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Abstract

Random forests have long been considered as powerful model
ensembles in machine learning. By training multiple decision
trees, whose diversity is fostered through data and feature
subsampling, the resulting random forest can lead to more
stable and reliable predictions than a single decision tree. This
however comes at the cost of decreased interpretability: while
decision trees are often easily interpretable, the predictions
made by random forests are much more difficult to under-
stand, as they involve a majority vote over multiple decision
trees. In this paper, we examine different types of reasons
that explain “why” an input instance is classified as positive
or negative by a Boolean random forest. Notably, as an al-
ternative to prime-implicant explanations taking the form of
subset-minimal implicants of the random forest, we introduce
majoritary reasons which are subset-minimal implicants of a
strict majority of decision trees. For these abductive explana-
tions, the tractability of the generation problem (finding one
reason) and the optimization problem (finding one minimum-
sized reason) are investigated. Unlike prime-implicant ex-
planations, majoritary reasons may contain redundant fea-
tures. However, in practice, prime-implicant explanations -
for which the identification problem is DP-complete - are
slightly larger than majoritary reasons that can be gener-
ated using a simple linear-time greedy algorithm. They are
also significantly larger than minimum-sized majoritary rea-
sons which can be approached using an anytime PARTIAL
MAXSAT algorithm.

Introduction
Over the past two decades, rapid progress in statistical ma-
chine learning has led to the deployment of models endowed
with remarkable predictive capabilities. Yet, as the spectrum
of applications using statistical learning models becomes in-
creasingly large, explanations for why a model is making
certain predictions are ever more critical. For example, in
medical diagnosis, if some model predicts that an image is
malignant, then the physician may need to know which fea-
tures in the image have led to this classification. Similarly, in
the banking sector, if some model predicts that a customer
commits fraud, then the banker might want to know why.
Therefore, deriving explanations for why certain predictions
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are made is essential for securing user confidence in machine
learning technologies (Miller 2019; Molnar 2019).

This paper focuses on classifications made by random
forests, a popular ensemble learning method that constructs
multiple randomized decision trees during the training
phase, and predicts by taking a majority vote over the base
classifiers (Breiman 2001). Since decision tree randomiza-
tion is achieved by essentially coupling data subsampling (or
bagging) and feature subsampling, random forests are easy
to implement, with few tuning parameters. Furthermore,
they often make accurate and robust predictions in practice,
even for small data samples and high-dimensional feature
spaces (Biau 2012). For these reasons, random forests have
been used in various applications including, among others,
computer vision (Criminisi and Shotton 2013), crime predic-
tion (Bogomolov et al. 2014), ecology (Cutler et al. 2007),
genomics (Chen and Ishwaran 2012), and medical diagnosis
(Azar et al. 2014).

However, random forests are often considered far less
interpretable than decision trees. Thus, while many XAI
queries are tractable for decision trees, they are not tractable
for random forests (Audemard et al. 2021). Especially, the
prediction made on a given data instance can be easily in-
terpreted by reading the direct reason furnished by the clas-
sifier. For a decision tree, it is the unique root-to-leaf path
that covers the instance (also known as its path-restricted
explanation (Izza, Ignatiev, and Marques-Silva 2020)). By
contrast, no such direct reason has been defined so far for a
random forest. More generally, a key issue in random forests
is to infer abductive explanations, that is, to capture in con-
cise terms why a data instance is classified as positive or
negative by the model ensemble.

Related Work. Explaining random forest predictions has
received increasing attention in recent years (Bénard et al.
2021; Choi et al. 2020; Izza and Marques-Silva 2021). In the
classification setting, Choi et al. (2020) and Izza & Marques-
Silva (2021) have focused on prime-implicant explanations,
also known as sufficient reasons (Darwiche and Hirth 2020).
Informally, if we view any random forest classifier as a
Boolean function f , then a prime-implicant explanation for
classifying a data instance x as positive by f is a subset-
minimal implicant t of f covering x. By construction, t is
an abductive explanation involving only relevant features,



since removing any feature from t would question the fact
that t explains the way x is classified by f . Note that if f is
described by a single decision tree, then generating a prime-
implicant explanation for any data instance x can be done in
linear time. Yet, in the general case where f is represented
by an arbitrary number of decision trees, the problem of de-
termining whether a given term is a prime-implicant expla-
nation for an instance given a random forest has recently
been shown DP-complete (Izza and Marques-Silva 2021).
Despite this intractability statement, the empirical results re-
ported by the authors show that a MUS-based algorithm for
computing such explanations can prove efficient in practice.

In addition to model-based explanations described above,
model-agnostic explanations can be applied to random
forests. Notably, the LIME method (Ribeiro, Singh, and
Guestrin 2016) extrapolates a linear threshold function g
from the behavior of the random forest f around an input
instance x. For the ANCHOR method (Ribeiro, Singh, and
Guestrin 2018), the extrapolated model g takes the form of a
decision rule. Yet, even if in both cases a prime implicant
of g can be easily computed, the resulting explanation is
not guaranteed to be an abductive explanation for x given
f since g is an approximation of f .

Contributions. In this paper, we introduce new notions of
abductive explanations: direct reasons, which extend to the
case of random forests the corresponding notion defined for
decision trees, and majoritary reasons, which are abductive
explanations taking into account the averaging rule of ran-
dom forests. Informally, a majoritary reason for classifying
an instance x as positive by some random forest F is a term
t that covers x and is a subset-minimal implicant of a strict
majority of decision trees in F .

What makes direct and majoritary reasons valuable is
the possibility of inferring them in a tractable way, whilst
there is no similar tractability result when dealing with suf-
ficient reasons, unless P = NP. In the following, we exam-
ine the tractability of both the generation problem (finding
one explanation) and the optimization problem (finding one
minimum-sized explanation) for direct and majoritary rea-
sons. Direct reasons (that coincide with minimum-sized di-
rect reasons) and majoritary reasons can be derived in poly-
nomial time. By contrast, identifying minimum-sized ma-
joritary reasons is NP-complete, and identifying minimum-
sized prime-implicant explanations is Σp

2-complete.
Based on these results, we provide algorithms for deriving

random forest explanations, enabling an empirical compari-
son. Our experiments made on standard benchmarks assess
both the runtime complexity of finding abductive explana-
tions and the sparsity of such explanations (i.e., how much
parsimonious they are). In a nutshell, majoritary reasons and
minimum-sized majoritary reasons offer interesting com-
promises in comparison to, respectively, prime-implicant
explanations and minimum-sized prime-implicant explana-
tions. Indeed, even if in theory for every majoritary rea-
son, there exists a prime-implicant explanation that is not
larger, in practice the size of majoritary reasons are generally
smaller than those of prime-implicant explanations. Further-
more, the computational effort to be spent for deriving ma-

joritary reasons is smaller than the one required by prime-
implicant explanations. Similarly, in practice, minimum-
sized majoritary reasons outperform minimum-sized prime-
implicant explanations, in the sense that deriving minimum-
sized prime-implicant explanations is often too computa-
tionally demanding. Using an anytime PARTIAL MAXSAT
solver for minimizing the size of majoritary reasons, we
show how to derive abductive explanations which are typ-
ically shorter than all other forms of abductive explanations
considered in the paper. A full-proof version of the paper
is available at www.cril.univ-artois.fr/expekctation/papers.
html.

Preliminaries
For an integer n, let [n] = {1, · · · , n}. By Fn we denote the
class of all Boolean functions from {0, 1}n to {0, 1}, and we
use Xn = {x1, · · · , xn} to denote the set of input Boolean
variables. Any Boolean vector x ∈ {0, 1}n is called an in-
stance. For any function f ∈ Fn, an instance x ∈ {0, 1}n is
called a positive instance of f if f(x) = 1, and a negative
instance if f(x) = 0.

We refer to f as a propositional formula when it is de-
scribed using the Boolean connectives ∧ (conjunction), ∨
(disjunction) and ¬ (negation), together with the constants
1 (true) and 0 (false). f is satisfiable if it has a positive in-
stance, and it is unsatisfiable otherwise. A literal li is a vari-
able xi or its negation ¬xi, also denoted xi. A term t is a
conjunction of literals, and a clause c is a disjunction of lit-
erals. A DNF formula is a disjunction of terms and a CNF
formula is a conjunction of clauses. The set of variables oc-
curring in a formula f is denoted Var(f). In the following,
we shall often treat instances as terms, and terms as sets of
literals. For an assignment z ∈ {0, 1}n, the corresponding
term is

tz =

n∧
i=1

xzi
i where x0

i = xi and x1
i = xi

A term t covers an assignment z if t ⊆ tz . An implicant of
a Boolean function f is a term that implies f , that is, a term
t such that f(z) = 1 for every assignment z covered by t.
A prime implicant of f is an implicant t of f such that no
proper subset of t is an implicant of f .

A (Boolean) decision tree on Xn is a binary tree T , each
of whose internal nodes is labeled with one of n input vari-
ables, and whose leaves are labeled 0 or 1. Without loss of
generality, every variable is supposed to occur at most once
on any root-to-leaf path. The value T (x) of T on an input
instance x is given by the label of the leaf reached from
the root as follows: at each node go to the left (resp. right)
child if the input value of the corresponding variable is 0
(resp. 1). A (Boolean) random forest on Xn is an ensemble
F = {T1, · · · , Tm}, where each Ti (i ∈ [m]) is a decision
tree on Xn, and such that the value F (x) is given by

F (x) =

{
1 if 1

m

∑m
i=1 Ti(x) >

1
2

0 otherwise.

The size of F is given by |F | =
∑m

i=1 |Ti|, where |Ti| is the
number of nodes occurring in Ti. The class of decision trees
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Figure 1: A random forest for recognizing Cattleya orchids.
The left (resp. right) child of any decision node labelled by
xi corresponds to the assignment of xi to 0 (resp. 1).

on Xn is denoted DTn, and the class of random forests with
at most m decision trees (with m ≥ 1) over DTn is denoted
RFn,m. Finally, RFn =

⋃
m≥1 RFn,m and RF =

⋃
n≥1 RFn.

Example 1. The random forest F = {T1, T2, T3} in Figure
1 is composed of three decision trees. It separates Cattleya
orchids from other orchids using the following features: x1:
“has fragrant flowers”, x2: “has one or two leaves”, x3:
“has large flowers”, and x4: “is sympodial”.

We conclude this section with two important properties of
random forests, that are useful to prove forthcoming results.
The first property is related to the fact that any decision tree
T can be transformed into its negation ¬T ∈ DTn, by simply
inverting the labels of its leaves. Negating a random forest
can also be achieved in polynomial time:
Proposition 1. There exists a linear-time algorithm that
computes a random forest ¬F ∈ RFn,m equivalent to the
negation of a given random forest F ∈ RFn,m.

Furthermore, it is well-known that any decision tree T can
be encoded in linear time into an equivalent disjunction of
terms DNF(T ), where each term coincides with a 1-path (i.e.,
a path from the root to a leaf labeled with 1), but also as
a conjunction of clauses CNF(T ), where each clause is the
negation of a term describing a 0-path. Yet, when switching
to random forests, the picture is quite different:
Proposition 2. Any CNF or DNF formula can be converted
in linear time into an equivalent random forest, but there is
no polynomial-space translation from RF to CNF or to DNF.

Random Forest Explanations
The key focus of this study is to explain why a random forest
classifies some data instance as positive or negative. This
calls for a notion of abductive explanation.1 Specifically, an
abductive explanation for an instance x ∈ {0, 1}n given a
Boolean function f ∈ Fn is a term t that covers x and is
an implicant of f (resp. ¬f ) if f(x) = 1 (resp. f(x) = 0).
Such an abductive explanation always exists, since t = tx
is such a (trivial) explanation. So, in the rest of this section,
we shall mainly concentrate on sparse forms of abductive
explanations.

1Unlike (Ignatiev, Narodytska, and Marques-Silva 2019), we do
not require those explanations to be minimal with respect to set
inclusion, in order to keep the concept distinct (and actually more
general) than the one of prime-implicant explanations.

Direct Reasons. For a decision tree T ∈ DTn and a data
instance x ∈ {0, 1}n, the direct reason for x given T is the
term tTx corresponding to the unique root-to-leaf path of T
that covers x. This simple form of abductive explanation can
be extended to random forests as follows:
Definition 1. Let F = {T1, . . . , Tm} be a random forest in
RFn,m, and x ∈ {0, 1}n be an instance. The direct reason
for x given F is the term tFx defined by

tFx =

{∧
Ti∈F :Ti(x)=1 t

Ti
x if F (x) = 1∧

Ti∈F :Ti(x)=0 t
Ti
x if F (x) = 0

By construction, tFx is an abductive explanation for x
given F that can be computed in O(n|F |) time.
Example 2. Based on Example 1, consider the instance x =
(1, 1, 1, 1). Since F (x) = 1, x is recognized as a Cattleya
orchid. The direct reason for x given F is tFx = x1 ∧ x2 ∧
x3 ∧ x4. Consider now the instance x′ = (0, 1, 0, 0), which
is not recognized as a Cattleya orchid, since F (x) = 0. The
direct reason for x′ given F is tFx′ = x2 ∧ x3 ∧ x4.

Prime-Implicant Explanations. Another valuable notion
of abductive explanation is the one of prime-implicant ex-
planation (Shih, Choi, and Darwiche 2018) also referred to
as sufficient reason (Darwiche and Hirth 2020). In the set-
ting of random forests, such explanations can be defined as
follows:
Definition 2. Let F ∈ RFn be a random forest and x ∈
{0, 1}n be an instance. A prime-implicant explanation for x
given F is a prime implicant t of F (resp. ¬F ) if F (x) = 1
(resp. F (x) = 0) such that t covers x.
Example 3. For our running example, x2 ∧ x3 ∧ x4 and
x1 ∧x4 are the prime-implicant explanations for x given F .
x4 and x1 ∧ x3 are the prime-implicant explanations for x′

given F .
Importantly, all features occurring in a prime-implicant

explanation t are relevant. Indeed, removing any literal from
t would question the fact that t implies F . Note that the
direct reason tFx for x given F may contain arbitrarily
many more features than a prime-implicant explanation for
x given F , since this is already known in the case where
F consists of a single decision tree (Izza, Ignatiev, and
Marques-Silva 2020).

The problem of identifying a prime-implicant explanation
t for an input instance x ∈ {0, 1}n given a random for-
est F ∈ RFn, has recently been shown DP-complete (Izza
and Marques-Silva 2021). In fact, even the apparently sim-
ple task of checking whether t is an implicant of F is already
hard:
Proposition 3. Let F be a random forest in RFn and t be
a term over Xn. Deciding whether t is an implicant of F is
coNP-complete.

The above result is in stark contrast with the computa-
tional complexity of checking whether a term t is an impli-
cant of a decision tree T . This task can be solved in polyno-
mial time, using the fact that T can be converted (in linear
time) into a clausal form CNF(T ), together with the fact that



testing whether t implies CNF(T ) can be done in O(n|T |)
time. That mentioned, in the case of random forests, the im-
plicant test can be achieved via a call to a SAT oracle:

Proposition 4. Let F = {T1, . . . , Tm} be a random forest
of RFn,m, and t be a (satisfiable) term over Xn. Let H be
the CNF formula

{(yi ∨ c) : i ∈ [m], c ∈ CNF(¬Ti)} ∪ CNF

(
m∑
i=1

yi >
m

2

)
where {y1, . . . , ym} are fresh variables and
CNF

(∑m
i=1 yi >

m
2

)
is a CNF encoding of the cardi-

nality constraint
∑m

i=1 yi > m
2 . Then, t is an implicant of

F if and only if H ∧ t is unsatisfiable.

Based on such an encoding, the prime-implicant explana-
tions for an instance x given a random forest F can be char-
acterized in terms of MUS (minimal unsatisfiable subsets),
as suggested in (Izza and Marques-Silva 2021). This char-
acterization is useful because many SAT-based algorithms
for computing a MUS (or even all MUSes) of a CNF for-
mula have been pointed out for the past decade (Audemard,
Lagniez, and Simon 2013; Liffiton et al. 2016; Marques-
Silva, Janota, and Mencı́a 2017). They can be leveraged for
computing prime-implicant explanations.

Going one step further, a natural way to improve the in-
telligibility of prime-implicant explanations is to focus on
parsimonious ones.2 Specifically, a minimum-sized prime-
implicant (minPI) explanation for x ∈ {0, 1}n given F ∈
RFn is a prime-implicant explanation for x given F , that is
of minimal size.

Example 4. For our running example, x1∧x4 is the unique
minPI explanation for x given F , and x4 is the unique minPI
explanation for x′ given F .

As a by-product of the characterization of a prime-
implicant explanation in terms of MUS (Izza and Marques-
Silva 2021), a minPI explanation for x given f may be
viewed as a minimum-sized MUS. Thus, we can exploit al-
gorithms for computing minimum-sized MUSes (see e.g.,
(Ignatiev et al. 2015)) in order to infer minPI explanations.
However, identifying a minPI explanation is computation-
ally harder than identifying a prime-implicant explanation:

Proposition 5. Let F ∈ RFn, x ∈ {0, 1}n, and k ∈ N. De-
ciding whether there exists a minPI explanation t for x given
F such that t contains at most k features is Σp

2-complete.

Majoritary Reasons. Based on the above considerations,
a natural question arises: does there exist a middle ground
between direct reasons, which may include many irrelevant
features but are easy to calculate, and prime-implicant ex-
planations, which only contain relevant features but are po-
tentially much harder to infer? Inspired by the way prime

2Everything else being equal, shortest explanations can be
viewed as better than longer explanations because they are easier
to understand. Of course, sparsity is only one aspect of the intelli-
gibility of an explanation. The quality of an explanation typically
depends on the explainee (i.e., the person who asked for an expla-
nation) (Doshi-Velez and Kim 2017).

implicants can be computed when dealing with decision
trees, we can reply in the affirmative using the notion of ma-
joritary reasons, defined as follows.

Definition 3. Let F = {T1, . . . , Tm} be a random forest in
RFn,m and x ∈ {0, 1}n be an instance. A majoritary reason
for x given F is a term t covering x, such that t is an im-
plicant of at least ⌊m

2 ⌋ + 1 decision trees Ti (resp. ¬Ti) if
F (x) = 1 (resp. F (x) = 0), and for every l ∈ t, t\{l} does
not satisfy this last condition.

Example 5. Based on our running example, the majoritary
reasons for x given F are x1 ∧ x2 ∧ x4, x1 ∧ x3 ∧ x4, and
x2∧x3∧x4. Each of these explanations is more concise than
the direct reason tFx . For x′, the majoritary reasons given F
are x1∧x4, x2∧x4, and x1∧x2∧x3. Note that the each of the
majoritary reasons x1∧x2∧x4 and x1∧x3∧x4 for x given
F includes an irrelevant literal for the task of classifying x
using F since x1 ∧ x4 is a prime-implicant explanation for
x given F . Similarly, every majoritary reason for x′ given
F contains an irrelevant literal for the task of classifying x′

using F .

In general, the notions of majoritary reason and of prime-
implicant explanation do not coincide. Indeed, a prime-
implicant explanation is a prime implicant (covering x) of
the forest F , while a majoritary reason is an implicant t (cov-
ering x) of a majority of decision trees in the forest F , satis-
fying the additional condition that t is a prime implicant of
at least one of these decision trees.

A key observation justifying this difference is that even
if every implicant of a Boolean function f is an implicant
of the function f ∨ g, it is not always the case that every
prime implicant of f is a prime implicant of f ∨ g. To this
point, consider our running example and take the term t =
x1∧x3∧x4. Here, t is a majoritary reason for x = (1, 1, 1, 1)
given F , since t covers x, t is a prime implicant of T1, and t
is an implicant of T2. Thus, t is an implicant of f = T1 ∧T2

(it is a prime one), and hence an implicant of F , using the
fact that F is logically equivalent to (T1 ∧T2)∨ (T1 ∧T3)∨
(T2 ∧T3). However, t is not a prime implicant of F . Indeed,
the sub-term x1 ∧ x4 is a prime-implicant explanation for x
given F , since it is a prime implicant of F that covers x.

Viewing majoritary reasons as “weak” forms of prime-
implicant explanations, they can include irrelevant features:

Proposition 6. Let F = {T1, . . . , Tm} be a random forest
of RFn,m and x ∈ {0, 1}n. Unless m < 3, it can be the case
that every majoritary reason for x given F contains arbi-
trarily many more features than any prime-implicant expla-
nation for x given F .

What makes majoritary reasons valuable is that they are
abductive and can be generated in linear time. The evidence
that any majoritary reason t for x given F is an abductive
explanation comes directly from the fact that if t implies a
majority of decision trees in F , then it is an implicant of F
(note that the converse implication does not hold in general).

The tractability of generating majoritary reasons lies in
the fact that they can be found using a simple greedy algo-
rithm. For the case when F (x) = 1, start with t = tx, and
iterate over the literals l of t by checking whether t deprived



of l is an implicant of at least ⌊m
2 ⌋+1 decision trees of F . If

so, remove l from t and proceed to the next literal. Once all
literals in tx have been examined, the final term t is by con-
struction an implicant of a majority of decision trees in F ,
such that removing any literal from it would lead to a term
that is no longer an implicant of this majority. So, t is by
construction a majoritary reason. The case when F (x) = 0
is similar, by simply replacing each Ti with its negation in F .
This greedy algorithm runs in O(n|F |) time, using the fact
that, on each iteration, checking whether t is an implicant of
Ti (for each i ∈ [m]) can be done in O(n|Ti|) time.

By analogy with minimum-sized prime-implicant expla-
nations, a natural way of improving the quality of majori-
tary reasons is to seek for the most parsimonious ones. For-
mally, a minimum-sized majoritary (minMAJ) reason for an
instance x ∈ {0, 1}n given a random forest F ∈ RFn is a
majoritary reason for x given F , that is of minimal size.

Example 6. For our running example, the three majoritary
reasons for x given F are minMAJ reasons. Contrastingly,
among the majoritary reasons for x′ given F , only x1 ∧ x4

and x2 ∧ x4 are minMAJ reasons.

Unsurprisingly, the optimization task for majoritary rea-
sons is more demanding than the generation task. Still, min-
MAJ reasons are easier to identify than minPI reasons:

Proposition 7. Let F ∈ RFn, x ∈ {0, 1}n, and k ∈ N.
Deciding whether there exists a minMAJ reason t for x given
F such that t contains at most k features is NP-complete.

A common approach for handling NP-optimization prob-
lems is to rely on modern constraint solvers. From this per-
spective, recall that a PARTIAL MAXSAT problem consists
of a pair (Csoft, Chard) where Csoft and Chard are (finite)
sets of clauses. The goal is to find a Boolean assignment that
maximizes the number of clauses c in Csoft that are satisfied,
while satisfying all clauses in Chard.

Proposition 8. Let F ∈ RFn,m and x ∈ {0, 1}n. Let
(Csoft, Chard) be an instance of the PARTIAL MAXSAT
problem such that:

Csoft = {xi : xi ∈ tx} ∪ {xi : xi ∈ tx}
Chard = {(yi ∨ c|x) : i ∈ [m], c ∈ CNF(T±

i )}

∪ CNF

(
m∑
i=1

yi >
m

2

)
where c|x = c ∩ tx is the restriction of c to the literals in
tx, {y1, . . . , ym} are fresh variables, T±

i = Ti (i ∈ [m]) if
F (x) = 1, T±

i = ¬Ti if F (x) = 0, and CNF(
∑m

i=1 yi >
m
2 ) is a CNF encoding of the constraint

∑m
i=1 yi >

m
2 . Let

z∗ be an optimal solution of (Csoft, Chard). Then, tx ∩ tz∗

is a minMAJ reason for x given F .

Thanks to this characterization result, one can leverage
the numerous algorithms that have been developed so far
for PARTIAL MAXSAT (see e.g. (Ansótegui, Bonet, and
Levy 2013; Morgado, Ignatiev, and Marques-Silva 2014;
Narodytska and Bacchus 2014; Saikko, Berg, and Järvisalo
2016)) in order to compute minMAJ reasons.

Experiments
Experimental Setup. The empirical protocol we con-
sidered was as follows. We have focused on 15 datasets
for binary classification, which are standard benchmarks
from the repositories Kaggle (www.kaggle.com), OpenML
(www.openml.org), or UCI (archive.ics.uci.edu/ml/). These
datasets are compas, placement, recidivism, adult, ad data,
mnist38, mnist49, gisette, dexter, dorothea, farm-ads,
higgs boson, christine, gina, and bank. mnist38 and mnist49
are subsets of the mnist dataset, restricted to the instances
of 3 and 8 (resp. 4 and 9) digits. Additional information
about the datasets, (especially the number and types of fea-
tures, the number of instances), and about the random forests
that have been trained (especially, the number of Boolean
features used, the number of trees, the depth of the trees,
the mean accuracy) are available at www.cril.univ-artois.fr/
expekctation/.

Categorical features have been treated as arbitrary num-
bers (the scale is nominal). As to numeric features, no data
preprocessing has taken place: these features have been bi-
narized on-the-fly by the random forest learning algorithm.
For this learner, we have used the version 0.23.2 of the
Scikit-Learn library (Pedregosa et al. 2011). The maximal
depth of any decision tree in a forest has been bounded at
8. All other hyper-parameters of the learning algorithm have
been set to their default value, except the number of trees.
We made some preliminary tests for tuning this parameter
in order to ensure that the accuracy was good enough.

For every benchmark b, a 10-fold cross validation process
has been achieved: a set of 10 random forests have been
computed and evaluated from the labelled instances of b,
partitioned into 10 parts. One part was used as the test set
and the remaining 9 parts as the training set for generating a
forest. The classification performance on b was measured us-
ing the mean accuracy obtained over the 10 random forests.
For each benchmark b, each random forest F , and a pool of
25 instances x drawn at random from the test set (leading to
250 instances per dataset), we have run the algorithms de-
scribed in the previous section for deriving the direct reason
for x given F , a prime-implicant explanation for x given
F , a majoritary reason for x given F , a minPI reason for x
given F , and a minMAJ reason for x given F .

For computing prime-implicant explanations and min-
MAJ reasons, we took advantage of the Pysat li-
brary (Ignatiev, Morgado, and Marques-Silva 2018) (ver-
sion 0.1.6.dev15) that provides the implementation of
the RC2 PARTIAL MAXSAT solver and an interface to
MUSER (Belov and Marques-Silva 2012). For majoritary
reasons, we picked up uniformly at random 50 permutations
of the literals describing the instance and tried to eliminate
those literals (within the greedy algorithm) following the or-
dering corresponding to the permutation. We kept a smallest
explanation among those derived (of course, the correspond-
ing runtime that has been measured is the cumulated time
over the 50 tries). Prime-implicant explanations have been
computed using MUSes, as explained before.

We also derived a “LIME explanation” for each instance.
Such an explanation has been inferred as follows. Given an
input instance x, we first used LIME (Ribeiro, Singh, and
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Figure 2: Empirical results for the placement dataset.

Guestrin 2016) to generate a linear zero-threshold function
wx ∈ Rn. The value wx(z) of wx on any instance z is
given by wx(z) = 1 if w⊤

x z > 0, and wx(z) = 0 other-
wise. Now, when x is classified positively by wx, in order
to derive an explanation, it is enough to sum in a decreasing
way the positive weights occurring in wx until this sum ex-
ceeds (the opposite of) the sum of all the negative weights
occurring in wx. The term t composed of the variables xi

associated with the positive weights which have been se-
lected is, by construction, a minPI reason for x given wx

since for every x′ covered by t, the inequality w⊤
xx

′ > 0
holds. Indeed, the inequality w⊤

xx
′ > 0 holds in the worst

situation when all the variables associated with a positive
weight in wx and not belonging to t are set to 0, whilst all
the variables associated with a negative weight in wx are set
to 1 (see also (Marques-Silva et al. 2020)). Instances that are
classified negatively can be handled in a similar way.

Experiments have been conducted on a computer
equipped with Intel(R) XEON E5-2637 CPU @ 3.5 GHz
and 128 Gib of memory. A time-out (TO) of 600s has been
considered for each instance and each type of explanation,
except LIME ones (no time bound has been used for them).

Experimental Results. A first conclusion that can be
drawn from our experiments is the intractability of comput-
ing minPI reasons in practice; this coheres with the complex-
ity result given by Proposition 5. Thus, we have been able to
compute within the time limit of 600s a minPI reason for
only 10 instances and a single dataset (compas).

Due to space limitations, we report hereafter empirical
results about three datasets only, namely placement, gisette
and dorothea. The results obtained on the other datasets are
similar and available on line. placement is a small dataset
about the placement of 215 students in a campus; students
are described using 13 features, related to their curricula,
the type and work experience, and the salary. An instance
is labelled positive when the student gets a job. The ran-
dom forests consist of 25 trees, and their mean accuracy is
97.6%. gisette is much larger, including 5000 features and
7000 examples. Each feature is a pixel or a combination of
pixels, and the task is to separate the digits 4 and 9. The ran-
dom forests consist of 85 trees, and their mean accuracy is
96%. Finally, dorothea is a high-dimensional dataset, with
100,000 features and 1950 examples. Each instance is an
organic molecule, and the goal is to discriminate binding

compounds from non-binding ones. Here, the random for-
est consists of 71 trees, with a mean accuracy of 93%.

Figure 2 provides the results obtained for placement, us-
ing four plots. Each dot represents an instance. The first plot
shows the time needed to compute a reason on the x-axis,
and the size of this reason on the y-axis. On this plot, there
are no dots for minPI reasons, because their computation
did not terminate before the time-out. The plot also high-
lights that all other reasons have been computed within the
time limit, and in general using a small amount of time. In
particular, it shows that the direct reason can be quite large,
that the computation of LIME explanations is usually more
expensive than the ones of the other explanations, and that
LIME explanations can be very short.3 A box plot about the
sizes of all the explanations is reported (the LIME ones and
the direct reasons are not presented for the sake of readabil-
ity). The figure also provides two scatter plots, aiming to
compare the sizes of majoritary reasons with the sizes of
prime-implicant explanations, and the sizes of the minMAJ
reasons with the sizes of prime-implicant explanations.

These plots clearly show the benefits with respect to size
reduction that can be offered by considering majoritary rea-
sons and minMAJ reasons instead of prime-implicant ex-
planations. At first sight, these empirical results may look
surprising since, by construction, for any majoritary reason
t for x given F (including the shortest ones) there exists
at least one prime-implicant explanation for x given F that
is implied by t (hence that cannot be larger). As to majori-
tary reasons, one must keep in mind that the result that is
reported is a shortest reason out of a set of 50 majoritary
reasons that are computed for each x (so to say, we leverage
the tractability of computing such reasons to tackle the size
issue). For minMAJ reasons, the PARTIAL MAXSAT algo-
rithm used to compute them aims to minimize the size of the
reason that is derived, while MUS algorithms for computing
prime-implicant explanations do not focus on the size. In-
deed, computing minimum-sized MUSes is much harder, as
explained previously (see Proposition 5).

Figures 3 and 4 synthesize the results obtained for gisette
and dorothea, respectively. Conclusions similar to those
drawn for placement can be derived for gisette and dorothea,

3Recall that LIME explanations are not guaranteed to be abduc-
tive. See also (Narodytska et al. 2019) that reports some experi-
ments about ANCHOR explanations.
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Figure 3: Empirical results for the gisette dataset.
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Figure 4: Empirical results for the dorothea dataset.

with some exceptions. First of all, no dots have been drawn
for minMAJ reasons because the computation of such rea-
sons did not terminate within the time limit. Furthermore,
LIME explanations are much longer. This can be partly ex-
plained by the fact that the computation achieved by LIME
relies on a binary representation of the instance that is quite
different (and possibly much larger) than the one considered
in the representation of the random forest. Indeed, each de-
cision tree in the forest focuses only on a subset of most im-
portant features (in the sense of Gini criterion) found during
the learning phase. In our experiments, the size of LIME ex-
planations was typically large for high-dimensional datasets.

When minMAJ reasons are difficult to calculate (as it is
the case for gisette and dorothea), a natural approach is to
look for approximations. From this perspective, we took ad-
vantage of the incremental PARTIAL MAXSAT algorithm
called LMHS (Saikko, Berg, and Järvisalo 2016) to do the
job. Specifically, the result given in Proposition 8 provides
a way to derive abductive explanations for an instance x
given a random forest F in an anytime fashion. Basically,
using LMHS, a Boolean assignment z satisfying all the hard
constraints of Chard and a given number, say k, of soft con-
straints from Csoft is looked for (k is set to 0 at start). If
such an assignment is found, then one looks for an assign-
ment satisfying k + 1 soft constraint, and so on, until an
optimal solution is found or a preset time bound is reached.
By construction, every z that is generated that way is such
that tx∩ tz is an implicant of F that covers x (and hence, an
abductive explanation). In practice, the approximation z of
a minMAJ reason for x given F , which is obtained when the
time limit is met, can be significantly shorter than the prime-

implicant explanation for x given F that has been derived.
In our experiments, we used three time limits: 10s, 60s,

and 600s. The results are reported in the box plots and the
scatter plots in Figures 2, 3, and 4. As illustrated by the box
plots, the sizes of the approximations z which are derived
gently decrease with time. The scatter plots indicate that sig-
nificant size savings can be achieved even for the smallest
time bound of 10s that has been considered.

Conclusion
We have introduced, studied, and evaluated new notions of
abductive explanations suited to random forests, namely di-
rect reasons, majoritary reasons and minimum-sized majori-
tary reasons. Unlike prime-implicant explanations, majori-
tary reasons and their minimum-sized counterparts may con-
tain irrelevant features. Nevertheless, in practice, majoritary
reasons and minMAJ reasons appear as valuable alternative
to prime-implicant explanations. Indeed, majoritary reasons
can be computed in polynomial time while prime-implicant
explanations cannot (unless P = NP). In addition, in most
of our experiments, majoritary reasons slightly smaller than
prime-implicant explanations have been computed thanks
to a simple greedy algorithm with random permutations of
literals. minMAJ reasons can be looked for when majori-
tary reasons are too large, but this is at the cost of an ex-
tra computation time that can be important, and even pro-
hibitive in some cases. However, minMAJ reasons can be
approximated using an anytime PARTIAL MAXSAT algo-
rithm. Empirically, approximations can be derived within a
small amount of time and their sizes are significantly smaller
than the ones of prime-implicant explanations.
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