
HAL Id: hal-03765103
https://hal.science/hal-03765103v1

Submitted on 30 Aug 2022 (v1), last revised 19 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BLEPal
Mohammed Farouk Akli, Nedir Nour El Amine Boukerras, Nesrine Derradji,

Dyhia Laga, Mohammad Imran Syed

To cite this version:
Mohammed Farouk Akli, Nedir Nour El Amine Boukerras, Nesrine Derradji, Dyhia Laga, Mohammad
Imran Syed. BLEPal: Bluetooth Trace Synchronization and Merging Python Tool. [Technical Report]
Sorbonne Université UPMC. 2022. �hal-03765103v1�

https://hal.science/hal-03765103v1
https://hal.archives-ouvertes.fr

BluePal

Bluetooth Trace Synchronization
and Merging Python Tool

Mohammed Farouk AKLI,
Nedir Nour El Amine BOUKERRAS,
Nesrine DERRADJI, Dyhia LAGA

(All authors contributed equally to this work)

Supervisor : Mohammad Imran SYED

BluePal

Table of Contents

1. Introduction 3
1.1. Synchronization Process 3
1.2. Merging Process 5

2. How to use the tool 6
2.1. Libraries required 6
2.2. The configuration file file.cfg 6

3. Link for the tool 7

References 8

BluePal

1. Introduction 3

1. Introduction
The application we developed is written in python and shell script, it encompasses every aspect of
the process : from the capture procedure until the final result. Every capture result will be written
on a .csv file, the user would not need to do anything manually. Our application is based on an
automation philosophy (everything is happening in an automatic way transparent to the end user)
and a user friendly dialog inbox which will accompany the user for the whole process.
We decided to name it BluePal, this name is inspired by the tool WiPal [1] that was made for
Wi-Fi, as BluePal is a tool made for Bluetooth and pal means a friend so our application is
metaphorically a Bluetooth’s friend as it offers a trace completeness for the protocol so we can
higher the performances and reduce data loss when applying the synchronizing and merging
process.
To use BluePal, you will only need the python script of the application and a configuration file
named file.cfg. The python script of BluePal and the file.cfg need to be in the same directory.
The application uses either the nrf52840 dongle or the Ubertooth one dongle to capture the
Bluetooth traffic.

1.1. Synchronization Process
Our synchronization method is based on synchronizing an asynchronous environment.
Our environment is a set of Raspberry Pi 4 devices and Bluetooth sniffers (either Nordic or
Ubertooth), a Bluetooth headset and a PC. we establish our topology as following (caricatured by
a graph) :

Figure 1.1 : Capture’s graph

BluePal

1. Introduction 4

A timestamp is associated with every Raspberry + sniffer set, the timestamp of the sniffer will be
equal to the timestamp of the Raspberry, we would not assume that we are in a synchronous
environment (every sniffer can have its own timestamp).
Let us associate a timestamp to every sniffer of the four sniffers that we have at the exact moment
before launching the capture :
Timestamp of sniffer 1 : 𝑡

1

Timestamp of sniffer 2 : 𝑡
2

Timestamp of sniffer 3 : 𝑡
3

Timestamp of sniffer 4 : 𝑡
4

After launching the capture and the Bluetooth traffic, a specific frame has its own timestamp (the
instant the frame was captured by the sniffer). This timestamp will be, obviously, bigger than the
initial timestamp before launching the capture. Let us associate a timestamp to a frame of every
sniffer of the four sniffers that we have (for simplification we considered here a single frame for
every sniffer but in reality we have many frames within a sniffer’s trace) :
Timestamp of the frame of the sniffer 1 : 𝑡

1
 + 𝑥

1

Timestamp of the frame of the sniffer 2 : 𝑡
2
 + 𝑥

2

Timestamp of the frame of the sniffer 3 : 𝑡
3
 + 𝑥

3

Timestamp of the frame of the sniffer 4 : 𝑡
4
 + 𝑥

4

Now and by doing a subtraction between the two set of equations we will have a new timestamp, :
New frame’s timestamp of the sniffer 1 : 𝑡

1
 + 𝑥

1
 − 𝑡

1
 = 𝑥

1

New frame’s timestamp of the sniffer 2 : 𝑡
2
 + 𝑥

2
 − 𝑡

2
 = 𝑥

2

New frame’s timestamp of the sniffer 3 : 𝑡
3
 + 𝑥

3
 − 𝑡

3
 = 𝑥

3

New frame’s timestamp of the sniffer 4 : 𝑡
4
 + 𝑥

4
 − 𝑡

4
 = 𝑥

4

These new timestamps are absolute timestamps rather than the relative timestamps we had𝑥
𝑖

before the subtraction operation, they do not depend on the timestamp of the machine (the
timestamp of the sniffer).
We can now establish an order to these absolute timestamps, for example we can have this
following order :
𝑥

1
< 𝑥

2
< 𝑥

3
< 𝑥

4

So the frame with timestamp is the first captured frame of the experiment, the frame with the𝑥
1

timestamp is the second frame captured, the frame with the timestamp is the third frame𝑥
2

𝑥
3

captured and the frame with the timestamp is the last frame captured.𝑥
4

BluePal

1. Introduction 5

1.2. Merging Process
The merging process will lean on the extraction of unique frames. When the capture scenario uses
Nordic sniffers, we will remove the duplicates according to the couple [CRC,Channel Index].
When the capture scenario uses Ubertooth sniffers, we will remove the duplicates according to
the value of the CRC.
Here is an example of how the merging process works (example given for 4 traces) :

Figure 1.2 : Merging process

The final result will be the trace containing all four traces synchronized and merged (trace 1, 2, 3
and 4).

BluePal

2. How to use the tool 6

2. How to use the tool
On a console, type python3 bluepal.py then a dialog inbox will guide you through the whole
process1.

2.1. Libraries required
You need to have the following libraries installed:
● os
● pandas
● subprocess
● re
● signal
● time
● matplotlib.ticker
● tkinter
● sys
● csv

2.2. The configuration file file.cfg
the content of file.cfg :
Mac address of the bluetooth device / mac:address:of:your:bluetooth:device
IP address of the raspberries /
ip.address.Raspberry.1
ip.address.Raspberry.2
.
.
.
ip.address.Raspberry.n
Password of the raspberries /
password : password_1
password : password_2
.
.
.
password : password_n

1. It is necessary to use Python3.

BluePal

3. Link for the too 7

3. Link for the tool
The tool can be found on the following link:
https://gitlab.lip6.fr/syed/bluepal

BluePal

https://gitlab.lip6.fr/syed/bluepal

References 8

References
[1] Thomas Claveirole and Marcelo Dias de Amorim. 2010. WiPal: efficient offline merging of
IEEE 802.11 traces. SIGMOBILE Mob. Comput. Commun. Rev. 13, 4 (March 2010), 39–46.
DOI:https://doi.org/10.1145/1740437.1740443

BluePal

https://doi.org/10.1145/1740437.1740443

