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Abstract 

Diagnosing erythema migrans (EM) skin lesion, the most common early symptom of Lyme disease 

using deep learning techniques can be effective to prevent long-term complications. Existing works 

on deep learning based EM recognition only utilizes lesion image due to the lack of a dataset of 

Lyme disease related images with associated patient data. Physicians rely on patient information 

about the background of the skin lesion to confirm their diagnosis. In order to assist the deep 

learning model with a probability score calculated from patient data, this study elicited opinion 

from fifteen doctors. For the elicitation process, a questionnaire with questions and possible 

answers related to EM was prepared. Doctors provided relative weights to different answers to the 

questions. We converted doctors’ evaluations to probability scores using Gaussian mixture based 

density estimation. For elicited probability model validation, we exploited formal concept analysis 

and decision tree. The elicited probability scores can be utilized to make image based deep learning 

Lyme disease pre-scanners robust. 

Keywords : expert elicitation, erythema migrans, Lyme disease. 

1. Introduction 

Lyme disease is one of the most common tick-borne diseases that infects a large no of people 

each year in Europe and America [1]. Lyme disease is caused by pathogenic bacteria of the Borrelia 

burgdorferi sensu lato group and mostly manifests itself with erythema migrans (EM) skin lesions 

in the early stage [2,3]. The EM usually goes away after a few months or weeks, but the infection 

from Lyme disease spreads to harm either the nerve system, joints, heart, eyes, or skin[4]. In the 

early stage of Lyme disease, antibiotics can be an effective therapy option. Most North American 

and European standards employ a two-tier serology test to identify antibodies against Borrelia 

burgdorferi sensu lato in order to diagnose Lyme disease [5,6]. However, a serology test is 

recommended only in the absence of EM, because early serology can lead to false negatives and 
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has low sensitivity (40-60%) [5]. Borrelia burgdorferi sensu lato can also be detected directly via 

microscopy, culture, or PCR [6]. Bacterial culture the gold standard of microbiological diagnosis 

requires special media and laboratory expertise [5]. In practice, light microscopy based detection 

is not feasible [6]. PCR-based diagnosis is equally problematic, with a wide range of sensitivity 

[6]. Because of the limitations of direct detection technologies, physicians are not always able to 

employ them. Therefore, early detection of EM is critical for avoiding the long-term consequences 

of Lyme disease.  

Existing works on early Lyme disease prediction using artificial intelligence techniques only 

utilize images of EM skin lesions whereas doctors believe corresponding patient data should also 

be considered to strengthen the predictive performance [7,8]. Training a multimodal deep learning 

model utilizing both images and patient data requires a dataset of lesion images with associated 

patient data. Even though EM image datasets are available, creating a dataset with patient data 

linked with each lesion image would take much time.  

Expert opinion elicitation can be effective when high quality data is difficult to collect [9]. 

Expert opinion elicitation and aggregation processes can be classified into two categories: 

behavioral and mathematical approaches [10]. The behavioral approach tries to produce group 

consensus among experts whereas, the mathematical approach combines subjective probabilities 

from experts using mathematical methods (some form of averaging). Expert elicitation proved 

effective for medical diagnosis and decision making [9,11,12]. In this study, we elicited opinions 

from fifteen expert dermatologists to assist the image-based EM classifier with additional patient 

data. The traditional expert elicitation process of collecting probability estimates for all possible 

cases is time consuming and difficult for doctors. Therefore, we opted for a more relaxed approach 

of relative weight assignment to different answers to the questions and converted the doctor’s 

evolutions to EM probabilities utilizing Gaussian mixture based density estimation (described in 

Section 2.1). To validate the elicited probability model and explain its behavior to the experts we 

utilized formal concept analysis (described in Section 2.3) and decision tree (described in Section 

2.4). 

The rest of the paper is structured as follows: Section 2 provides the required theoretical 

background; Section 3 describes the expert elicitations process; Section 4 contains a discussion on 

the results obtained; finally, Section 5 provides concluding remarks. 

2. Background 

The required theoretical concepts to understand the rest of the paper are briefly described in the 

following subsections. 

2.1. Gaussian Mixture Model 

A Gaussian mixture model (GMM) is a probability density function represented as the weighted 

sum of component Gaussian densities  [13]. The mixture represents a normally distributed overall 

population whereas the components represent subpopulations within the whole population. For 

one-dimensional data, a GMM with 𝑀 components can be defined as: 

𝑓𝐺𝑀𝑀(𝑥) =  ∑ ∅𝑚

𝑀

𝑚=1

𝒩(𝑥 | 𝜇𝑚, 𝜎𝑚) (1) 
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where, ∅𝑚 is the mixture weight of 𝑚-th component 𝜅𝑚 satisfying ∑ ∅𝑚
𝑀
𝑚=1 = 1 and 

𝒩(𝑥 | 𝜇𝑚, 𝜎𝑚) is the distribution of a Gaussian component with mean 𝜇𝑚 and standard deviation 

𝜎𝑚  defined as: 

  

𝒩(𝑥 | 𝜇𝑚, 𝜎𝑚) =
1

𝜎𝑚√2𝜋
𝑒

−
1
2

(
𝑥−𝜇𝑚

𝜎𝑚
)

2

 (2) 

Expectation-Maximization, an iterative unsupervised learning technique can be used to 

determine the parameters of GMM [14]. Steps involved in Expectation-Maximization for 𝑛 data 

points 𝑋 = {𝑥𝑡|𝑡 = 1, … , 𝑛} are: 

 Guess initial values for 𝐺𝑀𝑀 parameters denoted by �̂�𝑚, �̂�𝑚, and ∅̂𝑚 respectively. 

 Expectation step: calculate 𝛾𝑡,𝑚, the probability of a point 𝑥𝑡 being generated by 𝜅𝑚 

𝛾𝑡,𝑚 =  
∅̂𝑚 𝒩(𝑥𝑡 | �̂�𝑚, �̂�𝑚)

∑ ∅̂𝑟
𝑀
𝑟=1 𝒩(𝑥𝑡 | �̂�𝑟 , �̂�𝑟)

 (3) 

 

 Maximization step: Update GMM parameters using the following equations: 

�̂�𝑚 =
∑ 𝛾𝑡,𝑚𝑥𝑡

𝑛
𝑡=1

∑ 𝛾𝑡,𝑚
𝑛
𝑡=1

  (4) 

�̂�𝑚 = √
∑ 𝛾𝑡,𝑚(𝑥𝑡 − �̂�𝑚)2𝑛

𝑡=1

∑ 𝛾𝑡,𝑚
𝑛
𝑡=1

  

(5) 

∅̂𝑚 = ∑
𝛾𝑡,𝑚

𝑛

𝑛

𝑡=1

  
(6) 

 

 Repeat Expectation and Maximization steps until the total likelihood 𝐿 converges, where 

𝐿 = ∏ 𝑓𝐺𝑀𝑀(𝑥𝑡)

𝑛

𝑡=1

 
(7) 

Information criterion tests like Akaike Information Criteria (AIC) [15] and Bayesian 

Information Criteria (BIC) [16] can be used to select an appropriate GMM by penalizing the 

number of free parameters to prevent overfitting. AIC and BIC can be defined as: 

𝐴𝐼𝐶 = 2𝑝 + 2 ln 𝐿 (8) 

𝐵𝐼𝐶 = 𝑝 ln 𝐿 + 2 ln 𝐿 (9) 

where 𝑝 is the number of free parameters. The preferred GMM is the one with minimum AIC and 

BIC values. 

2.2. Kernel Density Estimation 

Kernel density estimation (KDE) is a non-parametric way of estimating the probability density 

function of an independent and identically distributed random variable [17,18]. For 𝑛 data points 

𝑋 = {𝑥𝑡|𝑡 = 1, … , 𝑛}, KDE is calculated as: 

𝑓𝐾𝐷𝐸(𝑥) =  
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑡

ℎ
)

𝑛

𝑡=1

 (10) 
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where ℎ is the bandwidth and 𝐾 is the kernel function. If a Gaussian kernel function is used to 

estimate the density of univariate data then the bandwidth can be selected using Silverman’s rule 

of thumb [19] as shown in the following equation: 

ℎ = 0.9 min (𝜎,̂
𝐼𝑄𝑅

1,34
) 𝑛

−1
5⁄  (11) 

where 𝐼𝑄𝑅 is the interquartile range and �̂� is the standard deviation of the samples. 

2.3. Formal Concept Analysis and Concept Lattice 

Formal concept analysis (FCA) is a method of generating a formal concept hierarchy from a 

set of objects and their properties [20]. Each concept represents objects that share a particular set 

of attributes. FCA computes concept lattice, a directed, acyclic graph by hierarchically ordering all 

formal concepts derived from tabular input data.  

The notion of formal context is central to FCA. Formal context is a triple 〈𝑂, 𝑌, 𝐼〉  where 𝑂 is 

a set of objects, 𝑌 is a set of attributes, and incidence 𝐼 ⊆ 𝑂 × 𝑌 is a binary relation. A pair 〈𝐴, 𝐵〉 

is a formal concept of 〈𝑂, 𝑌, 𝐼〉 provided that  𝐴 ⊆ 𝑂, 𝐵 ⊆ 𝑌, 𝐴↑ = 𝐵, and 𝐵↓ = 𝐴 where  

𝐴↑ = {𝑦 ∈ 𝑌|𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜 ∈ 𝐴: 〈𝑜, 𝑦〉 ∈ 𝐼} and 𝐵↓ = {𝑜 ∈ 𝑂|𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦 ∈ 𝐵: 〈𝑜, 𝑦〉 ∈ 𝐼}. 

Formal concepts are ordered naturally by subconcept-superconcept relation defined as follows: 

〈𝐴1, 𝐵1〉 ≤ 〈𝐴2, 𝐵2〉  ⟺  𝐴1 ⊆ 𝐴2(⟺ 𝐵2 ⊆ 𝐵1) (12) 

For a formal context 〈𝑂, 𝑌, 𝐼〉 the set 𝔅(𝑂, 𝑌, 𝐼) of all formal concepts with the ordering shown in 

Eq. (12) is called the concept lattice. 

2.4. Decision Tree 

Decision tree is an approach of representing a classifier as a recursive partition of instance 

space using a set of splitting rules [21]. These rules are easy to visualize and interpret with tree 

diagrams. Decision tree is a directed tree with no incoming edges at the root node and each of the 

other nodes has just one incoming edge. A decision or leaf or terminal node is a node without 

outgoing edges. All other nodes are called test or internal nodes. The instance space is divided into 

two or more sub-spaces by each test node based on a discrete function of input attribute values. 

Each decision node is given a class that corresponds to the best suitable target value. Instances are 

classified according to the test results by navigating from the tree's root to a leaf. 

3. Elicitation Method 

The details of our expert elicitation process like expert recruitment, questionnaire preparation, 

experts’ opinion collection, and elicitation methods are described in the following subsections. 

3.1. Expert Selection 

The recruited experts are hospital practitioners who are infectious disease specialists or 

dermatologists working in reference centers for tick-borne diseases of France - Centres de 

Référence des Maladies Vectorielles liées aux Tiques (CRMVT) [22]. At a CRMVT steering 

committee meeting held in June 2021 with participants from all the reference centers, Professor 

Olivier Lesens (Infectious and Tropical Diseases Department, CRIOA, CHU Clermont-Ferrand, 

France) explained the importance of expert elicitation for calculating EM probability based on 
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patient data and requested the interested experts to participate in the elicitation process. Fifteen 

experts agreed to participate. The experts did not receive any monetary benefits for participating 

in the elicitation process. Appendix Table A1 in the Supplementary Data file available at the link 

mentioned in the data statement lists the reference centers and the number of experts participating 

in the elicitation process. 

3.2 Questionnaire and Experts’ Evaluation 

For the EM probability elicitation, a questionnaire was prepared based on questions about the 

context of onset and progression of the skin lesion that a physician usually asks when diagnosing 

EM. The questionnaire is based on a previous study concerning the collection of EM related data 

from rural areas of France [23].  The questionnaire was finalized through several meetings held in 

April 2020 among the doctors of CRMVT in Clermont-Ferrand and experts in tick ecology from 

the French national research institute for agriculture, food and the environment (INRAE) [24]. 

Experts who volunteered to participate in the elicitation process at the meeting in June 2021 agreed 

that there were many possible cases from the combination of the questions and answers, and it was 

time consuming and difficult for them to provide probability estimates for all those different cases.  

Therefore, experts agreed to independently assign relative weights to different possible answers 

associated with each question. The assigned weight values are in the range -1 to +3 (a higher value 

represents a higher contribution of the answer towards the possibility of the EM). The experts were 

contacted via email with detailed instructions to provide their weight attributions independently.  

Appendix Table B1 in the Supplementary Data file available at the link mentioned in the data 

statement lists the questions, answers, and weight attribution from the doctors.  

After receiving the weight attributions from all the experts, they participated in a meeting in 

November 2021 and agreed that fever, fatigue, faintness, and headache should contribute equally 

if one or more of these answers were present and the contribution should be the average of these 

four answers. Therefore, the four answers were replaced with one, and the possible cases reduced 

to 1,536 from 12,288 cases. This modification is shown in Table 1. 

3.3 Opinion Elicitation 

Following are some notations used in the rest of the manuscript: 

Set of doctors, 𝐷 = {𝑑𝑒|𝑒 = 1, … ,15} 

Set of questions, 𝑄 = {𝑞𝑖|𝑖 = 1, … ,6} 

Set of possible cases, 𝐶 = {𝑐𝑙|𝑙 = 1, … ,1536} 

Total number of answers corresponding to 𝑞𝑖  question =  𝑛𝑞𝑖
 

𝑗𝑡ℎ𝑎𝑛𝑠𝑤𝑒𝑟 corresponding to 𝑞𝑖 question, 𝑎𝑗,𝑞𝑖
= {

1, if the answer is true
0, otherwise

  

                                                                                                  where 𝑗 = 1, … , 𝑛𝑞𝑖
  

Weight assigned by  doctor 𝑑𝑒 to 𝑎𝑗,𝑞𝑖
 answer =  𝑤𝑑𝑒,𝑎𝑗,𝑞𝑖
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Table 1: Weight modified questionnaire and doctors’ weight attribution for erythema 

migrans. The assigned weight values are in the range -1 to +3 (a higher value represents 

a higher contribution of the answer towards the possibility of the erythema migrans). 𝑑1 

to 𝑑15 represents the doctors.  

Question Answer 

Weight Assigned by Doctors  

(Doctors’ Evaluation) 

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑8 𝑑9 𝑑10 𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 Average 

Other symptoms 

observed alongside the 

skin lesion (𝑞1) 

No (𝑎1,𝑞1
) 0 0 3 0 0 1 2 1 2 1 2 1 1 2 3 1.27 

Fever/ 

Fatigue/ 

Faintness/ 

Headache (𝑎2,𝑞1
) 

-0
.2

5
 

0
.2

5
 

0
 

0
.7

5
 

0
.7

5
 

0
.2

5
 

0
.7

5
 

0
.7

5
 

0
.7

5
 

1
 

1
 

0
.2

5
 

1
 

0
.2

5
 

0
 

0.5 

Joint pain (𝑎3,𝑞1
) 1 1 -1 2 2 1 1 1 1 1 1 1 1 0 0 0.87 

Itching (𝑎4,𝑞1
) -1 -1 -1 -1 1 -1 0 0 0 1 

-

0.5 
-1 -1 1 0 -0.3 

What was the 

maximum size of the 

red rash (𝑞2) 

< 1 cm (𝑎1,𝑞2
) -1 -1 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 1 -1 -0.67 

1 to 5 cm (𝑎2,𝑞2
) 1 1 1 0 1 0 1 1 2 1 1 1 1 2 1 1 

> 5 cm (𝑎3,𝑞2
) 3 2 2 2 3 2 3 2 1 3 2 2 3 3 3 2.4 

I do not know 

(𝑎4,𝑞2
) 

0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 

Is the size of the red 

rash increasing or has 

it gradually increased 

(𝑞3) 

Yes (𝑎1,𝑞3
) 3 1 3 3 3 3 3 3 2 3 3 3 3 3 3 2.8 

No (𝑎2,𝑞3
) 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 -1 -1 1 -1 -0.67 

I do not know 

(𝑎3,𝑞3
) 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.07 

Have you seen a tick 

bite on this red rash in 

the past 30 days (𝑞4) 

Yes (𝑎1,𝑞4
) 3 2 3 2 3 1 3 3 2 3 2 3 1 3 3 2.47 

No (𝑎2,𝑞4
) 0 0 0 0 0 1 0 1 0 0 

-

0.5 
-1 0 1 0 0.1 

Frequency of tick bites 

in the last 30 days 

before the appearance 

of the red rash (𝑞5) 

Never (𝑎1,𝑞5
) -1 -1 0 0 -1 0 0 0 0 0 -1 -1 0 -1 0 -0.4 

1 time (𝑎2,𝑞5
) 0 0 2 1 1 1 1 1 2 1 1 1 1 2 1 1.07 

2 to 5 times 

(𝑎3,𝑞5
) 

1 1 3 1 1 1 1 2 2 1 2 1 1 3 1 1.47 

> 5 times (𝑎4,𝑞5
) 2 2 1 2 2 1 1 2 2 2 3 1 1 3 2 1.8 

Outdoor activities in 

the last 30 days before 

the onset of the red 

rash (𝑞6) 

Yes (𝑎1,𝑞6
) 1 1 2 2 1 1 2 2 2 2 2 2 1 3 2 1.73 

No (𝑎2,𝑞6
) -1 -1 -1 -1 -1 0 -1 1 -1 -1 -1 -1 0 -1 0 -0.67 
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First, we summarized each of the 1,536 possible cases as a weight sum 𝑠𝐶𝑙
 as shown in Eq. 

(13): 

𝑠𝐶𝑙
= ∑ ∑ 𝑎𝑗,𝑞𝑖

× (
1

|𝐷|
∑ 𝑤𝑑𝑒,𝑎𝑗,𝑞𝑖

|𝐷|

𝑑=1

)

𝑛𝑞𝑖

𝑗=1

|𝑄|

𝑖=1

 (13) 

The set of case weight sum is defined as 𝑆 = {𝑠𝐶𝑙
|𝑙 = 1, … ,1536}. Then, we normalized each case 

weight sum with min-max normalization as shown in the following equation: 

�̃�𝐶𝑙
=  

𝑠𝐶𝑙
− 𝑚𝑖𝑛 (𝑆)

𝑚𝑎𝑥 (𝑆) − 𝑚𝑖𝑛 (𝑆)
 (14) 

The set of min-max normalized case weight sum is defined as �̃� = {�̃�𝐶𝑙
|𝑙 = 1, … ,1536}. We 

proposed three approaches to the experts to convert the normalized case weight sum to a probability 

score for EM. The following subsections explain the three approaches. 

3.3.1 Cumulative Probability from Density Estimate Based on GMM 

We modeled our normalized weight sum data density using a GMM with two components. 

The number of components was selected based on the intuition that there are two subpopulations 

within the data: one is the ill subpopulation and the other one is not ill subpopulation. The number 

of components was also supported by AIC and BIC values. Table 2 lists the selected parameters 

for the GMM.  

 

Table 2: Parameters of Gaussian Mixture Model used to model the density of min-max normalized 

weight sum of erythema migrans cases. ∅, 𝜇, and 𝜎 represent mixture weight, mean and standard 

deviation respectively. 

Name Components ∅1 ∅2 𝜇1 𝜇2 𝜎1 𝜎2 

Value 2 0.364801 0.635199 0.359548 0.572878 0.128782 0.156241 

 

The blue curve in Fig. 1 shows the estimated density function using GMM. We defined the 

cumulative probability [25] of a normalized case weight sum from the GMM density estimate as 

the probability of EM as shown in the following equation: 

�̂�𝐺𝑀𝑀(𝑥) =  ∫ ( ∑ ∅𝑚

2

𝑚=1

𝒩(𝑥 | 𝜇𝑚, 𝜎𝑚)) 𝑑𝑥
𝑥

−∞

 (15) 

3.3.2 Posterior Probability of a Case Belonging to the Ill Subpopulation of GMM 

The first and second components of our GMM are shown in Fig. 1 with green and orange dotted 

lines respectively. If we assume that the second component represents the ill subpopulation then 

the posterior probability of a normalized case weight sum belonging to the second component [13] 

can be defined as the EM probability as shown in the following equation: 

𝑝(𝜅2 | 𝑥) =  
∅2𝒩(𝑥 | 𝜇2, 𝜎2)

∑ ∅𝑚
2
𝑚=1 𝒩(𝑥 | 𝜇𝑚, 𝜎𝑚)

 (16) 
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3.3.3 Cumulative Probability from Density Estimate Based on KDE 

We used a Gaussian kernel with bandwidth, h=0.03676 on our 1,536 data points for the 

probability density estimation of the normalized weight sum variable as shown in Eq. (4): 

𝑓𝐾𝐷𝐸(𝑥) =  
1

1536 × 0.03676
∑

1

2𝜋
𝑒

−0.5(
𝑥−�̃�𝐶𝑙

0.03676 
)

21536

𝑙=1

 

(17) 

The red curve in Fig. 1 shows the estimated density function. We defined the cumulative probability 

of a normalized case weight sum as the probability of having EM as shown in the following 

equation: 

�̂�𝐾𝐷𝐸(𝑥) =  ∫ 𝑓𝐾𝐷𝐸(𝑥)𝑑𝑥
𝑥

−∞

 (18) 

4. Results and Discussion 

We calculated EM probability score for all possible cases using the three approaches described 

in section 3.3.1, 3.3.2, and 3.3.3 and presented the results with explanations to the experts in a 

meeting held in May 2022. Fig. 2 shows the EM probability plot for all the cases using the three 

approaches. In the figure blue and red lines represent the probability scores based on density 

estimates from Gaussian mixture model (approach 1) and kernel density estimate (approach 2) 

 

Fig. 1: Proposed approaches for expert opinion elicitation. GMM and KDE stand for 

Gaussian mixture model and kernel density estimation respectively. 
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respectively. The orange line represents probability scores based on the posterior probability of a 

case belonging to the second component i.e. the ill subpopulation of the Gaussian mixture model 

(approach 3). Results obtained from approach 1 and approach 2 are close because both of them are 

based on density estimates whereas, probability scores obtained from approach 3 are always higher 

than the other two approaches. Based on the results and explanations the experts came to a 

consensus on the use of approach 1 (described in section 3.3.1) mainly because the density estimate 

in approach 1 is smoother compared to approach 2 (described in section 3.3.2).  

To validate elicited model and explain its behavior to the experts first we used decision trees. 

For building the decision tree, we divided calculated EM probability scores into three categories: 

LOW (scores in the range [0, 0.33)), MEDIUM (scores in the range [0.33, 0.68)), and HIGH (scores 

in the range [0.68, 1]). Fig. 3 shows a pruned version of the decision tree for approach 1. In the 

figure, each node shows the majority category along with the percentage and number of cases 

belonging to each category. From the tree, we can see that the model assigns HIGH EM probability 

to cases whenever the first answer, “yes” to the third question, “Is the size of the spot increasing or 

has it gradually increased” is true. This behavior supports the doctors’ opinion because the first 

answer to the third question has the highest weight given by most of the doctors.  

To further explain the behavior of the model we utilized formal concept analysis (FCA) to find 

out questions and answers important for different probability groups. Fig. 4 shows a simplified 

FCA lattice view for the 162 cases belonging to the lowest probability score group in the range [0, 

 

Fig. 2: Elicited erythema migrans probability plot. Blue and red lines represents the probability 

scores based on density estimates from Gaussian mixture model and kernel density estimate 

respectively. Orange line represents probability scores based on the posterior probability of a case 

belonging to the second component i.e. the ill subpopulation of the Gaussian mixture model. 
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0.1) obtained from approach 1. In the figure, the top box of a node represents an attribute (answer) 

or a number of attributes, which are connected by lines, and the bottom box represents how many 

objects (cases) contain the corresponding attribute shown in the top box. In Fig. 4, we start with 

162 cases in the root node. At the first level, the number inside the bottom box of a node represents 

how many cases out of 162 cases contain the corresponding answer shown in the top box. For 

example, the “no” answer to the question “Outdoor activities in the last 30 days before the onset 

of the red spot”, 𝑎2,𝑞6
 is present in 145 cases. At the second level, each node represents how many 

cases contain two answers connected by a line. For example, 𝑎2,𝑞4
 and 𝑎2,𝑞6

 are jointly true in 128 

cases. The rest of the FCA lattice is organized similarly. We can see from the figure that the answers 

common to most of these cases are the ones having lowest assigned weights or the opposites of the 

answers having highest assigned weights by most of the doctors. 

The elicited EM probability scores for all possible cases, detailed decision tree, and FCA 

context files for all the probability score groups are available at the link stated in the data statement.  

The elicited EM probability score can be combined with existing image-only deep learning 

based EM diagnosis systems to make an effective Lyme disease pre-scanner. Dark skin is 

underrepresented in existing EM image datasets [7,8]. So, image-only analysis is not appropriate 

for a proper diagnosis of EM. We believe that combining the elicited probability score from patient 

data with image-based analysis can partially address this issue. 

 

 

Fig. 3: Pruned decision tree explaining elicited erythema migrans probability model behavior. 

Each node shows the majority category along with percentage and number of cases belonging 

to each category. Refer to table 1 for details about the questions and answers. The full tree is 

available at the link stated in the data statement.  
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5. Conclusion 

In this study, we successfully elicited opinions from fifteen expert doctors to create a model for 

obtaining EM probability scores from patient data. The elicited probability model will help address 

the data scarcity problem towards building an effective Lyme disease pre-scanner system. In the 

future, we will work with the experts on the most appropriate way of combining the elicited EM 

probability from patient data with probability estimate from deep learning based image classifier 

to make a robust pre-scanner for Lyme disease. 

Data statement 

The data that support the findings of this study are openly available at 

https://dappem.limos.fr/elicitation.html. 

 

Fig. 4: Formal concept lattice view for 162 very low probability score cases in the range [0,0.1). 

The top box of a node represents an attribute (answer) or a number of attributes, which are 

connected by lines, and the bottom box represents how many objects (cases) contain the 

corresponding attribute shown in the top box. Refer to table 1 for details about the questions 

and answers. 

Number of objects

Attribute/Number of attributes
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