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Building on Kirchhoff’s treatment of electrical circuits, Hill and Schnakenberg – among others – proposed a
celebrated theory for the thermodynamics of Markov processes and linear biochemical networks that exploited
tools from graph theory to build fundamental nonequilibrium observables. However, such simple geometri-
cal interpretation does not carry through for arbitrary chemical reaction networks because reactions can be
many-to-many and are thus represented by a hypergraph, rather than a graph. Here we generalize some of the
geometric intuitions behind the Hill–Schnakenberg approach to arbitrary reaction networks. In particular, we
give simple procedures to build bases of cycles (encoding stationary nonequilibrium behavior) and cocycles (en-
coding relaxation), to interpret them in terms of circulations and gradients, and to use them to properly project
nonequilibrium observables onto the relevant subspaces. We develop the theory for chemical reaction networks
endowed with mass-action kinetics and enrich the description with insights from the corresponding stochastic
models. Finally, basing on the linear regime assumption, we deploy the formalism to propose a reconstruction
algorithm for metabolic networks consistent with Kirchhoff’s Voltage and Current Laws.

CONTENTS

I. Introduction 2
A. Context and motivations 2
B. Main results and structure of the paper 3
C. Setup and notations 4

II. Noninteracting reaction networks 5
A. A handful of graph theory 5
B. From graph theory to algebra 6
C. A physical decomposition for affinities and

currents 7
D. Closed CRNs: connection to thermodynamics 10
E. Open CRNs: explicit chemostatting 10

III. Interacting reaction networks 12
A. Motivations 12
B. Construction of cycles and cocycles based on row

reduction 13
C. Geometry of hypergraphs 15

1. Cycles with weights 15
2. Integrating on the hypergraph 15
3. Cocycles on the hypergraph 16
4. Evolution of islands 17

D. Connection between stochastic dynamics and
thermodynamics 18
1. Closed systems 18
2. Open systems 19

E. Linear response for CRNs 19
1. Transient response 19
2. Steady-state response 20
3. Hidden fluctuation-dissipation symmetries 21

F. Application: linear-regime thermodynamically
feasible reconstruction of metabolic networks 21

∗ sara.dal-cengio@univ-grenoble-alpes.fr

IV. Outlook 23

Acknowledgments 24

A. Integration and differentiation on the networks of
chemical reactions 24
1. Noninteracting CRNs: integration on spanning

trees 24
2. Interacting CRNs: integration on multi-paths 26

B. Reversibility and the Wegscheider–Kolmogorov
condition 28

C. Effective Fokker–Planck and Langevin dynamics close
to an equilibrium point 31

D. Cycles, cocycles and oblique projectors 32

E. Proof of reconstruction feasibility 32

References 33

mailto:sara.dal-cengio@univ-grenoble-alpes.fr


2

I. INTRODUCTION

A. Context and motivations

Our understanding of nonequilibrium physics is built on
identifying the nontrivial forces which drive a system out of
equilibrium and the currents governing how energy is con-
sumed and dissipated – and this both inside the system and in
its interaction with the outside environment.

Perhaps the simplest example is that of a driven Brownian
particle moving on a ring. The system is described by the
Langevin equation ẋ(t) = F(x(t))+ η(t) for the particle’s posi-
tion x(t), where F(x) is the deterministic force and η(t) is the
thermal noise (white and Gaussian). The one-dimensional na-
ture of the problem makes it particularly easy to decompose
the force field into conservative and non-conservative contri-
butions: F(x) = −V ′(x) + f , where V(x) = V(x + L) is a
periodic potential and f is defined by f =

∫ L
0 dx F(x) with

L the ring length. The source of the drive is then identified
in the scalar parameter f , which characterizes irreversibility
and drives a net current on the ring (when f , 0) 1. For f = 0
the system relaxes, with a vanishing current, to an equilibrium
steady state governed by the Boltzmann probability distribu-
tion P(x) ∝ exp[−V(x)/T ] (with the temperature T identified
from the noise amplitude). Already in this simple example,
decomposing the force shows how topology plays a role: in
the absence of periodic boundary conditions the system can
not sustain a nonequilibrium steady state. It is the geometry
of the ring which supports a non-vanishing constant current.
As a matter of fact, the centrality of cycles to nonequilibrium
was manifest already in the early days of thermodynamics:
engines perform in cycles [4] and cycles are crucial in the op-
eration of molecular motors [5].

The model of the particle on a ring has arguably little rel-
evance in real-world settings. However, there are alterna-
tive scenarios where cycles are encountered naturally in link
with nonequilibrium. It is the case of chemical reaction net-
works (CRNs) [6–10], in particular biochemical networks,
such as those involved in gene regulation, cellular sensing and
metabolic functions of living systems. A chemical network
consists of a set of reactions involving chemical species. Each
reaction has its inherent chemical activity: it transforms (a
combination of) reactants into products giving rise to a net flux
of matter, named current, in response to an intrinsic chemical
force, named affinity. At equilibrium both the currents and

1 The current-force relation is found by solving the corresponding 1D sta-
tionary Fokker–Planck equation [1–3]: for f > 0 the steady current is
j∗ = L

/ ∫ ∞
0 dy

∫ L
0 dx exp

[
− f y + V(y + x) − V(x)

]
. We learn (i) that for

f → 0 the current goes to 0 (and therefore it makes sense to call this limit
equilibrium); (ii) That the current-force relation is complicated and highly
nonlinear; (iii) That the quantity j∗ f is nonnegative (second law).

the affinities vanish, which is the domain of standard ther-
modynamics. Thermodynamic feasibility then specifies that
a closed system, i.e. a system which does not exchange matter
(or energy) with the outside environment, always reaches an
equilibrium state determined by the initial conditions. There-
upon, external currents can be injected in the system through
external chemostats which then foster nonequilibrium behav-
ior. Let us consider for example a minimal model of glycoly-
sis [11] for the consumption of ATP in the cell:

∅
1
−−−⇀↽−−− Gly

Pyr
2
−−−⇀↽−−− ∅

Gly + 2ADP
3
−−−⇀↽−−− 2ATP + 2Pyr

ATP
4
−−−⇀↽−−− ADP

(1)

Here the first two reactions stand for the couplings with ex-
ternal chemostats, depicted with the symbol ∅. In the model,
the cell imports and expels glucose (Gly) and pyruvate (Pyr)
through the membrane in order to maintain their concentra-
tion levels. Within the cell (reaction 3), a molecule of Gly
is used to convert two molecules of low-energy adenosine
diphosphate (ADP) into two molecules of high-energy adeno-
sine triphosphate (ATP). The chemical energy stored in ATP
is then released during the spontaneous dephosphorylation of
ATP (reaction 4), and used to fuel the physiological activity
of the cell. One sees that whenever the four reactions are
performed in proportion (1, 2, 1, 2), the number of molecules
of each species is preserved. This is what in the literature
is called a chemical cycle [10, 12], that is, a sequence of
reactions which does not alter the overall state of the sys-
tem. The cycle’s preferential direction is the consequence of
chemostats – which sustain a net consumption of glucose, sup-
plied through nutrition, and a net production of pyruvate, ex-
pelled in the form of lactose. As a consequence, the cell is
maintained in a nonequilibrium state, consuming energy for
its metabolic activity.

Going back to where we started, we may ask what are the
conservative and the non-conservative forces in this case. The
presence of a chemical cycle here plays a role similar to the
periodic boundary conditions for the Brownian particle on a
ring. However, the analogy is hindered by the fact that inter-
actions in this case are inherently discrete and dependent on
the overall topology of the network. Thus, the challenge is
primarily conceptual: what does it mean to decompose chem-
ical forces into conservative and non-conservative contribu-
tions for a reaction network?

Based on works by Kirchhoff on electrical circuits, and Kol-
mogorov on Markov chains, Hill and Schnakenberg [6, 8, 13]
– among others – proposed a generic framework to describe
the source of irreversibility in the steady state as stemming
from chemical cycles. Analyzing the graph at a popula-
tion level (each node representing a given set of numbers of
molecules for all species), he put forward a method to identify
macroscopic currents and affinities. First, using the graph-
theory notion of spanning tree, he identified a fundamental
sets of cycles defined on the population graph. Then, he
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proved that chemical forces acquire a direct physical inter-
pretation when defined from those cycles.

In Ref. [14], one of us showed that, from the same notion
of spanning tree, the picture can be extended by considering
graph cocycles, a notion complementary to that of cycles and
related to it via graph-theoretical duality. Interestingly, the
notion of cocycle was the missing piece in Schnakenberg’s
analysis to understand the structure of chemical forces be-
yond steady state (i.e. so as to fully encompass the finite-time
dynamics). Using graph cycles and cocycles, affinities and
currents can be respectively decomposed into (i) conserva-
tive versus non-conservative affinities and (ii) transient versus
steady-state currents. The notion of cycle, familiar to the sta-
tistical physicist, has been exploited in a number application
of modern thermodynamics [15–19].

Albeit elegant and powerful, the analyses of Hill–
Schnakenberg and the one in Ref. [14] in practice apply only
to noninteracting networks which can be represented as sim-
ple graphs [20], for which a spanning tree can be constructed.
This is the case for instance of resistor (or flow) networks [21],
or unimolecular chemical networks [22], where each reaction
involves only two species [e.g. reaction 4 in Eq. (1)].

However, in real-world networks, such as the autocatalytic
networks involved in life functions [23], reactions typically
involve more than two chemical components [e.g. reaction 3
in Eq. (1)]. Such interactions give rise to nonlinearities at
the level of chemical concentrations, resulting in a spectrum
of dynamical behaviors not displayed by noninteracting net-
works. Furthermore, the non-pairwise nature of these reac-
tions make CRNs best represented as hypergraphs [24], that
is, generalized graphs where hyper-edges connect more than
two nodes (the uninitiated reader may refer to Figs. 6 and 7
for examples). Hypergraphs have recently emerged as a new
challenge in network science [25–27], and, contrary to simple
graphs, they currently lack a comprehensive theoretical un-
derstanding. In particular, no notion of spanning tree exists
for hypergraphs, precluding one to formulate a ‘geometrical’
analysis based on the graph cycles and cocycles we just de-
scribed. For this reason, the possibility of generalizing such
analysis to interacting networks has remained an open issue.

B. Main results and structure of the paper

In the present work, we generalize the geometrical anal-
ysis of Hill–Schnakenberg to the case of interacting reac-
tion networks, allowing one to identify their driving forces
and macroscopic currents – beyond the case of noninteract-
ing systems. Crucially, we propose a new notion of cycle
and cocycle, which does not rely on graph theory (and on
having a spanning tree), but follows from an alternative alge-
braic approach. This requires a conceptual shift: from graph-
theoretical objects to vectorial spaces and to (a special choice
of) their bases. We demonstrate how the newly defined cycles
and cocycles possess many of the features of the geometrical
counterparts. In particular, we show that, for linear networks,
they reduce to the cycles and cocycles defined from graph the-
ory, thus justifying keeping the same terminology.

A key step in the theory consists in analyzing the dependent
and independent degrees of freedom that the stoichiometric
matrix S, which prescribes the topology of the network, pos-
sesses. This allows one to identify a matrix T, central to our
theory, which connects to S via the following matrix relation:

−S⊤G⊤ =

(
0 1M
0 T⊤

)
. (2)

Linear algebra guarantees the existence of an invertible ma-
trix G satisfying this relation, together with the uniqueness
of the matrix T. The different actors of Eq. (2) all carry a
physical interpretation, which is discussed throughout the pa-
per. In particular, the integer M represents both the number
of independent reactions and independent species, the matrix
T contains the exact amount of information describing both
cycles and cocycles, while the matrix G allows one to connect
the chemical affinities to the thermodynamic potentials.

Notice that, for noninteracting networks, the matrix S coin-
cides with the incidence matrix relating the nodes and edges of
an oriented graph (see Fig. 1). Then, Eq. (2) possesses a geo-
metrical interpretation, with S⊤ being the discrete gradient on
the oriented graph and the matrix G⊤ being the correspond-
ing discrete integrator along a spanning tree (such description
will be detailed in the following). We extend this picture to
the case of interacting networks, by defining an integration
operator on the hypergraph through a geometrical notion of
escape routes. In this way, we are able to connect the notion
of reversibility, for the nonlinear dynamics, to a potential (or
integrability) condition for the chemical forces.

The notion of cycles and cocycles, now constructed via
Eq. (2), allow us to decompose affinities and current into
thermodynamically relevant contributions. Namely, for the
chemical affinities, we put forward a decomposition into con-
servative and non-conservative forces which resembles the
Helmholtz–Hodge decomposition of vector calculus in R3.
For the unfamiliar reader, we recall that Helmholtz–Hodge de-
composition of a vector field, F = −∇V + ∇ × A, provides, in
three dimensions, the corresponding separation of the force
into two components: (i) a gradient force that is conserva-
tive, (ii) a non-gradient force with zero divergence (i.e. of zero
total flux through any closed surface) and drives irreversible
behavior. We discuss the analogy with our decomposition
of chemical affinities and its implication for nonequilibrium
physics [28, 29]. A complementary decomposition for the
current is also introduced, in terms of (i) cycle currents which
survive in the steady state and (ii) cocycle currents, which are
transient and correspond to ‘tidal’ relaxation.

Throughout the paper, we put particular emphasis on the
notion of cocycle, which has been somehow overlooked in the
literature compared to that of cycle. Albeit less intuitive, the
notion of cocycle is fundamental to depict how relaxation oc-
curs in the system. In fact, it enables us to explore some direct
consequences of the formalism: the linear response of inter-
acting CRNs, which turns out to be controlled by the matrix T;
and the slow modes of non-linear relaxation, which are con-
trolled by the cocycles when a timescale separation occurs.

Finally, as a practical application of the formalism, we
consider the problem of thermodynamically consistent re-
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construction of the CRNs involved in various biochemical
processes, e.g. metabolism [30–37] (but other multi-omics
datasets could also be considered). The problem is, roughly,
the following: DNA sequencing grants knowledge of the en-
zymes possibly present in a cell, and enzyme specificity iden-
tifies the substrates (metabolites) that bind and interact. Thus
the stoichiometry of the metabolite network is known. How-
ever, the rates or even the directions of the reactions are not,
and one would like to have some principles to make informed
guesses about the overall metabolism, or to be able to move
in the metabolic landscape. Such landscape is constrained by
1) conservation of chemical elements, and 2) thermodynamic
feasibility. While the first is a simple linear constraint, the
second is non-linear, and it has proven difficult to implement
it in reconstruction algorithms [38–40].

While metabolic reconstruction is a much broader enter-
prise, dealing with further constraints [41] such as concentra-
tions [42], or biomass or other thermodynamic target func-
tions [43], abundance of conservation laws [44] or of en-
zymes, we trivialize it as the identification and navigation of a
landscape of possible currents with some known values of the
rates of some externally injected metabolites. Then our ap-
proach grants a simple linear-regime approximation of such
landscape that easily allows one to explore it. The best fea-
ture of this reconstruction method is that the only free pa-
rameters are some positive real numbers, one per internal re-
action. Once these parameters are given and some intuition
about which are the independent external currents is built, the
reconstruction is just a simple linear formula that allows one
to explore a bulk landscape of solutions.

The paper is organized as follows. For the sake of clarity,
we dedicate Part II to noninteracting networks, whose con-
figuration space is a graph, and review the analysis of Hill–
Schnakenberg, extending it to include finite-time relaxation
(in the spirit of Ref. [14]). In Secs. II A-II B we discuss
the complete mapping between the graph-theoretical analy-
sis and the algebraic framework. Then, In Secs. II D-II E
we connect to standard thermodynamics both for closed and
open (chemostatted) systems. In particular, we show how the
chemostatting procedure results in non-conservative chemical
affinities, thus driving the system out of equilibrium. Part II
has the primary goal to make the paper self-contained, pro-
viding as much physical intuition as possible and making it
accessible to a broad spectrum of readers. Any reader already
familiar with graph theory, chemical kinetics, network ther-
modynamics and all that, might directly go to Part III, the
real core of the paper. Therein, we show how to fully ex-
tend the theory to interacting CRNs. In Sec. III D we explain
how the stochastic level of description is related to thermo-
dynamics. In Sec. III E we study the linear response of in-
teracting CRNs and unveil a spectral symmetry between the
equilibrium-relaxation and the drive-steady state responses.
Finally, in Sec. III F we apply the formalism to the problem
of metabolic reconstruction and propose an algorithmic-like
procedure to find feasible values for the internal currents in
metabolic networks. Sec. IV contains our final remarks.

C. Setup and notations

In this paper we work with CRNs with mass action kinet-
ics. More precisely, we consider a dilute, well-stirred mixture
of N chemical species interacting through R reactions. We
group the chemical species in the vector X = (X1, ..., XN)⊤

and for each reaction ρ we write the corresponding stoichio-
metric equation as

ν+ρ · X
k+ρ
−−−⇀↽−−−

k−ρ
ν−ρ · X , (3)

where the vectors ν+ρ and ν−ρ contain the numbers of par-
ticles per species being consumed and produced by reaction
ρ, and · is the scalar product. Each reaction is strictly re-
versible, that is, can occur both in the forward and backward
direction with reaction rate constants k±ρ > 0. Thus, for each
reaction we introduce a pair of velocities λ±ρ (x) describing the
rate of change of the chemical concentrations x = (x1, ..., xN)⊤

in the corresponding direction. For large number of particles
(i.e. negligible fluctuations), the velocities are proportional to
the concentrations of the species partaking to the reaction ±ρ,

λ±ρ (x) = k±ρ xν
±ρ

∀ρ , (4)

with the notation convention ab =
∏

i abi
i . Then, we define the

net current Jρ of reaction ρ as the difference between the two
reaction velocities

Jρ(x) = λ+ρ (x) − λ−ρ (x) . (5)

The dynamical evolution of the concentration vector x is given
by a deterministic rate equation:

d
dt

x(t) = SJ
(
x(t)

)
, (6)

where S is the stoichiometric matrix, of dimensions N × R,
whose columns describe the net stoichiometry of each reac-
tion Sρ = ν−ρ − ν+ρ. As such, S encodes the topology of the
network, and acts as a discrete divergence in Eq. (6), which
can be seen as a continuity equation. Finally, for each reac-
tion ρ we introduce the chemical affinity Aρ defined as:

Aρ(x) = log
λ+ρ (x)

λ−ρ (x)
= log

(k+ρ
k−ρ

x−Sρ
)
. (7)

The following constitutive equation between current Jρ and
conjugated affinity Aρ holds:

Jρ(x) = λ+ρ (x)
[
1 − exp

(
−Aρ(x)

)]
, (8)

which quantifies the chemical drive, i.e. how an imbalance in
the concentrations of reactants and products results in a net
reaction current.

We highlight that, although the deterministic rate equa-
tion (6) applies only in the infinite system-size limit, there
exists, underlying, a microscopic (molecular) and stochastic
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FIG. 1. Example of graphical representation for a noninteracting re-
action network of the type of Eq. (9). (a) The stoichiometric matrix
of a noninteracting network is an incidence matrix describing the re-
lation between the species/nodes and the reactions/edges. Each col-
umn Sρ has exactly a +1 entry corresponding to the species produced
by the reaction ρ and a −1 entry corresponding to the species con-
sumed by the reaction ρ. (b) Accordingly, one can represent each
column of S as an edge between a source node s(ρ) and a target node
t(ρ). (c) By doing so for all the reactions in the network, one obtains
a planar graphical representation where each node is a species and
each edge is a reaction. Since the reactions are reversible, the orien-
tation of the edges is conventional.

level of description where individual molecules transform one
into each other, with transition rates κ±ρ that are directly re-
lated to the reaction rate constants k±ρ in Eq. (3). Namely,
for every reaction ρ, reactants transform into products with a
transition rate κ+ρ (resp. κ−ρ ) in the forward (resp. backward)
direction, with κ±ρ = Ω

1−
∑

i ν
±ρ
i k±ρ (where Ω is the system vol-

ume – see Appendix B for a complete treatment). As it will
appear, several of our results also apply to this stochastic level
of description.

II. NONINTERACTING REACTION NETWORKS

We dedicate this section to noninteracting networks where
each reaction involves a single molecule converting from one
species to another:

Xi

k+ρ
−−−⇀↽−−−

k−ρ
X j . (9)

In this case the stoichiometric matrix S takes the form of an
incidence matrix, namely:

Siρ =


−1 if i is the species consumed by ρ
+1 if i is the species produced by ρ

0 otherwise.
(10)

We first consider isolated systems, and the description of
chemostatted open systems is done in Sec. II E. The objective

of this first part is to relate the physical, algebraic and graph-
theoretical pictures underlying such set of reactions, in view
of extending these to the case of interacting CRNs (as done
in Sec. III). We adopt in this section the language of chemi-
cal reactions, but Eq. (9) also describes a Markov chain be-
tween states labeled by the Xi’s (this is one of Schnakenberg’s
standpoints). The implication of our results in the language of
Markov chains is detailed in Sec. IV.

A. A handful of graph theory

Noninteracting CRNs like Eq. (9) admit a graphical repre-
sentation in terms of nodes (or vertices) and edges (or links):
the incidence matrix Eq. (10) describes the topology of an
oriented graph G where each reaction ρ is a two-ended edge
pointing from a source node s(ρ) to a target node t(ρ), and
each node represents a chemical species (see Fig. 1 for an ex-
ample). Without loss of generality, we consider simply con-
nected graphs. We now present the building blocks used in
the present section, referring the reader to Fig. 2 for illustra-
tions. Following the Hill–Schnakenberg approach [6, 8, 13],
we introduce the concept of spanning tree, defined as a con-
nected subgraph of G, containing every node but no closed
paths (see Fig. 2b). Clearly in general there are several span-
ning trees and their number depends on the topology of G. We
fix one that we call TG. Choosing TG corresponds to splitting
the edges of G into edges that are excluded from the spanning
tree and edges that belong to it. In graph theory [20], these
distinct edges are respectively named chords and cochords 2

and we associate them with two indices, α < TG spanning the
set of chords and γ ∈ TG spanning the set of cochords.

Adding a chord α back in TG generates a closed path. Re-
moving a cochord γ from TG generates a cut, i.e. a splitting
of the nodes of G into two disconnected islands/components
(see Fig. 2). Such closed paths and cuts can be given an ori-
entation: that of the closed path prescribes the direction of
going along it; and that of the cut is a choice of source and
target among the two disconnected islands. We thus define
the cycle C(α) as the closed path generated by restoring the
chord α into TG, and oriented in the same direction as the
generating chord α (Fig. 2b). We define the cocycle C(γ) as
the set of edges that reconnect G after removing γ from TG.
Conventionally, the source island is chosen to be the island
containing the source node s(γ) (Fig. 2c). Notice that, if the
cochord γ is a bridge, i.e. if it does not belong to any closed
path, the corresponding cocycle contains only the cochord γ.
This occurs when the reconnection of G is obtained by rein-
troducing γ only. On the other hand, if the cochord γ belongs
to one (or more) closed path in G, the corresponding cocy-
cle contains all the chords associated with those closed paths.
Namely, for any pair of chord and cochord (α, γ) we have that
γ ∈ C(α) ⇐⇒ α ∈ C(γ), with the pair of edges (α, γ)
oriented parallel to each other in C(γ) and antiparallel (head-
tail orientation) in C(α). This encodes the fact that whenever

2 Notice that the mapping of G to the dual graph G∗ in graph theory corre-
sponds to the mapping of chords to cochords and vice-versa.
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FIG. 2. A summary of the notions from graph theory which are discussed in the text. (a) Example of an oriented graph G obtained from
the stoichiometric/incidence matrix S of a noninteracting CRN: each node represents a species and each edge a reaction. (b) A spanning tree
TG, here represented with blue-marked edges, is obtained by pruning edges from the original graph so as to remove every closed path (while
keeping a connected tree). (c) Picking TG corresponds to (a choice of) splitting of the edges in G between the cochords (in blue), forming TG,
and the chords (in red). The set of chords is spanned by the index α and the set of cochords by the index γ. Cochords like γ′ are named bridge
as they do not belong to any closed path, in contrast for instance to the cochord γ which belongs to two closed paths. (d) Reintroducing a
chord α into the spanning tree generates a cycle C(α) which is oriented according to the orientation of the chord α. By construction, each cycle
only contains a single chord (the generating one). (e) The removal of a cochord γ from the spanning tree generates a cut, i.e. a splitting of the
full graph in two disconnected islands/components. In particular, we name ‘source island’ (resp. ‘target island’) the component containing the
source node s(γ) (resp. target node t(γ)) of the generating cochord. This allows one to establish an orientation of the cut. (f) The cocycle C(γ)
is defined as the set of edges that reconnect the source island to the target island after removing the cochord γ. In the example it has three
elements: the cochord γ and the two chords associated to cycles that contain γ. All the three edges are oriented parallel to the cochord γ, in
order to connect the source to the target.

γ ∈ C(α), the cycle C(α) possesses nodes both in the source
and in the target of the cut corresponding to the cocycle C(γ),
and the edges of this cycle must present a zero flux in total be-
tween source and target. We stress that this ‘duality’ property
between C(α) and C(γ) is non-trivial, and its manifestation
will be met in multiple forms in the following 3.

Cocycles and cycles are the central graph-theoretical ingre-
dients of this paper. In the following, they will serve as a
basis to decompose the chemical forces governing the reac-
tions of Eq. (9) into conservative and non-conservative forces,
in analogy with the Helmholtz–Hodge decomposition in con-
tinuous space. Before detailing how cycles and cocycles are
algebraically related to S, we explain how they are physically
meaningful. A cycle is a closed path in the space of reac-
tions. As such, it corresponds to a sequence of transforma-
tions which brings a molecule back to its original state/node.
One already sees the analogy with the chemical cycles defined

3 A proof of this property can be found in §2-2 of Nakanishi’s book [20].
Anticipating on algebraic notions, it encodes that a same matrix T describes
both the dependencies between reactions and the cycles of CRNs; in this
framework, a purely algebraic proof of this can be found at the end of our
Appendix A 1.

in the introduction. In the spirit of Hill–Schnakenberg’s the-
ory, we will use them to characterize nonequilibrium steady
states. The interpretation of cocycles is less intuitive but will
play a central role. Those are sets of reactions associated to a
binary splitting of the system into two separate sub-systems;
as will become clear in the following sections, they are asso-
ciated (i) to fluxes of matter with no circulation, relating to the
modes of relaxation of the dynamics, and (ii) to conservative
chemical forces, that ‘derive’ from a potential.

B. From graph theory to algebra

We now explain how to build an alternative characterization
of cycles and cocycles by means of linear algebra. Namely,
one associates to cycles and cocycles two families of vectors
which not only retain the same properties as on the graph but
also, algebraically, occur to be bases of two complementary
(real valued) vector spaces,

Ker S ⊥ ImS⊤, (11)
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namely the kernel Ker S and the coimage Im S⊤ of the stoi-
chiometric matrix.

To start with, we count the number of independent degrees
of freedom. We know from the graph construction that the
total number of cycles and cocycles is equal to the number of
reactions/edges R and, likewise, to the number of columns of
S. The latter is in turn related to the dimensions of the image
and kernel of S via the rank-nullity theorem:

R = rank S + dim Ker S . (12)

It is known that the rank M of the incidence matrix of any con-
nected graph is N − 1 4 with the matrix possessing a sole left
nullvector ℓ0 = (1, 1, · · · , 1). This reflects the fact that the sum
of the entries in any given column of S is zero. Physically, ℓ0
has the status of a mass conservation law and one verifies that
the dynamics in Eq. (6) indeed conserves the quantity ℓ0 · x(t):
in a closed system, i.e. in the absence of fluxes in and out of
the system, Lavoisier’s law of mass conservation is satisfied.
Algebraically, the N species hence present M = N − 1 inde-
pendent degrees of freedom. Accordingly, one can use Euler’s
formula together with Eq. (12) to relate the number of cycles
and cocycles to the fundamental subspaces of S: one finds
that the cycles are in number equal to the dimension of the
kernel, dim Ker S = R − M; and that the cocycles are in num-
ber equal to M = rank S, the number of independent columns
of S (i.e. independent reactions).

In the previous section we introduced two indices, α and
γ, to span the cycle and cocycle sets respectively. The same
labeling can be introduced for the columns of S. From the
definition of TG, the M columns labeled with γ are (a choice
of) linearly independent columns of S. For convenience, we
order them in such a way that 1 ≤ γ ≤ M and M + 1 ≤ α ≤
R. Then, we introduce two families of column vectors in RR,
respectively denominated {cα} and {cγ} and defined as:

(
..., cα, ...

)
=

(
−T
1R−M

)
,

(
..., cγ, ...

)
=

1M

T⊤

 . (13)

Here 1n is the n × n identity matrix and T is a M × R − M
rectangular matrix defined from the graph G as:

Tγα =


+1 , if cochord γ ∈ C(α) and ∥ to the chord α
−1 , if cochord γ ∈ C(α) and ∦ to the chord α
0 , otherwise,

(14)
where ∥ (resp. ∦) indicates that edges share (resp. do not share)
the same orientation. As we now explain, the {±1} compo-
nents of the vectors defined in Eq. (13) correspond to the ori-
ented edges that compose the graph-theoretical cycles and co-
cycles defined in the previous paragraph. Indeed, the vector

4 Indeed, from the rank-nullity theorem applied to S⊤, one has rank S =
rank S⊤ = N − dim Ker S⊤ = N − 1 since dim Ker S⊤ = 1, as indeed
Ker S⊤ is spanned by ℓ⊤0 = (1, · · · , 1)⊤. It contains no other independent
vector: ad absurdum, if such a vector would exist, one could build, by
linear combination with ℓ⊤0 , a non-zero vector ℓ⊤ ∈ Ker S⊤ containing a
0 component ℓi = 0; this is impossible, since using ℓS = 0 by recursion
along the connected graph G starting from node i, we find ℓ j = 0,∀ j. See
also for instance Ref. [45].

cα contains a non-zero entry for any edge that belongs to the
cycle C(α): cαρ , 0 if and only if ρ ∈ C(α). By construction,
cαα′ = δαα′ since in the chord set only the generating chord
α belongs to C(α) and dictates its orientation. (Here and be-
low, δi j denotes the Kronecker delta.) Analogously, the vector
cγ contains non-zero entries for any edge that belongs to the
cocycle C(γ), such that cγρ , 0 if and only if ρ ∈ C(γ). By
construction, cγγ′ = δγγ′ since the only cochord contained in
C(γ) is the generating one. Albeit not obvious, the same ma-
trix T (up to a sign) controls the composition of both cycles
and cocycles, as expressed by Eq. (13). This is the algebraic
encoding of the duality discussed in the previous section.

Due to the identity matrices in Eq. (13) all vectors cα and cγ
are linearly independent and one easily checks that they span
orthogonal subspaces, since:

cγ · cα = 0 ∀ γ, α . (15)

Furthermore, the geometric construction ensures that the vec-
tors cα belong to the kernel of S, that is∑

ρ

Siρ cαρ = 0 ∀α, i . (16)

This represents the fact that any node i in a cycle has exactly
one incoming and one outgoing edge. As a consequence, cy-
cles and cocycles form a basis for, respectively, the kernel of
S and its orthogonal complement Im S⊤, i.e. the coimage of
S. This is the algebraic interpretation of cycles and cocy-
cles, which complements their definition from graph theory.
Likewise, a vectorial representation holds for the chords and
the cochords. Those are the canonical vectors eγρ = δγρ and
eαρ = δαρ in RR. All in all, we have identified two alternative
bases for RR, that we can merge in the following two matrices:

(
eγ, eα

)
=

(
1M 0
0 1R−M

)
,

(
cγ, cα

)
=

(
1M −T
T⊤ 1R−M

)
. (17)

The left-hand matrix is the canonical basis in RR obtained
from the chords/cochords vectorial representation. The right-
hand matrix is the non-orthogonal basis formed by the vecto-
rial representation of cycles and cocycles. One easily verifies
the orthogonality relations:

eα · cα
′

= δαα′

eγ · cγ
′

= δγγ′ .
(18)

For convenience, we will call cycles (resp. cocycles) both the
vectors {cα} (resp. {cγ}) and the graph-theoretical objects de-
fined in the previous paragraph, as they are equivalent. We
designate by chemical cycles the space generated by the cα’s.

C. A physical decomposition for affinities and currents

Equipped with both the geometrical and the algebraic
frameworks, we now turn our attention to their use to represent
the currents J and the affinities A in noninteracting CRNs.
Those are the vectors defined in Eqs. (5)-(7) and that control
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the dynamics and the thermodynamics. Following Ref. [14],
we introduce a decomposition of the microscopic affinities
A ∈ RR in terms of cocycles and chords as:

A =
∑
γ

Ac
γc
γ +

∑
α

Ae
αe
α . (19)

Notice that this decomposition is not orthogonal since cγ ·eα ,
0. Nevertheless, it bears a clear physical interpretation. As we
will show, the first term in Eq. (19) embeds the conservative
part of A, while the second term contains the non-conservative
part. As such, Eq. (19) can be viewed as a generalization
of the Helmholtz–Hodge decomposition of the affinities on
a graph. In continuous space, a test for conservativeness is
Stokes’ theorem, which states that the circulation – the line
integral along any closed path – of a conservative force field
vanishes. Consider now a generic closed path defined on the
graph. Any such path can be expressed as a linear combina-
tion of the basis of cycles, as it belongs to Ker S since apply-
ing its reactions leave the system invariant 5. Thus to compute
the circulation of A it is sufficient to compute its scalar prod-
uct with the cycles cα’s. Using the orthogonality conditions
Eqs. (15) and (18), one gets:

cα · A = Ae
α ∀α . (20)

Thus, the coefficient Ae
α corresponds to the affinities integrated

along cycle cα, and quantifies the deviation from Stokes’ theo-
rem. One remarks that the cycle affinities {Ae

α} do not depend
on the system concentrations [13]: They constitute a set of
parameters that are intrinsic to the dynamics and quantify the
nonequilibrium drive. We express the conservative condition
for A as the requirement for all coefficients Ae

α to vanish:

cα · A = Ae
α = 0 ∀α , (21)

which is an instance of Kirchhoff Voltage Law (KVL) in elec-
tric circuits [13]. Let us assume for a moment that A is con-
servative and analyze what it means algebraically and geomet-
rically. Algebraically, the conservative condition Eq. (21) is
equivalent to A ∈ (Ker S)⊥ = ImS⊤ [see Eq. (11)], i.e. to the
potential condition ∃V : A = −S⊤V. Noting that ImS⊤ is the
space spanned by the cocycles, these conditions are encoded
in the decomposition of Eq. (19) which, in this case, reduces to
A =

∑
γ Ac
γcγ with the affinity being a conservative force with

zero circulation. Since cocycles are a basis for Im S⊤, one can
interpret S⊤ as a discrete ‘gradient’ on the graph, with the co-
efficients Ac

γ = eγ · A corresponding to local potential drops
along each cochord. Here the main difficulty to solve for the
potential V in A = −S⊤V is the non-invertibility of S, which
prevents the identification of a discrete ‘integrator’ associated
to S⊤. Once again, graph theory comes in handy. Upon fix-
ing arbitrarily a reference root node, we orient all edges in
TG towards it and define ∀i the subset U(i) containing all the
nodes that are upstream the node i along the spanning tree,
including i itself; also, we number the reactions starting from

5 Notice that a closed path may pass through bridges, but since any bridge
must be crossed an even number of times in opposite directions along such
path, the bridges do not contribute.

FIG. 3. (a) Spanning tree for the example of CRN in Fig. 1 where
we have picked node 1 (red) as the root and oriented all edges to-
wards it. The enumeration of the nodes (in black) and the edges
(bold blue) follows the natural convention detailed in Appendix A.
It entails a simple one-to-one correspondence between the nodes j ,
root (in black) and the cochords γ ∈ T (G): namely, ∀ j , root ∃γ
s.t. j = γ + 1 = s(γ). (b) The N × N matrix G for the aforemen-
tioned spanning tree, constructed as detailed in the main text. The
first line and first column (in red) refer to the root and reflect the fact
that we have oriented all the edges towards it. As a consequence,
all the nodes , root are upstream to it, hence the first line full of
one’s. (c) The matrix G⊤ presents the low triangular structure of an
integral operator on the spanning tree. The first column (in red) co-
incides to the mass conservation law ℓ0 and the zeroes in the first line
(red) make that the potential of the root defined from Eq. (23) is zero:
Vroot = 0. (d) The last M = N − 1 columns of G⊤ are in one-to-one
correspondence with the M cocycles. In particular, one reads from
the +1 entries of the column j = γ+1 the source island of the cocycle
C(γ). For example, if we remove the cochord γ = 2 from the span-
ning tree in panel (a), we generate a cut with the nodes 3 and 4 being
completely disconnected from the rest of the graph. Algebraically,
the appearance of a source island corresponds to the emergence of a
new conservation law. Indeed the last M columns of G⊤ correspond
to the conservation laws obtained by removing the cocycles.

the root (see Appendix A for details). Thus, we introduce the
N × N square matrix G defined as

Gi j =

{
1 , if node j ∈ U(i)
0 , otherwise. (22)

which, is invertible. See Fig. 3 for an example. In Appendix A
we prove that the matrix G⊤ then takes the form of a lower
triangular integration operator on TG: namely, if A is conser-
vative, a solution to A = −S⊤V is given by the matrix G⊤ in
the following way. For an arbitrary affinity vector A, let us
define a potential Vi on each node from the set of coefficients
Ac
γ as:

Vi[Ac
γ] =

∑
1≤γ≤M

(
G⊤

)
i s(γ)

Ac
γ =

∑
1≤γ≤M

Ac
γ δi∈U(s(γ)) . (23)

The sum in Eq. (23) runs over all the edges in TG. Using the
definition of G in Eq. (22) one sees that, for fixed i,

∑
j
(
G⊤

)
i j
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runs over all the nodes which have i among their upstream-
ers. Moreover, for every node j, except the root, there exists
exactly one γ such that j = s(γ) = γ + 1. Thus, the sum in
Eq. (23) runs over the unique path on T (G) between node i
and the root. Hence, it corresponds to a discrete integration of
the cochord affinities Ac

γ along the spanning tree. Notice that,
from Eq. (23), the potential of the root is zero since the root,
by convention, only has incoming edges. This means that the
potential in Eq. (23) is uniquely defined up to a constant shift
(fixed by Vroot = 0), in analogy to the constant of integration
in standard calculus. Accordingly, the coefficients Ac

γ are ex-
pressed as a local potential difference:

Ac
γ = Vs(γ) − Vt(γ) = −

(
S⊤V

)
γ
. (24)

Eqs. (24) and (20) provide a direct physical interpretation for
the set of affinity coefficients Ac

γ and Ae
α in Eq. (19). The for-

mer are the conservative affinities expressed as a discrete po-
tential difference along the corresponding cochord. The latter
are the non-conservative affinities expressed as the non-local
integration of the full affinity along the cycles. As such we re-
fer to them as macroscopic affinities, in contrast to the affini-
ties Aρ defined for each reaction by Eq. (7).

Notably, the matrix product S⊤ G⊤ takes the form (see Ap-
pendix A for a proof), discussed in the introduction,

−S⊤ G⊤ =

(
0 1M
0 T⊤

)
(25)

where the first column is full of zeroes and the matrix T is
the same matrix as defined in Eq. (14). This special struc-
ture encodes the fact that the stoichiometric matrix is not full-
rank, but it contains some built-in redundancy. The M × M
square identity matrix represents the inversion procedure be-
tween S⊤ and G⊤, illustrated in Eqs. (23)-(24). The first col-
umn (0 . . . 0)⊤ reflects the existence of the conservation law
ℓ0 and the T matrix reflects the interdependence among reac-
tions. Namely, only M out of the R columns of S are linearly
independent while the remaining columns, labeled with α and
associated to the cycles cα, can be obtained as a linear com-
bination of the former. This is what the matrix T encodes:
denoting by SM the first M (independent) columns of S and
Sdep the last ones (corresponding to R − M dependent reac-
tions), one reads from Eq. (25) that Sdep = SMT. The relation
in Eq. (25) is key in our analysis because it lies at the core
of its extension from noninteracting to interacting CRNs, pre-
sented in Sec. III.

Notice also that the non-zero columns of the right-hand
side (r.h.s.) of Eq. (25) correspond precisely to the cocycle
basis [Eq. (13)] for the conservative affinities ∈ ImS⊤. This
means that the columns of G⊤, except the first one associated
to the root, can be seen as the M = N − 1 potential landscapes
which, upon ‘differentiation’ via S⊤, give the cocycle vectors
cγ’s. We thus define the potential vector vγ = (G⊤)s(γ), where
(G⊤)s(γ) indicates the column s(γ) of G⊤. By construction,
cγ = −S⊤vγ and the entries of vγ are only zeroes or ones, so
that vγ is a characteristic potential landscape defined on the
nodes of G. It is in fact characteristic of the cut generated by

the removal of the cocycle cγ, as discussed previously. In par-
ticular, the target island, containing the root, is the sub-graph
held at zero potential while the source island, corresponding
to the +1 entries in vγ, is held at unit potential (see Fig. 3d).

Let us now introduce the complementary decomposition for
the vector of currents J ∈ RR in terms of cochords and cycles:

J =
∑
γ

Je
γe
γ +

∑
α

Jc
αcα . (26)

Once again, one can identify an analog of it for vector cal-
culus in continuous space. Any cocycle is associated with a
cut of the full graph into two sub-graphs, in the same way as
a closed surface splits R3 into an inner and an outer region.
In particular the cocycle cγ generates a splitting of the graph
into a source island, the sub-graph containing the source node
s(γ), and a target island, the sub-graph containing the target
node t(γ) (see Fig. 2c). By construction, any flux between the
source and the target must flow through the cocycle itself. If
we take the scalar product between Eq. (26) and a cocycle cγ
one gets:

cγ · J = Je
γ ∀γ . (27)

Thus, the coefficient Je
γ in the proposed decomposition rep-

resents the total current flowing from the source to the target
along the corresponding cocycle cγ. The scalar product in
Eq. (27) corresponds to a surface integral, i.e. a ‘flux’ across
the ‘boundary’ of the source. Using the definition of vγ, one
has

cγ · J = (−S⊤vγ) · J = −vγ · (SJ) , (28)

where on the r.h.s. we recognize the graph divergence SJ en-
tering in Eq. (6). As such, Eq. (28) is the analog of a diver-
gence theorem for the graph: the current across the bound-
ary of the source is equal to the volume integral over the
source of the divergence of the current. Finally, the coefficient
Jc
α = eα · J corresponds to the local current flowing along

chord α.
Assuming that in the long time limit the dynamics reaches a

stationary state, x∗ = limt→∞ x(t), then the stationary current,
J∗ = J(x∗), belongs to the kernel of S [see Eq. (6)]:

SJ∗ = 0 . (29)

Eq. (29) corresponds to the KirchhoffCurrent Law (KCL) [13]
and is encoded in the decomposition of Eq. (26) which reduces
to a linear combination of the cycles, J∗ =

∑
α Jc,∗
α cα. It fol-

lows that the currents Je
γ flowing from the source to the target

of each cocycle are transient and they vanish at steady state.
Notice that, from the graph-theoretical viewpoint, Eq. (29) en-
sures the balance between all currents entering and exiting at
each node.

We stress that the advantage of the two decompositions ex-
pressed in Eqs. (19) and (26) lies in their direct physical in-
terpretation. On the one side the condition of thermodynamic
feasibility is expressed in the vanishing (at all times) of the
non-conservative affinities, Eq. (21). On the other, the condi-
tion of stationarity is expressed in the vanishing (in the long
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time limit) of the transient currents, Eq. (27). For this reason,
the coefficients of the two decompositions are endowed with
the status of macroscopic observables.

Importantly, the decomposition of affinity also applies to
the underlying stochastic level of description. Consider now
that the affinity A and current J are evaluated in a vector x
whose components xi are the number of molecules of species
i, divided by the volume [instead as above of evaluating them
in x(t) solution of the deterministic rate equation, Eq. (6)].
One sees that having a conservative affinity is equivalent to
having zero cycle affinities [Ac

α = 0 ,∀α in Eq. (19)], which,
thanks to Kolmogorov’s criterion [46], is equivalent to de-
tailed balance for the microscopic rates, and thus to stochastic
reversibility of the underlying process. Complete proofs are
given in Appendix B (for generic interacting CRNs). Hence,
although the condition to have a conservative affinity seems
to only pertain to the deterministic level, it applies also to
the stochastic one. Such characterizations of reversibility
are analogous to that of a Langevin equation of the form
∂tx(t) = F

(
x(t)

)
+ η(t) (with F(x) the force and η(t) a cen-

tered Gaussian white noise). Indeed, there the process x(t) is
stochastically reversible if and only if the force derives from a
potential, if and only if its circulation along any loop is zero.
Connections between the stochastic level of description and
thermodynamics are discussed in Sec. III D.

We conclude the section by recalling the standard definition
of entropy production rate σ in terms of currents and affini-
ties [47]:

σ = J · A =
∑
γ

Je
γ Ac
γ +

∑
α

Jc
α Ae
α , (30)

where in the second equality we made use of Eqs. (19)
and (26). Notice that the first contribution vanishes at steady
state while the second contribution vanishes for reversible dy-
namics.

D. Closed CRNs: connection to thermodynamics

In order to make contact with equilibrium thermodynam-
ics, one wants the evolution in Eq. (6) for a closed system,
i.e. in the absence of couplings with external reservoirs [48],
to relax to an equilibrium state xeq = limt→∞ x(t), fixed by the
initial conditions. In this scenario, the internal currents are
driven by nonequilibrium initial conditions and are expected
to vanish at steady state, Jeq = J(xeq) = 0. Such thermody-
namic behavior is guaranteed by choosing the reaction rates in
accordance with the Wegscheider criterion [49], which states
that the product of the forward rates along any cycles cα is
equal to that of the backward rates:

R∏
ρ=1

(k+ρ
k−ρ

)cαρ

= 1 , ∀α . (31)

Eq. (31) is a necessary and sufficient condition for the dy-
namics in Eq. (6) to relax to an equilibrium steady state with
Aeq = A(xeq) = 0 and is equivalent to the existence of a (Pois-
sonian) distribution with detailed balance for the underlying

population dynamics (see Appendix B for a proof). More-
over, from a graph-theoretical perspective, Eq. (31) implies
the existence of a time-independent potential defined for each
node/species i taking the form:

exp
(
µ
i

)
=

∏
ρ ∈ [root→i]

k+ρ
k−ρ

(32)

where the product is taken along any arbitrary path on the
graphG from the root to node i. Combining Eqs. (31) and (32)
one obtains a local detailed balance condition for noninteract-
ing CRNs [9, 12]:

k+ρ
k−ρ
= exp

(
µ
s(ρ) − µ



t(ρ)

)
= exp

[
−
(
S⊤µ
)

ρ

]
, (33)

where one recognizes µ
 to play the role of the (dimension-
less) standard chemical potential of equilibrium thermody-
namics [48]. Notice that Eq. (33) is also the standard con-
dition of detailed balance for Markov chains with respect to
a configuration probability Pi ∝ exp

(
− µ
i

)
. The analogy

with classical thermodynamics is completed by introducing a
Hopf–Cole-like transformation for the species concentrations
xi(t) = exp

[
µi(t)−µ
i

]
in terms of the chemical potential µi(t).

By replacing it in Eq. (7) together with Eq. (33) one gets an
expression for the affinities of a closed system at all times:

Aρ = −
(
S⊤µ

)
ρ
= µs(ρ) − µt(ρ) . (34)

Interestingly, one sees that the potential Vi introduced in the
previous section and constructed from integrating the cocycle
affinities Ac

γ along the spanning tree coincides (up to a con-
stant shift) with the usual chemical potential of thermodynam-
ics. Thus, we have seen how the potentials of the chemical
setting can be constructed directly from the graph representa-
tion.

From Eq. (34) one sees that, at the level of macroscopic
affinities, the Wegscheider condition ensures Ae

α = 0 at all
times, which is KVL Eq. (21). Hence, for closed systems
(i.e. reversible dynamics) only the cocycle affinities Ac

γ survive
at finite time, and vanish in the long time limit Ac

γ(t → ∞) = 0;
this describes the process of relaxation to equilibrium. Alge-
braically this implies that the equilibrium chemical potential
µeq = limt→∞ µ(t) is a left nullvector of the stoichiometric
matrix, µeq · S = 0. For closed noninteracting CRNs, µeq

is therefore proportional to the mass conservation law ℓ0 and
the equilibrium state is reached when all the chemical species
have relaxed to the same value of chemical potential.

E. Open CRNs: explicit chemostatting

We now suppose that the reaction rate constants k±ρ are cho-
sen arbitrarily and do not fulfill the Wegscheider condition in
Eq. (31). This is often the case in phenomenological models
of evolutionary games [50], gene regulatory networks [51] or
theoretical ecology [52] where effective reactions are typically
irreversible. As a result, the dynamics evolves irreversibly to-
wards a nonequilibrium steady state or a limit cycle. In order
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FIG. 4. Sketch of a system of chemical species put in contact with
external chemostats. The chemostats are treated as infinite reservoirs
of a single chemical species. For illustration, the chemostat i (here in
orange) exchanges orange particles with the system and it is charac-
terized by a pair of reaction rates γ±i and a driving parameter ai.

to make connection with thermodynamics while still being ir-
reversible, in CRNs, the breakdown of the Wegscheider condi-
tion is usually prescribed through the coupling with different
chemostats which drive the system out of equilibrium [53].
Each chemostat is depicted as a reservoir of a given chemical
species which is put in contact with the system to favor the ex-
change of molecules (Fig. 4). In this picture, an external cur-
rent builds up between the chemostat and the system affecting
the internal concentration of the chemostatted species 6. In the
model, this is done by introducing a new reaction for each of
the chemostatting couplings:

∅
γ+i
−−−⇀↽−−−
γ−i

Yi , (35)

where we indicate with Yi the chemostatted species and with
γ±i the rate of particles interchange with the chemostat. Since
reactions like Eq. (35) involve exactly one chemical species
we make use of the same index i = 1, ..., |Y | for both the
chemostatted species and the chemostatting reaction. In the
microscopic picture, a molecule of Yi is injected into the
system at rate Ωγ+i and expelled from it at rate γ−i . Those
rates reflect the action of the chemostat and, contrarily to the
bulk rates {k±ρ }, are not thermodynamically constrained by the
Wegscheider condition. The extent of the Wegscheider vio-
lation is then quantified via a driving parameter ai, for each
chemostat

γ−i
γ+i
= exp

(
µ
i − ai

)
, (36)

which plays the role of an external parameter characterizing
the coupling with the i−chemostat.

Following Refs. [10, 12], we label with Y the set
of chemostatted species and with X the remaining non-
chemostatted chemical species, such that the union X ∪ Y

6 The chemostat acts as a reservoir of molecules. Ideal chemostats exchange
matter with the system while remaining in equilibrium.

forms the set of all chemical species in the systems. Ac-
cordingly, the concentrations of the chemostatted species are
grouped in the vector y(t) and that of the non-chemostatted
species in x(t). Then, internal reactions Eq. (9) and external
reactions Eq. (35) are combined into an N × (R+ |Y |) extended
stoichiometric matrix Sres, namely:

Sres =

(
1|Y | SY
0 SX

)
with S =

(
SY
SX

)
, (37)

where the first |Y | columns correspond to the chemostatting re-
actions and we split the stoichiometric matrix in Eq. (10) into
chemostatted and non-chemostatted species. The evolution of
the concentrations now reads:

d
dt

(
y(t)
x(t)

)
= Sres J(x(t), y(t)) , (38)

where the first |Y | component of the vector J are the external
currents of the chemostatting reactions:

Ji = γ
+
i − γ

−
i yi (39)

= γ+i
[
1 − exp ( µi − ai)

]
, for 1 < i < |Y | ,

expressed as a function of the chemical potential µi and the
driving parameter ai. The set of affinities A associated to J
can be conveniently expressed as:

A = −S⊤res µ + a , (40)

where we have introduced the vector of driving affinities
a ∈ RR containing the collection of all the ai’s. One sees di-
rectly from the expression of Eq. (40) how the chemostatting
procedure might lead to nonequilibrium behavior. For generic
values of the parameters {ai}, a < ImS⊤ and the potential con-
dition discussed in Sec. II C breaks down.

Let us now consider a single chemostat with external pa-
rameter a that is put in contact with a noninteracting CRN.
The extended stoichiometric matrix in this case reads:

Sres =

(
1
0

∣∣∣∣∣S) , (41)

and one sees that, due to the first column (1, 0 · · · 0)⊤, the
conservation law ℓ0 is no longer a left nullvector of the sto-
ichiometric matrix. Intuitively, the effect of the chemostat
is to break down internal mass conservation. This is ex-
pected since the internal mass is no longer conserved in the
open system. Also, by construction, the left nullvectors of
Sres are left nullvectors of S so that Sres is now full row-rank
with rank Sres = N. In practice, a single chemostat can not
drive the system out of equilibrium since it does not affect the
Wegscheider condition, hence the reversibility of the dynam-
ics. Proof. First, notice that the driving affinity takes the form
a = (a, 0 . . . 0)⊤. By construction, ℓ0 ·Sres = (1, 0 . . . 0)⊤ which
constitutes a generating vector for the space where a lives. It
follows that a = a ℓ0 · Sres and the affinity becomes:

A = −S⊤res

[
µ(t) − a ℓ0

]
. (42)
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FIG. 5. Example of the graphical representation of chemostatting
for unimolecular reactions. (a) Species labeled Yi are subjected to
chemostatting reactions (in blue) with rates γ±i , describing the con-
tact with reservoirs. (b) Chemostatting one species corresponds to
the simple addition of one edge in the graph which connects the node
∅ to the corresponding chemostatted species/node. In this case, the
only cycle present in the graph is the internal one (in green). (c)
Chemostatting a second species results in the emergence of a new
cycle, depicted in yellow. (d) The same holds true when chemostat-
ting a third species, and so on. Such emergent cycles (in yellow) are
not constrained by the Wegscheider condition on the rates and they
can drive the system out of equilibrium.

The total affinity A ∈ ImS⊤res is therefore still conservative and
the dynamics still reversible □

From Eq. (42), the equilibrium point A∗ = 0 is given by
µeq = a ℓ0. As for the closed equilibrium, µeq is expressed
in terms of the law of internal mass conservation ℓ0 with the
driving parameter a playing the role of an effective initial con-
dition. Indeed, one can think of a as the initial value of chem-
ical potential inside the reservoir which is not allowed to relax
on the relevant timescales of the dynamics. The chemostat-
ting of a single species thus results in a global adaptation of
the chemical potential of all the species to the one of the reser-
voir, which is a consequence of the internal mass conservation
law ℓ0. Notice that the previous proof extends to an arbitrary
number of chemostats provided that they all share the same
value of driving parameter a. Whenever the driving force is
parameterized by a single parameter a, the single conserva-
tion law ℓ0 of the closed system is sufficient to form a basis
for a. As a consequence, in order to drive a CRN out of equi-
librium, at least two chemostats are needed which are held at
different values of driving parameter.

Some procedures of chemostatting in the context of
CRNs [10, 12, 13] differ from the present treatment as they
assume the chemostats to fully fix the concentrations of the
chemostatted species. Accordingly, the Yi’s are treated as ex-
ternal parameters and the evolution is restricted to the Xi’s as
controlled by the sub-matrix SX . The present approach is ad-
vantageous in that it allows one to extend the graphical rep-
resentation introduced in Sec. II A-II C to noninteracting open
systems. Apparently, in presence of chemostats, the graph-
ical representation is lost since Sres (just like SX) does not
take the form of an incidence matrix. An open question is

therefore whether it is possible to understand the role played
by chemostats graph-theoretically. To answer it, we propose
the following: augment the original graph by an extra node
∅ and, for each chemostatting reaction in Eq. (35), introduce
a new edge linking the chemostatted species yi to the node
∅ (see Fig. 5). By construction, the incidence matrix of the
augmented graph is endowed with an extra line:(

−1 · · · − 1 0 . . . 0
Sres

)
(43)

which bookkeeps the exchange of particles between the
chemostatting node ∅ and the system. As shown in Fig. 5d,
adding more than one chemostatting edges results in the ap-
pearance of new cycles in the graph. Those ‘emergent’ cycles
are associated to cycle affinities that do not necessarily satisfy
the Wegscheider condition, and thus play the role of driving
the system out of equilibrium. Again, one sees that at least
two chemostats are needed to introduce an emergent cycle.
Following the procedure outlined in Sec. II A one can build
the T matrix from the augmented graph associated with the
incidence matrix of Eq. (43) and find the corresponding basis
for cycles and cocycles. Now the set of cycles {cα} includes
both the internal and the emergent cycles, which are graphi-
cally identified. Notice that the cycles identified from T form
a basis for Ker Sres, despite the fact that the latter is not an in-
cidence matrix. Proof. By construction, any right nullvector
of (43) is also a right nullvector of Sres. Furthermore, the extra
line in the matrix of Eq. (43) is not linear independent from
the rows of Sres and it can be obtained by taking the negative
sum of all the rows of Sres, which is full-row rank as recalled
previously. It follows that the kernel of the two matrices must
be the same □ As a consequence, the number of emergent cy-
cles is given by:

# emergent cycles = dim Ker Sres − dim Ker S . (44)

This relation shows that the number of emergent cycles, de-
fined above from the analysis of the graph associated to the
augmented stoichiometric matrix, Eq. (43), happens to be in
accordance with the algebraic result of Ref. [12] (for generic
interacting CRNs), which showed that the number of indepen-
dent chemical cycles induced by chemostatting is given by the
r.h.s. of Eq. (44).

III. INTERACTING REACTION NETWORKS

A. Motivations

In the previous section, we studied the case of noninter-
acting networks where each reaction, Eq. (9), involves the
transformation of a single molecule at a time. While of-
ten employed in the effective descriptions of molecular ma-
chines [54, 55] or gene expression [19, 56], these networks
are highly atypical for real biochemical scenarios where inter-
actions play a fundamental role. For example, a large branch
of inorganic chemistry is based on heterogeneous catalysis,
where interactions among different chemical species increase
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the efficiency of reaction pathways [57]. Likewise, in intra-
cellular processes and in prebiotic scenarios, autocatalytic in-
teractions are at the core of the capability of living systems to
self-replicate [23]. Among others, metabolic cycles (e.g. the
glycolysis network in the introduction) are the archetype of
biochemical networks where interactions are essential.

In the chemical setting, an interaction involves the collision
of two (or more) molecules which activates a change in their
internal state. The following kinetic scheme involves two dif-
ferent types of such interactions:

X1 + X2
1
−−−⇀↽−−− X3 2X3

2
−−−⇀↽−−− X1 , (45)

respectively an interspecific interaction between species X1
and X2 and an intraspecific interaction between two identical
molecules of species X3. In this simple example, one fore-
sees the dramatic consequences for the geometrical picture
discussed in Sec. II. A suitable representation of Eq. (45) is
a hypergraph [24] where the species as nodes are connected
by hyperedges involving more than two nodes (Fig. 6). For
such a hypergraph, there is no obvious way to identify a span-
ning tree nor to split the system into disconnected compo-
nents. Although it is still possible to identify Ker S and Im S⊤

algebraically, a procedure to construct a meaningful basis for
cycles and cocycles is lacking [12]. In addition, the stoichio-
metric matrix S is no longer an incidence matrix, and in full
generality it will exhibit several conservation laws, i.e. left
nullvectors [10]. As a consequence, the identification of the
independent degrees of freedom among the pool of N species
is non-trivial [58], and the result of chemostatting highly de-
pends on the chemostatting procedure.

In this part of the paper, we study a generalized notion of
cycles and cocycles for generic interacting CRNs, i.e. in the
absence of the graph-theoretical picture. We prove that, using
the reduced row echelon form of matrices provided by linear
algebra, a cycle and cocycle basis can be built which mirrors
and generalizes many of the aspects discussed in Secs. II A-
II B. In particular, it allows one to directly extend the force
and current decompositions, Eqs. (19) and (26), to arbitrar-
ily complex CRNs. We also introduce an integration operator
which generalizes the one in Eq. (23) – without relying on a
notion of spanning tree – and which allows for the integration
of conservative affinities along hypergraphs. A geometrical
interpretation of cocycles in hypergraphs is discussed. Finally,
in the spirit of Ref. [59], these results are applied in the linear-
response regime to unveil hidden symmetries in the response
of complex CRNs.

B. Construction of cycles and cocycles based on row reduction

Let us consider a generic interacting CRN whose topology
is encoded in the stoichiometric matrix S with rank M. Al-
gebraically, the rank of S quantifies the number of indepen-
dent species and independent reactions in the network, which
are the same by rank-nullity theorem. Accordingly, one can
choose M out of the R reactions to be independent and, follow-
ing the same convention as in Sec. II B, reorder the columns

FIG. 6. (a) Hypergraph representation of the kinetic scheme Eq. (45)
in the main text. The hypergraph is composed of N = 3 nodes corre-
sponding to the species {X1, X2, X3} and two hyperedges correspond-
ing to reaction 1 (purple) and reaction 2 (orange). The hyperedges
differ from simple edges as they present branches which can connect
to different nodes (purple) or to the same node (orange). One sees
how the geometrical representation of cycles and cocycles breaks
down in this case. Although a loop-resembling path can be graph-
ically identified, it does not correspond to a cycle. At the same time
the removal of the orange hyperedge does not result in a splitting of
the hypergraph into disconnected components. (b) The first reaction
is non-pairwise as it involves all three species, while the second reac-
tion is still pairwise-like but with a stoichiometric coefficient ν+2

3 , 1.
(c) As a consequence, the stoichiometric matrix S is no longer an in-
cidence matrix.

of S in a way such that they are placed first. Their label in-
dex is then 1 ≤ γ ≤ M. These are the independent reactions
which, in the case of noninteracting networks, constituted the
cochords defining the spanning tree TG (see Sec. II A). The re-
maining α-labeled reactions are in number R−M = dim Ker S,
so that M + 1 ≤ α ≤ R. Contrary to noninteracting networks,
the conservation laws are generally more than one, being in
number N −M = dim Ker S⊤ ≥ 0. By Eq. (6), each of them is
associated to a physical quantity which is conserved.

We now show how the algebraic row reduction of S allows
one to identify: (i) a choice of N − M conserved quantities
and (ii) a generalization of the cycle and cocycle bases for the
set of interacting reactions described by the (non-incidence)
matrix S. Using for instance the Gauss–Jordan elimination, a
standard procedure in linear algebra, the stoichiometric matrix
S is reduced to

−G S =

(
0 0
1M T

)
. (46)

Here the N × N matrix G is invertible and encodes the ele-
mentary operations performing the Gauss–Jordan elimination
(see also Appendix A for another – explicit – construction of
G). Upon a permutation of rows, one recognizes in the r.h.s. of
Eq. (46) the canonical reduced row echelon form [60], where
the M pivot elements constitute the bottom-left identity ma-
trix 1M

7. We adopt the convention of Eq. (46) instead of the
canonical one for consistency with the geometrical analysis

7 In the reduced row echelon form, the left part need not always be an identity
matrix. The pivots, i.e. the columns containing a leading one and zeroes in
all the other entries are generally scattered in the matrix. In our case, since
we placed M independent columns first in S (by permutation), the reduced
row echelon form presents an identity matrix as in Eq. (46). In fact, row
reduction provides another way of permuting the columns of S: if S is not
already having its M first columns independent, the row echelon form pro-
vides M pivots, their position being that of M independent columns [60],
which can then be placed first.
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FIG. 7. (a) Example of an interacting CRN involving four reactions and five species {X1, X2, X3, X4, X5}. (b) The corresponding stoichiometric
matrix S is not longer an incidence matrix: its columns contain more than two entries and the values of the stoichiometric coefficients are in
general different from ±1. As reported in the main text the rankS = 3 and the matrix has two left nullvectors and one cycles, respectively
ℓ1 = (1, 2, 1, 2, 0), ℓ2 = (0, 0, 1, 1, 1) and c = (1/2, 1/2, 0, 1)⊤. (c) The hypergraphical representation of the reaction scheme in terms of nodes
(species) and hyperedges (reactions). Following the convention described in the main text the independent reactions (cochords in blue) are
numbered first and the dependent reaction (chord in red) associated to the cycle c is numbered last. (d) The reactions (1, 2 and 4) involved in
the cycle c are highlighted in green. Upon performing each reaction ρ a (fractional) number of time cρ, the state of the system is left unchanged.

introduced for noninteracting CRNs, as detailed below. The
first N − M ≥ 0 rows filled with zeroes reflect the fact that S
is not necessarily full row-rank, due to the possible existence
of conservation laws. We stress that the reduced row eche-
lon form, hence the matrix T in Eq. (46), is unique; it does
not depend on the specific form of G (which is not unique).
Applying the matrix G to Eq. (6) one obtains:

d
dt

(
G x(t)

)
i = 0 , for 0 ≤ i ≤ N − M . (47)

Thus, the first N − M elements of G x are (a choice of) con-
served quantities for the evolution of concentrations.

The first M columns are independent by our convention.
The remaining R − M columns of S can thus be obtained as
linear combinations of the independent ones. This is precisely
what the matrix T in Eq. (46) encodes: each dependent col-
umn Sα is given by Sα =

∑
γ SγTαγ. Notably, we can use

the notion of independence/dependence among reactions to
restore the terms chords and cochords even in the absence of a
spanning tree. In particular, we name chords (resp. cochords)
the set of dependent (resp. independent) reactions.

Let us now use the invertibility of G and take the transpose
of Eq. (46), so that:

S⊤ = −

(
0 1M
0 T⊤

) (
G−1)⊤ . (48)

Since G is full-rank, the image of S⊤ is spanned by the M
non-zero columns of the reduced row echelon form. This ex-
plains the choice of the same notation T as for the matrix in
Eq. (14) which was used to construct the cycles and cocycles
for simple graphs. In that case, the matrix T was built from
the spanning tree (see Sec. II A) while here it is obtained by
algebraic means. As a consequence, the entries of the new
matrix T are no longer restricted to {0,±1} as in Eq. (14), but
may take fractional entries (see Appendix A). In both cases, T
allows one to define a basis for ImS⊤, which in the previous
case was identified as the space spanned by the cocycles cγ’s .
Accordingly, we interpret the column vectors in (1M T)⊤ as a
family of generalized cocycles {cγ}. Following in the analogy,

it is natural to use matrix T in Eq. (46) to construct a basis for
the kernel of S. In particular, we define a family of general-
ized cycles {cα} as the column vectors in (−T⊤ 1R−M)⊤. As
in Sec. II B, the rank-nullity theorem ensures that these vec-
tors constitute a basis for Ker S. In fact, it is possible to show
that any basis of Ker S can be reduced to that form, with T
uniquely defined by Eq. (46) (see Appendix A).

We have shown here that the row reduction of S allows one
to identify a basis for the kernel and the coimage of S which
we connect to the previously defined cycles and cocycles. In
fact, if one uses this algebraic procedure in the case of non-
interacting CRNs, one recovers the expressions for the cycles
and cocycles in Eq. (13) with T given by Eq. (14) – provided
the graph is oriented using the convention depicted in Fig. 3.
In this sense, the newly defined vectors cα’s and cγ’s are a gen-
uine generalization of the cycles and cocycle and we thus use
the same terminology to designate them. Notably, the orthog-
onality relations in Eq. (15) and (18) apply directly to the new
sets {cγ} and {cα}, which opens to the possibility of interpret-
ing them as geometrical objects on hypergraphs, as discussed
in the next section. As a consequence, the decompositions of
currents and affinities Eqs. (19) and (26) discussed in Sec. II C,
and based on the orthogonality relations, directly apply to in-
teracting CRNs, together with the expressions (20) and (31)
of the driving affinities and of the transient currents (when a
stationary state exists).

We conclude with a remark. The vectors cα’s and the cγ’s
are not the only bases of Ker S and ImS⊤ (for instance the
first M columns of S span the coimage of S). The interest of
the definition of cycles and cocycles we put forward is that it
allows for a physical decomposition of the affinity akin to the
Helmholtz–Hodge decomposition, and that it can be used to
build a geometrical representation of the forces and currents
on hypergraphs for general CRNs, as we present now. (See
also Appendix D for a definition of oblique projectors based
on the cα’s and cγ’s that generalizes to arbitrary CRNs those
defined in Ref. [14] for noninteracting CRNs.)
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FIG. 8. One reads along the line of the bottom-right (N −1)× (N −1)
block of the matrix G⊤, defined by the transpose of Eq. (22), the
integration paths along the spanning tree which are used in Eq. (23).
Those correspond to the unique escape routes connecting any node
j , root to the root. Here we report G⊤ for the example in Fig. 1
where the corresponding block is highlighted in purple. Notice that
every node j , root is the source s(γ) of exactly one cochord in
the spanning tree (see Fig. 3a). Hence, for a fixed j , root, the
sum

∑
γ G

⊤
js(γ) runs over all the cochords which connect the node j

to the root. For the example of spanning tree in Fig. 3a we depict
graphically the escape routes for the various nodes 2 ≤ j ≤ N = 5.

C. Geometry of hypergraphs

1. Cycles with weights

The geometricity of cycles and cocycles is rooted in the or-
thogonality relations Eqs. (15) and (18). Those are the expres-
sion of the one-to-one correspondence between cocycles and
independent reactions on the one side, and cycles and depen-
dent reactions, on the other side. In the previous section we
pointed out that for interacting CRNs the entries of the cycles
vectors cα may be fractional. Contrary to the case of nonin-
teracting CRNs, cycles are decorated with weights given by
the entries of the Tmatrix in Eq. (46). Intuitively, these physi-
cal weights express the (fractional) number of times that each
reaction must be performed along a cycle in order to leave
the state of the system invariant. For illustrative purposes, we
report in Fig. 7 the example of an interacting CRN with five
chemical species and four reactions. In this case the stoichio-
metric matrix has rank M = 3 and exhibits N −M = 2 conser-
vation laws and a number of cycles R − M = 1. In this case,
one obtains T = (−1/2,−1/2, 0)⊤ and c = (1/2, 1/2, 0, 1)⊤

(we drop the index α = 1 for simplicity). One sees already for
this simple example that identifying the cycle graphically is
not easy due to the topological complexity of the hypergraph
(Fig. 7c). Nevertheless, the cycles are an important feature
of the dynamics, since they are a basis of the non-equilibrium
stationary currents (when a steady state is reached). A key as-
pect is that they are described using the same matrix T as for
the cocycles. As we will see, such duality between cycles and
cocycles leads to interesting consequences.

2. Integrating on the hypergraph

We now ask the question of what is the geometrical mean-
ing of the weights in the matrix T, underlying both cycles and
cocycles. First let us recall the integration matrix G⊤ previ-
ously introduced for simple noninteracting CRNs. It was ex-
plicitly constructed by fixing a spanning tree TG and one root
[see Eq. (22) and Appendix A] such that the (N − 1)× (N − 1)
bottom-right block contains the set of paths on the spanning
tree along which we integrate the conservative affinities A to
define the potential V [Eq. (23)]. From a purely graphical
viewpoint, each path can be interpreted as the unique ‘escape
route’ in TG along which a unit ‘charge’ placed on a given
node is expelled through the root leaving no trace along the
way (see Fig. 8). Thus, following this geometrical view, we
may re-express matrix G⊤ as

G⊤ =


1 0 · · · 0
... escape routes
1

 , (49)

where the escape routes constitute the bottom-right (N − 1) ×
(N − 1) submatrix of G⊤. For graphs, the escape routes in-
volve a succession of adjacent edges, irrespective of the con-
nectivity of each node, which is reflected in the entries of G⊤

being 0 or 1. This is no longer the case in hypergraphs due
to the presence of branching in the hyperedges. Notice that
in Eq. (49) the root is naturally associated to the conservation
law ℓ0 which appears as the first column of G⊤. Thus for the
case of interacting CRNs it is natural to generalize the struc-
ture in Eq. (49) by picking a root for each of the (now possibly
multiple) conservation laws of S. Doing so, one obtain a set of
roots, each one associated to a given conservation law, and we
may ask what are the corresponding escape routes on the hy-
pergraph, i.e. the ‘hyper-paths’ along which a charge placed
on any node is expelled through the roots leaving no trace.
In the absence of a spanning tree we lack a graphical proce-
dure to find such escape routes; nevertheless in Appendix A
we show that, given a suited set of roots 8, the escape routes
can be obtained algebraically and are uniquely defined. By
construction, they involve the M independent reactions (the
cochords) in analogy to the escape routes defined from the
spanning tree in simple graphs.

Accordingly, we introduce a generalized matrix G⊤ such

8 In the case of a simple noninteracting CRN, the choice of the root is fully
arbitrary since all the N species in the system are equally constrained by
the left nullvector ℓ0 ∈ Ker S⊤. It is no longer the case for an interacting
CRNs for which the conservation laws are shaped by the interactions and
will typically involve subsets of species. Then, given a conservation law
one chooses a root among the subset of species that are constrained by that
conservation law. The procedure is repeated for every conservation law.
One species cannot be picked twice as a root.
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FIG. 9. The escape routes are read as lines of the bottom-right (M × M) block in the G⊤ matrix. For interacting CRNs, there is no simple
graphical procedure to fill the entries of G⊤. Nevertheless, an algebraic algorithm to identify the entries of G⊤ is described in Appendix A.
Here we report the G⊤ for the example of Fig. 7. The numbering of the nodes follows the convention discussed in the main text: the two roots
are labelled as node 1 and 2 and the rest of the nodes are numbered last (see Fig. 7). In this case the rankS = M = 3 hence we highlight
in purple the bottom-right (3 × 3) block. We also represent the escape routes graphically together with the entries of the corresponding line.
By construction, the escape routes are constrained to live on the independent reactions (cochords); for this reason we have removed from the
hypergraph reaction 4 which is the reaction associated to the cycle c (the red chord in Fig. 7).

that

G⊤ =



0 · · · · · · · · · 0
csv 0 · · · · · · · · · 0

laws
escape
routes


N
−

M
M

︸                 ︷︷                 ︸
G⊤M

(50)

where the conservation laws, spanning Ker S⊤, consti-
tute the first N − M columns, the top-right block is padded
with zeroes and the M×M bottom-right square matrix contain
the escape routes from each node < {roots}. In Fig. 9 we rep-
resent such escape routes for the example given in Fig. 7. As
compared with the case of simple graphs, each escape route
is now a ‘multi-path’, i.e. a combination of the hyperedges,
and is decorated with weights which tell how many times
each cochord reaction is applied for the unit charge to vanish
through the roots. As such, they constitute the generalization
to hypergraphs of the simple escape routes identified from
the spanning tree in graphs. Notably, the matrix in Eq. (50)
realizes the row reduction of Eq. (46); see Appendix A for
a proof. It corresponds to a geometrically-informed choice
for the matrix of the row-reduction (hence the choice of
notation).

Let us now consider a generic conservative force F ∈

ImS⊤, so that

F =
∑
γ

Fγcγ = −S⊤V (51)

where we have expressed it as (minus) the discrete gradient
operator S⊤ acting on a potential V ∈ RN defined on the nodes.
By construction, we can invert Eq. (51) using the matrix G⊤.
Physically it means that the matrix G⊤ allows one to integrate
any conservative force F on the hypergraph in order to find the
corresponding potential landscape V. In particular, denoting
G⊤M the N × M right-block obtained by excluding the conser-

vation laws from G⊤ [see Eq. (50)] one finds:

V = G⊤M

Fγ

 M

(52)

Notice that first N − M rows of G⊤M are padded with zeroes,
which corresponds to fix the potential Vroot = 0 ∀ root. As
we discussed in Sec. II D if Fγ = Ac

γ [the cocycles affini-
ties in Eq. (19)], the integration procedure in Eq. (52) yields
the chemical potential of thermodynamics V = µ. Alterna-
tively, if Fγ = log

(
k+γ /k

−
γ

)
, the integration in Eq. (52) leads to

the standard chemical potential V = µ
. Those equalities of
potentials hold up to linear combinations of the conservation
laws which can always be added to V leaving F unchanged.

3. Cocycles on the hypergraph

In Sec. II A we identified the cocycle cγ with the boundary
of a source island vγ on the graph G. Upon removing the
cocycle from G, the source island is fully disconnected from
the target island, containing the root.

The binary splitting of G associated to every cocycle no
longer holds for interacting CRNs: the removal of a cocycle
from the hypergraph does not necessarily split it into discon-
nected components (see for instance Fig. 10). It is therefore
legitimate to ask whether a geometrical interpretation of co-
cycles exists at all for the hypergraph.

We have already seen how the matrix G⊤M allows one to
transform a set of conservative forces defined on the cochords
into a set of potentials defined on the nodes (with fixed po-
tential Vroot = 0 for the arbitrarily chosen roots). Also, it di-
rectly relates to the family of cocycles since, from Eq. (46),
we have −(S⊤G⊤M)γ = cγ. Accordingly, we can introduce the
potentials vγ = (G⊤M)γ such that cγ = −S⊤vγ. Namely, each
potential vγ, upon differentiation with S⊤, generates a force
that is the cocycle cγ. In the case of noninteracting CRNs the
source of the cocycle cγ was easily identified as the collection
of nodes i such that vγi = 1. By analogy, for interacting CRNs,
we define the source of cγ from the set of nodes i such that
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FIG. 10. (a) We report the cocycles cγ’s, with 1 ≤ γ ≤ 3, for the example of interacting CRN introduced in Fig. 7. Removing a cocycle
results in the emergence of a new conservation law vγ which can be read from the columns of G⊤M . We interpret the nodes belonging to the new
conservation law as the source island of the corresponding cocycle, where each node has a certain weight (altitude). For instance, by removing
the cocycle c1, one identifies from vγ=1 =

(
G⊤M

)
γ=1 a source island (orange) containing nodes 3, 4 and 5 with different (negative) weights.

The conservation laws are reported for every cocycle, c1 to c3. We stress that, in contrast to the case of simple graphs, the source islands are
generally not disconnected from the roots, as in the case of the orange and blue islands. Let us focus on cocycle c3, which consists of the
sole reaction 3. We compare the dynamical relaxation of the island concentrations zγ = vγ · x upon suppressing (to various degrees) reaction
2 (b) and reaction 3 (c). Eq. (6) is solved numerically with initial condition xi(0) = 1∀i. The rates are chosen in accordance to Wegscheider
criterion (31) with k±ρ ∼ O(1)∀ρ. In (c) the rates of reaction 3 are suppressed by a factor ε = 10−1, 10−2, 10−3 (different shadows) such that
k±ρ=3 7→ εk

±
ρ=3 and k+ρ /k

−
ρ=3 = const. The dashed lines correspond to the equilibrium steady-state value obtained for ε = 0, i.e. full suppression

of reaction 3. As anticipated, in this case z3 becomes a constant of motion.

vγi , 0. Because the entries of vγ are no longer restricted to
zeroes and ones, the corresponding island on the hypergraph
now has a geography. Namely, each node is given an altitude
which quantifies the impact of the corresponding node onto
the outward cocycle current Je

γ [Eq. (27)]. Assume now that
one is able to cancel the latter current (through a protocol; see
next paragraph for an example), i.e. to effectively ‘remove’
the cocycle cγ from the hypergraph. Then one gets:

0 = Je
γ = cγ · J = −vγ · SJ = −∂t (vγ · x) , (53)

where we used the definition of vγ and the evolution Eq. (6).
Accordingly, the vector vγ can be seen as a new conserva-
tion law which emerges when removing cγ, the corresponding
conserved quantity being the (weighted) concentration of the
source island zγ = vγ · x(t) = const. Notice that the weights
contained in vγ can be negative, which reflects the fact that, at
the level of the full hypergraph (see Fig. 10), the source island
is still connected to the target island (no new component nec-
essarily arises). This means that, microscopically, exchanges
of molecules between the source and the target islands are still
possible after the removal of the cocycle. For this reason, it is
not possible to interpret the cocycle as the geometrical bound-
ary of the source island on the hypergraph; nonetheless, from
an algebraic viewpoint, the consequence of the removal of a
cocycle is still the emergence of a new conservation laws in
the dynamics.

4. Evolution of islands

Finally, let us connect the geometrical pictures of the is-
lands, identified by the columns of G⊤M , with dynamics. Ap-
plying the G matrix to Eq. (6) one finds that each island con-
centration zγ evolves by the corresponding cocycle current Je

γ

[Eq. (26)] such that:

d
dt

zγ(t) = Je
γ(t) ∀γ . (54)

Equation (54) can be seen as an integrated continuity equa-
tion, where zγ(t) = (GM x(t))γ is the sum of the concentra-
tions of the nodes of the island, weighted by the components
of vγ (which can be seen as the elevation map of the island).
Islands thus constitute a geometrical coarse-graining of the N
species into M independent degrees of freedom zγ. In this
sense the variables zγ’s are macroscopic (integrated) and de-
scribe the relaxation of the system to its steady state (since
Je
γ(t → ∞) = 0 ∀γ, when a steady state is reached).

We end this section by putting forward a possible appli-
cation of this formalism to control, in the chemical setting.
In chemistry, molecular inhibitors are often employed to de-
lay, slow or prevent chemical reactions. Like in an inverse
catalysis, the inhibitor acts by suppressing the reaction rate
constants k±ρ → 0 of a target reaction ρ, thus introducing a
slow timescale at the kinetic level. In complex CRNs it is not
clear a priori what is the effect of suppressing a reaction on (i)
the macroscopic relaxation timescale and (ii) the steady-state
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concentrations reached in the long time limit. It depends on a
number of factors including the initial condition, the distribu-
tion of reaction rate constants and the topology of the network.
Nevertheless, some remarks follow directly from our alge-
braic approach. In particular, we have identified the cocycles
as the relaxation modes of the dynamics, whose removal leads
to the emergence of new conservation laws (left zero modes
of S). As such, we expect them to have a strong impact on the
timescales of relaxation. In Fig. 10 we show the finite time
relaxation of the island concentrations zγ’s [Eq. (54)] for the
example in Fig. 7 when a cocycle reaction is suppressed, com-
pared to the case when a non-cocycle reaction is suppressed.
As anticipated, the behavior strongly differs. The removal of a
reaction that is not a cocycle affects minimally the finite-time
dynamics, leaving unchanged the characteristic relaxing time
and the equilibrium steady state. On the contrary, upon de-
creasing the reaction rates of a cocycle, the dynamics develops
a plateau which corresponds to a new timescale controlled by
the inhibitor. In the limit of complete suppression of the co-
cycle the system relaxes to a new equilibrium state, which is
a sign of the emergence of a new conservation law.

D. Connection between stochastic dynamics and
thermodynamics

In this part, we explain how the underlying stochastic dy-
namics allows one to make the connection to the thermody-
namic properties of CRNs. We start by closed systems (that
follow a reversible stochastic dynamics) and consider then the
case of open systems, driven out of equilibrium by chemostat-
ting reactions (that necessarily obey local detailed balance, as
we show constructively).

1. Closed systems

We assume first that the system is closed and has at least
one mass-like conservation law. Interestingly, this is related to
Gordan’s theorem (see e.g. [23, 61]), which states that the two
following conditions are mutually exclusive: (i) There exists
a left nullvector ℓ of S, with all components positive (ℓi ≥ 0).
Such vector ℓ is a mass-like conservation law. (ii) There exists
a vector j such that S j > 0. We exclude case (ii) because,
from the rate equation (6), it implies that the set of reactions
can create matter, which cannot occur for a closed system –
this would contradict Lavoisier’s principle [62]. (Notice that
chemostatted autocatalytic reactions fall in case (ii) [23].)

We then assume that the CRN is ‘in equilibrium’, from the
thermodynamics or from the stochastic viewpoints, which are
equivalent. Namely, from the thermodynamics viewpoint, we
ask that the reaction rate constants k±ρ ’s satisfy Wegscheider’s
condition, Eq. (31), which is equivalent to the existence of a
standard chemical potential µ
 such that

k+ρ
k−ρ
= exp

[
−
(
S⊤µ
)

ρ

]
. (55)

[In general S is not an incidence matrix, so that this condition
is more involved than in the noninteracting case of Eq. (33)].
In turn, this is equivalent to requiring that the affinity A is
conservative, i.e., A ∈ ImS⊤ (the proofs of every equivalence
discussed here are gathered in Appendix B). For graphs, this
is KVL, and we will keep the same terminology for generic
CRNs. In chemistry, this is called thermodynamic feasibil-
ity, and in fact Eq. (55) is rather natural if one pictures the
chemical reaction ρ as a transition between molecular confor-
mations in the landscape of possible chemical combinations
of atoms: the r.h.s. of Eq. (55) is the ratio of Kramers tran-
sition rates in such landscape. This brings us to the stochas-
tic side: the thermodynamic conditions that we just discussed
are equivalent to requiring the reversibility of the underlying
stochastic process. Considering the dynamics of the popula-
tion n of species, it means that every transition associated to a
reaction ρ in Eq. (3) verifies the detailed balance condition

W+ρ (n)

W−ρ (n+ Sρ)
=
Peq(n+ Sρ)
Peq(n)

∀n . (56)

Here W±ρ (n) = W({ni 7→ ni ± Siρ}) denotes the transition rate
at population level, and the equilibrium distribution Peq(n) is
a product-form Poisson-like law (constrained by the conser-
vation laws) of parameters xeq (see Appendix B for explicit
expressions). The vector xeq represents the average value
of the species concentrations in the long-time limit and de-
pends on the initial condition. As detailed in Appendix B,
the affinity A cancels when evaluated in xeq so that defining
xeq

i = exp
[
µ

eq
i − µ



i
]

and using the definition of affinities in
Eq. (7), we obtain that the corresponding ‘equilibrium chem-
ical potential’ µeq belongs to the left nullspace of S, which
means that µeq is a linear combination of the conservation laws
– this is the reason why we assumed above that at least one ex-
ists (see also Ref. [63] for insights on the role of conservation
laws).

Introducing the quasipotential Φ(n) = − 1
Ω

logPeq(n) asso-
ciated to the equilibrium law, Eq. (56) rewrites

W+ρ (n)

W−ρ (n+ Sρ)
= exp

{
−Ω

[
Φ(n+ Sρ) − Φ(n)

] }
. (57)

At large volume Ω ≫ 1 with fixed x = n/Ω, one finds that
Φ(n)→ ϕ(x) with

ϕ(x) =
∑

i

(
xi log xi − xi − xi log xeq

i − xi

)
. (58)

Here one recognizes that ϕ(x) is the free energy density, that
is, the difference between the energy density and the entropy
density. Notice that ϕ(x) is minimum (and cancels) at x = xeq.
Defining (for any n and x = n/Ω) xi = exp(µi − µ



i ), one can

expand Eq. (57) forΩ ≫ 1, which yields the expression of the
entropy production Σρ of reaction ρ:

Σρ(x) = log
W+ρ (n)

W−ρ (n+ Sρ)
= −

(
S⊤∇ϕ(x)

)
ρ (59)(

∇ϕ(x)
)
i = log xi − µ

eq
i + µ



i = µi − µ

eq
i . (60)
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We keep here the usual denomination of entropy production
for this ratio of rates at population level, but we remark al-
ready that it plays the same role as the affinity at the determin-
istic level of reaction rate constants [see Eq. (7)]. We observe
that the constant µeq

i in Eq. (60) plays no role in Eq. (59) since
µeq ∈ Ker S⊤ 9. We can thus write for the vector Σ of the Σρ’s:

Σ(x) = −S⊤µ(x) . (61)

Here Σ(x) comes from the stochastic dynamics [the l.h.s. of
Eq. (56)] while the associated chemical potential µ(x) comes
from the equilibrium distribution [the r.h.s. of Eq. (56)], and
is thus of thermodynamic nature. We stress that Eq. (61) can
be read for any occupation state of the system. If evaluated
for x(t) solution of the rate equation (6), we see that Σ

(
x(t)

)
becomes equal to the affinity A

(
x(t)

)
and goes to zero at large

time, as expected in equilibrium.

2. Open systems

To drive the CRN out of equilibrium, one adds chemostat-
ting reactions of the form of Eq. (35) and splits species in a
set Y of chemostatted species and a set X of non-chemostatted
ones, as was done in Sec. II E in the noninteracting case.
As well known (see e.g. Refs. [10, 64]), each chemostatted
species either breaks a conservation law or induces an emer-
gent cycle. The number of emergent cycles can be found al-
gebraically by considering the extended stoichiometric matrix
Sres [defined as in Eq. (37)], and is given by Eq. (44).

The rates γ±i of the chemostatting reaction of species Yi al-
low one to define a driving parameter ai through Eq. (36). In-
terestingly, in such chemostatting settings, one sees explic-
itly that the underlying stochastic dynamics satisfies ‘local
detailed balance’ [65, 66] (see Ref. [67] for a review and
Refs. [63, 68] for the case of CRNs). Namely, defining the
vector of the entropy production rates of individual reactions
as in Eq. (59) (including chemostatting reactions), one now
finds at large Ω

Σ(x) = −S⊤res µ(x) + a , (62)

where the computation is done directly from the expression
of the ratio of transition rates. Eq. (62) expresses that local
detailed balance holds, with a playing the role of a chemical
drive. As before for Eq. (61), this equation holds for any oc-
cupation n (at large Ω) through x = n/Ω; it makes the link
between stochastic aspects (on the l.h.s.) and thermodynamic
quantities (the r.h.s. being expressed as a function of chemi-
cal potential and drive). The case a = 0 is the simplest case
where equilibrium is recovered, since no chemostatting occurs
then. In fact, the condition for the chemostatting not to drive
the system out of equilibrium is a ∈ ImS⊤res – in which case
the emergent cycles induce no current. This is expected, since
the affinity A takes exactly the form of Eq. (61) [see Eq. (40),
which also holds for interacting CRNs]. We refer the reader
to Refs. [68–70] for relations to the second law.

9 In fact, if one evaluates Eq. (57) starting from the l.h.s. instead of the
r.hs. of Eq. (56), one arrives directly at Eq. (61).

E. Linear response for CRNs

We now apply our framework to study the response of in-
teracting networks to small perturbations out of equilibrium
stationary states. As discussed in Sec. II D, the Wegscheider
condition for closed CRNs ensures the existence of an equi-
librium steady state xeq, fixed by the initial conditions, and
characterized by the vanishing of all the currents and affini-
ties, Jeq

ρ = Aeq
ρ = 0 ∀ρ. Close to this equilibrium state, we can

linearize Eq. (8) and re-express it in matrix form:

J ≃ ΛA , (63)

where Λ is the R × R diagonal matrix of linear mobility de-
fined by the diagonal entries (Λ)ρρ = λ+ρ (xeq) = λ−ρ (xeq) = λeq

ρ .
Despite its familiar form of a linear phenomenological rela-
tion [47], Eq. (63) is little informative on the system’s re-
sponse. It describes the local response of each current Jρ to
a small perturbation of the corresponding affinity Aρ without
taking into account the cross-couplings between chemical re-
actions. In this sense, the Onsager reciprocal relations [71] are
trivially satisfied by Eq. (63) being Λ a diagonal matrix. Fur-
thermore, Eq. (63) is blind to the underlying network topol-
ogy: we know that only M out of the R reactions (and the cor-
responding currents) in the network are linearly independent
due to cycles. A natural question is thus how cross-couplings
among reactions emerge in this context and how they relate
to the network structure. The decompositions introduced in
Sec. II C will provide a natural framework to address these
aspects.

Eq. (63) is valid whenever the affinity is small, but one
may further assume that the system is (i) closed, with affin-
ity A ≪ 1 remaining small and conservative while relaxing
to zero; (ii) open, with an external source (e.g. a chemostat)
providing a constant non-conservative contribution to the total
affinity A ≪ 1. In the first case, the system exhibits a transient
relaxation towards xeq. In the second case, the system reaches
a nonequilibrium steady state x∗, close to xeq, with positive
entropy production. We shall treat these two cases separately
before revealing the connections between them, in the spirit
of the Einstein relation between diffusivity and mobility.

1. Transient response

In the previous section, we have seen how the finite-time re-
laxation of the system is fully captured by the M cocycle cur-
rents Je

γ in Eq. (54) (and this even outside the linear-response
regime, when a steady state is reached). By substituting the
decomposition Eq. (26) in the rate equation Eq. (6), one di-
rectly sees that the currents Jc

α do not contribute to the time
evolution of x(t), since cα ∈ Ker S. Accordingly, we can plug
Eq. (63) into the definition of Je

γ and get

Je
γ = cγ · J = cγ · ΛA =

∑
γ′

cγ⊤Λ cγ
′︸   ︷︷   ︸(

LQ
)
γγ′

Ac
γ′ , (64)

where in the last step we used the decomposition in Eq. (19)
together with the condition of reversibility Eq. (21). Equa-
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tion (64) describes the linear relation between transient cur-
rents Je

γ and conservative affinities Ac
γ. They vanish together

in the long time limit, as x(t)→ xeq. Accordingly, we identify
the matrix LQ in Eq. (64) as an M × M relaxation matrix. It
is symmetric and positive-defined in accordance with Onsager
reciprocal relations.

Since we are assuming a small perturbation around equi-
librium, we introduce the distances from equilibrium for the
concentration x(t) and the chemical potential µ(t) as:

δx(t) = x(t) − xeq (65)
δµ(t) = µ(t) − µeq , (66)

so that δx , δµ
t→∞
−−−→ 0. The affinity is assumed to be conser-

vative, A = −S⊤µ, thus:

A = −S⊤µ = −S⊤δµ = −S⊤
(
Xeq)−1 δx (67)

where in the second equality we have introduced a diagonal
matrix Xeq whose entries are given by (Xeq)i = xeq

i . Also, by
applying the matrix G to δx(t) one gets:

G δx(t) =

 0

δz(t)



N
−

M
M , (68)

where δz(t) is the vector containing the distance to equilibrium
for the zγ variables, δzγ = zγ(t)− zeq

γ . The first N−M zeroes in
Eq. (68) correspond to the conservation laws ℓ (by definition,
ℓ ·δx(t) = 0). The relation in Eq. (68) can be inverted using the
structure of the row reduction [see Eq. (A17) in Appendix A],
and one gets:

δx(t) = SM δz(t) , (69)

where we recall that SM is the matrix consisting of the M first
columns of S. We replace Eq. (69) into Eq. (67) to obtain an
expression for the affinity as a function of the reduced set of
variables δzγ. In particular, for the M cocycle affinities Ac

γ we
find:

Ac
γ = −

∑
γ′

(
S⊤M

(
Xeq)−1 SM︸            ︷︷            ︸
HQ

)
γ,γ′
δzγ′ , ∀γ . (70)

Notice that the M × M matrix HQ defined in this relation is
symmetric and positive-defined, in accordance to the conser-
vative nature of Ac

γ. Finally, combining Eqs. (54), (64) and
(70) we obtain the linear evolution of δz:

d
dt
δz(t) = −B δz(t) , (71)

where B = LQHQ is the stability matrix whose spectrum con-
trols the relaxation to the equilibrium state and is strictly pos-
itive, SpB = SpLQHQ > 0. As a consequence, the system
relaxes monotonically to the equilibrium steady state, which
in the theory of dynamical systems is called a stable node. In-
terestingly, the matrices LQ and HQ, which appear naturally
in our deterministic framework, bear a physical meaning in

the underlying stochastic dynamics. It is known that Gaus-
sian temporal fluctuations around equilibrium are well de-
scribed by the (linearized) chemical Langevin equation [72].
In Appendix C, we show that the Onsager matrix LQ ap-
pears to be the covariance matrix of the Gaussian noise enter-
ing the Langevin description, where, in the large but finite Ω
asymptotics, δz(t) becomes a stochastic process. The matrix
HQ appears as the Hessian matrix associated to the quadratic
quasipotential φ(δz) = 1

2δz
⊤HQ δz from which the conserva-

tive force −LQ∇Φ of the Langevin equation is obtained [see
Eq. (C12)] and that describes the equilibrium Gaussian distri-
bution ∝ exp

[
−Ωφ(δz)

]
of the deviation δz around its average

value 0.

2. Steady-state response

For an open system, relaxation to equilibrium is impeded
by the continuous supply of external currents, as described
in Sec. II E. Then, the overall affinity is non-conservative
and takes the explicit form given by Eq. (40) with the non-
vanishing circulations Ae

α determined by the chemostatting pa-
rameters a:

Ae
α = cα · A = cα · a , 0 ∀α . (72)

Consider for simplicity the case of a time-independent
chemostatting, a ≪ 1, so that the system reaches a nonequi-
librium steady state x∗ linearly close to the equilibrium state,
δx∗ = x∗ − xeq ≪ 1. In the linear regime, we can replace
Eq. (63) into Eq. (72) so that

Ae
α = cα · Λ−1 J t→∞

=
∑
α′

cα⊤Λ−1cα
′︸      ︷︷      ︸

(LP)αα′

Jc,∗
α′ , (73)

where in the last equality we used the current decomposi-
tion Eq. (26) under the steady state condition, i.e. when only
the cyclic currents survive Jc,∗

α = limt→∞ Jc
α(t). The matrix

LP in Eq. (73) describes the linear relation between the non-
conservative affinities maintaining the system out of equi-
librium and the non-zero currents characterizing the steady
state. As such, it corresponds to the Onsager matrix of the
steady-state response and one verifies that it is symmetric and
positive-defined. Notice that the response in Eq. (73) cor-
responds to the one initially studied by Schnakenberg [13].
In his analysis, Schnakenberg emphasizes the thermodynamic
significance of cycles. Indeed, we see that the steady-state re-
sponse is fully determined by a number of currents and affini-
ties given by the number of cycles in the underlying topology.

Notably, the dimensions of the Onsager matrices control-
ling transient response LQ and steady-state response LP are
not the same: they are fixed by the number of cocycles and cy-
cles, respectively. In both cases, we see how the off-diagonal
contributions to the response emerge once we restrict the anal-
ysis to the subset of physically relevant currents and affini-
ties. Formally, this is done by projecting the total currents
and affinities on the subspaces defined by the cycles and the
cocycles (see Appendix D). A natural question is how the two
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Onsager matrices LP and LQ are related, given that (i) they de-
scribe respectively relaxation to equilibrium and response to
a small drive (that one thus expects to be related fluctuation-
dissipation); (ii) they live in (complementary) spaces of dif-
ferent dimensions. We address this question in the following
section.

3. Hidden fluctuation-dissipation symmetries

Following the same convention for the ordering of the reac-
tions as in Sec. II B, we subdivide the diagonal matrix Λ as:

Λ =

(
ΛM 0
0 ΛR−M

)
, (74)

where the upper diagonal block ΛM corresponds to the M
cochord reactions and the lower diagonal block ΛR−M to the
R−M chord reactions. Doing so, from Eqs. (64) and (73), the
Onsager matrices LQ and LP explicitly read

LQ = ΛM + TΛR−MT
⊤ (75)

LP = Λ−1
R−M + T

⊤Λ−1
M T , (76)

and no apparent connection can be envisaged between them
for generic Λ.

In order to unveil such connection, we perform the follow-
ing diagonal transformation for the variables:

Ĵ = Λ−1/2 J , Â = Λ+1/2 A . (77)

One sees from Eq. (63) that such change of variable corre-
sponds to a rescaling of the linear-regime current/affinity rela-
tion, such that Ĵ = Â. Moreover, it preserves the orthogonality
structure between the potential condition A ∈ ImS⊤ and the
stationary condition J ∈ Ker S discussed in Sec. II C: for the
new variables, these conditions become

Â ∈ Im
(
SΛ1/2)⊤ for conservative affinities (78)

Ĵ ∈ Ker SΛ1/2 for stationary currents (79)

involving complementary orthogonal subspaces,

Im
(
SΛ1/2)⊤ ⊥ Ker SΛ1/2 . (80)

The matrix Λ being invertible, one easily verifies that {Λ1/2cγ}
constitutes a basis for the subspace in Eq. (78) while {Λ−1/2cα}
forms a basis for the subspace in Eq. (79). Accordingly, we
can introduce rescaled cocycles and cycles defined as ĉγ =
Λ1/2cγΛ−1/2

γ and ĉα = Λ−1/2cαΛ1/2
α .

The new cycles and cocycles still satisfy the orthogonal-
ity relations Eqs. (15) and (18) and constitute a basis in RR,
namely:

{ĉγ, ĉα} =
(
1M −T̂
T̂⊤ 1R−M

)
, (81)

where T̂ = Λ−1/2
M TΛ1/2

R−M . As a consequence, the decomposi-
tions for the affinity Eq. (19) and the current Eq. (26) readily

generalize to the new representation:

Â =
∑
γ

Âc
γ ĉ
γ +

∑
α

Âe
αe
α (82)

Ĵ =
∑
γ

Ĵe
γe
γ +

∑
α

Ĵc
α ĉα (83)

with macroscopic components defined as:

Ĵe
γ = ĉγ · Ĵ , Ĵc

α = eα · Ĵ , (84)

Âc
γ = eγ · Â , Âe

α = ĉα · Â . (85)

Finally, in the linear regime, the Onsager matrices L̂Q and L̂P

such that Ĵe
γ =

∑
γ′ (L̂Q)γγ′ Âc

γ′ and Âe
α =

∑
α′ (L̂P)α,α′ Ĵc,∗

α′ are
obtained following the same procedure as before and read:

L̂Q = 1M + T̂T̂
⊤ = Λ−1/2

M LQΛ−1/2
M (86)

L̂P = 1R−M + T̂
⊤T̂ = Λ1/2

R−MLPΛ1/2
R−M . (87)

Interestingly, the two matrices T̂T̂⊤ and T̂⊤T̂ share the same
non-zero eigenvalues, meaning that the Onsager matrices L̂Q

and L̂P also have the same spectra up to the multiplicity of
eigenvalue λ = 1.

Proof. Let us consider an eigenvector w and the correspond-
ing eigenvalue λ , 0 of the matrix T̂⊤T̂ so that

∃w : T̂⊤T̂w = λw . (88)

By multiplying by T̂ on the left one gets T̂T̂⊤T̂w = λT̂w . If
T̂w is different from zero, then λ is also an eigenvalue of the
matrix T̂T̂⊤. Ad absurdum let us assume that T̂w = 0. From
Eq. (88) we see that this implies λw = 0 which is against the
original assumption (λ , 0). As a consequence, for any non-
zero eigenvalues λ,

λ ∈ Sp T̂⊤T̂ ⇔ λ ∈ Sp T̂T̂⊤ □ (89)

The diagonal transformation in Eq. (77) has revealed a hidden
symmetry in the spectra of the Onsager matrices of complex
CRNs. It links the transient relaxation of the system produced
by a spontaneous (or imposed) fluctuation to the stationary re-
sponse of the system to a drive. As such it generalizes the Ein-
stein relation between mobility and diffusivity to non-trivial
topologies. In this context, the Onsager matrix LP plays the
role of a ‘mobility’ matrix and the Onsager matrix LQ that
of a ‘diffusivity’ matrix (see Appendix C). We stress that this
symmetry is highly nontrivial: the two matrices have differ-
ent dimensions due to the existence of conservation laws and
cycles.

F. Application: linear-regime thermodynamically feasible
reconstruction of metabolic networks

We cast the problem mentioned in the Introduction by
working out a couple of simple examples before giving a
straightforward reconstruction algorithm.
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Typically, in metabolomic datasets some species are in-
jected in the cell by an external reaction of the kind ∅ → Y , ac-
cording to the chemostatting procedure described in Sec. II E.
Instead, there is no further chemostat associated with internal
cycles, which then have vanishing affinity. Notice that, with
respect to the chemostatting procedure previously described,
the problem of reconstruction requires just a small shift of pic-
ture, where instead of separating internal and external species
we separate internal and external reactions. A subset of ex-
ternal currents are thus treated as known (fixed) parameters
and the problem consists in finding a value for the internal
currents which grants thermodynamic feasibility (KVL) and
conservation of chemical species (KCL).

1. Noninteracting network, one internal cycle.

As the simplest possible case consider the network

∅
Jext

1 // X1

J2

##

J3

;; X2
J4 // ∅ ,

where for the sake of ease we momentarily loosen the assump-
tion that there are no multiple reactions with the same stoi-
chiometry. We assume that Jext

1 is known, and that all other
currents have to be reconstructed. Notice that J4 is also an
external current, which we could consider to fix, but then we
should keep in mind that by current conservation J4 = Jext

1 . In
general, not any external current can be independently fixed,
so some care is needed in choosing the boundary data.

We now want to impose dynamic and thermodynamic con-
straints. KCL [Eq. (29)] at the nodes of the network clearly
implies

Jext
1 //

J2

��

Jext
1 −J2

BB
Jext

1 // ,

where current J2 now acts as a free parameter. As far as KCL
is involved, this parameter could take any real value. We will
now implement thermodynamic constraints to reduce the span
of J2. Given the constitutive equation Eq. (7), and identifying
the internal cycle

A2

��

A3

\\ ,

KVL [Eq. (21)] yields

λ+2λ
−
3 = λ

−
2λ
+
3 , (90)

where the λ±ρ ’s are evaluated at the steady state λ±ρ = λ
±
ρ (x∗).

Let us now rewrite this in terms of the external current Jext
1 ,

of the internal current J2 (that we take as free parameter), and

of the velocities λ−2 and λ−3 (chosen arbitrarily). After a little
work we obtain

J2 =
1

1 + λ−3 /λ
−
2

Jext
1 . (91)

In reconstruction problems the actual values of λ−2 and λ−3 are
usually not known. However, by the fact that they are positive,
this latter equation implies

0 ≤ J2 ≤ Jext
1 . (92)

Notice that for positive Jext
1 both currents J2 and J3 have to

flow left-to-right, which makes physical sense: one would not
expect a river that bifurcates around an island to have upward
flows along one of its branches!

However, reconstruction procedures that just implement
KCL may fail to impose this constraint, thus producing a ther-
modynamically infeasible cycle. In particular, for vanishing
Jext

1 , one could have a perpetuum mobile:

J2

��

J2

\\ .

Other reconstruction procedures based on linear optimization
are instead bound to hit the boundary of the space of solu-
tions, yielding the trivial solutions J2 = 0 or Jext

1 − J2 = 0,
which basically remove internal cycles and do not fully allow
to explore meaningful possibilities.

The same solution as Eq. (91) can be found by the linear-
regime approach. In view of Eq. (63), KVL prescribes

0 = A2 − A3 ≈
J2

λ
eq
2

−
Jext

1 − J2

λ
eq
3

, (93)

leading to

J2 =
1

1 + λeq
3 /λ

eq
2

Jext
1 . (94)

This, in fact, is almost identical to Eq. (91), but for the fact
that it is written in terms of equilibrium values of the veloci-
ties. We will discuss the difference between λ’s and λeq’s later
on. For the sake of our analysis, notice that, provided that the
velocities are just some positive quantities, Eqs. (91) and (94)
impose the exact same constraint. Linearization here has no
actual consequence.

2. Noninteracting network, two cycles.

Let us now consider:

∅

J1=−Jext
2 −Jext

3

��
X1

J6=J5+J7−Jext
3

~~

J4=−J5−J7−Jext
2

  
∅

Jext
3

// X2

J5

''

J7

77 X3 ∅
Jext

2

oo
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where we already implemented KCL in terms of the external
currents Jext

2 , Jext
3 and of the internal currents J5, J7.

KVL on the two internal cycles instead prescribes:

λ+5λ
−
7 = λ

−
5λ
+
7 (95)

λ+4λ
−
5λ
−
6 = λ

−
4λ
+
5λ
+
6 . (96)

Selecting λ−4 , λ
−
5 , λ

−
6 as free parameters, after some work from

the first we find the linear equation J7 = J5 λ
−
7 /λ

−
5 , and let-

ting β = 1 + λ−7 /λ
−
5 from the second we obtain the quadratic

equation

β

λ−5λ
−
6

J2
5 +

(
1
λ−5
+
β

λ−4
+
β

λ−6
−

Jext
3

λ−5λ
−
6

)
J5

+
Jext

2

λ−4
−

Jext
3

λ−6
= 0. (97)

Once again, notice that when there is no external current
Jext

2 = Jext
3 = 0 we get J5 = J7 = 0, no perpetuum mobile.

Otherwise, for given values of Jext
2 , J

ext
3 one can use this equa-

tion to explore the possible values of the internal currents in
terms of arbitrarily chosen parameters λ−4 , λ

−
5 , λ

−
6 .

This quadratic problem is already becoming complicated
(and it is easy to foresee that for more complicated topolo-
gies this will give rise to higher-order polynomial systems).
Given that we are interested in some bulk characterization of
the landscape, a full solution may be an overshooting. There-
fore, like in the previous example, let us proceed by lineariza-
tion of KVL:

0 = A5 − A7 ≈
J5

λ
eq
5

−
J7

λ
eq
7

(98)

0 = A4 − A5 − A6 ≈
J4

λ
eq
4

−
J5

λ
eq
5

−
J6

λ
eq
6

. (99)

The first easily gives J7 = J5 λ
eq
7 /λ

eq
5 , and letting βeq = 1 +

λ
eq
7 /λ

eq
5 the second yields 1

λ
eq
5

+
βeq

λ
eq
4

+
βeq

λ
eq
6

 J5 +
Jext

2

λ
eq
4

−
Jext

3

λ
eq
6

= 0. (100)

But now this is a simple linear equation that, given the exter-
nal currents, provides a reconstruction for any given choice
of positive real λ’s. Notice that this equation can also be ob-
tained from Eq. (97) by disregarding terms of order J2. Thus
the reconstruction is thermodynamically feasible.

3. Considerations and problem setting.

The key takeaways of these examples are the follow-
ing. Both ways, direct solution of Kirchhoff’s laws and lin-
earization grant thermodynamic feasibility of reconstruction.
The first is consistent with the basic tenets of reaction rate
theory but increasingly complicated with topology. How-
ever, given that metabolic reconstruction is a very under-
determined problem and that we are more interested in span-
ning a space of viable possibilities rather than into specific

solutions, we can resort to linearization to obtain a broad bulk
of feasible reconstructions.

Given the stoichiometric matrix S of a metabolic network,
the first step is to split it in terms of internal reactions SX , that
we want to reconstruct, and external reactions SY , for which
there exist data or that we want to control. Then, given some
input currents JY for the external reactions, we want to pro-
duce a reconstructed current JX that satisfies KCL and KVL.
We base our solution on the linear-regime assumption.

4. Linear-regime reconstruction algorithm.

0) Input S;

1) Split it as S = (SY ,SX) in terms of internal reactions SX
and external reactions SY . In the following we refer to
R as the number of internal reactions and M as the rank
of SX;

2) Input the external currents JY ;

3) For all left nullvectors ℓX of SX check that ℓX ·SY JY = 0,
else revise the input currents or reduce the number of
external reactions and go back to 1);

4) Row-reduce the composite matrix (SY ,SX) to obtain the
composite matrix (1,GSX);

5) Reorder reactions in such way that GSX takes the form
Eq. (46); Reorder S accordingly;

6) Input R real positive parameters λeq
ρ ;

7) Let Λ = diag {λeq
ρ }ρ; Let diag (ΛM ,ΛR−M) = Λ; Let LP as

per Eq. (76);

8) Let

JX =

(
(1M − TL

−1
P T

⊤Λ−1
M )GMSY JY

L−1
P T

⊤GMSY JY

)
. (101)

In Appendix E we explain the mathematical rationale behind
this algorithm and prove that it satisfies both KCL and KVL.
In the conclusions we comment on a possible biochemical in-
terpretation of the coefficients λeq

ρ .

IV. OUTLOOK

Interacting mass-action CRNs present a host of behaviors
coming from the multiplicity of fixed points [73, 74] and
ranging from non-linear oscillations [75] to chaos [76]. In
our work, we focused on the stationary state and on relax-
ation properties, but the decomposition of currents and affini-
ties that we identified could be useful tools to study such
non-stationary phenomena. Also, naturally, the geometrical
tools that we identified could help to study the role played
by deficiency [22, 77, 78] in dissipation and noise [51, 79].
The symmetries in linear response could be compared to the
recent approach of Ref. [80]. The separation of timescales
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that we identified in Sec. III C 4 through the evolution of the
population of islands associated to cocycles bears strong ties
with the control of chemical kinetics through catalysts and in-
hibitors, following for instance the recent methods presented
in Ref. [19]. Also, autocatalysis plays an essential role in
biochemical processes and it is only recently that the classi-
fications of CRNs leading to this type of self-replication have
been identified [23]. Such classification could be investigated
in the light of our geometrical tools. Another geometrical ap-
proach was recently proposed in Ref. [81] where a notion of
Hessian geometry of CRNs is constructed; it would be worth
to identify the link between such approach and the notions of
cycles and cocycles we have put forward. In the same way,
geometrical decompositions were identified in Markov pro-
cesses [82] and in field theories [28], which may be related
to the one present in this paper. And of course much could
be gained from going beyond the well-stirred limit by consid-
ering extended systems where spatial inhomogeneities play a
role.

On the graph-theoretical side, a known duality exists be-
tween vertices and faces for planar graphs, which, in our lan-
guage exchanges the roles of cycles and cocycles. For non-
planar graphs, the concept of matroid [83] allows one to treat
abstract independence sets based on circuits and to generalize
dualities. For noninteracting CRNs, such duality thus implies
a mapping between stationary currents (supported by cycles)
and transient ones (supported by cocycles). It would be inter-
esting to investigate the consequences of such a mapping. Our
definition of cycles and cocycles of the hypergraph associated
to a generic CRN opens natural questions: can such duality be
extended to a class of hypergraphs, and what could we learn
from it? Also, cycles were recently shown to control several
aspects of fluctuations and large deviations in the graph asso-
ciated to Markov jump processes [84–86]. Such results could
be extended to dynamics on hypergraphs using the tools we
have put forward.

Regarding the reconstruction algorithm of Sec. III F, the
main open questions are about how to further constrain so-
lutions with empirical data or reasonable target functions,
and whether the linear-regime assumption is consistent with
physiological conditions. About this latter, further analysis
is needed to characterize the difference between the linear-
regime landscape and the algebraic variety of solutions of the
nonlinear KVL. About the former, the main virtue of our pro-
posal is that the coefficients λeq

ρ ’s are independent one of each
other and can take any real value, while previous reconstruc-
tion efforts had to deal with non-convex spaces of parame-
ters where optimization algorithms could get stuck into sub-
spaces or at boundaries. Let us argue that these parameters
also make biochemical sense, by going back to their linear-
response meaning. By the fluctuation-dissipation paradigm,
the coefficients λeq

ρ ’s quantify the spontaneous activity of a
system at equilibrium, that is, in the absence of external cur-
rents. In theory, one would have to realize the sole reaction ρ
in vitro and measure its activity. In practice, given that a sin-
gle reaction’s activity can be associated to the expression of
the enzyme that catalyzes it, we propose that the λeq

ρ could be
roughly proportional to the abundance of the corresponding

enzyme, for which there could be available data.
In this paper, we treated mass-action CRNs, but, being most

of the results of a purely topological nature, most of them ap-
ply to more generic reaction kinetic laws (such as effective
enzymatic models) with the only requirement that there exist
conjugate currents and forces such that J > 0 if and only if
A > 0, and J = 0 if and only if A = 0. What is special about
mass-action kinetics is that the cycle affinities Ae

α do not de-
pend explicitly on the populations, and therefore are constants
of motion.

In this respect, an interesting direction to explore is that of
reaction networks where species are not chemical, but biolog-
ical. There, no notion of thermodynamic feasibility imposes
that the affinities of internal cycles have to be zero, but the
decompositions of affinities and currents that we propose still
apply to this case. In such context, migration from regional
pools of species can also play the role of chemostatting. Eco-
logical and evolutionary models are known to present a vari-
ety of phenomena such as strong space-time fluctuations [87],
chaos [88] or sensitivity to noise [89]. Systems modeled by
(generalized) Lotka–Voltera equations [87, 88, 90] are partic-
ularly amenable to the tools we propose, as, at the population
level, they can be put in correspondence with CRNs [91]. We
thus hope that the geometrical concepts we have identified can
be helpful to study such problems.
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Appendix A: Integration and differentiation on the networks of
chemical reactions

1. Noninteracting CRNs: integration on spanning trees

Consider a set of unimolecular reactions, as in Sec. II, and
assume that the corresponding graph G is connected. The sto-
ichiometric matrix satisfies

(
S⊤V

)
ρ = Vt(ρ) − Vs(ρ) so that S⊤

can be seen as a gradient operator, which transforms a poten-
tial V defined on every species/node i into a (chemical) force
field between the source s(ρ) and target t(ρ) of every reac-
tion/edge ρ. In this Appendix, we aim at building an explicit
‘integrator’: that is, if a conservative force A belongs to ImS⊤
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we want to build a potential V such that A = −S⊤V. This will
be done by defining an integrator matrix G⊤ from the entries
of S. Then, we present how these two matrices are related.

We remark in advance that V is not unique: if V and V′
yield the same A, we have that S⊤(V′−V) = 0 so that V′−V ∈
Ker S⊤, meaning that the two potentials are equal up to a
global constant, since Ker S⊤ is spanned by ℓ0 = (1, · · · , 1).
This is similar to what happens in the continuum when inte-
grating a function: a primitive is defined « up to a constant ».

Since the labeling and the orientation of reactions is arbi-
trary, we can redefine them to our best convenience. To do
so, we first select arbitrarily one of the nodes, that will play
the role of the ‘root’ of the graph. Then, we fix a spanning
tree TG (see Fig. 2), that is, a set of M independent reactions.
This allows one to fix the orientations: the edges in TG are
directed toward the root while the other edges (the chords) are
oriented arbitrarily. We then turn to labeling, starting by the
nodes. The root is node 1, and we label the other nodes in-
crementally from the root along TG as follows (see Fig. 1):
at every branching point of TG, we pick one of the branches
and continue the numbering of species incrementally, until we
reach a ‘leaf’ (i.e. a node of the graph without further edge).
We then come back to the last branching point and continue
the procedure until every remaining node is exhausted. Sec-
ond, we label the edges. From node 2, a single edge points
towards the root, which we label as edge 1. Recursively, the
edge pointing out of node γ + 1 (for 1 ≤ γ < M) is labeled as
edge γ. This exhausts the M = N − 1 cochords, labeled from
1 to M. The remaining R−M chords (equal, in number, to the
number of cycles) are labeled arbitrarily from M+1 to R. Do-
ing so, for the first M columns of S (indexed by 1 ≤ γ ≤ M)
we have s(γ) = γ + 1 and t(γ) ≤ γ. This implies that the
stoichiometric matrix takes the form

S =


1 1
−1 1
−1 Sdep
. . .

(0) −1

︸              ︷︷              ︸
SM

(A1)

where: (i) on the N × M block SM , the matrix −1M lies on
the lower diagonal and, on every column γ, there is a single
entry 1 on line t(γ) ≤ γ; and (ii) the last R − M columns
correspond to the chords, which are the dependent reactions.
This means there exists a M × (R − M) matrix T such that
Sdep = SMT, encoding the fact that every column of Sdep can
be expressed as a linear combination of the M independent
columns of SM . In fact, this encodes a graphical property:
every chord is part of a cycle (and every cycle has exactly
one chord, see Fig. 2), and the algebraic dependency we just
explain encodes that the chord reaction can be obtained by
applying all the cochord reactions of the cycle (with the ade-
quate orientation). Notice last that the first line of S contains
only positive entries, since by our convention the root only has
entering edges.

We define an N × N matrix G from Eq. (22) and we recall
that U( j) is the set of nodes (including j) that are upstream

of j on TG. From a potential V defined on the nodes (and
imposed to verify Vroot = 0), we define a set of forces

Aγ = Vs(γ) − Vt(γ) = −
(
S⊤V

)
γ (A2)

for every cochord. Because the line i of G⊤ contains 1 for
every node located in between the root and node i (i.e. for
every node j such that i ∈ U( j)) we have, by telescoping sum

Vi = Vi − Vroot =
∑
γ

Aγ δi∈U(s(γ)) =
∑
γ

(
G⊤

)
i,s(γ) Aγ . (A3)

Notice that, for every node j , root there is exactly one co-
chord γ on the spanning tree such that j = s(γ). This allows
one to express the sum in Eq. (A3) as a integration along the
unique path of cochords γ connecting node i to the root along
the spanning tree. Equations (A2) and (A3) express a one-
to-one relation between a set of M forces Aγ defined on the
cochords, and a set of N = M + 1 potentials Vi (including
Vroot = 0) defined on the nodes. These two equations thus
encode the differentiation and the integration of a conserva-
tive force on a graph: indeed if A ∈ ImS⊤ is a ‘gradient’, the
potential V defined through the ‘integral’ (A3) of M compo-
nents of A generates the full vector A through A = −S⊤V. As
remarked above, such potential V is unique up to a constant,
and the condition Vroot = 0 fixes V uniquely (independently of
the choice of the spanning tree).

We now identify an algebraic relation between G and S. To
do so, one defines for every node j , root (i.e. 2 ≤ j ≤ N) a
unit ‘charge’ as the potentialV j, a vector of entriesV j

i = δi j.
The corresponding forces A j defined on the cochords from
Eq. (A2) have entries

A
j
γ =


−1, if t(γ) = j

1, if s(γ) = j
0, otherwise,

i.e., A j
γ = −

(
S⊤M
′)
γ j (A4)

where S⊤M
′ is the M × M matrix constituted of the M

last columns of S⊤M [the transpose of the matrix defined in
Eq. (A1)]. By direct application of Eq. (A3), we see that the
unit potentialV j is obtained from the forceA j as

V
j
i = δi j =

∑
γ

(
G⊤

)
i,s(γ)A

j
γ . (A5)

We now interpret this relation algebraically. Since s(γ) = γ +
1, we define GM as the M × M submatrix of G deprived from
its first line and column (i.e. GM is the black submatrix of G
in Fig. 3b). Then the identity (A5) yields, from Eq. (A4)

−G⊤M S
⊤
M
′ = 1M . (A6)

See Refs. [92, 93] for similar results in the context of inci-
dence matrix inversion and Ref. [19] for applications in chem-
istry.

Before going on, let us take a closer look at this relation.
Because G⊤M is lower triangular with only 1’s on the diago-
nal, it is invertible and its inverse is given by −S⊤M

′. We thus
read Eq. (A6) as follows: the subset of M independent re-
actions between M independent species are described by the
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lines of matrix S⊤M
′, which constitutes an invertible ‘core’ of

the full (and transposed) stoichiometric matrix S⊤. What we
have done so far to arrive at Eq. (A6) is to realize that S⊤M

′ de-
fines a set of forces on the cochords whose integration along
the path from root to any node j , root gives the ‘unit charge’
potential V j defined above – which is quite natural from the
graph perspective. This provides an electrostatic picture of
the incidence matrix of G. To proceed, one now remarks that
Eq. (A6) implies

−S⊤M
′ G⊤M = 1M , (A7)

which is algebraically trivial but not obvious from the underly-
ing graph-theoretical viewpoint. Yet, completing the matrices,
it implies that

−S⊤MG
⊤ = −

(S⊤M)1 S⊤M
′



1 0 · · · 0
... G⊤M
1

 =

0
... 1M
0


(A8)

where (S⊤M)1 is the first column of S⊤M and where we used
the fact that ℓ⊤0 is a right nullvector of S⊤ (and thus of S⊤M).
Transposing this relation and using the structure of S given by
Eq. (A1) with Sdep = SMT we obtain

−GS =

(
0 0
1M T

)
, (A9)

where the first line is full of zeroes. This is Eq. (25) announced
in the main text. Physically, it encodes the fact that S⊤, seen
as a gradient operator, can be inverted on the cochords by the
matrix −G⊤; and that, if cochord forces are conservative, Aγ =
−(S⊤V)γ = −(S⊤MV)γ, then the corresponding chord forces
write as

Aα = −(S⊤V)α = −(S⊤depV)α = −(T⊤ S⊤MV)α (A10)

=
∑
γ

TγαAγ (A11)

i.e., they are expressed as a linear combination of the Aγ’s.
Mathematically, Eq. (A9) encodes the row-reduction of S in
an echelon form (see e.g. Ref. [60]). Such identity is at the
basis of our geometrical analysis of complex CRNs in Sec. III,
and of the algebraic analysis presented in the next paragraph.

2. Interacting CRNs: integration on multi-paths

To generalize the construction presented in the previous
paragraph, we now follow a complementary path. The matrix
S⊤ can still be understood as a (weighted) discrete gradient:
every line ρ of S⊤ tells for a given reaction ρ how the products
(resp. reactants) contribute positively (resp. negatively) to the
affinity Aρ. Our aim is to explain how to ‘invert’ that gradi-
ent and to define an integration that allows one to reconstitute
explicitly a potential V such that A = −S⊤V if A ∈ ImS⊤

is a conservative affinity. For complex CRNs and their corre-
sponding hypergraph (see Sec. III and Fig. 6), there exists no

such notion as a spanning tree, and the topological construc-
tion of the previous paragraph (which consists in integrating
from a chosen root to a node along the spanning tree) cannot
be generalized.

Here we follow a mirror procedure, starting from algebra
to build a geometrical picture. Denoting by M the rank of S,
we re-order the reactions and species so that the first M reac-
tions are independent, and the last M species are independent.
Namely, the first M columns of S are linearly independent,
and the same holds for its last M lines. The row-reduction of
S in echelon form (see e.g. Ref. [60]) ensures that there exists
an invertible N × N matrix G such that

−GS =

 0 0

1M T



N
−

M
M

R−M

(A12)

(notice that the ordering conventions we are using makes that
the lines of 0’s are placed first compared to the canonical row
reduction). The matrix G is not unique and its entries can
be found by the Gauss–Jordan elimination procedure through
elementary line and columns operations [60]. This ensures
that the entries of G can be taken as rational when, as in our
case, S has integer entries.

To learn about geometry, it is convenient not to rely on
Gauss–Jordan elimination and instead to build the matrix G
in a fully explicit manner. We first fix a basis of Ker S⊤ as
N −M column vectors representing conservation laws (whose
entries are taken as rational). Then, postulating the following
form:

G⊤ =



0 · · · · · · · · · 0
csv 0 · · · · · · · · · 0

laws
escape routes(
G⊤M

′)



N
−

M
M

︸                 ︷︷                 ︸
G⊤M

(A13)

we want to show that there exists a M × M matrix G⊤M
′ which

ensures that the key relation

−S⊤ G⊤ =

(
0 1M

0 T⊤

)
(A14)

is satisfied.
To do so, we notice that the N−M columns of conservation

laws in Eq. (A13) ensure the N − M first columns of 0’s in
Eq. (A14). Then, by our ordering conventions, the first M
columns of S are independent and form an N × M matrix SM ,
so that we can organize S⊤ as

S⊤ =

 S
⊤
M

S⊤dep



M
R
−

M

. (A15)
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There, Sdep are the R − M last columns of S, which are de-
pending on the first M ones; this means that they can be ex-
pressed as a linear combination of those, i.e. that there exists
a M× (R−M) matrix T such that Sdep = SMT. With this prop-
erty, we see that the proof of Eq. (A14) reduces to showing
that

S⊤M
′G⊤M

′ = 1M (A16)

where S⊤M
′ is the M × M matrix consisting of the last M

columns of S⊤M , and G⊤M
′ is the M × M matrix consisting of

the last M lines of G⊤M [defined in Eq. (A13)]. Physically, S⊤M
′

represents a ‘core’ set of M independent reactions between
M independent species. Crucially, it is an invertible matrix,
since the last M species are independent 10. This implies that
one can define G⊤M

′ as the inverse of S⊤M
′, which ensures the

relation (A16) to be satisfied. Since S⊤M
′ has integer entries,

we obtain that G has rational entries (as is also the case when
defining G through Gauss–Jordan elimination).

As we just described, this shows that the form of G⊤ given
in Eq. (A13) allows for the row-reduction of S as in Eq. (A12),
with the ‘escape routes’ in Eq. (A13) being precisely given
by the M × M matrix G⊤M

′ defined from Eq. (A16). Before
showing that the elements of that matrix play the geometrical
role of escape routes indeed, it remains to prove that the row-
reducing matrix G defined in Eq. (A13) is invertible. This is
done by exhibiting its inverse: one checks with Eqs. (A15)
and (A16) that

G−1 =


1N−M

SM
0

 (A17)

is the inverse of G, provided the conservation laws in
Eq. (A13) are organized (as columns) as: csv

laws

 =

1N−M

−U⊤

 . (A18)

Up to now, the specific choice of basis for the conservation
laws was left undetermined, and this form fixes it. Its exis-
tence is shown ad absurdum.
Proof : Consider an arbitrary choice of basis for the N − M
conservation laws, and split it as follows:

 csv
laws

 =

C1

C2



N
−

M
M . (A19)

10 The proof goes as follows: if S⊤M
′ is not invertible, there exists a vector

z , 0 such that S⊤M
′ z = 0. Then, defining z̊ , 0 as N − M lines of 0

followed by the M components of z, one has S⊤M z̊ = 0 and also S⊤dep z̊ =
T⊤S⊤M z̊ = 0. From Eq. (A15), this implies S⊤ z̊ = 0, but this is absurd,
since this represents a linear dependency between the last M columns of
S⊤ (i.e. between the last M species) – which are independent.

Correspondingly, split the N lines of the stoichiometric matrix
as

S =


S1

S2


N
−

M
M , (A20)

where by hypothesis the M lines of S2 are independent while
the N − M lines of S1 depend on those of S2, meaning that
there exists a (N − M) × M matrix U such that

S1 = US2 . (A21)

This identity and the decompositions above imply from the
definition of conservation laws (they span Ker S⊤) that

S⊤2U
⊤C1 + S

⊤
2C2 = 0 . (A22)

Let us now show that C1 is invertible. Ad absurdum, if this is
not the case, there exists a vector x , 0 such that C1x = 0.
From Eq. (A22) this implies S⊤2C2x = 0, and since the M
columns of S⊤2 are independent, we have also C2x = 0. From
Eq. (A19), we then read  csv

laws

 x = 0 (A23)

which is absurd, since the column vectors of the matrix of
conservation laws are independent. Hence C1 is an invertible
matrix. Multiplying Eq. (A19) by C−1

1 on the right, we see
that the conservation laws can be organized as in Eq. (A18),
as announced. [Notice that matrix U in Eqs. (A18) and (A21)
are the same, as seen from Eq. (A22).] □

To summarize, the stoichiometric matrix can be row-
reduced in echelon form as in Eq. (A12), with an invertible
matrix G taking the form Eq. (A13) and whose inverse takes
the explicit form Eq. (A17) provided the columns of conser-
vation laws in Eq. (A13) are organized as in Eq. (A18). We
now depict how these algebraic results can be translated in
geometrical terms.

The interpretation of Fig. 3 of the matrix G for graphs can
be generalized to hypergraphs, without relying on the notion
of spanning tree. To do so, one defines an ‘escape’ proto-
col as follows. The N − M dependent species are labeled as
‘roots’. For each of the M independent species, we place a
unit charge in its corresponding node i, and we ask how many
times each of the M independent reactions have to be applied
(possibly a fractional and/or negative number of times) in or-
der to expel completely the charge from i through the set of
roots. How each reaction acts on the charges is governed by
the stoichiometry of Eq. (3). Because the matrix S⊤M

′ precisely
represents the action of the independent reactions on the inde-
pendent species, we see that Eq. (A16), rewritten as

G⊤M
′S⊤M

′ = 1M , (A24)
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tells that the line entries of G⊤M
′ precisely solve the escape

problem. Indeed, since
∑

k(G⊤M
′)ik(S⊤M

′)k j = δi j we see that
applying each independent reaction k (with 1 ≤ k ≤ M) a
number (G⊤M

′)ik of times will expel a unit charge from the
node i, while leaving empty the rest of the nodes < {rootβ}
(see Fig. 9). We thus see how the algebraically trivial passage
from Eq. (A16) to Eq. (A24) allows one to build a geometrical
interpretation of the lines of the row-reducing matrix G⊤. In
Sec. III C 3, we explain how this leads to a generalization of
the notion of cocycle from graphs to hypergraphs.

There also exists a geometrical interpretation of Eq. (A16)
itself. Here instead, one places a unit force on a cochord
(i.e. independent reaction) γ and one asks which charge have
to be set on the independent nodes (which are not roots) so
as to produce this force. The solution is now given by the
columns of G⊤M

′. Indeed, we read from
∑

k(S⊤M
′)γk(G⊤M

′)kγ′ =

δγγ′ that column γ of G⊤M
′ gives the set of charges on the set

of independent species k that generates a unit force on the co-
chord γ (and 0 on the other cochords γ′ , γ). Notice that on
the chords, the generated force is not necessarily equal to 0
(it is in fact given by the entries of T which is used to define
cocycles, see Sec. III C 3). For every γ, this set of charges can
be seen as the ‘elevation map’ of an ‘island’ associated to cγ.
Such elevation map is a potential landscape that generates a
force given by the entries of cocycle cγ (see Fig. 10 for an
example).

As a last remark, we explain how, following an argument
similar to that leading to the form of Eq. (A18) for the conser-
vation laws, one can find a basis of the chemical cycles (that
is, of Ker S) such thatcycles

 =

−T

1R−M


, (A25)

where T is the matrix that expresses the dependency Sdep =

SMT of the dependent reactions of Sdep as a function of the
independent ones of SM (see the decomposition in Eq. (A15)).
Proof : We start from a basis of Ker S composed of R − M
column vectors written as

C2

C1



M
R
−

M

. (A26)

The definition of cycles tells that SM
(
TC1 + C2

)
= 0. The

same ad absurdum argument as above tells that C1 is invert-
ible so that we can multiply the basis (A26) on the right by
C−1

1 , and still keep a matrix whose columns are a basis for the
cycles. It takes the announced form in Eq. (A25) since the re-
lation above implies TC1 + C2 = 0, as the columns of SM are
independent □

This proof is the algebraic counterpart, for generic CRNs,
of the property that the same matrix T controls the dependency

between reactions and the organization of cycles – a property
we also obtained in Sec. II B from graph theory for unimolec-
ular reactions.

Appendix B: Reversibility and the Wegscheider–Kolmogorov
condition

Consider the set of R complex reactions (3) between N
species X, described by the N × R stoichiometric matrix S.
These reactions describe, at the microscopic level, a stochastic
population process on the numbers n of each chemical species
X; and at the macroscopic level, a continuity Equation (6) for
the evolution of the concentrations x(t), which involves the
current J of Eq. (5), expressed in terms of the affinities de-
fined in Eq. (7). In this Appendix, we present in a unified
manner the equivalence between the so-called Wegscheider
condition [49] [equivalent to Kolmogorov’s criterion [46] in
the language of Markov chains (see e.g. [94])] and varied no-
tions of reversibility, both at the microscopic population level
and the macroscopic concentrations level.

We stress that the rate constants k±ρ of the reactions (3) are
macroscopic in the sense that they enter in the deterministic
description Eq. (6) of the real-valued concentrations x, and do
not depend on the system’s size. They differ from the micro-
scopic rates of the individual reactions which, at the molecular
level, scale with the system’s size as

κ±ρ = Ω
k±ρ
Ων

±ρ ∀ρ, (B1)

where Ω is the system’s volume and Ων
±ρ

= Ω
∑

iν
±ρ
i . This

corresponds to the fact that, at fixed number of molecules,
reactions involving (the collision of) several species are rarer
as Ω gets larger (see e.g. §7.5.3 in [95]). Notice that when
we discuss the population dynamics stochastic process, the
vector x denotes the rational-valued vector n/Ω representing
the discrete concentrations of species. See also Appendix C
for a discussion on the large-Ω asymptotics.

We recall (see Sec. III) that we can fix a basis of R − M
cycles cα which span the right nullspace Ker S of S, of dimen-
sion R − M. The following properties are equivalent:

I. Wegscheider’s condition:

∀α,
∏
ρ

(k+ρ
k−ρ

)cαρ

= 1 , (B2)

i.e. the product of macroscopic transition rates of every
cycle is the same in both directions along the cycle.

I’. Kolmogorov’s condition:

∀α,
∏
ρ

(
κ+ρ

κ−ρ

)cαρ

= 1 , (B3)

i.e. the product of microscopic transition rates of every
cycle is the same in both directions along the cycle.
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II. Existence of the standard chemical potential µ
:

∃µ
 : ∀ρ,
k+ρ
k−ρ
= exp

[
−

(
S⊤µ


)
ρ

]
. (B4)

For noninteracting CRNs, this is detailed balance, see
Eq. (33).

III. Existence of concentrations canceling affinities:

∃ xeq : ∀ρ, Aρ(xeq) = 0 . (B5)

IV. Existence of concentrations canceling currents:

∃ xeq : ∀ρ, Jρ(xeq) = 0 . (B6)

V. Reversible constrained product Poisson law at the popu-
lation level:

∃ xeq : |Peq⟩ ∝
∑

n

(
Ωxeq)n

n!
δ
(
ℓ(n) −L

)
|n⟩ (B7)

is an equilibrium steady state of the microscopic dynam-
ics of occupation numbers. We use the Doi–Peliti ket
notation | · ⟩ for occupation states (see the proof, Sec. B).
The components of ℓ(n) are the conserved quantities,
their values being the components of L (fixed by ini-
tial condition). Vector notations are used (n! =

∏N
i=1 ni!,

etc.).

VI. Microscopic reversibility: the stochastic dynamics of oc-
cupation numbers n verifies detailed balance.

VII. Gradient condition on affinities:

∀t, A
(
x(t)

)
∈ ImS⊤ . (B8)

Remark: in the proofs, we will often make use of the following
writings of the affinity of a reaction ρ, that comes from Eq. (7)

Aρ(x) = log
k+ρ
k−ρ
−

∈ ImS⊤︷     ︸︸     ︷(
S⊤log x

)
ρ . (B9)

1. Proof of I⇔I’

For every cycle cα, we have∏
ρ

(
κ+ρ

κ−ρ

)cαρ

=
∏
ρ

(k+ρ
k−ρ

)cαρ

Ω(ν−ρ−ν+ρ) cαρ =
∏
ρ

(k+ρ
k−ρ

)cαρ

(B10)

since
∏
ρΩ

(ν−ρ−ν+ρ) cαρ = Ω
∑

iρ Siρcαρ = Ω
∑

i(Scα)i and Scα = 0 by
definition. The conditions (B2) and (B3) are thus the same □

2. Proof of I⇔II

If II holds, then for any cycle cα, since S cα = 0, one has∏
ρ

(k+ρ
k−ρ

)cαρ

= exp
(
−cα · S⊤µ


)
= exp

(
−µ
 · Scα

)
= 1

(B11)

which yields I. Conversely, if I holds, for any cycle c ∈ Ker S
we have

A · c = log
∏
ρ

(k+ρ
k−ρ

)cρ

︸           ︷︷           ︸
=0 from Eq. (B2)

+ log x−Sc

︸   ︷︷   ︸
=0

= 0 , (B12)

which implies that A ∈ (Ker S)⊥ = ImS⊤; combining then
with Eq. (B9) we obtain log k+

k− ∈ ImS⊤, which is precisely
Eq. (B4) □

In practice, if the rates verify Wegscheider’s condition (B2),
identifying a standard corresponding chemical potential µ


can be done using the hypergraph integration procedure
described in Sec. III C 2.

3. Proof of II⇔III

If II holds, then

∀ρ, Aρ(xeq) = 0

⇔ ∀ρ,
(
S⊤log x

)
ρ = log

k+ρ
k−ρ

(B4)
= −

(
S⊤µ
)

ρ (B13)

⇔ µ
 − log xeq ∈ Ker S⊤ (B14)

but Ker S⊤ is never an empty set, so that we can find xeq

canceling all affinities, which is III. Conversely, if III holds,
Eq. (B9) implies that log k+

k− ∈ ImS⊤, which is precisely II □

4. Proof of III⇔IV

It is obvious from the expression (5) of the currents as func-
tion of the affinities. Notice that interestingly, this means that
for complex CRNs, stochastic reversibility is equivalent to the
existence of a fixed point with zero macroscopic current for
the deterministic dynamics of Eq. (6).

5. Proof of III⇔V

We use Fock space notations for occupation vectors |n⟩ and
the Doi–Peliti operators [96, 97] to represent the reactions at
the microscopic level of occupation numbers (see [98–100]
for reviews). We attach an annihilation operator ai and a cre-
ation one a†i to every species i. For a single species, they act
as a|n⟩ = n|n − 1⟩, a†|n⟩ = |n + 1⟩, while for several species
they only act on their attached species. The number opera-
tor n̂i = a†i ai is diagonal and n̂i|n⟩ = ni|n⟩. The action of the
creation/annihilation operators on (arbitrarily normalized) un-
constrained Poisson laws is well known and easily checked:

ai

∑
n

xn

n!
|n⟩ = xi

∑
n

xn

n!
|n⟩ (B15)

a†i
∑

n

xn

n!
|n⟩ =

n̂i

xi

∑
n

xn

n!
|n⟩ . (B16)
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When constraints are present inside the Poisson law as on the
r.h.s. of Eq. (B7), similar replacement rules ai 7→ xi and a†i 7→
n̂i
xi

hold as in Eqs. (B15)-(B16), provided the operators on the
l.h.s. leave the conserved quantities ℓ(n) unchanged.

In the Doi–Peliti approach, the Markov dynamics in the
population space is represented as a linear operator W act-
ing on the probability vector |P(t)⟩ =

∑
n P(n, t)|n⟩. For the R

reactions of the form (3), we decomposeW =
∑
ρWρ with

Wρ = κ
+
ρ

[(
a†

)ν−ρ aν+ρ − n̂ν
+ρ
]
+ κ−ρ

[(
a†

)ν+ρ aν−ρ − n̂ν
−ρ
]

(B17)

where the microscopic rates κ±ρ are defined in Eq. (B1). Every
reaction respects the conservation laws of S so that one can
apply the replacement rules mentioned above to compute the
action of Wρ on the vector |Peq⟩ defined in Eq. (B7). It’s a
matter of simple algebra, using the definition of affinity of
Eqs. (5)-(7), to find

Wρ|P
eq⟩ (B18)

= −Ω

[
k−ρ

(
1 − eAρ

)( n̂
Ω

)ν−ρ
+ k+ρ

(
1 − e−Aρ

)( n̂
Ω

)ν+ρ]
|Peq⟩

where Aρ = Aρ(xeq). Let us now come to the proof of the
equivalence III⇔V. If III holds, then we have the existence of
a vector of concentrations xeq which cancels every affinity, see
Eq. (B5). From the identity (B18), we find thatWρ|Peq⟩ = 0,
where |Peq⟩ defined in Eq. (B7) is evaluated on the xeq we
just found (whose components are thus promoted from be-
ing average concentrations to being a parameters of a con-
strained product Poisson law). This proves that |Peq⟩ is a
steady state ofW. To check explicitly that it verifies detailed
balance, one introduces a diagonal operator P̂eq whose com-
ponents along the diagonal are those of the vector |Peq⟩ in
Eq. (B7). Detailed balance is then equivalent to checking that
WP̂eq = P̂eqW⊤. Using the identities ai P̂

eq = Ωxeq
i P̂

eq(a†i )⊤
and a†i P̂

eq =
(
Ωxeq

i
)−1
P̂eqa⊤i

11, one finds

WρP̂
eq − P̂eqW⊤ρ (B19)

= P̂eq
{
κ−ρ

(
eAρ − 1

)(
a†ν

+ρ

aν
−ρ)⊤
+ κ+ρ

(
e−Aρ − 1

)(
a†ν

−ρ

aν
+ρ)⊤}

where Aρ denotes Aρ(xeq). If III holds, then from Eq. (B5)
we obtain WρP̂

eq
ρ = P̂

eqW⊤ρ (∀ρ); hence, summing over ρ,
detailed balance indeed holds. Conversely, if V holds, there
exists a vector xeq such that WP̂eq = P̂eqW⊤ and Eq. (B19)
yields∑

ρ

{
κ−ρ

(
eAρ(xeq) − 1

)
a†ν

+ρ

aν
−ρ

+ κ+ρ
(
e−Aρ(xeq) − 1

)
a†ν

−ρ

aν
+ρ
}
= 0 , (B20)

since P̂eq is an invertible operator. Consider now a given re-
action ρ, applied in the direction where it transforms |n⟩ into

11 These identities are verified by direct computation. We stress that in the
canonical scalar product, the transpose operator does not allow one to
switch between a and a†. In fact from ⟨n|

(
a†

)⊤
= ⟨n + 1| and ⟨n|a⊤ =

⟨n − 1|n, one sees that a⊤ = n̂ a† and
(
a†

)⊤
= a 1

n̂ , where n̂ is the number
operator n̂|n⟩ = n|n⟩.

|n − ν+ρ + ν−ρ⟩. Since by hypothesis reaction ρ is the only
one performing that transformation, we obtain by taking the
scalar product of Eq. (B20) between ⟨n−ν+ρ+ν−ρ| and |n⟩ that
e−Aρ(xeq)−1 = 0. We thus see that necessarily Aρ(xeq) = 0 (∀ρ)
which is precisely III □

6. Proof of V⇔VI

Obviously, V implies VI. Conversely, if the microscopic
occupation-number dynamics verifies detailed balance, let us
show that Kolmogorov’s condition (B3) is verified, which will
prove that I’ and hence V holds (as we already showed). Con-
sider a basis of cycles cα of the stoichiometric matrix S. They
can be taken to have (positive or negative) integer entries.
Then, a given cα corresponds to a succession of reactions,
where each reaction ρ is used cαρ times. In fact, depending
on the precise order in which these reactions are applied, the
algebraic cycle cα corresponds to many possible cycles at the
population level. We now consider a given cα and choose ar-
bitrary such an ordering. It leaves any configuration of the oc-
cupations invariant (and the same is true if the cycle is applied
in reverse order). Detailed balance at the level of occupations
implies that the product of transition rates of the cycle and its
reverse are the same, at the level of population rates. Using
the Doi–Peliti formalism, we express such product of rates,
starting from configuration n, as follows:

←∏
ρ

(
κ+ρ )cαρ ⟨n|

(
a†

)cαρν
−ρ

acαρν
+ρ

|n⟩ . (B21)

The rate for reaction ρ is raised to the power cαρ , and the ar-
row on the product sign indicates that the operators of the first
reaction (in the considered ordering) are placed right of the
ones of the next reaction, down to the last reaction involved.
For the reversed reaction, the product of rates is

→∏
ρ

(
κ−ρ )cαρ ⟨n|

(
a†

)cαρν
+ρ

acαρν
−ρ

|n⟩ . (B22)

Noticing now the identity ⟨n|
(
a†

)cαρν
−ρ

acαρν
+ρ

|n⟩ =

⟨n|
(
a†

)cαρν
+ρ

acαρν
−ρ

|n⟩ 12, the equality of Eqs. (B21) and (B22)
yields that for all α,

∏
ρ

(
κ+ρ )cαρ =

∏
ρ

(
κ−ρ )cαρ which is the

announced Eq. (B3) □

7. Proof of I⇔VII

Every implication in I⇒VII⇒II is immediate, using the
identity (B9). Then we already showed that II⇒I; so that fi-
nally we have both I⇒VII and VII⇒I □
Notice that, interestingly, in the implication VII⇒II inferred
from Eq. (B9), we deduce a property valid independently of

12 This identity is shown by taking the transpose of (a†
)cαρ ν

−ρ
acαρ ν

+ρ
and per-

forming the similarity transformations (n̂!)−1ai n̂! = ain̂i and (n̂!)−1a†i n̂! =
(n̂i)−1a†i for every species i involved.
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x(t) (namely, log k+
k− ∈ ImS⊤) from a property depending on

x(t) (namely, A
(
x(t)

)
∈ ImS⊤).

Appendix C: Effective Fokker–Planck and Langevin dynamics
close to an equilibrium point

Consider an arbitrary function f (n) of the population state,
i.e. the number of particles n for each chemical species X.
The master equation on the probability distribution P(n, t)
in the population space, for the chemical reactions (3), is
equivalent to the following evolution equation for the average
⟨ f ⟩ =

∑
n P(n, t) f (n):

∂t⟨ f ⟩ =
∑
n, ρ

f (n)
{
W+ρ

(
n− Sρ

)
P
(
n− Sρ, t

)
−W+ρ (n)P(n, t)

+W−ρ
(
n+ Sρ

)
P
(
n+ Sρ, t

)
−W−ρ (n)P(n, t)

}
(C1)

=
∑
n, ρ

P(n, t)
{ [

f
(
n+ Sρ

)
− f (n)

]
W+ρ (n)

+
[
f
(
n− Sρ

)
− f (n)

]
W−ρ (n)

}
(C2)

where Sρ designates the column vector of S describing reac-
tion ρ, and W±ρ (n) = W({ni 7→ ni ±Siρ}) are the transition rates
at the species population level. In full generality, the transi-
tion rates are given by the product of the ‘molecular’ reaction
rates κ±ρ and the number of reactants n[ν±ρ] = n!/(n− ν±ρ)!, so
that

W±ρ (n) = κ±ρ n[ν±ρ] = Ω k±ρ
n[ν±ρ]

Ων
±ρ , (C3)

where in the second equality we used Eq. (B1) to make the de-
pendence of the molecular rates on system size explicit. No-
tably, the extensivity of the rates κ±ρ depends on the stoichiom-
etry of the corresponding reactions ν±ρ. This corresponds to
the fact that collisions between particles, which are required
for multiple-species reactions to occur, get rarer when Ω in-
creases at fixed n. Intuitively, this is even more so when the
number of involved species is larger (see e.g. [15, 95, 101,
102]). The relevance of such scaling is for instance seen as
follows: Using these rates in Eq. (C2) for f (n) = ni, one re-
covers the macroscopic rate Equation (6) as Ω → ∞, with
x = n/Ω fixed (in the large-Ω limit where the average of con-
centrations product becomes the products of the average).

In the large-size asymptotics Ω → ∞, we expand Eq. (C2)
for the rescaled function of the concentrations f̄ (x) = f (Ωx)
and for the probability density P̄(x, t), and define W̄+ρ (x) =
k±ρ xν±ρ , to get

∂t⟨ f̄ ⟩ =
∫

dNx
∑
ρ

P̄(x, t)
{[

W̄+ρ (x) − W̄−
ρ (x)

]∑
i

Siρ∂i f̄ (x)

+
1

2Ω

[
W̄+ρ (x) + W̄−ρ (x)

]∑
i, j

SiρS jρ∂i j f̄ (x)
}
, (C4)

where we neglected terms of order Ω−2 and higher. We rec-
ognize the first square bracket to be the macroscopic current
Jρ(x), see Eq. (5). The coefficient of ∂i j f̄ is proportional to
the symmetric matrix D(x) of components

Di j(x) =
∑
ρ

1
2
Siρ

(
W̄+ρ (x) + W̄−ρ (x)

)(
S⊤

)
ρ j (C5)

so that, overall, Eq. (C4) becomes

∂t⟨ f̄ ⟩ =
〈∑

i

(
SJ(x)

)
i∂i f̄ (x) +

1
Ω

∑
i j

Di j(x)∂i j f̄ (x)
〉
. (C6)

Formally, the evolution equation (C6) for the average of
f̄ (x) is the same as that of a Fokker–Planck equation corre-
sponding to the Langevin equation

∂t x(t) = SJ
(
x(t)

)
+ η

(
x(t), t

)
(C7)

with η(x, t) a Gaussian white noise of zero average and covari-
ance ⟨ηi(x, t)η j(x, t′)⟩ = 1

Ω
Di j(x) δ(t′ − t) (notice that the time

discretization of such multiplicative noise has no importance
in the small-noise regime Ω → ∞ we are considering). How-
ever, such a formal treatment has the problem in that it dis-
cards possible scaling withΩ of the probability density P̄(x, t)
itself (and consistently of f̄ (x)), which would invalidate the
large-Ω expansion and truncation. This was noticed within a
large variety of contexts in the literature [72, 95, 103–105]. A
regime where the above expansion is necessarily valid is that
of x(t) close to a stationary point x∗, i.e. x(t) = x∗ + δx(t)
with SJ(x∗) = 0 and δx(t) = O

(
Ω−1/2). Then, the Langevin

equation (C7) reduces to:

∂tδx(t) = SJ
(
x∗ + δx(t)

)
+ η(t) , (C8)

where J
(
x∗ + δx(t)

)
is understood as truncated to first order

in δx(t) (i.e. the Langevin equation is linear) and the centered
Gaussian noise η(t) is now additive with correlations〈

ηi(t)η j(t′)
〉
=

1
Ω
D∗i j δ(t

′ − t) (C9)

where the matrix D∗ is obtained from Eq. (C5) and reads

D∗ = D(x∗) = SΛ∗S⊤ . (C10)

Here, Λ∗ the R×R diagonal matrix with the entries of the vector
1
2
(
k+ρ x∗ν

+ρ

+ k−ρ x∗ν
−ρ)

.
In general, in irreversible dynamics, the drift of this

Langevin equation is not simply related to the noise covari-
ance matrix D∗ of Eq. (C10). Focusing now on conserva-
tive affinities as in Sec. III E, the dynamics is reversible and
there exists an equilibrium stationary point x∗ = xeq (see Ap-
pendix B) that cancels the current and the affinity vectors.
Then using Eqs. (63) and (67) and remarking that Λ∗ = Λ,
one has J(xeq + δx) = ΛA(xeq + δx) = −ΛS⊤(Xeq)−1δx and
thus from Eq. (C8)

∂tδx(t) = −D (Xeq)−1δx(t) + η(t) (C11)

with D = D∗ = D(xeq). Hence, the symmetric matrix D =
SΛS⊤ read from Eq. (C10) plays at the same time the role of
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the noise amplitude and the prefactor of the potential gradient
in the Langevin equation (C11), which is an incarnation of the
Onsager reciprocity [47, 71].

We now connect the previous analysis to the core of the pa-
per. We first note that the rank of D is M and not N. This
means that in general some directions of the noise present
a zero amplitude. This corresponds to the fact that the de-
grees of freedom x(t) representing the instantaneous concen-
trations at time t present one or several conservation law(s),
both at the deterministic level the rate equation (3) and at the
stochastic level. In Sec. III E, we identified M independent
degrees of freedom δz(t), defined in Eq. (68), at the determin-
istic level. Using the same procedure at the stochastic level,
we define a stochastic process δz(t) from δx(t) [that satisfies
Eq. (C11)]. Now, the noise that governs the evolution of δz(t)
is non-singular. Indeed, multiplying Eq. (C11) by G, using
Eq. (69) and taking the last M components, we find by direct
computation:

∂tδz(t) = −LQ HQ δz(t) + η̃(t) , (C12)

where the (now non-singular) centered Gaussian white noise
η̃(t) ∈ RM has correlations

〈
η̃i(t)η̃ j(t′)

〉
= 1
Ω

(LQ)i jδ(t′ − t). In
these expressions, LQ and HQ are the M×M matrix defined in
Eq. (64) and (70) respectively. As expected, the deterministic
drift of Eq. (C12) is the same as the one derived at the deter-
ministic level [see Eq. (71)]. At the stochastic level, for δz(t),
the matrix LQ plays at the same time the role of a relaxation
response matrix close to an equilibrium point and the corre-
lation matrix of the noise that describes the small Gaussian
fluctuations close to that point. Accordingly, to the linearized
Langevin equation (C12) one can associate the Gaussian sta-
tionary probability density P̄(δz) ∝ exp

[
−Ω2 δz

⊤HQ δz
]
, where

we thus identify the matrix HQ as the Hessian matrix of the
equilibrium quasipotential. This concludes our illustration
that the two matrices LQ and HQ that appeared in Sec. III E
in the analysis of the deterministic relaxation close to an equi-
librium point in fact also play a role at the Gaussian stochastic
level.

Appendix D: Cycles, cocycles and oblique projectors

In this Appendix we show how the decompositions in
Eq. (19) and Eq. (26) can be reformulated in terms of
complementary oblique projectors. We follow the line of [14]
where the formalism was first introduced and discussed for
graphs (corresponding to unimolecular reactions). From the
families of cocycles and cycles introduced in the main text,
we define two R × R matrices as:

Q⊤ =

(
1M 0
T⊤ 0

)cγ︷︸︸︷
, P =

(
0 −T
0 1R−M

)cα︷︸︸︷
(D1)

By construction, their images correspond to the spaces
spanned by the cγ’s and the cα’s, namely ImQ⊤ = ImS⊤ and
ImP = Ker S. Taking the transpose of Eq. (D1) one obtains

two more matrices,

Q =

(
1M T
0 0

)eγ︷︸︸︷
, P⊤ =

(
0 0
−T⊤ 1R−M

)eα︷︸︸︷
(D2)

whose images are now spanned by the eγ’s and eα’s,
i.e. ImQ = Span (eγ) and ImP⊤ = Span (eα).

We recall that a square matrix A is a projector if and only
if it is idempotent A2 = A. It can be directly checked that this
property holds for Q⊤ and P, as well as for Q and P⊤ making
them oblique projectors with Q⊤ , Q and P , P⊤ as soon as
T is present. In particular, they form pairs of complementary
oblique projectors such that P + Q = P⊤ + Q⊤ = 1R and
QP = Q⊤P⊤ = 0.

As a consequence, we may re-express the decompositions
in the main text as:

A =
∑
γ

Ac
γ cγ +

∑
α

Ae
α eα = Q⊤A + P⊤A (D3)

J =
∑
γ

Je
γ eγ +

∑
α

Jc
α cα = QJ + PJ . (D4)

These expressions are analogous the ones reported in [14]
with the main difference being that here the operators are not
derived from the spanning tree of a graph but from the family
of {cγ} and {cα} constructed in Sec. III B using the reduced row
echelon form of S. Thus, the construction we put forward in
Sec. III and in this Appendix generalizes the oblique projec-
tor method of Ref. [14] for the decomposition of currents and
affinities from unimolecular CRNs (and graphs) to arbitrary
CRNs (and their associated hypergraphs).

We conclude the section by pointing out a connection be-
tween the oblique projectors and the Onsager matrices of lin-
ear response (see Sec. III E). First, one can always define new
projectors using a change of basis. In particular, we may de-
fine Q̂ = Λ−1/2QΛ1/2 and P̂ = Λ−1/2PΛ1/2 which are still com-
plementary oblique projectors. Then, one finds:

QΛQ⊤ =

(
LQ 0
0 0

)
Q̂Q̂⊤ =

(
L̂Q 0
0 0

)
(D5)

P⊤Λ−1P =

(
0 0
0 LP

)
P̂⊤P̂ =

(
0 0
0 L̂P

)
(D6)

Thus, in both representations, the Onsager matrices appear
as the invertible cores of the symmetric R × R matrices con-
structed from the oblique projectors. In Ref. [14], the ma-
trices in Eqs. (D5)-(D6) were shown to govern the different
contributions to the entropy production in linear response; we
thus have shown in Sec. III E that these matrix also control
the macroscopic relation between currents and affinities in the
linear-response regime for generic CRNs.

Appendix E: Proof of reconstruction feasibility

We want to show that Eq. (101) is consistent with stationary
KCL,

SJ = S
(

JY
JX

)
= 0 , (E1)
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and with linear-regime KVL, obtained by plugging Eq. (63)
into Eq. (21), namely

P⊤Λ−1 JX = 0 , (E2)

where we made use of the oblique projector P introduced in
Appendix D. Splitting S = (SY ,SX) as external and internal
reactions, find T by row reduction of SX , and consider

Q =

(
−GMSX

0

)
=

(
1M T
0 0

)
(E3)

obtained by adding or removing sufficient zero rows to make
it a square R×R matrix. The matrix GM is defined in Eq. (50)
in the main text. As explained in Appendix D, Q and P are
complementary oblique projectors so that P = 1−Q and SXP =
0. Then solutions of the system Eqs. (E1)-(E2) can be found
by exploiting the projector algebra. In particular expanding
the identity

JX = PJX + QJX (E4)

we find

SXQJX = −SY JY (E5)

P⊤Λ−1PJX + P
⊤Λ−1QJX = 0. (E6)

where JY are the external currents. By applying the matrix
GM to the first, in view of Eq. (E3), we find

QJX =

(
GMSY JY

0

)
, (E7)

where we used Q2 = Q. Plugging this latter into the second
we find:

P⊤Λ−1PJX = −P
⊤Λ−1

(
GMSY JY

0

)
. (E8)

A solution J+X that is consistent with the above equation can
be found by the Moore–Penrose pseudoinverse

J+X = −(P⊤Λ−1P)+P⊤Λ−1
(
GMSY JY

0

)
. (E9)

Projecting once again PJX = PJ+X , using Eq. (E4), we finally
find

JX =
[
1M − P(P⊤Λ−1P)+P⊤Λ−1

] ( GMSY JY
0

)
=

(
(1M − TL

−1
P T

⊤Λ−1
M )GMSY JY

L−1
P T

⊤GMSY JY

)
, (E10)

where in the last expression we made explicit the projector-
based solution in terms of known matrices. The fact that the
above system is full-rank grants, a posteriori, that this solution
is unique and correct.
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