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Abstract

Machine learning (ML) is increasingly used in cognitive, computational
and clinical neuroscience. The reliable and efficient application of ML re-
quires a sound understanding of its subtleties and limitations. Training ML
models on datasets with imbalanced classes is a particularly common prob-
lem, and it can have severe consequences if not adequately addressed. With
the neuroscience ML user in mind, this paper provides a didactic assessment
of the class imbalance problem and illustrates its impact through systematic
manipulation of data imbalance ratios in (i) simulated data and (ii) brain
data recorded with electroencephalography (EEG) and magnetoencephalog-
raphy (MEG). Our results illustrate how the widely-used Accuracy (Acc)
metric, which measures the overall proportion of successful predictions, yields
misleadingly high performances, as class imbalance increases. Because Acc
weights the per-class ratios of correct predictions proportionally to class size,
it largely disregards the performance on the minority class. A binary classi-
fication model that learns to systematically vote for the majority class will
yield an artificially high decoding accuracy that directly reflects the imbal-
ance between the two classes, rather than any genuine generalizable ability
to discriminate between them. We show that other evaluation metrics such
as the Area Under the Curve (AUC) of the Receiver Operating Charac-
teristic (ROC), and the less common Balanced Accuracy (BAcc) metric –
defined as the arithmetic mean between sensitivity and specificity, provide
more reliable performance evaluations for imbalanced data. Our findings also
highlight the robustness of Random Forest (RF), and the benefits of using
stratified cross-validation and hyperprameter optimization to tackle data im-
balance. Critically, for neuroscience ML applications that seek to minimize
overall classification error, we recommend the routine use of BAcc, which in
the specific case of balanced data is equivalent to using standard Acc, and
readily extends to multi-class settings. Importantly, we present a list of rec-
ommendations for dealing with imbalanced data, as well as open-source code
to allow the neuroscience community to replicate and extend our observations
and explore alternative approaches to coping with imbalanced data.

Keywords: Class imbalance, Machine learning, Classification, Performance
metrics, Electroencephalography, Magnetoencephalography, Brain
decoding, Balanced accuracy
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1. Introduction

The rise of artificial intelligence (AI) in the last decade has led to im-
portant breakthroughs across many areas of science, including neuroscience
and neuroimaging. New synergies between neuroscience and AI promise to
drive both fields forward [1, 2, 3, 4, 5]. In particular, machine learning is
increasingly used both to model and to classify brain data [6], with appli-
cations ranging from cognitive and systems neuroscience [7] to clinical brain
imaging [8, 9]. As a result, machine learning is steadily turning into a fun-
damental tool for neuroscientists [10]. As is the case with all methodological
frameworks, machine learning comes with a set of subtleties and pitfalls.
Being aware of these limitations and knowing how to handle them properly
can be challenging, especially in research domains where machine learning
is not yet adequately and systematically covered during training. The is-
sue of data imbalance [11, 12] is a perfect example of an important problem
that is generally well understood in the field of data science, but not always
properly appreciated and tackled in neuroscience and neuroimaging. This
technical note provides (1) a didactic description of the pitfalls associated
with using skewed datasets in supervised machine learning, (2) a detailed
assessment of the impact of varying the degree of class imbalance on classi-
fier models and their performance using synthetic and real data, (3) concrete
recommendations for mitigating the adverse effects of imbalanced data, and
(4) open-source code to replicate the present work and extend it to other
methods and metrics.

In binary classification problems, data imbalance occurs whenever the
number of observations from one class (majority class) is higher than the
number of observations from the other class (minority class)[11, 12]. This
problem is commonly encountered in cognitive neuroscience and in clinical
applications, where observations for the target class (e.g. patients with neu-
rological disorders) are often much harder to come by than for the control
class (e.g. cognitively healthy individuals), leading to datasets with many
more control observations than target observations [13, 11]. Additional care
has to be taken when evaluating the performance of diagnostic tests on rare
conditions [14].

What makes imbalanced data problematic? When faced with highly
skewed data, a classifier can achieve a high decoding accuracy merely by
systematically and blindly voting for the majority class[11]. For example, if
an image classifier is asked to discriminate pictures of crows versus ravens,
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but only one out of twenty images in the training and test sets are ravens and
the rest are crows, then the algorithm can (and likely will) achieve 95% ac-
curacy simply by calling everything it sees a crow—though no discrimination
or classification can rightly said to have been accomplished. In other words,
given the opportunity, an algorithm will tend to bypass more complex feature
analysis simply by "playing the odds", which is indistinguishable from actual
classification when only focusing on e.g. Accuracy as a performance metric.

The most common approach to avoid this problem is to enforce balanced
data. One way to do this is by undersampling, i.e. by removing observations
from the majority class until a balance is reached [15, 16], and repeating the
process through bootstrapping. However, this comes at the cost of reducing
the sample size, increasing the signal-to-noise ratio, which can be detrimental
to the classification. Alternatively, one can oversample the minority class by
duplicating or interpolating observations [17, 18, 19] (Fig. 1a), though this
comes with a higher risk of overfitting and introducing noise [20].

It may also be possible to dispense with undersampling or oversampling,
and the problems they create, and to cope with the imbalanced data. In this
case however, a number of additional considerations are necessary to avoid
spurious results [21]. These include the judicious choice of the type of clas-
sifier and the performance metric to be used. Additionally, when deploying
a model validation scheme, special care must be taken to reflect the imbal-
ance in the main data, such as by using Stratified K-Fold cross-validation
(Fig. 1b). While these best practices are commonly applied in the machine
learning community, they are not as widely adopted by the neuroscience and
neuroimaging fields, likely due to the little information that exists, target-
ing neuroscientists, on how each of these different factors interact with data
imbalance in a neuroscience context.

In this paper, we aim to provide a straightforward and practical demon-
stration of how the outcome of different machine learning performance met-
rics, classifiers and cross-validation schemes are impacted by various degrees
of data imbalance, using simulated data and real electrophysiological record-
ings. More specifically, we examine the behavior of four prominent metrics
(Accuracy (Acc), Area Under the ROC Curve (AUC), Balanced Accuracy
(BAcc) [22, 23], and F1; Table 1) across four widely-used classifiers (Logis-
tic Regression (LR) [24], Linear Discriminant Analysis (LDA) [25], Support
Vector Machine (SVM) [26], and Random Forest (RF) [27]), as we gradually
increment data imbalance.

The topic of data imbalance, also often referred to as class or domain

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.07.18.500262doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500262
http://creativecommons.org/licenses/by-nc/4.0/


b)

a) c) Data
undersampling

Imbalance ratio
0.50.40.30.20.1 0.60.70.8 0.9

sample size n=300

LR LDA SVM RF

n=1000n=3000

classifier

performance metric

k-fold cross-validation standard groupstratified

Acc AUC BAcc F1

undersampling oversampling

class distributions round 1round 2round 3round 4round 5

stratified 5-fold cross-validation

A

B

A

BA*

B*A

B

A

B

Figure 1: a) Methods to balance imbalanced data in order to avoid biases in machine
learning. In undersampling (left), a subset of the overrepresented group (dataset A) is
chosen. In oversampling (right), samples from the underrepresented group (dataset B) are
duplicated or artificially augmented. b) Illustration of Stratified K-Fold cross validation
(K=5). Instead of randomly choosing subsamples for every fold, this technique maintains
the balance of the original data over all folds. This technique helps reduce biases and
large variance in cross-validation. c) Illustration of the overall analysis framework of
experiments performed in this paper. Various degrees of class imbalance were manually
generated by undersampling the data. For a set of sample sizes, we performed binary
classification using four widely used algorithms, three K-fold cross-validation methods,
and four evaluation metrics (Acc, AUC, BAcc, and F1).

imbalance, has been addressed in previous work and online resources [11,
21], primarily within the computer science community. Here, we tailor our
examples, explanations and recommendations, as well as our open-source
code, to the neuroscience researcher or trainee with an interest in applying
machine learning to electrophysiological data.

2. Methods and Materials

To explore the effect of data imbalance on different classification algo-
rithms and performance metrics, we developed a custom open-source analy-
sis pipeline, which systematically manipulates class imbalance (Fig. 1c). We
herein first describe the analysis pipeline and secondary analysis, and then
describe the five datasets used in this study (i.e. three types of simulated
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Metric Definition Formulae

Precision Proportion of correct positive pre-
dictions over all positive samples.

TP
TP+FP

Recall/
Sensitivity

Proportion of correct positive pre-
dictions over number of positives.

TP
TP+FN

Specificity Proportion of correct negative pre-
dictions over all negative samples.

TN
TN+FP

F1 score The harmonic mean of precision
and recall. 2 · Precision·Recall

Precision+Recall

Accuracy Proportion of correct predictions
over all samples.

TP+TN
TP+FP+TN+FN

Balanced
Accuracy

Mean of recall and specificity, i.e.
average per-class accuracy. 0.5 · ( TP

TP+FN + TN
TN+FP )

AUC

Area Under ROC Curve, which
plots true positive against false
positive rate for all decision thresh-
olds.

∫ 1

0
ROC

Table 1: Overview of evaluation metrics. True positives (TP): instances that are positives
and are classified as positives. False positive (FP): instances that are negatives and are
classified as positives. False negative (FN): instances that are positives and are classified as
negatives. True negatives (TN): instances that are negatives and are classified as negatives.

data, one EEG dataset, and one MEG dataset).

2.1. Primary Analysis Pipeline
The analysis pipeline was developed specifically for binary classification

problems. Its primary purpose is to generate scores for different metrics
across a range of imbalance ratios, using a list of classifiers and cross-validation
schemes (Fig. 1c).

In order to estimate the chance level of correct classification, given the
configuration of dataset and performance metric, the pipeline performs per-
mutation tests [28] (repeatedly training and evaluating a classifier on the
same dataset but with randomly permuted labels). Generating data-driven
chance level is necessary because the theoretical binary classification chance
level of 0.5 could be incorrect when performing binary classification on a
dataset which has imbalanced classes or a small sample size. Furthermore,
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different performance metrics can lead to different estimates of the chance
level.

In addition to that, we repeated experiments 10 times with different ran-
dom seeds to estimate the degree of variance across cross-validation splits.
We generally report the mean performance across the 10 repetitions and
indicate the standard deviation as a shaded area around the mean.

To assess the impact of the metric with which classifiers are evaluated,
we explored a range of classification metrics. These include Accuracy (Acc)
[29], Balanced Accuracy (BAcc) [30], Area Under the ROC Curve (AUC)
[31], and F1 [32]. We made sure to include the most frequently used metrics,
as well as variations specifically designed to tackle evaluation of prediction
on imbalanced data. See Table 1 for an overview of classification metrics.

In terms of classifiers, we included Logistic Regression (LR) [24], Linear
Discriminant Analysis (LDA) [25], Support Vector Machine (SVM) [26], and
Random Forest (RF) [27]. We chose these models because they are among the
most widely used in the neuroscience community, and because they represent
a variety of approaches. LR and LDA are two linear classifiers, which differ
in their approach to estimating the coefficients for the linear combination of
inputs. LR follows an iterative quasi-Newton approach while LDA relies on
singular value decomposition. The SVM was used with a radial basis function
(RBF) kernel, making it a powerful non-linear classification algorithm. RF
was of specific interest as it is a tree-based ensemble model expected to be
better at handling class imbalance than the other methods.

We essentially used the default hyperparameters as defined in the scikit-
learn library [33], however, we reduced the number of Random Forest es-
timators from 100 to 25 to better suit the low number of features in our
experiments. Moreover, in order to compute the AUC score, raw predicted
class probabilities are required to evaluate a range of decision thresholds. For
this purpose, we had to explicitly enable probability prediction of the SVM
classifier, while the other classifiers provide probability predictions out of the
box. Note that AUC and Balanced Accuracy would be equivalent if we use
binary predictions instead of class probabilities.

Cross-validation was performed using the Stratified K-fold or Stratified
Group K-fold strategy (5 folds), depending on the presence or absence of
group/subject information in the data. In a typical data-driven neuroscience
decoding task, group labels help separate data from different subjects and add
a measure of generalisation performance to new subjects to the evaluation
process.
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To simulate different amounts of imbalance in the class distribution we
artificially limited the number of samples for both classes separately. We used
a range of imbalance ratios from 0.1 (9:1 balance between the two classes) to
0.9 (1:9 balance) with 25 linearly spaced intermediate ratios, which provided
a good trade-off between speed and performance. For a dataset with 100
data points (50 in either class), for example, we ran experiments with the
following class distributions: 50:5, 50:7, ..., 50:50, ..., 7:50, 5:50. Imbalance
was achieved by undersampling (dropping samples) either one of the two
classes.

2.2. Secondary Analysis
Additionally, we explored the effect of data imbalance as a function of

1) the selection of hyperparameters, 2) the size of the dataset, 3) the type
of cross-validation, 4) the effect of a balanced hold-out test set and 5) the
impact of class imbalance on statistical significance testing. To simplify our
approach, we only performed analysis 2-5 using SVM with an RBF kernel and
evaluated it using Acc. We chose SVM specifically because we expected this
algorithm to display important effects of class imbalance on performance.

2.2.1. Effect of Hyperparameters
To assess the putative effect of hyperparameters, we explored those that

are expected to have a significant impact on the robustness of classifiers with
respect to imbalanced data [34]. We used synthetic data (section 2.3) with
1000 samples and a distance of one between the two Gaussian distributions
and evaluated the effect of the selected hyperparameters using Balanced Ac-
curacy. This allows us to track improvements in robustness, which would
manifest as a flatter curve of classification scores across imbalance ratios.
We limited this experiment to hyperparameters implemented in scikit-learn
as this is one of the most commonly used libraries. In contrast to LDA,
Logistic Regression, SVM, and Random Forest all implement an automatic
class-weighting algorithm to deal with imbalanced data, which can be en-
abled by setting the class_weight parameter to balanced. This approach
weights the influence of each sample according to the inverse frequency of
the corresponding class, thereby decreasing the impact of the majority class.
This class-weighting technique, also known as cost-sensitive learning, penal-
izes the model less for errors made on examples from the majority class and
more for errors made on the minority class. The Random Forest additionally
has a balanced_subsample option, which applies the same weighting on the
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level of individual trees instead of globally for the full model. In addition to
class weighting, we explored changing the minimum size of leaf nodes as a
fraction of all samples (min_weight_fraction_leaf ). As the fractional size of
the leaf nodes depends on class distribution a large enough value ensures that
leaf nodes will be more representative of differences between classes instead
of simply voting for the majority class. We explored values of 0.1 and 0.4 for
this parameter.

2.2.2. Effect of Sample size
To test the impact of dataset size on robustness to imbalance we evalu-

ated classifier performance across imbalance ratios using synthetic data with
sample sizes N=300, N=1000 and N=3000 before unbalancing. The data of
the two classes was sampled from two Gaussian distribution with a distance
of one (Section 2.3).

2.2.3. Effect of Cross-Validation
In order to assess the influence of the cross-validation scheme on different

metrics when using unbalanced data, we tested K-Fold and Stratified K-
Fold cross-validation on synthetic data. This difference will likely appear on
smaller sample size since lower sample sizes increases the likeliness of having
one class absent from a fold when using K-Fold without stratification.

To assess the impact of the choice of cross-validation approach, we trained
an SVM classifier on the synthetic data with a distance of one between the
means of both distributions (Section 2.3) and chose to only use 50 samples
per class before unbalancing. This analysis was repeated with 40 different
seeds in order to assess the robustness of the effects we hypothesise.

2.2.4. Effect of Balanced Hold-out Set
While so far all cross-validation splits came from the training data dis-

tribution, thereby replicating class imbalance, we also decided to explore the
effects of training on an imbalanced dataset and performing validation on a
balanced subset. Here, we trained an SVM on 1000 samples of synthetic data
(Section 2.3) with a distance of one between the means of both classes. The
balanced hold-out set was created by taking a 10% split of the full dataset
before artificially generating an imbalanced training set. This analysis aims
at uncovering a potential performance bias when the train and test set have
different class distribution, i.e. imbalanced and balanced respectively. Note
that in this case, the Balanced Accuracy and Accuracy metrics are strictly

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.07.18.500262doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500262
http://creativecommons.org/licenses/by-nc/4.0/


equivalent as we are evaluating performance on a balanced hold-out set. We
therefore only report accuracy.

2.2.5. Significance testing on imbalanced data
We additionally evaluated the statistical significance of classification met-

rics across a range of imbalance ratios. Significance was computed from per-
mutation tests with 100 permutations at p<0.01, using an SVM trained on
1000 samples of synthetic data with different amounts of overlap between
classes, namely: identical distributions (impossible classification problem), a
distance of 1 between the means of the class distributions (difficult classifica-
tion problem) and a distance of 3 between the two classes (easy classification
problem)[28].

2.3. Synthetic Data
To evaluate the impact of class imbalance in a controlled environment

we generated synthetic data, consisting of 1000 random samples from two
Gaussian distributions. We explored three different scenarios by modifying
the amount of overlap between the two distributions, i.e. changing the dis-
tance between the means µ1 and µ2 of the two distributions, while keeping
the standard deviation σ1 and σ2 constant at 1. In the first scenario, both
classes came from the same distributions (|µ0 − µ1| = 0; Fig. 2a) and are
therefore impossible to classify. In the second scenario, the two distributions
were mostly overlapping (|µ0−µ1| = 1; Fig. 2f), simulating a hard classifica-
tion task. In the third scenario, the two distributions had a minimal overlap
(|µ0 − µ1| = 3; Fig. 2k), which illustrates an easy classification task.

2.4. Brain Data
To extend the analysis from a controlled environment with synthetic data

towards a realistic setting with electrophysiological datasets, we ran experi-
ments on publicly available EEG and MEG datasets.

2.4.1. EEG Motor Movement/Imagery Dataset
The publicly available EEG Motor Movement/Imagery Dataset [35, 36]

consists of 64-channel EEG recordings of 109 subjects at 160Hz. While
the dataset contains several tasks related to motor movement, only base-
line resting-state runs were used, in this way creating a binary classification
task between the eyes-open and eyes-closed conditions. Each recording has 1
minute of resting-state data which was segmented into 5-seconds epochs. As

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.07.18.500262doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500262
http://creativecommons.org/licenses/by-nc/4.0/


a result, 24 epochs per subject were extracted, half of them being eyes-closed
and the others eyes-open. The effect of these conditions on neural oscilla-
tions is well studied, and consists of an increase in alpha power (8-12Hz) in
posterior regions of the brain during eyes closed [37, 38], compared to the
eyes open condition. We computed alpha power (8-12Hz) from the power
spectral density (PSD) obtained using the multi-taper method. To restrict
the features to the visual cortex, only parieto-occipital electrodes (17 out of
the 64) were used. The total sample size of this dataset was 109 subjects ×
2 conditions × 12 trials = 2616 samples.

A second analysis was carried out on this dataset to study the relationship
between electrode locations and performance scores along 3 different imbal-
ance ratios (0.1, 0.5 and 0.9). As topographic differences are the main focus of
this experiment, the sensors were not constrained to be from parieto-occipital
regions. Similarly, placing the emphasis on performance as a function of spa-
tial location, single-channel, single-feature SVM classifiers were trained (in
contrast to multi-feature classification in the previous analysis). The motiva-
tion behind this analysis is to tentatively illustrate that with increasing class
imbalance, classifiers loose focus on the areas whose data best discriminate
the classes, and merely predict the majority class.

2.4.2. Cam-CAN Dataset
We used the passive auditory/visual perception task out of the open ac-

cess MEG dataset collected at the Cambridge Centre for Ageing and Neu-
roscience (Cam-CAN) [39]. The preprocessing steps for this dataset can
be found in [40]. The task consists of 2-min recordings during which sub-
jects were presented with either visual checkerboards or auditory tones (in
random order) 60 times each, with a second between each stimulus. We
further processed the data by down-sampling to 500Hz and epoching into
800-millisecond trials with 150 milliseconds of signal before stimulus onset
and 650 milliseconds after. The epochs were baseline-corrected before com-
puting low-gamma power (30-60Hz) using the multi-taper method on the
650 milliseconds after onset. We excluded the magnetometers and averaged
powers for the two gradiometers for each location. For this study, we ran-
domly selected 20 subjects out of the 643 that are available in the repository,
resulting in a sample size of 20 subjects × 60 stimuli × 2 stimulus types =
2400 samples. Classification was performed on the data of a single channel
(Fig. 5b), which was selected by training separate classifiers for all channels
and selecting the location with best performance.
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2.5. Data and Code Availability
The scripts, notebooks and pipeline used in this study are open-source un-

der the MIT licence. The code is available on GitHub for further explorations.
Our experiment pipeline is not limited to the datasets explored in this study
and can easily be used to explore other datasets. The open-source repository
can be found at: https://github.com/thecocolab/data-imbalance.

The code was developed using Python and its rich ecosystem for scientific
computing. To process brain data we used MNE-Python [41], and machine
learning algorithms and metrics came from scikit-learn [33]. Visualization
was done with matplotlib [42] and seaborn [43].

The synthetic data used in this study can be generated using the open-
source code we provide. The EEG Motor Movement/Imagery Dataset is
publicly available and can be downloaded here: https://physionet.org/
content/eegmmidb/1.0.0/. The Cam-CAN dataset can be accessed upon
request at https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/ and
the pipeline for preprocessing and loading the data is available at https:
//github.com/arthurdehgan/camcan.
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Figure 2: Effect of data imbalance on different performance metrics and algorithms using
simulated data. (a-e) Both classes from the same distribution (distance 0), (f-j) over-
lapping distributions (distance 1) and (k-o) slightly overlapping distributions (distance
3). We evaluated the robustness of (b,g,l) Logistic Regression; (c,h,m) Linear Discrimi-
nant Analysis; (d,i,n) Support Vector Machine, and (e,j,o) Random Forest. Performance
metrics include Accuracy (blue), Area Under the Receiver Operating Characteristic curve
(orange), F1 score (green), and Balanced Accuracy (red). Solid lines show the performance
over different class imbalance ratios, averaged over 10 initializations. Colored areas rep-
resent the respective standard deviation. Dashed lines indicate the average performance
over 100 random permutations (i.e. chance level) for every performance metric.
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3. Results

3.1. Simulated data
To demonstrate the effect of data imbalance on different performance met-

rics, algorithms and cross-validation techniques, we simulated three binary-
class datasets, as described in subsection 2.3 and Fig. 2a, f, k.

3.1.1. Theoretically impossible classification
In the first scenario, the binary classification was performed on data from

the same distribution (Fig. 2a-e), representing a theoretically impossible
classification task. Due to the nature of the data, we expected performance
values to stay at the chance level, which we estimated using random per-
mutations (Section 2.1). This hypothesis was confirmed by our results, with
all performance metrics staying close to their respective chance level (not
the probabilistic chance level of 0.5; it varies as a function of data imbal-
ance and metric etc.) and showing only minimal variation across repetitions.
We herein first describe the effect of different performance metrics and then
describe the difference between classification algorithms. AUC and BAcc
showed identical behavior, staying consistently at a chance level of 0.5 across
all levels of class imbalance. In contrast, Accuracy scores and the respective
chance level increased towards both extremes of data imbalance and reached
minimal values at the point of perfect data balance. More specifically, the
Accuracy score consistently reflected the proportion of the majority class in
the imbalanced data (i.e. reaching a score of 90 % for imbalance ratios of
9:1 and 1:9). The F1 score exhibited a steep increase from 0 towards 1 at
the point where the data was balanced and continuously approached 1 with
further increasing data imbalance. It is noteworthy that the behavior of
all above-described metrics was most similar between LR, LDA, and SVM,
but varied in RF. Compared to the other algorithms, accuracy using RF ex-
hibited a slower increase towards the extreme imbalance and stayed closer to
50% (i.e. the expected Accuracy score for classification between two datasets
drawn from the same distribution) for a larger range of data imbalance ra-
tios. In contrast to the steep increase of F1 described above, the F1 score in
RF increased linearly over all levels of imbalance (Fig. 2b-e).

3.1.2. Difficult classification
In the second scenario, binary classification was performed on data from

two overlapping Gaussian distributions with a distance of one (Fig. 2f),
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representing a difficult classification task. Due to the nature of this dataset
we expected performance scores to reach above chance level. Over all levels
of data imbalance, AUC remained consistent and above chance level in LR
and LDA. Only in SVM and RF did the AUC decrease to chance level on
both ends of increased data imbalance, with the strongest decrease in SVM.
Accuracy exhibited a similar behavior over all four classification algorithms.
Similarly to the first scenario, the Accuracy scores reached maximal scores
on both ends of data imbalance. Despite the decrease of Acc towards the
point of maximally balanced data, the distance between Acc and its chance
level was increasing. The maximum distance between Acc and corresponding
chance level was reached at the point of perfect class balance, indicating that
the classifier was best at learning the structure in the dataset at this point.
In contrast to Acc, BAcc reached its maximum at maximal data balance and
dropped to chance level, i.e. 50%, at both ends of class imbalance. Again, the
RF showed more stable BAcc scores over the range of class imbalance. The
F1 score successively increased from 0 to 1 and showed similar but dampened
behavior compared to the results from the identical class distributions (Fig.
2g-j).

3.1.3. Easy classification
In the third scenario, binary classification was performed on data from

two Gaussian distributions with a distance of 3 (Fig. 2k), which is an exam-
ple of an easy classification task. Due to the nature of the data, we expected
performance values to reach high levels and to be less influenced by data
imbalance. As expected, all performance metrics reached good classification
scores which were less sensitive to data imbalance. While the general be-
havior was similar to the ones observed in the two previous experiments, the
classifiers did a better job of learning structure from the data even in cases
of imbalanced classes (Fig. 2l-o).

3.2. Secondary Analysis
3.2.1. Hyperparameter Tuning

We explored the effect on robustness when tuning hyperparameters re-
lated to class imbalance of LR, SVM and RF. However, we only found im-
proved robustness towards imbalance for LR by weighting samples inversely
proportional to class frequency. While enabling this re-weighting scheme led
to a stable BAcc score across imbalance ratios for LR (Fig. 3a), SVM, and
RF remained vulnerable to class imbalance (Fig. 3b, c). We examined a
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Figure 3: Effect of secondary parameters and hyperparameter tuning on the robustness
to imbalance. (a-c) Exploration of the effect of hyperparameters on classifier robustness
against imbalance. Each line represents a certain hyperparameter setting (Section 2.2.1)
d) The effect of sample size on robustness to class imbalance using an SVM and Acc. e)
The impact of cross-validation scheme on robustness to class imbalance (BAcc and SVM).
f) Performance metrics on a balanced hold-out set using an SVM trained on different
ratios of imbalance. BAcc is not shown here as it is equivalent to Acc for balanced data.
Solid lines show the performance over different class imbalance ratios, averaged over 10
initializations. Colored areas represent the respective standard deviation.

second hyperparameter for the Random Forest, namely the minimum weight
fraction (MWFL) to generate a leaf node (Fig. 3c). Increasing this hyper-
parameter beyond its default value of zero led to a general improvement in
BAcc (over the default hyperparameter set) for balanced data, and a decrease
towards regions of extreme class imbalance. Therefore, we are not able to re-
port improvements in robustness from this hyperparameter for the Random
Forest.

3.2.2. Sample Size
We did not find any notable effect of sample size (N=300, N=1000,

N=3000) on overall SVM classification accuracy nor robustness to class im-
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balance. However, as one would expect, the variance across random initial-
izations of the cross-validation splits decreased with the number of training
samples (Fig. 3d).

3.2.3. Cross-Validation
Comparing different cross-validation algorithms revealed that K-Fold is

more sensitive to imbalanced data than Stratified K-Fold (Fig. 3e). While
both procedures led to similar Balanced Accuracy scores with balanced classes,
K-Fold cross-validation without stratification showed an increase in Balanced
Accuracy towards extremely imbalanced datasets. This likely stems from val-
idation splits containing only a single class, which Balanced Accuracy does
not account for. While a classifier voting for the majority class has a Bal-
anced Accuracy of 0.5 on data containing two classes, its score will be 1
on validation splits that, by chance, only contain one class. The likelihood
of this is higher for low sample sizes and is completely resolved by using
Stratified K-Fold cross-validation.

3.2.4. Balanced Hold-out Set
So far, all experiments were evaluated using cross-validation with imbal-

anced validation splits, replicating the class distribution of the training set.
Figure 3f shows SVM classification scores on a balanced hold-out set after
being trained on increasingly more imbalanced training data. While AUC
and F1 scores are largely in line with previous results (Fig. 2i) using imbal-
anced cross-validation splits, Acc now reflects the previous behavior of BAcc,
i.e. dropping towards the random baseline of 50% towards the extremes of
class imbalance. Note that we do not report BAcc here as it is equivalent to
Acc on balanced data.

3.2.5. Significance testing on imbalanced data
Supplementary Figure 6 depicts significance scores across imbalance ratios

and levels of difficulty of the classification problem. Generally we found
that for the impossible classification task (i.e. identical class distributions;
Fig. 6a), none of the scores were significant at p<0.01, as in this case,
permuting labels does not remove any structure from the data. For the
difficult classification task 6b), however, we found a range of statistically
significant classification scores around perfect class balance. Scores were not
significant towards the extremes of class imbalance. This behavior was shared
among all the classification metrics we evaluated. In the third task—easy
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classification (Fig. 6c)—all classification scores were found to be significantly
above chance level for all metrics, which highlights the classifier’s ability to
learn structure in the data even for extreme class imbalance, which is even
more pronounced for easier classification tasks.

3.3. Results on EEG data
We performed two experiments using the EEG dataset with classifica-

tion between eyes-open versus eyes-closed during resting (Section 2.4.1).
We herein first describe the results of the multi-feature classification using
parieto-occipital electrodes and then present the results of the channel-wise
classification.

As previously shown in the simulated data, Acc increased with increasing
data imbalance, reflecting the proportion of the majority class. In contrast to
this, BAcc approached chance level with increased imbalance and reached its
maximum with maximally balanced data. In line with the simulated data, the
F1 score increased abruptly at optimal class balance. AUC was stable over
a wide range of class imbalance. While SVM, LR, and LDA showed similar
behavior (i.e. being equally sensitive to data imbalance), the performance
metrics using RF exhibited more stability over different levels of imbalance
(Fig. 4c-f).

In contrast to multi-channel classification, single-channel decoding per-
formance is commonly used to localize changes between two conditions and
allows to attribute larger changes to channels with higher decoding perfor-
mance (Fig. 4a, b). Here we show how class imbalance may lead to mis-
interpretation of such results and the loss of structure related to decoding
performance. At optimal class balance, highest decoding performance was
found in parieto-occipital regions of the brain, which is in line with the lit-
erature and allows for interpretation of the results (Fig. 4g-j, IR = 0.5).
Towards the extremes of data imbalance, this structure is lost and we find
uniform decoding performance across the brain. This effect is most promi-
nent using Acc, BAcc, and F1, while AUC retains some variations across
channels (Fig. 4g-j).
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Figure 4: Effect of data imbalance on different performance metrics, algorithms, and cross-
validation strategies for EEG data classification. a) Visualisation of multivariate data on a
low-dimensional space. Dimensionality reduction from 17 to 2 was performed using the t-
SNE algorithm [44]. b) The parieto-occipital region of interest (ROI) was used as features.
The effect of data imbalance using c) Logistic Regression; d) Support Vector Machine;
e) Linear Discriminant Analysis, and f) Random Forest. Performance measures include
Accuracy (blue), the Area Under the Receiver Operating Curve (orange), F1 score (green),
and Balanced Accuracy (red). Solid lines indicate performance across imbalance ratios
averaged over 10 random initializations. Colored areas represent the respective standard
deviation. Dotted lines indicate the average score across 100 random permutations of class
labels (i.e. data-driven chance level). Effect of data imbalance and sensor location on g)
Accuracy, h) Balanced Accuracy, i) AUC, and j) F1 for single-channel, single-feature
classification between eyes-open and eyes-closed EEG using an SVM. IR indicates the
imbalance ratio used for each topomap.
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3.4. Results on MEG data
As described in Section 2.4.2, classification was performed between audi-

tory and visual stimuli, using channel-wise low-gamma spectral power aver-
aged across the two MEG gradiometers. Figure 5 shows the results of the
selected channel, whose spatial location is highlighted in Figure 5b.

While AUC shows best overall classification performance of LR and LDA
on the balanced dataset, the other metrics (Acc, BAcc, and F1) show similar
scores across LR, LDA, and SVM. The Random Forest did not perform as
well in this single-feature classification analysis (Fig. 5).

In line with the simulated and EEG datasets, BAcc approached chance
level with increased imbalance and reached its maximum with perfectly bal-
anced data. F1 increased abruptly at optimal data balance. While AUC
was stable across a wide range of imbalance ratios for LR, LDA, and RF,
we observed comparable behavior to BAcc for SVM (i.e. approaching chance
level towards more data imbalance). While SVM, LR, and LDA show sim-
ilar behavior (being equally sensitive to data imbalance), the performance
metrics in RF exhibit more stability over different levels of imbalance. While
the behavior of Accuracy is generally the same as in the experiments with
simulated data, it is notable that, in LR and LDA, Accuracy is high when
the majority of samples consists of visual stimuli and is decreased for a ma-
jority of auditory stimuli. This effect is most pronounced for light imbalance
around 0.5 and likely stems from a difference in distribution between the two
classes. Samples belonging to the auditory class come from a more narrow
distribution (Fig. 5a) and are therefore prone to misclassification when the
classifier blindly votes for the majority class.

While SVM, LR, and LDA showed similar behavior (i.e. being equally
sensitive to data imbalance), the performance metrics in RF exhibited slightly
more stability over different levels of imbalance. This is in line with the
aforementioned results using the simulated and EEG datasets.
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Figure 5: Effect of data imbalance on different performance metrics, algorithms, and cross-
validation techniques on classification of MEG data. a) Distributions of low-gamma (30-
60Hz) power values for each class. b) T-values from independent T-tests between the two
conditions using averaged trials for each subject. The white circle indicates the selected
channel for this experiment (selected by the maximum classification performance across
all channels). (c-f) The effect of class imbalance using c) Logistic Regression; d) Linear
Discriminant Analysis; e) Support Vector Machine, and f) Random Forest. Performance
measures include Acc (blue), the Area Under the Receiver Operating Curve (orange),
the F1 score (green), and BAcc (red). Solid lines indicate the performance over different
class imbalances, averaged over 10 initializations. Colored areas represent the respective
standard deviation. Dotted lines indicate the performance of 100 random permutations
(i.e. chance level) for every performance metric.

4. Discussion

The present work shows that the implementation of classification on im-
balanced data is feasible, though it demands certain important considera-
tions. Our approach demonstrates how one needs to be mindful of class im-
balance when choosing a classifier, an evaluation metric and a cross-validation
scheme [13]. Here, we sought to provide a didactic technical note on this ques-
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tion using a combination of simulated data and electrophysiological brain
signals. Concretely, we quantified the behavior of commonly used classifiers,
performance metrics, and cross-validation approaches across varying levels of
data imbalance. An exhaustive exploration of all available techniques that
have been proposed to tackle data imbalance is beyond the scope of this
study. Instead, we chose to focus on machine learning tools and metrics
that are often used within the neuroscience community. In line with this,
the methods we address—and the open-source pipelines and notebooks we
provide—all use the scikit-learn library.

Taken together, our observations support the idea that classification on
moderately imbalanced data is feasible, as long as appropriate classifiers and
performance metrics are employed. More specifically, by systematically ma-
nipulating the degree of data imbalance, we illustrated and quantified sev-
eral key effects. First, we confirmed the tendency of classifiers to resort
to blindly voting for the majority class as data imbalance was accentuated.
When assessed with the widely used Accuracy measure, this behavior was
associated with an artificial improvement in the model’s classification perfor-
mance. AUC and BAcc were more robust to the increase in imbalance, and
are therefore more appropriate under these circumstances. Moreover, our
data confirms that Random Forest is more robust when handling imbalanced
data, compared to other commonly used algorithms, such as LR, LDA, and
SVM—especially when using class-weighting hyperparameter optimization.
This result is expected, but our analyses quantify this for a wide range of
imbalances and illustrates the effect with simulated data as well as EEG and
MEG recordings. We also found that the balancing hyperparameter can be
used to improve LR’s robustness to data imbalance.

Our study also highlights an important caveat concerning the use of per-
mutation tests on imbalanced data. Permutation tests allow data-driven
computation of the chance level, and from this chance level, they provide an
estimate of statistical significance. However, because chance levels can be
much greater than 50% in imbalanced data (for binary classification prob-
lems; Fig. 2, 6), a simple reporting in these cases of the Accuracy and of its
statistical significance can artificially inflate the importance of the classifica-
tion result. For example, for a 0.2 imbalance ratio, a statistically significant
Accuracy of 82% can appear to be an outstanding result, when in reality, the
chance level is 80%, so this is arguably equivalent in importance to a statis-
tically significant Accuracy of 52%. This scenario underlines the importance
of reporting the chance level alongside performance metrics when carrying
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out permutation testing on imbalanced data [45].
The present study complements a wide array of insightful investigations

that have explored the pitfalls and potential solutions for supervised learning
with imbalanced data [11, 13, 46, 47, 48, 17, 49, 50, 32, 51, 20, 52, 14, 53].
By contrast to some of the previous studies, the present work focuses on
insights that are directly relevant to researchers in neuroimaging using stan-
dard tools, such as those available through the scikit-learn library. In addi-
tion, the code and Jupyter notebooks (https://github.com/thecocolab/
data-imbalance) were designed so the figures could be easily replicable, and
to extend the investigations to an even wider range of metrics and methods,
in a collaborative and open science perspective.

Recommendations In discussing recommendations and best practices
for handling data imbalance, it is important to note that the utility or suit-
ability of a metric should always be determined in relation to the specific
problem being tackled. The various types of machine learning problems dif-
fer among other things in the type of error one seeks to minimize—this will in
turn determine the appropriate classification paradigm in which to operate.
The suitable paradigm depends on whether one’s aim is to minimize overall
classification error [54], type I error (false positive) [55] or type II error (false
negative) [56]. Of these three, the design of the present study and the findings
we report relate primarily to paradigms seeking to minimize overall classifi-
cation error. Our analysis confirms that BAcc (and the related AUC metric)
are more robust to data imbalance than the common Accuracy metric. Note
that the Precision and Recall metrics are recommended when dealing with
type I and type II errors respectively. Sampling techniques (i.e. over- and
undersampling) are known to be helpful in most paradigms and evidence
suggests that they work well in combination with certain classifiers[57].

Based on the observations reported in this study, evaluating the perfor-
mance metrics on a balanced holdout set (Fig. 3f) allows for an unbiased
evaluation of classification performance even when using metrics vulnera-
ble to class imbalance, such as Acc. We therefore recommend using several
evaluation metrics, e.g. BAcc, with Stratified K-Fold cross-validation and
standard Accuracy on a balanced holdout set. As BAcc is equivalent to Acc
for balanced data, it retains Acc’s greatest advantage, namely its intuitive-
ness and ease of interpretation. We additionally argue that BAcc results in
more intuitive performance evaluation for imbalanced data, as it combines
performances of individual classes with equal weight. Accuracy on the other
hand combines class performances with a strong bias towards the majority
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class.
Deep learning, an advanced type of machine learning used for a large

variety of classification tasks, is not immune to data imbalance [58]. Deep
learning models learn by backpropagating gradients through the model. In
class-imbalanced scenarios, the majority class dominates the net gradient
that is responsible for updating the model’s weights, which reduces the error
of the majority group quickly during early iterations. However, oftentimes
it simultaneously increases the error of the minority group. As a result, the
neural network struggles to learn the decision boundary for the problem [59].
Common approaches used to overcome data imbalance when training deep
neural networks include under-/oversampling, data augmentation, the use of
a class-weighted loss function (i.e. higher penalty for errors made on the
minority class) and output thresholding [60].

Overall, given our results, we make the following seven recommendations
for machine learning in neuroscience:

1. Use Balanced Accurary (BAcc). BAcc has been largely under-
exploited in neuroscience research. Given (i) its superior robustness
to imbalance, (ii) the fact that it simply reduces to Accuracy for bal-
anced datasets and (iii) its applicability to both binary and multi-class
[61] datasets, we recommend the routine use of BAcc, rather than the
commonly used Acc, as a default for neuroscience machine learning
applications where overall classification error should be minimized.

2. Use ensemble methods. If data imbalance cannot be avoided, we
recommend the use of classifier families that provide additional robust-
ness. In line with previous recommendations, ensemble methods such
as Random Forest and decision trees are less sensitive to data imbal-
ance and provide a set of hyperparameters that can be optimized for
the classification of imbalanced data.

3. Use a balanced hold-out test set. When working with imbalanced
data, the true discrimination performance of the trained classifier can
be assessed simply by testing it on a balanced hold-out test set.

4. Use Stratified K-fold for cross-validation. K-fold cross validation
is highly sensitive to data imbalance such that in extreme cases, it
can even become impossible to perform classification (i.e. if one fold
contains only a single class). We therefore strongly recommend the use
of Stratified K-fold, which maintains the imbalance ratio within each
of the selected folds.
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5. Report statistical significance AND chance level. Without the
corresponding chance level, performance metrics can easily be misinter-
preted. Especially for performance metrics like Acc, chance level fluctu-
ates widely with data imbalance. Thus, performance scores should al-
ways be reported accompanied by—and should interpreted in the light
of—the associated chance level. The chance level can be estimated in
a data-driven approach using permutation tests. This recommendation
also applies if statistical tests were performed and performance scores
reached significance over random permutations.

6. Use hyperparameters. For many of its classifiers, scikit-learn pro-
vides hyperparameter options specifically designed for dealing with im-
balanced data; these should be routinely exploited.

7. Know your problem. The above recommendations apply to prob-
lems where the objective is to minimize the overall classification error;
however, for some problems, it may be more important to minimize
type I or type II error. In these cases, other performance metrics may
be more relevant than BAcc or AUC, namely Precision and Recall. For
example, a classifier used to discriminate biological sex based on brain
activity would likely seek to minimize overall classification error, and
BAcc or AUC would then be recommended to correct for any class im-
balance in the data. In contrast, a classifier used to detect malignant
tumours in brain imaging would instead benefit most from Precision
and Recall metrics, since false negatives (type II error) would need to be
minimized above all else. Therefore, consideration of the nature of the
problem at hand—specifically, of the type of error to be minimized—is
essential to selecting the most appropriate performance metric.

Limitations and perspectives This studies results need to be inter-
preted in the light of several limitations. First, many approaches for han-
dling imbalanced data have been proposed [21]. In this study, we focused
on families of models and performance metrics that are easily accessible and
widely used in the neuroscience community, in particular through the scikit-
learn library. Specifically, we focused on four popular classifiers and four
standard evaluation metrics, as well as two cross-validation schemes. Re-
viewing or comparing all existing tools is beyond the intended goal of this
paper, but the Python code we provide is open-source, which allows users to
extend these investigations. Second, the data we used consisted of simulated
Gaussian data distributions, as well as open-access electrophysiological brain
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signals (MEG and EEG). We did not examine the impact of noise, though it
could have been interesting to consider it, as it has been shown to interact
with the performance of the classifier [62]. Third, we only briefly mention
the option of balancing the data through over and under-sampling methods,
and focused our investigation on evaluating the impact of data imbalance.
Fourth, the aim of this study was to explore the individual classifiers’ sen-
sitivities and relative changes of performance metrics over systematically
imbalanced data. Therefore, the presented results do not allow a comparison
of individual classifiers’ absolute performance.

Fifth, our main focus was to explore the effect of data imbalance on clas-
sification tasks. To this end, we explored the simplest form, namely a binary
classification, where the manipulation of the imbalance ratio is straightfor-
ward. While creating imbalanced data for the multiclass case is more compli-
cated, most of our findings extend to this type of classification—with some
caveats. For instance, AUC is typically available only for binary classifica-
tion, although extensions for multiclass classification exist [63]. In addition,
some algorithms such as SVM and LR reframe multi-class classification as
a separate one-vs-the-rest binary classification problem for each class; this
effectively results in class imbalance. Notwithstanding, the main take-home
message of this study—that BAcc is generally more robust than Acc—still
applies for multiclass classification.

Conclusion In this study, we have illustrated the effect of imbalanced
data on some of the most prominent classification algorithms and perfor-
mance metrics used in neuroscience. Among other things, one key take-home
message is our suggestion to systematically use Balanced Accuracy over the
widely used Accuracy metric, whenever the aim is to minimize overall clas-
sification error. In addition to its robustness to class imbalance, Balanced
Accuracy collapses to standard Accuracy for balanced datasets and is readily
extendable to multiclass problems. More generally, we hope that the rec-
ommendations and red flags reported here—using simulations and real brain
data—will strengthen good practices for the application of supervised ML in
neuroscience, and increase awareness, especially among new-comers to the
field. Lastly, by providing open-source code and well-documented pipelines,
we hope that others will further explore this question with a wider variety of
parameters, classifiers, and different types of classification problems.
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Figure 6: Statistical significance of different amounts of data imbalance and difficulty of
the classification task, using an SVM on 1000 samples of synthetic data. Stars represent
statistical significance at p<0.01, computed with permutation tests (N=100). a) Identical
distribution for both classes (impossible classification problem). b) Hard classification
problem with a distance of 1 between means of class distributions. c) The distance between
the class distributions is 3, corresponding to an easy classification problem.
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