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ABSTRACT This paper deals with model predictive control synthesis which take benefits from artificial
neural networks to model (non-linear) dynamical system. More precisely, thanks to a systematic and
rigorous methodology, it is shown that residual networks (ResNet) and PolyInception networks (PolyNet)
neural network architectures, developed initially for image recognition, are very good candidate for i)
identification of dynamical systems, ii) being used as embedded model in a model predictive control laws.
Concretely, the widely used non-linear dynamical system quadruple tank process is used as a benchmark.
The neural network architectures studied are i) feedforward networks as a reference point, and the two other
linked to Euler integration method ii) residual networks and iii) PolyInception networks. Networks training
is performed by mixing classical back-propagation algorithm and hyperparameters optimisation through
heuristics. The identification results provided show that neural networks of types ii) and iii) perform better
than the classical one i), with a better generalisation capability. Finally, model predictive controllers are
synthesized based on the various networks trained. The simulation results obtained for controlling water
levels of a 4 tanks system benchmark give interesting insights. They show that residual networks based
model predictive control is better suited than feedforward networks and PolyInception networks based ones,
both taking into account computation time and set point errors.

INDEX TERMS Artificial neural networks, model predictive control, feedforward neural networks,
ResNet, PolyNet, quadruple tank process.

I. INTRODUCTION

AMONGST advanced control techniques, Model Pre-
dictive Control (MPC) has been commonly used in

academia [1] and industrial applications [2]. MPC can control
multi-inputs, multi-outputs dynamical systems while han-
dling state and input constraints. The main parts of MPC
are the cost function, dynamical system model and con-
straints [3]. In classical MPC, the dynamical system is rep-
resented using a state-space model which can be linear [4] or
non-linear [5]. The cost function is optimised online, and the
first sample of the control law computed over the receding
horizon is applied to the actuators.

One concern about MPC regards finding a suitable dis-

crete model of the non-linear dynamical system to con-
trol [6] which predicts the physical phenomena of a pro-
cess [7]. This model is usually derived from discretised
continuous Differential Equations (DEs) [8]. The discreti-
sation is performed using an integration method such as
by Euler [9], Runge-Kutta [10], Bogacki-Shampine [11], or
Adams-Bashforth [12]. Furthermore, finding DEs could be
labour intensive, and it could be advantageous to use measure
data when available to identify a model [13], because nowa-
days an increasing amount of process data are available [14].

Machine learning is used to learn features from data, such
as to identity objects from images, match items, transcribe
speech or choose relevant search results. A common method
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is to learn the feature with supervised machine learning,
where the purpose is to learn a function that can map the
input and output pairs with the highest score [15], [16].
In control systems, system identification usually uses lin-
ear parametric models from measured data [17]. However,
it has been shown that Artificial Neural Network (ANN)
can outperform linear parametric models and reduce iden-
tification error [18]. Supervised learning has been used to
identify complex non-linear dynamical systems [19], [20],
and ANN have been assessed and evaluated for dynamical
system identification. Without claiming to be exhaustive, we
can cite FeedForward Neural Network (FNN) [21], [22],
Time Delay Neural Network (TDNN) [23], [24], Recurrent
Neural Network (RNN) [25]–[27], modern RNN with gating
mechanisms such as Long Short Term Memory (LSTM) [18],
[28], [29] or Gate Recurrent Unit (GRU) [30], [31].

The relation between numerical integration methods and
ad hoc neural network architectures has been recently ob-
served in [32] and other works [33], [34].

In [32] and [34], the authors noted the link between
the Residual layer Network (ResNet) [35] and the forward
Euler integration method [9], while [33] depicts the link
between PolyInceptions neural Network (PolyNet) [36] and
the backward Euler integration method [9]. A neural network
architecture derived from higher order integration method is
described as a Runge-Kutta neural network [37], which are
also considered in [38]. There is a major difference between
neural networks derived from integration methods such as
ResNet and others such as FNN. In the first group, the rate
of change is learned, while this is the state in the second
group [37], [38].

Dynamical systems in control engineering could be con-
sidered as a control benchmark, which are not a fully in-
dustrial plant but more a plain toy process. These sys-
tems allow highlighting, developing, testing and comparing
control methods or algorithms before considering industrial
applications in a more sophisticated plant. An example is
the inverted pendulum on a cart, which is well known by
every graduate student in control engineering for learning
feedback control [39]. Another example is the four tanks,
known as Quadruple Tank Process (QTP) [40], which has
been used to evaluate predictive control in [41], robust
economic MPC in [42], sliding model control in [43] or
proportional–integral–derivative auto-tuners from manufac-
turers in [44]. The continuously stirred tank reactor is another
benchmark in chemical engineering processes [45], which is
used to present a two-layer EMPC control [46], a robust non-
linear MPC control [47] or an MPC approximated by a neural
network [48]. Another example is the blood glucose control
relevant model for type-I diabetic [49], with a robust MPC
control approach in [50] or contractive MPC in [51]. Another
example is the spacecraft, which has been use to evaluate
receding horizon control in [52] and robust MPC in [53].
In this work, we chose the QTP to comparatively evaluate
candidate neural network architectures and the associated
MPC implementation, because the QTP is both simple and

popular in the MPC community [41], [42], and its behaviour
is non-linear despite its simplicity. The QTP is also naturally
linked to issues arising from the processing industry, such
as wastewater treatment, nuclear steam generation, chemical
treatment or food processing [54].

Finally, our contribution regards recent work aiming to
control the QTP with an ANN using an FNN in [54] and
RNN in [55]. These works use FNN and RNN, while our
objective is to illustrate using a dedicated architecture which
is articulated with the digital integration process.

Although many ANNs have been used for dynamic system
identification, the recent discovery of architectures better
suited to digital integration needs has not led to precise
numerical comparisons. The main contribution of this work
is to present an accurate comparison of ResNet and PoyNet
and feedforward shallow architectures regarding their ability
to identify dynamical systems in terms of computational
complexity and forecast accuracy. The aim is to provide a
numerical illustration using the case studies’ QTP, which
represents important industrial problems. An MPC command
will be thereby developed for the QTP using input-output
data via neural identification of the process model. Three
MPCs are considered: one with FNN, the second with ResNet
and the third with the PolyNet model. As a result, it leads
to the FNN-MPC, ResNet-MPC and PolyNet-MPC. To the
author best knowledge, this is the first time where neural
networks link to integration method are used as a model
for an MPC in order to control a dynamical system. The
contributions of the present work can be divided into three
main elements:

• A presentation of different neural network architectures
for non-linear dynamical system identification with su-
pervised machine learning;

• A fair comparison between the three neural networks is
considered in this work;

• A predictive controller based on neural models to con-
trol the process considered in this work.

This paper is organised as follows: Section II presents
a system setup; Section III depicts neural networks; Sec-
tion IV presents neural computations; Section V presents the
MPC; Section VI depicts the experimental setup; Section VII
presents the results; Section VIII depicts the discussions of
the work; and Section IX concludes the work.

II. DYNAMICAL SYSTEM IDENTIFICATION
The first step is to define by (1) the discrete time invariant
system considered below:

x̄[k + 1] = f(x̄[k], ū[k]) (1)

with x̄[k] and ū[k] as the system state and input respectively,
k the discrete sampling time and x̄[k] = x̄(tk), tk = k× Ts.
In addition, Ts is the sample time. The absence of an output
equation is linked to the assumption that all the states are
assumed to be known and are therefore usable by a possible
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FIGURE 1. Model input-output representation, with f as the truth unreachable
dynamical system and gnn a neural network model.

control law. The objective is to learn from data an appropriate
approximation of the nonlinear system (1) of the form:

x̂[k + 1] = gnn(x̄[k], ū[k]) (2)

with x̂[k+1] as the predicted state of x̄[k+1] and gnn the state
evolution function of the predictor, which is expected to be
close as possible to f , according to Fig. 1. Finding the nature
of the relation linking (x̄[k], ū[k]) and x̄[k+1] is unreachable
by science (f does not formally exist for a physical system),
and it is only an approximation [56].

III. NEURAL NETWORK
The notation used for the neuron units are h for the output of
a neural unit at sample instant k and v for the input.

A. ARTIFICIAL NEURON
The first artificial neuron was developed by McCulloh and
Pitts [57]. In this work, the artificial neuron considered is
defined as [58]:

h = σ(Wv + b) (3)

with h as the output of the cell, σ the activation function, W
the weighting vector, v the input of the cell and b the bias.

B. FEEDFORWARD NEURAL NETWORK
When artificial neurons are combined, this leads to a net-
works of neurons, which is formalised by [58]:

h = G(v) :=
gh1(v)⊙ gh2(h1)⊙ . . .⊙ ghi−1(hi−2)⊙ ghi(hi−1)

(4)

with h as the output of the FNN and v the input, ghi the
non-linear transformation of hidden layer i, ⊙ the Hadamard
(elementwise) product operator. At the hidden layer i, ghi is
hi = ghi(hi−1) = σi(W ihi−1 + bi), hi is the output, hi−1

is the input, σi is the activation function, bi is the bias and
W i the weighting matrix. Note that layers 1 and i − 1 from
(4) are not hidden layers, but rather they are input and output
layers (merged if only one layer is used in the network).

C. RESNET
Residual layer networks have been proposed in [35] to propa-
gate the residual value of the input along the hidden layers in
order to avoid vanishing gradient issues when training deep
neural networks. The main feature of the ResNet is a skip
connection and addition between each cell. ResNet is defined
as:

h = v + G(v) = (I + G)(v) (5)

with h as the output and v the input, while G is an FNN as in
(4).

D. POLYNET
PolyInceptions neural networks were proposed in [36] for
image recognition, and they have multiple paths and lead to
polynomial compositions. PolyNet is defined as:

h = v + G(v) + G(G(v)) = (I + G + G2)(v) (6)

with h as the output and v the input, while G is an FNN as in
(4).

E. DEEP RESNET AND DEEP POLYNET
ResNet and PolyNet with one layer are derived from forward
and backward Euler integration methods (see appendix for
details). We can stack multiple layers to increase the stage
and integration order, such as a ResNet with n layers (see
Fig. 2):

h1 = (I + G)(v) (7)

h2 = (I + G)(h1) = (I + G)2(v) (8)
...

hn = (I + G)n(v) (9)

For a PolyNet with n layers (see Fig. 3):

h1 = (I + G + G2)(v) (10)

h2 = (I + G + G2)(h1) = (I + G + G2)2(v) (11)
...

hn = (I + G + G2)n(v) (12)

with hn as the output of layer n (upper n denotes here the
layer), and v the input. G is an inner non-linear transforma-
tion, which is considered as an FNN. Note that there is a
modification of the original ResNet [35] and PolyNet [36],
where in this work, G is the same FNN and they share weights
and biases.

F. LINK TO DYNAMICAL SYSTEM IDENTIFICATION
To identify a discrete non-linear dynamical system, the pre-
diction rule must first be determined. To predict x̄[k+1], the
data used at the input of the neural network comprise x̄[k]
and ū[k]. Then, the dynamical system retained is x̂[k + 1] =
gnn(x̄[k], ū[k]), with ū[k] as the true process input. With
ResNet and PolyNet, it is not possible to replace v by (x̄[k],
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FIGURE 2. ResNet with two layers on the left. On the right, an illustration
depicts an FNN which forms G. White nodes are the inputs, gray nodes are the
hidden units and the black node is the output (number of inputs, hidden layers
and outputs are only for example).

FIGURE 3. PolyNet with two layers on the left. On the right, an illustration
depicts an FNN which forms G. White nodes are the inputs, gray nodes are the
hidden units and the black node is the output (number of inputs, hidden layers
and outputs are only for example).

ū[k]) and h by (x̂[k+1]) due to vector dimension issues with
input/output vectors and with the number of neurons within
the hidden layers. To remedy this problem, an input layer
and output layer are added to the network (see Fig. 4). To
adapt vector dimensions, neurons from the input and output
layers have an identity activation function. The input layer
and output layer are defined as:

hin = W in(x̄[k], ū[k]) + bin (13)
...

x̂[k + 1] = W out(hn) + bout (14)

with hin as the output of the input layer such as v := (x̄[k],
ū[k]), W in, bin the weighting and bias of the input layer,
W out, bout the weighting and bias of the output layer, x̄[k]

FIGURE 4. Illustration of closing the link with one layer of ResNet (top), one
layer of PolyNet (middle) and FNN (bottom). Gray nodes form input and output
layers of gnn, which have an identity activation function.

the system state, ū[k] the system input, x̂[k+1] the predicted
state and hn the layer n output.

IV. NEURAL TUNING
A. TRAINING
Neural network training aims to iteratively tune the neurons’
weights and biases to minimise a fidelity measure [54].
Training is usually performed with the gradient-based back-
propagation algorithm to adapt neurons’ weights from the
output layer to the input layer [59], [60].

The gradient-based back-propagation algorithm allows it-
eratively tunes weights and bias of the neurons, such as [61]:

W = W +∆W (15)
b = b+∆b (16)

with W the weighting vector, ∆W the increment vector, b
the bias and ∆b the increment vector. The increment vectors
are:

∆W = η
∂L

∂W
(17)

∆b = η
∂L

∂b
(18)

with η the learning rate and L a loss function. Also, the loss
function is defined in section IV-B. It has been observed that
the learning rate is sensitive in regard to stability and train-
ing performance with respect to identification performance.
Large value derives in lack of robustness in convergence
and small value derives in lack of identification accuracy. In
order to improve the training performance, one strategy is
to gradually decrease the learning rate during training [61].
It can be, for instance, achieved by added an exponential
learning rate schedule, such as [62]:

ηj = η0e
−λj (19)

with ηj as the updated learning rate, η0 the initial learning
rate, λ the decay parameter and j the iteration step. In
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order to enhance neural network training performance, we
selected stochastic gradient descent Adam optimizer [63]
and derivative Radam [64], Nadam [65], Oadam [66]. Adam
allows to fine tune the learning rate during training as it
combines the adaptive gradient algorithm and root mean
square propagation. The decay parameters of Adam were
evaluated in [67], and results finding showed that choosing
Adam parameters between 0.9 and 0.999 allows statistically
a training improvement.

B. FIDELITY MEASURE
A loss function L provides a quantitative scoring that shows
the degree of similarity between data and model outputs [68].
The fidelity measure considered in this work is the Mean
Squared Error (MSE):

gmse =
1

card(D)

∑
k∈D

[ x̂[k + 1]− x̄[k + 1] ]
2
, (m2) (20)

with D as the number of samples, x̂[k+1] the neural network
output and x̄[k + 1] the target. Other loss functions exist but
will not be considered: Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) or Mean Absolute Percentage
Error (MAPE) [69].

C. HYPERPARAMETERS TUNING
The hyperparameters defining the neural network are the
number of layers, number of neurons, type of activation
function, batch size, epochs and the optimiser method for
gradient-based backpropagation. These hyperparameters in-
fluence the performance and complexity of the model [70].
The hyperparameters are optimised according to:

min
H

gmse (21a)

subject to gnn(H) (21b)
H ∈ H (21c)

with gmse as the cost function (see Eq. (20)), gnn the
neural network trained considered and H ∈ H the set of
hyperparameters for the optimisation problem. The optimi-
sation problem is non-convex and challenging since it is
non-differentiable and involves constrained variables [70].
The metaheuristics algorithms may be considered, such as
genetic algorithms or particle swarm optimisation [71]. The
algorithm of the optimisation and interlinking with the back-
propagation algorithm is shown in Fig. 5.

V. NEURAL NETWORK MODEL PREDICTIVE CONTROL
The neural networks presented in Section III are non-linear
and involve non-convex optimisation when uses within MPC,
and the resulting finding can be a local optimum [72].
A Neural Networks Model Predictive Control (NN-MPC)
is considered with additional contractive state constraints,
which is called a contractive MPC [73], [74]. The additional

Algorithm chooses

hyperparameters

MSE loss is calculated

Start

End

Stop training 

?

Stop 

optimisation

?

Start training with

backpropagation

FIGURE 5. The algorithm of the optimisation of hyperparameters.

contractive constraints aim to ensure that the MPC is sta-
bilised [73]:

min
ũ,x̃

Nh−1∑
i=0

x̃T
i Qx̃i + ũT

i Rũi (22a)

subject to x̂i+1 = gnn(x̂i, ui) (22b)
x̃i = x̂i − xr

i (22c)
ũi = ui − ur

i (22d)
x̂0 = x̄(tk) (22e)
x̂ ∈ X (22f)
u ∈ U (22g)
x̃Nh

Px̃Nh
≤ αx̃0Px̃0 (22h)

Eq. (22a) is the quadratic cost function. Eq. (22b) is the
state prediction according to the neural network presented in
Section III. Eq. (22c) defines the state deviation from the state
reference xr. Eq. (22d) is the input deviation from the input
reference ur. Eq. (22e) is the state measurement. Eq. (22f)
is the state constraint. Eq. (22g) is the input constraint.
Eq. (22h) is the contractive constraint. ũ is the sequence of
control inputs deviation ũ := (ũ0, . . . , ũNh−1), and x̃ is the
sequence of predicted states deviation x̃ := (x̃0, ..., x̃Nh

). At
each iteration, the first sample of the optimal input computed
is applied to the plant’s actuators (Fig. 6). In addition, Nh

denotes the time horizon considered for prediction. Q, R,
P are the weighting matrices. α ∈ [0, 1[ is the contractive
parameter. P , Q and R are positive definite matrices, and T
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FIGURE 6. Control loop.

FIGURE 7. Four tank benchmark illustration.

denotes the matrix transpose.

VI. EXPERIMENTAL SETUP
A. QUADRUPLE TANK PROCESS DESCRIPTION
The considered benchmark has four tanks, two pumps and
two three-way valves. The control has to manage a remain
water level. Each tank has an orifice from which water leaks.
Pump qa fills tanks 1 and 4, and pump qb fills tanks 2 and 3
(see Fig. 7).

B. MODELLING
QTP is modelled using Modelica [75] with Dymola soft-
ware from Dassault Systèmes to support the simulation and
generate data using fine-scale modelling rather than physical
equations. Each component is modelled, including: water
properties, pumps inertia, and pipe roughness, using the
Modelica standard library [76] and building library [77].
The components are graphically assembled to build the QTP
simulation model. An overflow outlet is added to the four

TABLE 1. QTP parameters [41].

Parameters Value Units Description
h1max 1.36 m Maximum water level tank 1
h2max 1.36 m Maximum water level tank 2
h3max 1.30 m Maximum water level tank 3
h4max 1.30 m Maximum water level tank 4
hmin 0.2 m Minimum water level all tanks
qamax 3.26 m3/h Maximum water flow pump a
qbmax 4.00 m3/h Maximum water flow pump b
qmin 0 m3/h Minimum water flow all pumps

TABLE 2. Parameters of the PRBS signals.

Parameters Value Units
Time period 500 s
Start time 500 s
End time 30 days

Amplitude qmin or qmax m3/h

TABLE 3. Parameters of constant input signals.

Parameters Value Units
Time period 1200 s
Start time 30 days
End time 600 days

Amplitude qmin to qmax m3/h

tanks to consider the maximal water level and to avoid
simulation breaking, whose process parameters are shown in
Tab. 1. The Modelica four-tank program has 1,049 equations
and the same number of unknown variables. These equations
could not be used for the MPC controller due to some if-
then-else conditions. A hybrid MPC controller is mandatory
and leads to complex analyses, design and optimisation tech-
niques [78].

C. DATA GENERATION
The nature of the input signals is essential for dynamical
system identification. The relation between the input signals
and the outputs variations are used to describe the dynamical
system. Pseudo-Random Binary Sequences (PRBS) as input
signals are able to excite the system with a widespread
frequency spectrum in order to acquire a unique set of param-
eters [17]. In this work, we performed the data acquisition of
the QTP digitally using Dymola with the fine-scale dynam-
ical system from Modelica program. The sampling period
is equal to 5s and, Differential Algebraic System Solver
(DASSL) is used during simulations to allow solving the
Modelica model comprising mixed differential and algebraic
equations [79]. The PRBS signals applied on pumps qa and
qb are visible in Fig.8.a and outputs signals in Fig.8.b. Also,
PRBS parameters are shown in Tab. 2. During simulations,
it appears that all water levels are never in a steady state
(Fig.8.b). In order to allow ANN to learn the QTP steady
state, we chose to apply a second kind of input signals.
They are piecewise constant signals with random values from
minimum to maximum. Whose parameters are shown in
Tab. 3. Corresponding inputs and outputs signals are shown
in Fig.8.c and Fig.8.d. We chose to consider a large amount
of data. As a result, 10 368 001 time steps were generated.

D. DATA SEPARATION
Simulation data are separated between train, validation and
test data. Training data are used to optimise weights and bi-
ases; validation data are used for hyperparameters optimisa-
tion; and test data are used for neural network generalisation
assessment. In classical approaches data are separated be-
tween train, validation and test data and are picked randomly
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FIGURE 8. Piece of inputs/outputs generated. (a) Depicts PRBS inputs
signals with pumps commands. (b) Depicts water level with PRBS inputs
signals. (c) Depicts random constant inputs signals with pumps commands. (d)
Depicts water level with random constant inputs signals.

FIGURE 9. Kernel density estimation of data [80]. (a) Depicts kernel density
estimation with h1, h2 water level and they are formed with the whole data. (b)
Depicts kernel density estimation with h3, h4 water level and they are formed
with the whole. (c) Depicts kernel density estimation with h1, h2 water level
from 0.4m to 0.8m, and they are formed with the training and validation data.
(d) Depicts kernel density estimation with h3, h4 water level with h1, h2 pairs
from (a), and they are formed with the training and validation data. (e) Depicts
kernel density estimation with h1, h2 outside water level from 0.4m to 0.8m,
and they are formed with the test data. (f) Depicts kernel density estimation
with h3, h4 water level with h1, h2 pairs from (e), and they are formed with the
test data.
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FIGURE 10. Procedure of data separation, from data generation to training,
validation and test data.

from all subspace. To assess neural network architectures in
this work, data separation is performed according to the tank
levels’ value ranges.

First, the data are processed to keep data within the water-
level constraints (Fig.9.a and Fig.9.b); second, the data are
divided into sequences of 32 samples length; third, the se-
quences are separated into two groups, where the first group
data are picked when the sequenced water levels of tanks 1
and 2 (h1, h2) remained between 0.4 m to 0.8 m (Fig.9.c
and Fig.9.d). The remaining data thus constituted the second
group and to form the test data (e.g., water level lower than
0.4 m or greater than 0.8 m) (Fig.9.e and Fig.9.f). Finally, the
first group is divided into two, with 5% for the validation data
and the remaining for the training data. This data processing
is shown in Fig. 10.

E. COMPUTING MACHINE IMPLEMENTATION
1) Neural network training
Neural networks are implemented on computing machines
using the open-source Julia programming language [81] and
Flux package [82]. This package allows easily implementing
neurons, shortcut connections for ResNet, parallel connec-
tions for PolyNet, deep networks with multiple layers and
all necessary training and fidelity measure computing. The
hyperparameters are optimised using the BlackBoxOptim
package which implements metaheuristics algorithms [83].
We chose the separable NES derived from Natural Evolution
Strategies [84]. The hyperparameters considered in this work
and their values are presented in Tab. 4. The hyperparameters
optimisation is arbitrarily stopped when more than 1,000
network trainings are performed for each considered archi-
tecture (FNN, ResNet, PolyNet), resulting in 3,000 trained
networks. The training is performed in parallel with 8 cores
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TABLE 4. Hyperparameters range values.

Description Range value
Activation function, Fig. 11 Softsign [88], Swish [89],

Tanh [88], Sigmoid [88]
Neurons number per hidden layer 4 to 20

Hidden layer number 1 to 3
ResNet or PolyNet layer number 1 to 9

Epoch number 5 to 50
Batch size 32
Optimiser adam [63], radam [64],

nadam [65], oadam [66]
Learning rate 1.00× 10−7 to 0.001

Momentum exponential decay 0.9 to 0.999
Momentum estimate 0.9 to 0.999

FIGURE 11. Activation function considered in this work. (a) Depicts Softsign
activation function x

1+|x| . (b) Depicts Swish activation function x

1+e−x (c)
Depicts Tanh activation function tanh(x). (d) Depicts Sigmoid activation
function 1

1+e−x .

on the Central Processing Unit (CPU), which leads to 125
steps for the metaheuristics algorithms. The running environ-
ment is composed of Windows 10 on Dell Workstation with
Intel Xeon Gold 5122 CPU and 128 GB of random access
memory.

2) Process control
Controller simulation is performed using Simulink. The
Modelica model is first exported to Functional Mock-up Unit
(FMU) for simulation. The controller interacts with the FMU
according to Fig. 12 and is implemented through JuMP [85]
using a multiple-shooting numerical method [72]. The neural
network is defined with JuMP from the Flux object function
as a JuMP user-defined function, which allows automatic
differentiation to compute the derivative [87]. It is not nec-
essary to rewrite the neural network within the optimisation
modelling since Flux and JuMP are both in Julia’s ecosystem.
In addition, the chosen optimisation solver is Ipopt [86]. The
set points used during simulations are shown in Tab. 5. The
set-points are selected to evaluate control performance with
different tank water levels. In addition, the set-points 1 and
3 are located inside the train data area and the set-points
2 and 4 are located outside the train data area. This choice
will make possible to appreciate the extrapolation capability

Simulation software

States

FMI

FMU

FMI
MPC

Set-points

NN Model

Julia

Inputs

QTP fine scale 

modeling with 

Modelica

FMU Export

save

FIGURE 12. Simulator with the controller and the FMU.

of the ANNs. Set point 1 in Tab. 5 could be considered as
the saddle point. It is implemented to initialize tanks water
levels at the beginning of the simulation. In addition, the four
tanks water level references are inside the train data area.
Set point 2 increases difficulties. References get closer to the
state constraints and they are outside the train data area. As a
result, generalisation capabilities of the ANN are harnessed.
Set point 3 added another difficulty. The four water levels are
not equivalent. However, water levels remain within the train
data area. Set point 4 is the most difficult to reach. It brings
all the difficulties: references get closer to state constraints
and the four tank water levels are not equivalent. In addition,
generalisation capabilities of the ANN are harnessed as the
set point 4 is located outside the train data area.

Several simulations are performed to analyse control per-
formance regarding the implemented neural network. For
each neural network architecture (FNN, ResNet, PolyNet),
the 25 networks with the lowest MSE with test data are
simulated, and for each simulation run, a comparative per-
formance index is calculated to assess networks’ influence
on control. This index is defined as:

J :=
1

Ns

12000∑
k=2700

eTx [k]Qex[k] + eTu [k]Reu[k] (23)

with Ns as the number of simulation samples, ex[k] = x̄[k]−
xr[k] the state deviation from the reference, Q the weighting
state matrix, eu[k] = ū[k] − ur[k] the input deviation from
the reference and R the weighting input matrix. In addition,
the MPC parameters used during process control are shown
in Tab. 6.

VII. RESULTS
A. SYSTEM IDENTIFICATION
The number of neural networks trained with the metaheuris-
tic algorithm is 3,027 (1,009 for FNN, ResNet and Polynet).
Neural networks with MSEs greater than 1 are removed,
which results in 2,848 considered neural networks (918 for
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TABLE 5. Set points used during simulations.

Reference Time (s) State (m) Input (m3/h)
Set-point 1 0 to 3000 x1 = 0.650 u1 = 1.637

x2 = 0.650 u2 = 1.988
x3 = 0.652
x4 = 0.664

Set-point 2 3000 to 6000 x1 = 0.300 u1 = 1.112
x2 = 0.300 u2 = 1.351
x3 = 0.301
x4 = 0.306

Set-point 3 6000 to 9000 x1 = 0.500 u1 = 2.201
x2 = 0.750 u2 = 1.361
x3 = 0.305
x4 = 1.200

Set-point 4 9000 to 12000 x1 = 0.900 u1 = 1.528
x2 = 0.750 u2 = 2.539
x3 = 1.062
x4 = 0.579

TABLE 6. Controller parameters.

Parameter Range value
Q diag(10 10 10 10)
R diag(1 1)
N 20
α 0.90
P diag(1 1 1 1)

FIGURE 13. The boxplot loss with neural network architectures (FNN in blue,
ResNet in red, PolyNet in green). (a) Depicts boxplot with training data. (b)
Depicts boxplot with validation data. (c) Depicts boxplot with test data. Please
note that outliers are not shown in order to clarify the figure.

FNN, 964 for ResNet and 966 for PolyNet), which are
depicted hereafter.

Fig. 13 depicts the boxplot function loss of the neural
networks after training and hyperparameters optimisation.
The MSE with training data is visible in Fig. 13.a, MSE
with validation data in Fig. 13.b and MSE with test data in
Fig. 13.c. Fig. 13.a and Tab. 7 show that the 1st quartile
losses are reduced for neural networks related to numerical
integration compared to the FNN. In addition, the lowest
MSE is reached by ResNet for the median and 3rd quartile,
and the same is observable in Fig. 13.b and Tab. 8 for
the MSE with the validation data. Note that all networks
have a relatively equivalent performance in MSE with the

TABLE 7. MSE with train data.

Architecture 1st quartile Median 3rd quartile
FNN 4.13× 10−7 6.96× 10−7 1.267× 10−6

ResNet 2.69× 10−7 3.47× 10−7 6.14× 10−7

PolyNet 3.69× 10−7 7.34× 10−7 1.99× 10−6

TABLE 8. MSE with validation data.

Architecture 1st quartile Median 3rd quartile
FNN 4.10× 10−7 6.92× 10−7 1.27× 10−6

ResNet 2.66× 10−7 3.47× 10−7 6.10× 10−7

PolyNet 3.74× 10−7 7.68× 10−7 2.01× 10−6

training data and validation data, but the result is clearer when
considering the generalisation properties, according to the
results obtained with the test data in Fig. 13.c and Tab. 9.
In this case, both neural networks related to the numerical
integration method achieve a reduction of the median, 1st and
3rd quartile MSE compared to the FNN, and ResNet achieve
the lowest MSE compared to the FNN and PolyNet.

The hyperparameters’ influence over MSE with test data is
shown in Fig. 14. The figure presents MSE with test data over
hyperparameters optimisation with hidden layers, neurons,
activation functions, optimisers and epochs for the FNN (first
line), ResNet (second line) and PolyNet (third line).

First, boxplots of MSE over hidden layers for FNN,
ResNet and PolyNet are depicted in Fig. 14.a, Fig. 14.f and
Fig. 14.k. The results show that increasing the number of hid-
den layers increases the median MSE test loss for the FNN,
with 1.34 × 10−5 with one hidden layer, 3.32 × 10−5 with
two hidden layers and 3.86× 10−5 with three hidden layers.
Increasing the number of hidden layers reduces the median
MSE with test data for ResNet and PolyNet, 2.59 × 10−6

and 7.09 × 10−5 with one hidden layer, 1.83 × 10−6 and
1.03 × 10−5 with two hidden layers, 1.51 × 10−6 and
4.16× 10−6 with three hidden layers.

Second, we can analyse the impact of the number of
neurons per hidden layer (see Fig. 14.b, Fig. 14.g, Fig. 14.l).
The results show that the algorithm investigates 10 to 18
neurons for FNN, 6 to 15 neurons for ResNet and 4 to 15
neurons for PolyNet, while the neurons’ values range from 4
to 20 neurons.

Third, we can audit the MSE with test data over the
activation functions (Fig. 14.c, Fig. 14.h, Fig. 14.m). The
swish activation function allows a reduction for FNN net-
works (Fig. 14.c); for instance, the median MSE is equal to
5.04×10−4 for sigmoid, 9.42×10−4 for softsign, 1.32×10−5

for swish and 1.77×10−4 for tanh. The ResNet median MSE
with test data is equal to 1.34×10−6 for sigmoid, 1.73×10−6

TABLE 9. MSE with test data.

Architecture 1st quartile Median 3rd quartile
FNN 1.07× 10−5 2.85× 10−5 4.28× 10−4

ResNet 1.13× 10−6 1.68× 10−6 4.39× 10−6

PolyNet 2.16× 10−6 5.49× 10−6 3.71× 10−5
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FIGURE 14. The boxplot loss with test data over hyperparameters optimisation (FNN in blue, ResNet in red, PolyNet in green). (a) (f) (k) Depict boxplot test loss
over hidden layer. (c) (h) (m) Depict boxplot test loss over activation function. (d) (i) (n) Depict boxplot test loss over optimizer. (b) (g) (l) Depict boxplot test loss over
neuron. (e) (j) (o) Depict boxplot test loss over epoch. Please note that outliers are not shown in order to clarify the figure.

for softsign, 1.60 × 10−6 for swish and 2.86 × 10−6 for
tanh. The PolyNet median MSE with test data is equal to
2.54×10−6 for sigmoid, 1.19×10−5 for softsign, 3.67×10−6

for swish and 1.80× 10−5 for tanh. The results show that the
sigmoid allows a reduction of the median MSE for ResNet
and PolyNet.

Fourth, we can explore MSE with test data over optimiser,
adam, nadam, oadam and radam (Fig. 14.d, Fig. 14.i and
Fig. 14.n). Note that nadam [65], oadam [66] and radam [64]

are derived from adam [63]. The FNN median MSE with test
data is equal to 2.98×10−4 for adam, 1.94×10−5 for nadam,
2.18 × 10−5 for oadam and 9.40 × 10−5 for radam. The
ResNet median MSE with test data is equal to 2.53 × 10−6

for adam, 1.76×10−6 for nadam, 1.60×10−6 for oadam and
2.59 × 10−6 for radam. The PolyNet median MSE with test
data is equal to 2.46×10−5 for adam, 4.93×10−6 for nadam,
5.81 × 10−6 for oadam and 7.70 × 10−6 for radam. Nadam
and oadam allow a reduction of median test loss compared to
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FIGURE 15. The boxplot loss with test data over layers (ResNet in red,
PolyNet in green). (a) Depicts boxplot test loss with ResNet over layers. (b)
Depicts boxplot test loss with PolyNet over layers. Please note that outliers are
not shown in order to clarify the figure.

TABLE 10. Training time (s).

Architecture 1st quartile Median 3rd quartile
FNN 161.89 215.29 256.26

ResNet 316.71 378.38 438.17
PolyNet 265.78 1118.32 2392.48

adam and radam.
Fifth, we can examine the MSE with test data over epochs

(Fig. 14.e, Fig. 14.j and Fig. 14.o). The algorithm investigated
13 to 30 epochs for the FNN, 20 to 38 epochs for ResNet
and 3 to 37 epochs for PolyNet. The epochs’ allowed values
range from 5 to 50, and thus the algorithm did not consider
all possibilities. Fig. 14.e shows that increasing epochs from
15 to 25 allows a reduction of the MSE with test data, while it
grows from 25 to 30. In Fig. 14.j with ResNet, the algorithm
chose most epochs from 30 to 36, and the median MSE
remains equivalent. Fig. 14.o shows that increasing the epoch
allows a reduction of the median MSE with data until 30
epochs with PolyNet.

We can regard the ResNet and PolyNet number of layers,
(see Fig. 15.a and Fig. 15.b). The algorithm investigated 1
to 4 and a jump to 8 layers for ResNet but from 1 to 9 for
PolyNet. Fig. 15.a shows that the median MSE plateaus from
1 to 4 layers with 1.62 × 10−6 for one layer, 1.85 × 10−6

for two layers, 1.54× 10−6 for three layers and 1.70× 10−6

for four layers. Fig. 15.b shows that the median MSE with
test data plateaus from 1 to 4 layers and increases from 5 to
9 layers with PolyNet. In addition, the smallest median MSE
with test data is obtained with 3.62× 10−6 and one layer.

Finally, Fig. 16 depicts boxplot training time with the FNN
(Fig. 16.a), ResNet (Fig. 16.b) and PolyNet (Fig. 16.c), with
values presented in Tab. 10. The median training time is equal
to 215.29s for the FNN, 378.38s for ResNet and 1118.32s
for PolyNet.

FIGURE 16. The boxplot training time with neural network architectures. (a)
Depicts boxplot training time with FNN. (b) Depicts boxplot training time with
ResNet. (c) Depicts boxplot training time with PolyNet. Please note that
outliers are not shown in order to clarify the figure.

TABLE 11. Process control performance J.

FNN-MPC ResNet-MPC PolyNet-MPC
Lowest 2.567× 10−1 2.576× 10−1 2.567× 10−1

1st quartile 2.588× 10−1 2.582× 10−1 2.580× 10−1

Median 2.600× 10−1 2.586× 10−1 2.587× 10−1

3rd quartile 2.627× 10−1 2.592× 10−1 2.612× 10−1

Highest 3.327× 10−1 2.625× 10−1 10.603

FIGURE 17. Depicts state trajectories with FNN-MPC, with set-points
displayed as yellow squares. (a) h1 over h2 state trajectories for the 150
simulations. (b) h3 over h4 state trajectories for the 25 simulations. (c) h1 over
h2 state trajectory for the lowest J. (d) h3 over h4 state trajectory for the
lowest J. The gray square shows the area of the training data.

B. PROCESS CONTROL
Fig. 17 depicts simulation results with water level controlled
by the FNN-MPC for the 25 simulations. Fig. 17.a and
Fig. 17.b show that state trajectories are not the same accord-
ing to the neural model. Fig. 17.c and Fig. 17.d show the
lowest J with state trajectories from , 2700s to 12, 000s. The
lowest J with FNN-MPC is equal to 2.567×10−1 (Tab. 11).

Fig. 18 depicts simulation results with water level con-
trolled by the ResNet-MPC for the 25 simulations. Fig. 18.a
and Fig. 18.b show that state trajectories are not the same
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FIGURE 18. Depicts state trajectories with ResNet-MPC, with set-points
displayed as yellow square. (a) h1 over h2 state trajectories for the 25
simulations. (b) h3 over h4 state trajectories for the 150 simulations. (c) h1

over h2 state trajectory for the lowest J. (d) h3 over h4 state trajectory for the
lowest J. The gray square shows area of the training data.

FIGURE 19. Depicts state trajectories with PolyNet-MPC, with set-points
displayed as yellow square. (a) h1 over h2 state trajectories for the 25
simulations. (b) h3 over h4 state trajectories for the 25 simulations. (c) h1 over
h2 state trajectory for the lowest J. (d) h3 over h4 state trajectory for the
lowest J. The gray square shows area of the training data.

according to the neural model. Fig. 18.c and Fig. 18.d show
the lowest J with state trajectories from 2, 700s to 12, 000s.
The lowest J with ResNet-MPC is equal to 2.576 × 10−1

(Tab. 11).
Fig. 19 depicts simulation results with water level con-

trolled by the PolyNet-MPC for the 25 simulations. Fig. 19.a
and Fig. 19.b show that state trajectories are not the same
according to the neural model. Fig. 19.c and Fig. 19.d show
the lowest J with state trajectories from 2, 700s to 12, 000s.
The lowest J with PolyNet-MPC is equal to 2.567 × 10−1

(Tab. 11).
Fig. 20 depicts boxplot J with controllers considered

in this work, namely FNN-MPC (Fig. 20.a), ResNet-MPC
(Fig. 20.b) and PolyNet-MPC (Fig. 20.c), with values shown
in Tab. 11. The lowest J is observed with FNN-MPC, the
lowest median for ResNet-MPC, the lowest 1st quartile for
PolyNet-MPC and the lowest 3rd quartile for ResNet-MPC.

FIGURE 20. The boxplot J with neural networks based MPC without outliers,
(a) FNN-MPC, (b) ResNet-MPC, (c) PolyNet-MPC. Please note that outliers
are not shown in order to clarify the figure.

FIGURE 21. The boxplot mean computation time with neural networks based
MPC without outliers, (a) FNN-MPC, (b) ResNet-MPC, (c) PolyNet-MPC.
Please note that outliers are not shown in order to clarify the figure.

Fig. 21 depicts the boxplot mean computation time
with regulators considered in this work, namely FNN-MPC
(Fig. 21.a), ResNet-MPC (Fig. 21.b) and PolyNet-MPC
(Fig. 21.c), with values presented in Tab. 12. The lowest mean
computation time is observed with ResNet-MPC, the lowest
median with FNN-MPC, the lowest 1st quartile with FNN-
MPC and the lowest 3rd quartile with ResNet-MPC.

VIII. DISCUSSION
ResNet and PolyNet were originally presented for computer
vision applications such as image classification, as they are

TABLE 12. Process control mean computation time (s).

FNN-MPC ResNet-MPC PolyNet-MPC
Lowest 2.356× 10−1 2.258× 10−1 2.416× 10−1

1st quartile 2.801× 10−1 3.067× 10−1 3.280× 10−1

Median 3.164× 10−1 3.487× 10−1 3.707× 10−1

3rd quartile 4.111× 10−1 3.988× 10−1 8.350× 10−1

Highest 9.956× 10−1 8.521× 10−1 8.305
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TABLE 13. Performance comparison results and compromises.

Evaluation criteria FNN-MPC ResNet-MPC PolyNet-MPC
Identification error ++ +++ +

ANN generalisation + +++ ++
ANN Training time +++ ++ +

J ++ +++ +
MPC computation time ++ +++ +

well suited for this task by using hundreds of layers for
increasing accuracy, but they are only recently used for
dynamical system identification. In this work, we observed
that in the case of ResNet and PolyNet, the best performances
were obtained with only a few layers, and that increasing the
number of layers does not increase the dynamic identification
accuracy of the system (range 1 to 9). ResNet seems to
be a favourable option, while the performance of the FNN
for dynamical system identification was shown to greatly
depend on the chosen activation function, which is a point
of weakness.

In this work, neural network identification for control pur-
poses was further considered, specifically for MPC control.
It was observed that the lowest identification error (MSE) did
not systematically produce the lowest process control error
(J).

The evaluation criteria are given in Tab.13 for each con-
troller. They are rated from + to +++, with +++ better than
+. ResNet-MPC produces the lowest identification error, the
best performance control criterion J, the lowest computation
time for the MPC. It has the best generalization ability com-
pared to FNN-MPC and PolyNet-MPC. In addition, ResNet-
MPC gives the most consistent results in control. Indeed,
the results are good for a large choice of hyper-parameters,
and homogeneous. The only drawback lies in the increase in
training time compared to feedforward networks, the training
was performed on CPUs only, and valuable reduction of
training time could be achieved using specific hardware such
as GPUs [90] or TPUs [91]. However, the performances of
the PolyNet MPC are disappointing, in that we observe some-
times erratic simulation results (despite a rather favorable
criterion). Hence the bad notation (+) next to Fnn-MPC and
ResNet-MPC.

Finally, ResNet-MPC turns out to be the best solution, and
a good candidate for systematic use in neural network based
modeling and NN-MPC control of dynamical systems.

IX. CONCLUSION
ResNet and PolyNet neural networks are architectures that
can be linked explicitly to Euler integration method. Thus,
the initial motivation in this study was to evaluate their
particular interest to deal with dynamical systems. Firstly, for
non-linear identification, and secondly as a support to MPC
implementation, using ad hoc numerical integration scheme
for the prediction part. A contribution of this paper lies in
the consideration of these architectures outside their usual
context of use, e.g. as deep networks for image recognition.

To assess the relevance of these networks for regression
and control, the following choices were made. The first
choice consisted in considering a representative multivariable
system with coupled dynamics, illustrating certain classical
characteristics of industrial processes. The second consisted
in proposing a methodology to ensure a fair comparison
of ResNet and PolyNet with the classical FNN. Common
evaluation criteria have been defined. A systematic investi-
gation of hyperparameters via metaheuristic optimization has
been proposed. Finally, the data have been segmented in an
original way to highlight the generalization capabilities.

The results of this work confirm, first of all, the particular
interest of the two architectures ResNet and PolyNet stud-
ied. ResNet and PolyNet achieve equivalent performance on
learned data. It is even observed, which was unexpected, that
the generalization capacities of the ResNet surpass those of
the PolyNet, in spite of the more complex architecture of the
latter. Beyond that, we analyzed the quality of MPC water-
level control obtained via MPC, considering in turn FNN,
ResNet and PolyNet based prediction models. ResNet once
again appears to be superior, both in terms of the homogene-
ity of the results obtained and the average computation time
of the resulting MPC, which is lower than with PolyNet.

The perspectives of this work are multiple. To be con-
cise, the work now consists of implementing the proposed
methodology within the framework of the control of an
agricultural greenhouse. At the same time, we are working
more fundamentally on the problem of physics informed
learning, in order to enrich the potential of the methodology
in the case of a small volume of experimental data.

APPENDIX
For an ordinary DE ẏ(t) = g(y(t)), y(0) = y0, the forward
Euler integration method is defined as [9]:

y[k + 1] = y[k] + Tsg(y[k]) (24)

with y[k+1] as the solution at k+1 and Ts the sample time.
The link with ResNet is observable with Eq. (5). In addition,
the backward Euler integration method is [9]:

y[k + 1] = y[k] + Tsg(y[k + 1]) (25)
y[k + 1]− Tsg(y[k + 1]) = y[k] (26)

y[k + 1] = (I − Tsg)
−1y[k] (27)

with y[k+1] as the solution at k+1 and Ts the sample time.
Then, the link with PolyNet and Eq. (6) is provided in [33]
with: 1

1−x ≈
∑∞

n=0 x
n, such as (I − Tsg)

−1 ≈ I + Tsg +
(Tsg)

2 + . . .+ (Tsg)
n + . . . .
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