ment, verb, and target. This models how the features of each
component affect the triplet composition, by propagating the
affinities from their respective context features to the required
triplet features.

To utilize both self and cross attentions, we model the source
context from the encoded class-map features (H;, Hy, Hy) rep-
resenting the triplet components and the sink context from the
triplet features (H;y7). Of course, the source context remains
the same as the sink in the self-attention mechanism. This
means we generate the corresponding Ks and Vs from both the
source and sink contexts, but generate the Q only from the sink
context using the projection function, pf, as shown in Fig. 5.
With Q coming from the triplet features, we actually focus the
image understanding on the actions of interest by pointing the
cross-attention heads at the component’s discriminative features
(H;, Hy, Hy) in a manner that helps the attention network ben-
efit from the learnt class representations. This also respects the
aforementioned decoding-by-attention concept. We then learn
a scaled dot product attention of the Q on the (K,V) pair for
each attention head as shown in Fig. 6. Specifically, we derive
the scaled dot product attention using the widely used attention
formula (Vaswani et al., 2017) in Equation 5:

KQT)
Vg |’

where o is a softmax activation function, Vdx is a scaling fac-
tor, and dk is the dimension of K after linear transformation.
The cross attention is implemented on the instrument, verb, and
target attention heads, whereas self-attention is implemented on

AQ,K,V) = V.a’( 5)

&)
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& Matrix multiplication \Jdy Linearscale O Softmax

Fig. 6: Structure of scale dot-product attention mechanisms: in self-attention,
the (K,V,Q) triple comes from one feature context, whereas in cross-attention,
the (K, V) pair comes from the source feature context while Q comes from the
sink feature context.

the triplet attention head. While each attention head simultane-
ously concentrates on its own features of interest, the multi-
head module combines heads A to jointly capture the triplet
features as in Equation 6:

Arn =W(IY, A), ©6)

where || is a concatenation operator for N = 4 attention heads.
A, is the triplet self-attention, A, _ are the triplet cross atten-
tions with the interacting components. W is the matrix of con-
volution weights. This packed convolution scheme merges the
information from all attention heads while preserving its spatial
structure.

4.3.2. Feed-forward

The output of the multi-head attention is further refined by
a feed-forward layer which is a stack of 2 convolutions with
an AddNorm. The output is a refined H;yr with each channel
attending to each triplet class.

4.4. Triplet Classification

The RDV model terminates with a linear classifier for the
final classification of the triplets. In this layer, we apply a global
pooling operation on the H;y7 from the L layer of the RDV
decoder, followed by an FC-layer (with C = 100 neurons) for
the triplet classification. The output logits (Y;y7) are trained
jointly end-to-end with the auxiliary logits from the encoder.

4.5. Attention Tripnet

In our previous work (Nwoye et al., 2020), Tripnet relies
on two modules: (1) the class activation guide (CAG), which
leverages instrument activations to detect verbs and targets via
concatenated features, and (2) the 3D interaction space (3Dis),
where features corresponding to the three components are pro-
jected in an attempt to resolve their interactions.

As an ablation model, we extend this to Attention Tripnet by
only replacing the CAG in Tripnet (Nwoye et al., 2020) with
CAGAM as shown in Fig. 7. This validates the contribution of
attention modeling for verb and target detections using Atten-
tion Tripnet.
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Fig. 7: Architecture of the Attention Tripnet showing the base (feature extraction backbone), neck (instrument detection branch and CAGAM module), and head
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5. Experiments

5.1. Data Setup

Due to variability in the video dataset, frame resolution varies
from 480 x 854 to 1080 % 1920. We unified these spatial dimen-
sions by resizing them to 256 x 448. We also employed random
scaling [0.5, 1.5] and brightness/contrast shift (delta = 0.2) as
data augmentation for training. The models are trained on 35
videos, validated on 5 videos, and tested on 10 videos accord-
ing to the data split in Table 3. To obtained specific labels for the
component tasks, we design a mapping function, which extracts
per-component labels from the triplet labels; those are three
vectors of binary presence labels with length N = [6, 10, 15] per
frame, where n € N is the class size for each triplet’s component
trained as auxiliary task. For a high-performance data loading
pipeline, we store our training data as serialized TFRecords bi-
naries.

5.2. Training and Loss Functions

Since classifying each triplet component, namely instrument,
verb, and target, is a multi-label classification problem, we em-
ploy weighted sigmoid cross-entropy losses: L;, Ly, and Ly
respectively. The weighted cross-entropy with logits is as fol-
lows:

C
L= Z _ﬁl(Wc)}Ll()g(O- @L)) + (1 - yc)log(l - 0-(576) ))a (7)

c=1

where y. and ¥, are respectively the ground truth and predicted
labels for class c, o is the sigmoid function, and W, is a weight
for class balancing. The three component detection tasks are
jointly learned in a multi-task manner following the uncertainty
loss procedure given in Kendall et al. (2018) that uses learn-
able parameters wy, wy, wr to automatically balance the tasks
training as follows:

mep = % e—}le + e%VLV + E%LT +wr+wy + WT) (8)
This is only used for the auxiliary tasks captured by multi-task
learning.

The triplet association loss L. is also modeled as a sig-
moid cross-entropy. To jointly learn the complete tasks end-to-
end, we define the total loss (L) using the equation:

Liotar = Lcomp + pLygsoc + ALo, )

where p is a warm-up parameter that allows the network to fo-
cus solely on learning the individual components’ information
within the first 18 epochs. A = le™ is a regularization weight
decay for the L, normalization loss.

5.3. Hyper-parameters

The feature extraction backbone is pretrained on ImageNet.
All the models are trained using Stochastic Gradient Descent
with Momentum (¢ = 0.95) as optimizer. We maintain a step-
wise learning rate (7 = 0.001) policy, decayed by ¢ = 0.1 after
every 50 epochs. The models are trained in batches of size 8
for 200 epochs. The final model weights are selected based on
their validation loss saturation. All the hyper-parameters are
tuned on the validation set (5 videos) with up to 74 grid search
experiments.

5.4. Hardware and Schedule

Our networks are implemented using TensorFlow and trained
on GeForce GTX 1080 Ti, Tesla P40, RTX6000, and V100
GPUs. Full training takes approximately 118-180 hours on
a single GTX 1080 Ti. Total storage space consumption for
the model, input data, output weights, and summaries is under
10GB. Parameter counts for the MTL baseline, Tripnet, Atten-
tion Tripnet, and 8-layer RDV models reach 14.94M, 14.95M,
11.81M, 16.61M respectively.

5.5. Inference and Evaluation Protocols

Model outputs are probability scores that can be thresholded
to indicate class presence or absence. We statistically evaluate
the model’s performance at recognizing surgical actions as a
triplet using three metrics:

1. Component average precision: This measures the aver-
age precision (AP) of detecting the correct components
of the triplet, as the area under the precision-recall curve
per class. Using this, we measure the AP for instrument
(APy), verb (APy), and target (AP7) detections. To use
these metrics for the naive models or for any model that
predicts only the triplet labels Y;yr, we decompose their
predictions into the constituting components (Y, Yy, Y1)
following Equation 10:

Yy =[maxYrll =1) Vie{0,1,..,Ci}],
Yy = [ max(YyrlV =v) Vv e{0,1,..,Co} ], (10)
Yr = maxYpyr|T =1t) Vte{0,1,.,C5}],
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where Cy, C, and Cj3 are the class sizes for the instrument,
verb, and target components respectively. This directly
translates to obtaining the probability of a given compo-
nent class as the maximum probability value among all
triplet labels having the same component class label in a
given frame. For instance, the predicted probability of a
grasper instrument in a frame is the maximum probabil-
ity of all triplet labels having grasper as their instrument
component label. The ground truth for these components
is also derived in the same manner.

2. Triplet average precision: This measures the AP of
recognizing the tool-tissue interactions by observing ele-
ments of the triplet in conjunction. Using the same met-
rics as Nwoye et al. (2020), we measure the APs for
the instrument-verb (AP;y), instrument-target (AP;r), and
instrument-verb-target (AP;yr). During the AP computa-
tion, a prediction is registered as correct if all of the com-
ponents of interest are correctly identified (e.g. instrument
and verb for AP;y). The main metric in this study is APy,
which evaluates the recognition of the complete triplets.

3. Top-N recognition performance: Due to high similarities
between triplets, we also measure the ability of a model to
predict the exact triplets within its top N confidence scores.
For every given test sample x;, a model made an error if the
correct label y; does not appear in its top N confident pre-
dictions y; for that sample. Using this setup, we measure
the top-5, top-10, and top-20 accuracies for the triplet pre-
diction. We also show the top 10 predicted triplet class
labels and their AP scores for a more insightful analysis of
the model’s performance.

Video-specific AP scores are computed per category, across
all frames of a given video. Averaging those APs over all videos
gives us the mean AP (mAP), serving as our main metric.

6. Results and Discussion

In this section, we rigorously validate individual components
of the Attention Tripnet and Rendezvous (RDV) through care-
ful ablation studies. We then provide a comparative analysis
with baseline and state-of-the-art (SOTA) methods to show our
methods’ superiority.

6.1. Quantitative Results
6.1.1. Ablation study on the encoder’s attention type

Table 4: Ablation study on the task-attention suitability

Guided detection APy APr
None (as in MTL baseline) 48.4 28.2
CAM (as in Tripnet’s CAG) 51.3 32.1
CAM + Channel attention 59.0 31.5
CAM + Position attention 51.2 35.1
CAM + Dual! attention 61.1 40.2

! Dual = (channel + position) attentions

We begin with an ablation study for the choice of the atten-
tion type in the CAGAM module. We compare the module with

a baseline model (MTL) (Nwoye et al., 2020), which imple-
ments a multi-task learning of instruments, verbs, and targets
in separate branches with no attention (None), and show that
attention guidance helps better detect the components in gen-
eral (Table 4). We also justify the distinct attention types for
verbs and targets. Firstly, the channel attention is used for both
verb and target detections (row 3), and the position attention is
used for both verb and target detections (row 4), before they are
combined (Dual attention) in the last row. Channel attention
is better suited for verbs than targets, with +10.6% vs +3.5%
improvement respectively. Position attention behaves the op-
posite: +2.8% vs +6.9%. Matching verbs with channel atten-
tion and targets with position attention gives the most balanced
and highest improvement: +12.4% verbs, +12.0% targets. We,
therefore, retain this choice in the proposed models.

6.1.2. Ablation Study on Decoder’s Attention Type

Table 5: Ablation study on the attention type in the multi-head decoder

Model Layer size AP[V AP[T AP]VT
Single Self 6 298 233 18.8
Multiple Self 6 357 328 26.1
Self + Cross (RDV) 6 394 369 299

One of the novel contributions of this work is its hybrid
multi-head attention mechanism for resolving tool-tissue inter-
actions, combining self- and cross-attention. This is a substan-
tial innovation over transformers found in sequence modeling,
which instead rely on multi-heads of self-attention only. Our
choice of multi-head attention is justified in the following abla-
tion study presented in Table 5.

Our first ablation model in this regards (Single Self) uses a
multi-head attention with the input feature coming from the
high-level features (X) of ResNet-18 to compute a successive
scale dot-product attention over 8 decoder layers as in RDV. It
can be observed that using a multi-head of self-attention coming
from a single source (triplet features) yields insufficient results
for action triplet recognition.

The Multiple Self ablation model, as a “self-attention only”
version of the RDYV, uses self-attention in all four contexts: in-
strument, verb, target, and triplet. The RDV clearly performs
the best in terms of association, justifying our use of cross-
attention.

Table 6: A scalability study on the multi-head layer size: showing the mean
average precision (mAP) for varying triplet associations, number of learning
parameters (Params) in millions (M), and inference time (i-Time) in frame per
seconds (FPS) on GTX 1080 Ti GPU.

Layer size mAP]V mAP;T mAP]VT Params i-Time
()T (P71 (@7 M) (FPS)T
1 35.8 30.7 24.6 12.6 54.2
2 36.0 41.1 27.0 13.1 47.9
4 38.5 329 27.3 14.3 39.2
8 394 36.9 29.9 16.6 28.1
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Table 7: Performance summary of the proposed models compared to state-of-the-art and baseline models

Component detection

Triplet association

Method
AP[ AP\/ APT AP[\/ AP[T AP[\/T
CNN 57.7 39.2 28.3 21.7 18.0 13.6
Naive Baseline ~ TCN 48.9 29.4 214 17.7 15.5 12.4
MTL 84.5 48.4 28.2 26.6 21.2 17.6
SOTA Tripnet (Nwoye et al., 2020) 92.1 54.5 332 29.7 26.4 20.0
Ours Attention Tripnet 92.0 60.2 38.5 31.1 29.8 234
Rendezvous 92.0 60.7 383 394 36.9 29.9

6.1.3. Scalability Study on Multi-Head Layer Size

We carried out a scalability study to observe the performance
of the RDV when increasing the number of multi-head layers
while keeping track of the number of parameters and GPU re-
quirements. These results presented in Table 6 show that the
proposed model improves when scaled up, at the cost of in-
creased computational requirements. To balance performance
and resource usage, we choose L = 8 as default settings in all
our experiments. An 8-layer RDV with > 25 FPS processing
speed can be used in real-time for OR assistance.

More ablation studies on the sequence modeling of the class-
wise features, use of auxiliary classification loss, etc., are pro-
vided in the supplementary material.

6.1.4. Component Detection and Association mAP

For ease of reference, we summarize the overall performance
of the experimented models on the considered metrics for both
triplet component detection and the recognition of their interac-
tions in Table 7. As a baseline, we design a CNN model that
models the triplet recognition as a simple classification of 100
distinct labels without taking any special reference to the con-
stituting components. The performance of this baseline model
shows that it is not sufficient to naively classify the triplet IDs
without considering the triplet components. Even a temporal re-
finement of the naive CNN model outputs using a (TCN) (Lea
et al., 2016) is still sub-optimal. Multi-task learning (MTL) of
the triplet components helps the model gain some performance,
but still scores low on triplet association. The MTL outperforms
the TCN here likely because a temporal refinement would not
matter much if a Naive CNN does not capture significant rep-
resentative features for triplet recognition. The Tripnet model
proposed in (Nwoye et al., 2020) leverages the CAG to improve
the MTL in the triplet components detection. It also improves
the interaction recognition AP;yr by 2.4% using the 3Dis.

The Attention Tripnet uses the CAGAM to further improve
the Tripnet’s verb detection by 5.7% and target detection by
5.3%. The Attention Tripnet is on par for instrument detection
AP; this is likely due to the instrument detection being already
saturated. The overall performance does increase, with indeed
a 3.4% improvement for triplet recognition. The RDYV, on the
other hand, uses a multi-head attention decoder to further im-
prove the association performance (+9.7% on instrument-verb,
+10.5% on instrument-target). It improves the overall final
triplet recognition by 9.9% mAP;yr compared to the SOTA,

tripling the improvement from the Attention Tripnet. A break-
down of per-class detection of the triplet components and their
association performance is presented in the supplementary ma-
terial.

6.1.5. Top-N Triplet Recognition Performance

Table 8: Top N Accuracy of the triplet predictions

Method Top-5 Top-10 Top-20

Naive CNN 67.0 80.0 90.2
Baseline TCN 54.5 69.4 84.3
MTL 70.2 80.2 89.5

SOTA Tripnet 70.5 81.9 91.4
Ours Attention Tripnet 75.3 86.0 93.8
o Rendezvous 76.3 88.7 95.9

In our multi-class problem with 100 action triplet classes,
getting a comprehensive view of a model’s strength is difficult.
Here we focus on the top N predictions. As shown in Table
8, when considering the model’s top 20 predictions, the model
records an AP of » 95%. The model’s confidence however
decreases when considering more top predictions, suggesting
how closely related most of the triplet classes could be.

6.1.6. Surgical Relevance of the Top Detected Triplets

The result of the top 10 correctly detected triplets for the
experimented models, presented in Table 9, reveals the indi-
vidual strengths of the experimented models in recognizing
the tool-tissue interaction. All triplets predicted in the top re-
sults are clinically sensible, with none of the more unexpected
instrument-verb or instrument-target pairings.

Of importance, triplets with high surgical relevance in chole-
cystectomy procedure, i.e., {clipper, clips, cystic duct or artery)
and (scissors, cut, cystic duct or artery), which are critical
for safety monitoring, are better detected by the RDV than the
SOTA. The proposed models learn to detect rare but clinically
important uses of surgical instruments in their top 10 correctly
predicted labels. This holds true for ambiguous instruments,
like the irrigator that is mostly used to aspirate or irrigate but
can as well be used to dissect in rare cases ( (irrigator, dissect,
cystic-pedicle)). Another detected rare case include (bipolar,
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Table 9: Top-10 predicted Triplets (AP;y7 for Instrument-Verb-Target Interactions).

Tripnet (SOTA) Attention Tripnet Rendezvous
Triplet AP Triplet AP Triplet AP
grasper,retract,gallbladder 77.30 grasper,grasp,specimen-bag 82.34 grasper,retract,gallbladder 85.34
grasper,grasp,specimen-bag  76.50 grasper,retract,gallbladder 78.41 grasper,grasp,specimen-bag 81.75
bipolar,coagulate,liver 67.39 bipolar,coagulate,liver 68.85 hook,dissect,gallbladder 75.90
hook,dissect,gallbladder 57.54 irrigator,dissect,cystic-pedicle 66.21 grasper,retract,liver 66.70
irrigator,aspirate,fluid 57.51 hook,dissect,gallbladder 63.22 bipolar,coagulate,liver 63.12
grasper,retract,liver 54.25 grasper,retract,liver 58.06 clipper,clip,cystic-duct 59.68
clipper,clip,cystic-artery 47.44 grasper,grasp,cystic-pedicle 55.35 bipolar,coagulate,blood-vessel  57.18
scissors,cut,cystic-duct 42.57 scissors,cut,cystic-artery 48.44 scissors,cut,cystic-artery 53.84
scissors,cut,cystic-artery 40.37 irrigator,aspirate,fluid 47.11 irrigator,aspirate,fluid 51.95
clipper,clip,cystic-duct 39.62 bipolar,coagulate,abdominal-wall-cavity ~ 46.07 clipper,clip,cystic-artery 51.52
mean 56.05 61.41 64.70

coagulate, blood-vessel). This suggests that the models effec-
tively learned the surgical semantics of instrument usage even
with small examples of peculiar classes.

The triplet (grasper, grasp, specimen-bag) always appears in
the top 2 even though its prevalence (6K) is not particularly
high, compared to triplets such as (hook, dissect, gallbladder)
(29K), (grasper; retract, liver) (13K), etc. This may be due to
its consistent appearance in the workflow, usually towards the
end; another factor could be the discernability of the bag.

For every triplet in the top-10 predictions of both the SOTA
and the proposed models, the performance is usually higher in
the proposed models. Remarkably, the entire top 10 for the
RDV is recognized at an AP above 50%. Compared to SOTA,
the proposed models show improvements in the more com-
plex task of detecting complete triplets and instrument-target
while showing comparable performance for the visually simpler
instrument-verb detection task (see supplementary material and
statistical analysis in Table 10).

100
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CNN TCN MTL Tripnet Attention RDV
models

Fig. 8: Distribution of the model AP for the 100 triplet class predictions.

In addition to the top 10, we also present the full extent of
the model’s performance on all 100 classes using the AP box
plots in Fig. 8, showing upper and lower performance bounds
for each model as well the spread around the mean. The rect-
angular box represents the middle 50% of the score for each
model also known as interquartile range. As can be seen from
Fig. 8, the proposed models maintain higher median and upper-

quartile performance than the baselines. They also maintain
higher upper-whiskers showing the extent of their performance
distribution above the interquartile range.

6.1.7. Statistical Significance Analysis

Table 10: The p-values obtained in Wilcoxon signed-rank test of the proposed
methods using the SOTA model (Tripnet) as the alternative method. (Lower
p-value is preferred)

Proposed methods

Tasks

Attention Tripnet Rendezvous

AP, p =~ 0.327 p ~0.374

gz:zft‘i’gﬁm APy p < 0.001 P~ 0.003
APy p < 0.001 p < 0.001

. APy p ~0.018 p < 0.001
lrslfézation APy p~0.010 p ~ 0.005
APyt p < 0.005 p < 0.001

We also measure the statistical significance of the proposed
model performance using the SOTA model as the alternative
method. Using the Wilcoxon signed-rank test, we sample
N = 30 random batches of 100 consecutive frames instead of 30
random frames to simulate the evaluation on video clips. The
null hypothesis (Hy) states that the difference between the pro-
posed method and the alternative method follows a symmetric
distribution around zero. We perform the significance analysis
for each task, and based on the obtained p-values, presented in
Table 10, we draw the following conclusions:

1. Both proposed models do not significantly improve the in-
strument detection sub-task. Their p-values fall short of
the standard 0.05. This is mainly because the instrument
detection performance is already saturated in the alterna-
tive method; there is no new modeling in the proposed
methods targeting their improvement. Being a two-tailed
test, the p-value also shows that the SOTA does not out-
perform the proposed models on instrument detection.

2. The guided attention mechanism is very useful in improv-
ing the verb and target detections in both the Attention
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scissors, cut, cystic-duct

hook, dissect, cystic-duct
hook, dissect, cystic-duct

grasper, retract, gallbladder
grasper, retract, gallbladder

grasper, retract, gallbladder
grasper, retract, gallbladder

grasper, grasp, gallbladder !
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Fig. 9: Qualitative results showing the triplet predictions and the heatmaps for the triplet detection. Localization bounding boxes are obtained from the WSL module
of the proposed RDV model. Predicted and ground truth triplets are displayed below each image: black = ground truth, green = correct prediction, red = incorrect

prediction. A missed triplet is marked as false negative and a false detection is marked as false positive (Best viewed in color).

Tripnet and RDV models. Their contributions are signif-
icant enough to even beat a more narrow 0.01 significant
level.

3. Our contributions are also significant in improving the
recognition of the tool-tissue interaction, with Attention
Tripnet’s improvement on A P;y7 relevant at a 0.005 signif-
icance level. Our best method (RDV) is more significant,
with a p-value far below 0.001.

In summary, we reject the null hypothesis Hy at a confidence
level of 5%, concluding that there is a significant difference be-
tween the proposed models and the alternative method.

6.2. Qualitative Results

6.2.1. Triplet Recognition with Weak Localization

The predicted class labels are obtained by applying a 0.5
threshold on the output probabilities of the proposed RDV
model. We present those predicted labels in Fig. 9, along-
side the localization of the regions of action obtained from the
weakly supervised learning (WSL) module of the network. This
localization, depicted by bounding boxes overlaid on the im-
age, shows the focus of the model when it makes a prediction,
thereby providing insight into its rationale. Those results are
solid arguments in favor of the model’s ability for spatial rea-
soning when recognizing surgical actions. This suggests that
the model can be further exploited for action triplet detection
and segmentation. We also provide a short video of this qualita-
tive performance in the supplementary material (also accessible
via: https://youtu.be/d_yHdJtCa98).

6.2.2. Qualitative Analysis of Top 5 Predicted Triplets

We also examine the top 5 prediction confidence of the pro-
posed models compared to baselines on random frames (Fig.
10). Fully correct predictions are signaled by the color green,

while red indicates errors on all three components. Other colors
indicate partially correct predictions. RDV and Attention Trip-
net outperform the baseline (MTL) and SOTA (Tripnet) each
time, with the two actions correctly recognized each time within
their top 5 predictions. Moreover, other actions in their top 5
have relevant components, showing these models’ understand-
ing of surgical actions by clustering triplets related to the per-
formed actions. More qualitative results on this are provided in
the supplementary material.

6.2.3. Attention Map Visualization

To understand the benefit of the CAGAM’s attention mech-
anism, we visualize its attention maps in Fig. 11. For each
input image, we randomly selected a few points (marked i €
[1,2,3,4]) in the images and reveal the corresponding attention
maps for the tool-tissue interaction captured in the CAGAM’s
position attention map. We observe that the attention module
could capture semantic similarity and full-image dependencies,
which change based on the contribution of the selected pixel
to the action understanding. This shows that the model learns
attention maps that contextualize every pixel in the image fea-
ture in relation to the action performed. For instance in the top
image: point 2, a pixel location on the instrument - grasper,
creates an attention map that highlights both the instrument and
its target - gallbladder. Indeed, the attention guidance intro-
duced in this model helps to highlight the triplet’s interest re-
gions while suppressing the rest. This effect is shown further in
the supplementary video.

7. Conclusion

We have presented methods featuring new forms of attention
mechanisms that surpass the state-of-the-art for surgical actions
triplet (instrument, verb, target) recognition. We first proposed
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Fig. 10: Qualitative results showing the top-5 triplet predictions for the best performing baseline, SOTA, and the proposed models (Best viewed in colour).

‘ Image

Point 1

Point 2

Point 3

Point 4

Fig. 11: Attention maps in the CAGAM module on the CholecT50 test set. The left column is the input image, the subsequent columns are the attention maps
captured by the different points as marked in the input image. The attention map shows the focus on the target (best seen in color).

anovel approach for attention intended for verbs and targets, us-
ing instrument class activation maps. We have also introduced a
novel hybrid attention mechanism that resolves component as-
sociation in triplets by leveraging multiple heads of both self
and cross attentions on the component features.

We have rigorously validated our performance claims on

CholecT50, a new large-scale endoscopic video dataset also
contributed in this work. We also discussed the benefits of the

proposed methods in terms of clinical significance. Qualitative
results suggest possible extensions to different tasks, including
automated surgical report generation and spatial action segmen-
tation.

While these initial results are encouraging, many challenges
remain. One is the scalability on unseen triplets which may
likely be tackled by zero-, one- or few-shot learning. Our re-
sults on rare triplets already hint at promising prospects for this
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approach. Inference speed is another challenge: increasing the
number of layers generally drives up the performance, but is
computationally very costly. Implementing a more lightweight
Rendezvous would help alleviate some of these costs.

One limitation of this work is that target localization using
the same weakly-supervised technique as for instruments is not
yet achieved. This is likely due to the target’s visibility not be-
ing the sole indicator for a positive binary label, both in the
ground truth annotations and the model predictions. We also
observed that it is not possible to recognize multiple instances
of the same triplet, e.g., two (grasper, grasp, gallbladder). This
is due to the nature of the binary presence annotation, which
does not provide an instance count for each unique triplet class.
Only actions performed with the grasper instrument can have
multi-instance occurrence in this dataset. Nonetheless, this does
not affect recognition but is considered a limitation in future
work on triplet localization, where multiple instances would
need to be detected differently.

With high-profile potential applications such as safety moni-
toring, skill evaluation, and objective reporting, our surgical ac-
tion triplet method, as well as the release of our dataset for the
2021 Endoscopic Vision challenge, bring considerable value to
the field of surgical activity understanding.

Future work will consider temporal modeling as some of the
action verbs could be better recognized by the temporal dynam-
ics of the tool-tissue interaction.
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