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Abstract

The question raised in this paper concerns the meaning attributed to a direct simulation of a turbulent

flow corresponding to a non-zero mean solution at large time constant. Indeed, both the mean field and

the fluctuations field are affected by the viscosity of the fluid which transfers dissipation energy in the

form of heat. The use of the equation of motion on the instantaneous velocity to obtain a turbulent

solution inevitably leads to a relaminarization of the flow. This observation goes against the observations

where a turbulent flow with a non-zero solution remains turbulent indefinitely.

The consequence is that the viscous dissipation must be incorporated for the mean field but not for

the fluctuations. The total energy of the initially introduced fluctuations must be maintained in the very

long term provided that the equation of motion is conservative. This property is intrinsically ensured

in discrete mechanics which conserves a priori the total acceleration but also other quantities like the

angular acceleration. A fluctuation equation is thus derived without any assumption or simplification;

it includes in particular terms of advection of the fluctuations by the mean flow. The resolution of this

equation in time allows to find simultaneously the mean field and the field of fluctuations.
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1 Introduction

In the field of fluid mechanics, the direct resolution of flows using the Navier-Stokes equation
or the discrete equation of motion [1, 2] provides solutions that are very representative of reality
when these flows are stationary or slowly varying in time. The reason for this excellent agreement
between simulation and observation lies in the total or partial decoupling of the compression
and shear effects. Indeed, each of the two terms corresponding to these effects are described
respectively by the gradient of a scalar potential and the dual curl of a vector potential, two
orthogonal terms a priori. For example, in the case of an incompressible flow, it is possible to
satisfy separately this constraint and the velocity field obtained by solving the Navier-Stokes
equation.

In the case of turbulent flows it is quite different. The compression and rotation terms are
intertwined, the compression energy can be exchanged into rotation energy only if the accelera-
tion of the material medium is important. This phenomenon is accentuated by the small time
constants associated with the interactions between vortices of different sizes in the turbulent
cascade. While for a quasi-stationary solution the propagation of transverse effects results in a
viscous dissipation and a transformation of energy into heat, the differential effects of rotation
can be propagated over short distances, of the order of magnitude of the size of the vortices th-
emselves. The time constant for the establishment of the mean flow and the time constant of the
zero mean velocity fluctuations are very different. On this observation it is necessary to question
the meaning of direct numerical simulations which treat in an analogous way the averaged field
and that of the fluctuations by associating them in a sum within the single instantaneous field.

Discrete mechanics derives an equation of motion where the compression and shear terms
are a priori associated with the propagation of longitudinal and transverse waves. In the case of



an elastic solid, the corresponding energies are strictly conserved over time, whereas for a fluid
whose behavior is described by the Navier-Stokes equation, transverse propagation does not exist
and the shear energy is completely transformed into heat by viscous dissipation. It is possible
to conserve all or part of the rotational energy by assigning to the transverse attenuation factor
a value between zero and unity. This property allows to represent elastic materials as well as
Newtonian fluids and viscoelastic fluids in general. It is therefore possible to differentiate the
dissipation of the mean field and its fluctuations. For the mean field evolving with large time
constants the dissipation will be considered as total and for fluctuations with very small time
constants the transverse propagation will be preserved.

When the mean field corresponds to a stationary resting state the impact of this dissociation
exists but is not perceptible. This is the case for the decay of the turbulence for the Taylor-Green
flow initiated by vortices with high Reynolds numbers or for the simulation of the free decay
turbulence developed in the Homogeneous Isotropic Turbulence case [3], in direct simulation
(DNS) or in Large Eddy Simulation (LES) [4]. When the averaged solution corresponds to a
non-zero solution then the energy of the fluctuations must be conserved in the long term; this is
for example the case of the flow in a channel with a high Reynolds number [5] where the imposed
energy is only used to maintain the average flow.

This paper addresses the question of what a direct simulation from (i) the Navier-Stokes
equation and (ii) the discrete equation of motion means. If the transverse waves are completely
dissipated by viscosity for the Navier-Stokes equation, the discrete mechanics allows the conse-
rvation of the energy of the long term fluctuations. After a brief introduction of the discrete
mechanics framework, a fluctuation equation is derived allowing to compute both the mean field
and the fluctuations over time. A second solution is considered, it consists in calculating the
instantaneous turbulent velocity field but to remove the dissipation of the difference between it
and the mean field. This procedure is then applied to the flow in a turbulent channel with high
Reynolds number.

2 Discrete mechanics framework

The principles of discrete mechanics developed in the reference [6] are briefly summarized
in this section. First of all it is necessary to specify that the continuous medium approach at
the basis of continuum mechanics is completely abandoned, the notions of analysis, of derivation
at a point, of integration, ... are put aside. At the same time, the concept of global inertial
or Galilean reference frame is replaced by that of a local reference frame attached to a single
rectilinear segment dh of finite length such that dh < c dt where c is the celerity of the medium
and dt is the time lapse between two observations. It is indeed useless to translate the evolution in
a remote system by a change of reference frame, the information remains limited to this distance
dh. Interactions at longer distances are realized by cause and effect between two segments having
a common vertex. Classical mechanics or the theory of relativity introduce a three dimensional
space and a description of quantities at a point requiring a representation in a three spatial
coordinates reference frame.

Discrete mechanics is based on a very different concept, that of a local reference frame
represented in Figure 1. A rectilinear segment Γ of extremities a and b where dh = [a, b] is
oriented according to the unit vector t to which will be associated the vectors or rather the
components of the vectors such as the acceleration or the velocity or the fluctuations of the
velocity. This space velocity will not be known at any time, it is not necessary for the derivation
of the equation of motion. The scalars φ are related to the vertices a or b of the segment; the
axial vectors ψ are defined on a dual contour Σ and oriented in the positive direction by the
unit normal n. The tessellation of a two- or three-dimensional space is realized by connecting
the segments together in order to form a primal and a dual geometrical structure.
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The concept of continuous medium can be taken up in this context but by reducing the length
of the segment Γ towards zero in a homothetic way without ever reducing it to a point. The
discrete equation of motion derived from this model can thus be considered, in the limit, as a
classical differential equation.

Figure 1. Direct and induced currents in Maxwell’s sense

The physical point of view of the fundamental law of mechanics has been revisited by consi-
dering the acceleration of an isolated particle or of a material medium as absolute. The velocity
or its component v is of course a relative quantity not because it must respect the principle of
inertia but because it is defined by its value vo, named retarded velocity; at the previous instant
to = t− dt must be known to evaluate the current value of the velocity, v = vo + γ dt. The time
span dt is chosen in such a way that the physical phenomena are well represented, for example
from dt = 10−20 s for the simulation of the propagation of light to dt = 1020 s for the search for
a steady solution.

The physical modeling of the fundamental law of discrete mechanics is based on Maxwell’s
intuition that unified the laws of magnetism and electrodynamics, called electromagnetism, into
a single system of equations. The production of an electric current in the conductor Γ can be
due to only two causes, (i) a scalar potential difference φ between a and b and (ii) the circulation
in the circuit Σ of a secondary current ψ which induces a current on Γ. The direct effect can be
obtained in permanent or variable regime whereas the induced effect can only be implemented in
variable regime, periodic for example. On this basis it is then possible to construct the equation
of motion as the sum of two terms:

γ = −∇φ+∇d ×ψ (1)

The intrinsic local acceleration γ of an isolated particle or a material medium is the sum
of a curl-free term and a divergence-free term, a formal Helmholtz-Hodge decomposition. This
proximity between the Helmholtz-Hodge decomposition and the fundamental principle of ele-
ctromagnetism has not been noticed until now, and it constitutes the cornerstone of discrete
mechanics.

2.1 Discrete equation of motion

The derivation of the discrete equation of motion is then undertaken from the definition of
the acceleration (1). At the retarded time to the velocity at mechanical equilibrium is equal to
vo, the retarded scalar potential to φo and the retarded vector potential to ψo. The physical
modeling of the time increments dφ and dψ is performed on the basis of simple observations [1].
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The equation of motion reads:

dv

dt
= −∇

(

φo − dt c2l ∇ · v
)

+∇d ×
(

ψo − dt c2t ∇× v
)

+ hs (2)

where cl and ct are the local longitudinal and transverse velocities and hs represents the possible
source terms, all expressed in a Helmholtz-Hodge decomposition. The absence of mass or density
in this equation is explained by the equivalence established by the special relativity theory
between mass and energy.

The current quantities at time t = to + dt are then updated explicitly from the retarded
quantities:

updates







































αl φ
o − dt c2l ∇ · v 7−→ φo

αt ψ
o − dt c2t ∇× v 7−→ ψo

vo + γ dt 7−→ vo

uo + v dt 7−→ uo

(3)

The potentials φ and ψ are the energies per unit mass of compression and rotation, respecti-
vely, and the integration of γ over Γ is the total energy; the relation (2) is the conservation law
of total energy.

Moreover, inertia takes a completely different form in discrete mechanics [7] than in the
Navier-Stokes equation:

dv

dt
≡

∂v

∂t
+∇

Å

|v|2

2

ã

−∇d ×

Å

|v|2

2
n

ã

(4)

This form has particular properties, notably that it simplifies if the primal curl and divergence
operators are applied to this material derivative.

In turbulence the energies dissipated per unit time (powers) quantify the transfers at small
spatial scales which are degraded into heat, it reads:







Φl = (1− αl) v · ∇
(

−dt c2l ∇ · v
)

Φt = (1− αt) v · ∇d ×
(

−dt c2t ∇× v
)

(5)

Φl represents the fraction of the compression energy attenuated by the medium and tran-
sformed into heat. It is null for ∇ · v = 0 or for αl = 1; for a classical Newtonian fluid αl ≈ 0,
the longitudinal waves are almost not attenuated. The energy dissipated by attenuation of
transverse waves is fixed by Φt; it is null for ∇ × v = 0 or for αt ≈ 0; for a classical fluid
Φt = v · ∇d × (−ν ∇× v), v and ν ∇× v are collinear and carried by Γ. The quantities Φl and
Φt are scalars carried by Γ, it is easy to evaluate their averages over the whole volume.

The powers dissipated by the compressible and viscous effects (5) only concern fractions of
the available compression and rotation energies, the other parts are restored in the scalar φo and
vector ψo potentials. Indeed the integrality can be preserved for an elastic medium or partially
for a viscoelastic medium. Let us consider for example the case of a rigid flow in rotation
V = Ω× r associated with turbulent fluctuations v′. The primal curl of the flow as a whole is
equal to ∇×V +∇× v′; the first part is equal to a constant ∇×V = 2 ω = cte and does not
participate in any way in the degradation of mechanical energy into heat, only the second part
represents the energy dissipated by shear. In the general case of a turbulent and unsteady flow,
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the calculation of the mean field over the time interval [to − T, to] allows to filter out the terms
associated with the rigid vortices which do not dissipate the mechanical energy.

The Navier-Stokes equations and the dissipation forms which result from them involve a
certain number of difficulties of interpretation notably that represented by the enstrophy ε =
1/2

〈

∇× v′2
〉

= 1/2
〈

ω′2
〉

. This quantity is exclusively kinematic unlike ek = 1/2
〈

v′2
〉

which
is energy per unit mass. The energy decay is given by the equation dek/dt = −ν ε [8, 9]. The
discrete form of the kinetic energy decay shows that the second member is formed of two terms,
the first one corresponding to the viscous dissipation −v ·∇d× (ν∇v) and the second one linked
to the production v · ∇φo; from then on the monotonic decrease of the kinetic energy is not
ensured, it is moreover not a conservative quantity. Only the total energy, the integration of the
acceleration on Γ, is preserved.

2.2 Energy conservation

The discrete law (2) is a representation of the conservation of the total energy on the segment
Γ:

∫

Γ

γ · t dl =

∫

Γ

dv

dt
· t dl = −

∫

Γ

∇φ · t dl +

∫

Γ

∇d ×ψ · t dl (6)

which can also be considered as the average on this segment by dividing it by the length dh.
A significant quantity of the flows is the kinetic energy; it is here defined directly on the

segment Γ by scalarly multiplying the equation of motion by v:

ek =

∫

Γ

1

2

d|v|2

dt
dl = −

∫

Γ

v · ∇φ dl +

∫

Γ

v · ∇d ×ψ dl (7)

it is in fact a power considered as an average on the segment:

dek
dt

= −v · ∇φ+ v · ∇d ×ψ (8)

The terms of the right hand side of the equation (8), respectively the compression and rotation
powers, are a priori, not dissipated, it depends on the attenuation of compression and shear
waves. For a classical Newtonian fluid the compression waves are not attenuated very much
(αl ≈ 0) but the transverse waves are dissipated very quickly (αt ≈ 1). The dissipation is usually
attributed to viscosity but compression dissipation also exists. An important property of the
discrete equation of motion (2) is that viscous dissipation appears at first order in the system
of equations through the two attenuation factors αl and αt. The total energy is thus conserved
exactly whatever the problem, for a perfectly elastic medium or no dissipation is considered or
a fluid or part of the transverse waves is dissipated in heat while participating explicitly in the
energy balance.

It is possible to calculate the compression and rotation energies separately. The balance of
the compression energy on the volume around a vertex of the primal structure allows to establish
the conservation law:

dφ

dt
= −φ∇ · v (9)

We can replace the quantity φ by the density ρ (or the mass m) to obtain the law of con-
servation of mass. This similarity is not surprising since it is possible to invoke the equivalence
between mass and energy of the special relativity theory; it should be noted that this equivalence
corresponds only to the compression energy, one part of the total energy. The second part is
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related to the rotation energy represented by the potential vector ψ; by considering the moment
of inertia per unit of mass it is possible to establish a conservation law of the rotation energy:

dψ

dt
= −ψ ∇× v (10)

noting that the vectors ψ and ∇×v are collinear and that the result is carried by the unit vector
n.

The balances on the conservations of compression (9) and rotation (10) energy, similar to
the continuity equation on mass or density, allow to express the actual potentials in terms of the
material derivative of the retarded potentials φ = φo − dt c2l ∇ · v and ψ = ψo − dt c2t ∇ × v.
The equivalences between mass and compression energy are found by comparison φ = c2l and
similarly between moment of inertia and rotation energy ψ = c2t n. Intrinsically these energies per
unit of mass are very important for a fluid or a solid but they become considerable for physical
phenomena where the celerity is that of light φ = c20. However, they represent theoretical energies
that can be used only in part.

The conservation of mechanical energy is governed by the equation of motion which integrates
the mechanism of dissipation of a part of this energy in particular by the viscous effects (8). On
the other hand, the diffusion of heat within the fluid does not appear explicitly in the equation of
motion and there is no reason for it to appear in the equation of motion because it corresponds
to internal effects that do not modify the total energy.

However it is possible to define an energy per unit of mass regrouping the mechanical and
thermal effects by considering the discrete equation (2) as generic applying to any physical
phenomenon. It is then necessary to specify each variable accordingly. For heat transfer the
thermal energy per unit mass would be φh = cp T and its dual ψh = cp T n, the velocity
associated with the flux density vh = ϕ/(cp T ) and the diffusion coefficients al = kl/(ρ cp)
and at = kt/(ρ cp) where kl and kt are the longitudinal and transverse thermal conductivities
respectively. The system of equations related to the diffusion-convection energy is then written:















































dvh
dt

= −∇ (φo
h − al ∇ · vh) +∇d × (ψo − at ∇× vh)

αl φ
o − al ∇ · vh 7−→ φo

αt ψ
o − at ∇× vh 7−→ ψo

voh + γh dt 7−→ voh

(11)

It is possible to integrate this system within the one corresponding to the mechanical energy
and, in this case, the total velocity is written as the sum of the mechanical energy and the
thermal energy v + vh 7−→ v; the system becomes then:















































dv

dt
= −∇

(

φo − dt c2l ∇ · v − al ∇ · v
)

+∇d × (ψo − ν ∇× v − at ∇× v) + hs

αl φ
o
h − dt c2l ∇ · v − al ∇ · v 7−→ φo

αt ψ
o
h − ν ∇× v − at ∇× v 7−→ ψo

vo + γ dt 7−→ vo

(12)

However, the orders of magnitude of dtc2l and of the thermal diffusivity al can be very different
which can make the value of the thermal potential or the temperature T = φh/cp inaccurate.
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The links with continuum mechanics can be easily established. The treatment of viscous
dissipation from the Navier-Stokes equation is different, it is evaluated by 2 [SijSij− (1/3)SiiSjj ]
where S is the strain tensor. This energy is assumed to be permanently lost by the fluid as heat.

It is possible to link the scalar potential corresponding to a compression energy per unit of
mass to the internal energy and enthalpy defined in continuum mechanics [10]:

φ =
p

ρ
= h− e (13)

Indeed the choice to keep the pressure and the density within the equation of motion leads
to an overabundance of variables compensated by the introduction of a useless law of state, the
scalar potential is already defined by the longitudinal velocity of the medium φ = c2l . Moreover,
the energy per unit mass in special relativity is written E/m = c2l . As a reminder, the discrete
equation (2) is independent of any constitutive law, the properties cl, ct, αl, αt must simply be
known as a function of the point in space and time. The difference between the conservation
equations for enthalpy and internal energy per unit mass leads to:

The internal energy per unit mass is then written in the form:

de

dt
=

dφ

dt
+ 2 ν

Å

SijSij −
1

3
SiiSjj

ã

−∇ ·ϕ+ q (14)

where q is a possible source term corresponding to a heat source and ϕ is the heat flux which
can be defined by the Fourier law ϕ = −k ∇T where k is the thermal conductivity. In discrete
mechanics the diffusion flux is not only evaluated as the gradient of a potential but also by a
dual curl [11].

The consequences drawn from the latter form are important (i) the first two terms of the
second member −φ∇·v and the dissipation term are already part of the total energy conservation
law γ embedded on the segment Γ and (ii) the last two terms are not. These two terms of thermal
diffusion and production are thermal powers internal to the fluid

The forms (11) and (12) have many conservation properties related to the Helmholtz-Hodge
decomposition and are perfectly consistent. The Navier-Stokes equations are composed by a
vector equation with three components, a conservation law of mass, an energy equation in any
form (temperature, internal energy, enthalpy, entropy) and a state law relating pressure, density
and temperature. These splitting can introduce time inconsistencies when solving the system.

2.3 Non additivity of velocities

The non-additivity of velocities is most often linked to the theory of special relativity to forbid
the velocity to exceed the celerity of the medium c0, the celerity of light in vacuum. However,
this property results from the principle of inertia and is not limited to very high velocities.

Let us consider two velocities v1 and v2 and their presumed sum v. In discrete mechanics
only the acceleration is an absolute quantity where the principle of additivity can be adopted,
γ = γ1+γ2. To evaluate the sum of the velocities v at the present time t = to+dt it is necessary
to know the previous values vo1 and vo2 and to calculate these from their respective accelerations:























v1 = v
o
1 + γ1 dt

v2 = v
o
2 + γ2 dt

v = vo1 + v
o
2 + γ1 dt+ γ2 dt = v

o
1 + v

o
2 + γ dt

(15)

whereas the velocity is expressed from its own value at time to, vo or v = vo + γ dt. In the
general case of an instantaneous description the velocity vo has no reason to be associated with
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each of the two other initial velocities and v 6= v1 + v2. Without the knowledge of the velocity
of an isolated particle or of a material medium at a previous or initial instant to it is impossible
to evaluate its current value.

Let us consider the example in one dimension of space of two subsonic velocities v1 < c
and v2 < c such that the presumed sum is supersonic v1 + v2 > c. This result violates the
observations showing that the velocity cannot be greater than the celerity of sound c in one
dimension of space, in a shock tube for example. The sum of two subsonic velocities is not a
supersonic celerity. The velocities do not add up a priori, they must be updated from their
values at time to; indeed the process is not linear and must satisfy Lorentz invariance.

In addition to the fact that acceleration is an absolute quantity and not velocity, there is
a fundamental difference between these two quantities, which is that acceleration represents an
energy per unit of mass when integrated over a length. This is defined by a law of conservation
of energy which limits the velocity which is deduced to the velocity of the medium in one
dimension of space. Even at velocities lower than the celerity the inequality resulting from the
demonstration (15), v1 + v2 remains valid.

When applied to the Reynolds decomposition v + v′ where v is the averaged velocity and
v′ is the fluctuation, we also have the inequality v 6= v + v′. In the general case v 6= 0 which
always remains true when the averaged solution is searched during an iterative process, by a
direct simulation or a large scale simulation.

3 Discrete turbulence theory

3.1 Discrete mechanics decomposition

Before describing the decomposition chosen for discrete mechanics for the direct simulation
of turbulent flows it is useful to analyze the Reynolds decomposition of a statistical nature into
a sum of a mean value and a fluctuation. Consider a quantity Φ(x, t), decomposed into a mean
Φ and a fluctuation Φ′, Φ = Φ+Φ′ where Φ is an ensemble mean carried out on a large number
of reproductions and defined from a probability density P (Φ). This ensemble average performed
on a large number of different experiments is replaced by a temporal average performed on a
single experiment conducted over a long time:

Φ =

∫

−∞

+∞

Φ P (Φ) dΦ ⇒ Φ = lim
T→∞

1

T

∫ T

0

Φ(x, t) dt (16)

In practice we adopt a time interval T sufficiently large compared to the characteristic time of

the fluctuations. It is deduced that the mean of the fluctuation is zero Φ′ = Φ− Φ = Φ−Φ = 0.
Consider a second quantity Ψ such that Ψ = Ψ+Ψ′ and calculate the product Φ Ψ. Its time

average then takes the form

ΦΨ =
(

Φ+ Φ′
) (

Ψ+Ψ′
)

= ΦΨ+Φ′ Φ+Ψ′ Φ+ Φ′ Ψ′

= ΦΨ+Φ′ Ψ′

The average of the product of two quantities Φ Ψ is equal to the sum of the product of the
means ΦΨ and the average of the product of the fluctuations Φ′ Ψ′. This decomposition applied
to a linear process leads to an increasing number of unknowns. This decorrelation between the
calculations of the mean field and the fluctuations leads to errors due to the modeling of terms
not explicitly known.
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This statistical approach to turbulence is quite legitimate if we consider a sufficiently large
time interval T and the average of the fluctuations then leads to Φ′ = 0. From a physical point of
view this approach is not entirely satisfactory because the Φ′ fluctuation modifies instantaneously
to order one the mean field Φ which is the source of the production of the fluctuations. Moreover,
the sum of two vector quantities, an averaged velocity and a velocity fluctuation for example,
can only be calculated if these two contributions are known explicitly at a previous time.

In discrete mechanics the decomposition into an average value and a fluctuation of velocity
is realized on the single segment Γ; v and v′ are collinear and the scalar product v · v′ is also
carried by Γ. As for the instantaneous velocity and the average velocity the interactions between
velocity components of the fluctuation is realized from cause to effect. The principle of modeling
in a single direction of space also applies to fluctuations.

According to the principle of relativity of velocities it is not possible to develop a velocity
field into a mean part and a fluctuation, the velocities do not add up v + v′ but this is the case
for accelerations in discrete mechanics, γ + γ ′ or dv/dt = dv/dt + dv′/dt. The separation of
the time scales classically admitted in statistical turbulence is not retained in the framework of
discrete turbulence, no assumption will be adopted a priori.

The principle of the decomposition adopted is to look for the instantaneous solution in the
form of an average velocity computed over a sufficiently short interval T to correctly understand
the time evolution of the mean field and a fluctuation v′. All terms of the decomposition of
inertia terms will be retained and analyzed. The definition of the mean field v is such that the
discrete time span of the simulation is less than the characteristic time of evolution of the mean
flow, dt < T :

v = vo +
1

T

∫ to

to−T

v′ dτ (17)

The averaged velocity can thus tend towards a finite value, zero or variable in time if the
average flow is itself unsteady. Let us consider the inertial potential (v · v)/2 at the basis of
the definition of inertia in discrete mechanics [7]. Taking into account the expression |v|2 =
|v|2 + |v′|2 + 2 v · v′, the material derivative becomes:

dv

dt
≡

∂v′

∂t
+∇

Å

|v|2 + |v′|2

2

ã

−∇d ×

Å

|v|2 + |v′|2

2
n

ã

+∇
(

v · v′
)

−∇d ×
(

v · v′ n
)

(18)

The orders of magnitude of each of the nonlinear terms are of course different, (i) |v|2 re-
presents the inertia of the mean field responsible for the evolutions of the kinetic energy in the
inertial zone, (ii) v · v′ represents the advection of the velocity fluctuations by the mean field
and (iii) |v′|2 is associated to the interaction between fluctuations, of the second order in terms
of energy. The term v · v′ is the one that disappears after averaging a statistical decomposition;
in direct simulation it is of particular importance for the transport.

3.2 Role of pressure fluctuations

In Newtonian mechanics, pressure is defined by Batchelor [10] as the trace of stress tensor
p = −1/3σii which permits to avoid the use of a second viscosity coefficient λ by assuming valid
the hypothesis of Stokes on the viscosities of compression and shear 3 λ+ 2 µ = 0. The pressure
fluctuations deduced in statistical turbulence or in large scale simulation for its mean value or its
fluctuation are derived from this assumption. However, this assumption is erroneous, including
for monoatomic gases [12, 13].

The separation of the compression terms from the shear terms [14] allows, in discrete mecha-
nics, to define the pressure or rather the ratio φo = p/ρ from the grouping dtc2l ∇·v = dt/χs∇·v
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where χs is the isentropic compressibility coefficient of the fluid. By comparison with the Navier-
Stokes equation, it comes (λ+2µ)∇·v. However, for a large number of fluids, the ratio (λ+2µ)/χs

is of the order of 10−8 to 10−10 which does not allow to ensure a realistic compressibility con-
straint. It is for this reason that the Navier-Stokes equation requires the use of an adjoint
equation, that of the conservation of mass, ∇ · v = 0 in incompressible for example.

The discrete equation of motion, like the Navier-Stokes equation associated with the conse-
rvation of mass, is hyperbolic, it translates the propagation of longitudinal and transverse waves.
In direct simulation the potentials φo and ψo play an essential role considering the fluctuations
at low time constants.

For a realistic simulation it is necessary to assign the time lapse dt as a function of the
segment length Γ to a condition such that dt < dh/cl where dh is the length of the segment and
cl is the longitudinal velocity of the medium. The usual decomposition into an acoustic pressure
and a thermodynamic one is not appropriate, it is important to update the scalar potential
φo is the compression energy per unit mass. The reason for this constraint is related to the
entanglement of compression and rotation effects for turbulent flow. In stationary regime the
effects are dissociated because ∇×∇φ = 0, the pressure differences on a closed contour do not
generate circulation or rotation and conversely ∇·∇d×ψ = 0, the circulation of a current on the
primal contour does not generate any pressure. In unsteady flow and especially in turbulence,
pressure fluctuations generate rotation and vice versa, these two effects are completely entangled.
A realistic direct simulation thus requires to satisfy the criterion dt cl/dh < 1, a CFL based on
the velocity.

This phenomenon is completely comparable to the direct and induced current phenomenon
described by Maxwell. When it is interpreted from the Helmholtz-Hodge decomposition, having
in the discrete context remarkable properties, it becomes of essential importance.

3.3 Aaverage turbulent field

The objective is to derive an equation on the fluctuations v′ without any simplification
allowing to calculate simultaneously the mean field v for a turbulent or laminar flow. In the
latter case the fluctuations will naturally diminish. The mean field equation is taken directly
from the discrete equation (2) on the instantaneous velocity:

∂v

∂t
= −∇

Å

φo +
|v|2

2
− dt c2l ∇ · v

ã

+∇d ×

Å

|v|2

2
n− νdm ∇× v

ã

(19)

where φo is the mean field of the scalar equilibrium potential and νdm the submesh viscosity
instead of the molecular kinematic viscosity ν without which the solution of the stationary or
unsteady problem cannot be obtained. Indeed the rotation-shear stress ν∇×v is not compatible
with an averaged approach and the mechanical equilibrium associated to a residue of the equation
of motion cannot be reached. The example discussed later on about the turbulent channel will
show this explicitly. Of course the resolution of the equation (19) of the mean field cannot be
solved directly because it supposes the knowledge a priori of the submesh viscosity νdm. This
one will be subtracted from the equation (2) to obtain the equation of fluctuations.

In the particular case of a stationary flow in average, ∂v/∂t = 0 it reads:

∇

Å

φo +
|v|2

2
− dt c2l ∇ · v

ã

= ∇d ×

Å

|v|2

2
n− νdm ∇× v

ã

= h (20)

h is a harmonic function with divergence-free and curl-free. The two members of this relation
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(20) are orthogonal and are defined only to a harmonic function:























∇

Å

φo +
|v|2

2

ã

= h

∇d ×

Å

|v|2

2
n− νdm ∇× v

ã

= h

(21)

The application of the divergence operator to the first equation of (21) and that of the primal
curl operator to the second leads to two Laplacians, i.e. ∇2φo

B = 0 and ∇2ψo
B = 0 where φo

B

and ψo
B are respectively the Bernoulli scalar and vector potentials.

In the case of the discrete formalism the equation on the mean field (20) must be verified
locally on the segment Γ; its satisfaction corresponds to a strong solution of the problem. Con-
trary to the integral formulations where boundary conditions at the edges of the physical domain
must be applied, the local equation (2) is not obtained as a result of a restriction at a point of
a quantity evaluated on a finite domain using the divergence theorem.

From the physical point of view, for a v field not depending on time, the meaning of the h
acceleration on the segment can be deduced from the two other accelerations, direct and induced.
Transfer of the corresponding energies cannot be realized, in stationary regime, the exchanges
between the gradient of the scalar potential and the dual curl of the vector potential are inhibited;
the laws of electromagnetism translate and illustrate this phenomenon.

3.4 Conservation of the energy of fluctuations

Experimental observation of a turbulent flow shows that on average, if the conditions remain
the same, the phenomena are independent of time and are reproducible over different periods of
time; in general the laws of mechanics are invariant by translation in time [15, 16]. If the velocity
fluctuations are dissipated by viscosity they must borrow this energy from the mean flow which
is itself forced by an external acceleration, a pressure gradient for example. In the case of a direct
simulation of a turbulent flow it is different because the mean field and the field of fluctuations
are impacted by the dissipation.

The intrinsic conservation of the fluctuation energy by wave attenuation is therefore not
excluded at least partially. For compression waves it is reasonable to estimate that at small
spatial and temporal scales, the attenuation of longitudinal waves is zero αl = 1 and that this
propagation is described by the term −dt c2l∇ · v′.

Transverse waves propagate under the influence of the rotation term −dt c2t∇ × v′ without
attenuation if the factor αt = 1. In a fluid considered as Newtonian the transverse waves
attenuate instantaneously. In an elastic solid the transverse (and longitudinal) waves propagate
without attenuation. In real cases it is very difficult to determine both the transverse velocity ct
and the attenuation factor αt and their dependence on the frequency, a fortiori in the case of a
turbulent flow where the phenomena are not periodic.

The only constraint that must be imposed is the conservation of the total energy, both for
the mean flow and for the fluctuation. In direct simulation the conservation of the energy of
the mean flow is almost always observed by forcing the flow through boundary conditions or an
adverse pressure gradient.

The discrete equation of motion (2) is intrinsically a local law of conservation of total energy
per unit mass on the Γ segment of Figure 1 that results from the fundamental equilibrium
γ = −∇φ +∇d × ψ. It applies unambiguously to a motion whose instantaneous local velocity
is variable or constant when it is laminar. On the other hand, the case of a turbulent flow
decomposed into a mean field v and a fluctuation v′ requires a particular attention.
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For the mean field, the rotation energy is written ψ = −νdm ∇d × v and this one is entirely
dissipated by viscosity because the attenuation of transverse waves at large time constants is
maximal, αt = 1. Note that at the walls the velocity is zero but not the shear stress which
becomes ψ|w = −ν ∇d × v where ν is the molecular kinematic viscosity. For fluctuations the
turbulent rotation energy is not necessarily zero because the characteristic times are short which
allows the propagation of transverse waves at small spatial scales with little or no attenuation.
The treatment of the dissipation terms must therefore be differentiated for the mean field and
the fluctuations.

In classical mechanics the equation of motion, Navier-Stokes, is not conservative if the variable
is the instantaneous velocity v = v + v′ since the viscous dissipation applies indiscriminately to
both quantities of this sum.

3.5 Fluctuations field

Taking into account the equation on the instantaneous field v (2) and the one corresponding
to the average field (19) it comes by subtraction:















































dv′

dt
+∇

(

v · v′
)

−∇d ×
(

v · v′ n
)

= −∇
(

φ′o − c2l dt∇ · v′
)

+∇d ×
(

ψ′o − ν ∇× v′
)

φ′o − c2l dt∇ · v′ 7−→ φ′o

ψ′o − ν ∇× v′ 7−→ ψ′o

vo + v′ 7−→ v

(22)

ψ′o 6= 0 because the transverse attenuation factor of the fluctuations αt is null, it is indeed
necessary to preserve the energy of the fluctuations which was initially introduced.

From the physical point of view these two inertia terms represent the advection of the velocity
fluctuations by the mean field. The terms ∇ (v · v′)−∇d×(v · v′ n) present the turbulent energy
transport as the curvature of the turbulent potential φt = v · v′. In a Reynolds decomposition
the term v · v′ would disappear when applying the time average definition. This is not the case
for the proposed formulation, as these terms contribute to the evolution of the scalar and vector
potentials of the velocity fluctuation in a complex way. When the flow is laminar, stationary or
not, the fluctuation field attenuates v′ tends to zero and the mean field tends to the instantaneous
solution vo → v

The total energy of the turbulent fluctuations is written on each segment as :

Φ′ =

∫

Γ

dv′

dt
· t dl (23)

The kinetic energy of the fluctuations e′k is obtained directly by multiplying the equation
(22) by v′:

de′k
dt

=
1

2

d|v′|2

dt
= −v′ · ∇φ′ + v′ · ∇d ×ψ′ (24)

that is, the same form as the kinetic energy of the instantaneous field (8). This is the average
kinetic energy computed on each segment Γ. Its global value E′

k on the whole physical domain
is obtained by integration on the total distance of the primal structure.
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3.6 An another proposition

The fluctuation field v′ may not be the easiest to calculate because of the boundary conditions
and the backups of the averaged field. It is possible to choose to compute the instantaneous field
and the averaged field over time while taking into account only the viscous dissipation of the
averaged field. This form reads:















































dv

dt
= −∇

(

φo − c2l dt∇ · v
)

+∇d × (ψo − ν ∇× v)

φo − c2l dt∇ · (v − v) 7−→ φo

ψo − ν ∇× (v − v) 7−→ ψo

vo + v′ 7−→ v

(25)

where φo and ψo are here the scalar and vector potentials of the fluctuation field and v′ = (v − v)
where v is defined by (17)

A particularly interesting case is that of rotating turbulence, for example, whose mean motion
corresponds to an ensemble rotation v = 2Ω × r where Ω is the rotation velocity and r is the
distance to the axis of rotation. This constant term is filtered out of the equation of motion
by application of the dual curl but it could contribute to the increase of the retarded vector
potential ψo. Of course this is not admissible, the rigid rotation does not participate in any
way to the viscous dissipation which does not exclude an interaction of this rotation with the
fluctuations of the velocity taken into account by the equation of motion itself, in particular
the inertia terms. Indeed, the rotation introduces an anisotropy of the turbulence which tends
to increase the lengthscales in the direction of the axis of rotation compared to the orthogonal
directions [17]. It should be pointed out that the discrete model does not allow a change of
reference frame and that all the interactions are cause and effect, so precautions must be taken
when working in a rotating reference frame.

The system (25) thus takes a generic form representative of all potential situations, (i) steady
or unsteady laminar flows for which v′ → 0 and v → v, (ii) laminar or turbulent flows in rotation,
(iii) stationary compressible flows for which the divergence of the averaged field is not zero, (iv)
fully developed flows.

The comparison of the equations of motion (2) and (25) shows only the necessity to keep the
vector potential ψo in all cases and to modify the updates of the two potentials in order to keep
the energy of the fluctuations.

4 Turbulent planar channel flow

The emblematic case of turbulent flow in a periodic plane channel induced by a unitary
pressure gradient is analyzed in depth. Many authors have performed direct simulations which
allow to find a stationary averaged solution v(y) and a fluctuating instantaneous velocity field.
Some authors admit to introduce synthetic fluctuations during the simulations to maintain the
turbulent flow in order to avoid a relaminarization into a Poiseuille type solution. In the absence
of these random fluctuations the velocity field becomes ineluctably laminar. Other authors
obtain a long term turbulent solution which can be explained by (i) the level of the residual of
the numerical solution of the equation of motion, (ii) a high level of divergence of the velocity
while the flow is incompressible, (iii) potential defects of discretization, (iv) the quality of the
numerical schemes used, etc.

The equation of motion of the stationary problem is written:

−∇φ̃−∇d × (ν ∇× ṽ) = 0 (26)
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because indeed the inertia terms are compensated in laminar but also for the mean field in
turbulent regime.

The theoretical solution of the problem posed (26) is the one that gives the stationary Poi-
seuille solution, i.e. a velocity field ṽ(y) = −3/2 V0 (1 − y2) for a unit half-height channel or,
in terms of parietal stress, ṽ(y) = −ω̃|w y2/2 + c and a stress equal to ω̃|w = 2 a y. Also the
equation of motion cannot have two solutions, one laminar, the other turbulent on average.

If the energy imposed by the mean pressure gradient is dissipated exactly by the shear of the
v field, the fluctuations must ineluctably attenuate if they are subjected to this same viscous
dissipation. The essential question is whether the velocity and pressure fluctuations attenuate
by viscous dissipation over the characteristic times of the turbulence or whether their energy
is propagated in the fluid. In the latter case, their compression energy is conserved during the
motion and converted into rotation energy and conversely, the exchanges are entangled for a
non-zero acceleration γ. At frequencies corresponding to turbulent phenomena in fluids, the
attenuation of compression waves is very low; even if transverse waves are much more sensitive
to dissipation, the entanglement of the two events leads to the feeding of turbulent vortices by
pressure waves.

Let us consider an incompressible turbulent flow in a plane channel at a Reynolds number
of Ret = V0 L/ν = 590 generated by a constant pressure gradient ∇φ = −1. Let (φ,ψ,v) be
the averaged turbulent fields that satisfy the discrete equation of motion. For a turbulent flow
stationary on average it comes:







































∂v

∂t
= 0

−∇

Å

|v|2

2

ã

+∇d ×

Å

|v|2

2
n

ã

= 0

−∇φ−∇d × (νdm ∇× v) = 0

(27)

Indeed, the two non-zero inertia terms compensate each other as for Poiseuille flow and the
inertia is thus equal to zero; consequently the two terms of the second member also compensate
each other. The axial pressure gradient −∇φ = 1 represents the driving force of the mean flow.
The equilibrium axial pressure gradient is maintained by the wall stress ω = −∇ × v = Ret
so ψ|w = Ret. For this direct simulation the pressure gradient is only used to compensate the
viscous stresses at the channel walls. On each segment Γ the local rotation energy is equal to
ψ = −νdm ∇d × v; this is also true on the wall where the velocity is zero but where ψ|w =
−ν ∇d × v = ∇φ because the submesh viscosity is equal to the molecular viscosity ν = νdm.
Even if the function ψ is known it is not possible to extract directly the velocity field v because
νdm is not known.

From Moser’s numerical solution [5] obtained in direct simulation for Ret = 590 on the mean
field it was possible to extract νdm and v using the discrete equation [18, 19] where the potentials
are φ = −x ex and ψ = −y ey. By exploiting the values of the turbulent viscosity of the direct
simulations, the reduced mean velocity profile v+ = f(y+) obtained is very precisely that of the
reference. The result is not surprising since information from the direct simulation was used,
but the discrete equation allowed us to find this result without making any assumption on the
turbulent constraint classically derived from the dimensional analysis.

Figure 2 plots the axial mean velocity v and the shear stress ω = −∇ × v as functions of
y. We observe that, in the turbulent core and in the near wall, the rotation velocity is linear;
in particular the value of the stress at the wall is equal to ω|w = 590 corresponding well to the
choice of the Reynolds number of the direct simulation. These linearities on the rotation induce
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Figure 2. Turbulent channel flow at Re = 590 from direct simulation de Moser [5], streamwise
velocity u(y) and primal curl ω = −∇× v avec ω|w = 590.

a parabolic profile of the mean velocity in the core but also in the near wall [18] and not linear
as often described in the literature.

The form of the equation of motion on the averaged velocity (27) is already rich in information
on the splitting of the different terms, especially on the two zero-sum inertial effects. In the case
of turbulent flow in a planar channel subjected to a constant mean pressure gradient in the
streamwise direction, the second term −∇d × (νdm ∇× v) is necessarily also a constant and
(νdm ∇× v) a linear function of the crosswise space coordinate.

5 Conclusions

The model of J.C. Maxwell’s [20] model has been used to derive an equation of motion in
mechanics. This one allows to find strictly the analytical solutions and those resulting from
simulations carried out from the Navier-Stokes equation. When it is applied to a turbulent flow
in a plane channel with a stationary solution on average, we observe, in the very long term, a
relaminarization towards the Poiseuille solution even though the turbulent Reynolds number is
very high. The analysis carried out here aims at understanding the reasons of such a behavior
not in accordance with the observations even if it is risky to establish an identity between reality
and a simulation resulting from a model.

The discrete equation of motion (2) is established on the single segment Γ; it reflects the
local mechanical equilibrium on each segment of the physical domain including the walls. In the
case of the direct simulation of the turbulent flow in a channel in stationary regime in average
the inertia is null and the imposed pressure gradient compensates exactly the viscous dissipation
relative to the average flow characterized by the vector potential ψ = νdm ∇× v. If the viscous
dissipation is also applied to the fluctuations the flow undergoes a relaminarization towards the
Poiseuille solution.

According to this analysis, this defect in the behavior of direct simulations with the discrete
equation of motion or from the Navier-Stokes equation would be attributable to the treatment
of the viscous dissipation applied to the mean flow but also to the velocity fluctuations. The
small time constants of the longitudinal and transverse fluctuations could explain that they are
propagated without significant dissipation. In reality it is possible that part of the energy of
the fluctuations is borrowed from the pressure energy which induces a decrease in the averaged
velocity.
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A proposed solution to perform direct simulations is to treat the mean and fluctuation fields
with the same system of equations but removing the viscous dissipation associated with the
fluctuations and maintaining that generated by the mean flow.
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