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a b s t r a c t 

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that 
help scientists to produce work that is of the highest quality at any given time, and to efficiently share that 
work with the community for further scrutiny or utilization. For experimental research using magneto- and 
electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which 
are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in 
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. Introduction 

The generation of scientific knowledge, which is the purview of sci-
nce and the humanities, relies on scientists and researchers using ap-
ropriate tools and techniques, appropriate processes and methods, and
ppropriate ways of thinking and reasoning. All these elements of scien-
ific work have been developed and refined over centuries of discovery
o ensure that the generated knowledge lives up to ever-evolving cur-
ent standards. Rules, guidelines, and principles that codify this way of
ork are referred to as good scientific practice (GSP). The details vary
etween disciplines, but generally GSP serves to uphold and continue
ethodological progress, to make sure results are reliable, and to avoid

cientific misconduct. 
In magnetoencephalography (MEG) and electroencephalography

EEG), here collectively referred to as MEEG, the first guidelines for
ood practice were published for EEG by Donchin et al. (1977) . They
epresented the findings of an international committee formed to pro-
ide publication criteria, which the committee members first discussed
mong themselves and then opened up for public discussion during
 conference. It was here that the recommendation was recorded to,
mong other things, report age, sex, and handedness of all participants
something still done to this day. Since then, this has been a common
attern: new or additional guidelines have often emerged from interna-
ional meetings or societies where scientists consider, for example, the
eed for standardization in light of new methods, techniques, or find-
ngs. 

Currently, the most recent effort in the MEEG community to co-
rdinate and promote GSP at all stages of the research cycle has
ome from the Organization for Human Brain Mapping. Their COBIDAS
EEG white paper ( Pernet et al., 2020) lists current standards and

ood practices for data acquisition, analysis, reporting, and sharing.
ogether with numerous other guidelines that have emerged over the
ears ( Donchin et al., 1977 ; Pivik et al., 1993 ; Picton et al., 2000 ;
andy, 2005 ; Luck, 2005 , 2014 ; Duncan et al., 2009 ; Gross et al., 2013 ;
eil et al., 2014 ; Kappenman and Luck, 2016 ; Hari and Puce, 2017 ;
ane et al., 2017 ; Hari et al., 2018 ), they support scientists and re-
earchers in minimizing known pitfalls and adhering to best practices
uring the various stages of research. 

Such documents are even more important now that the field is
ecoming increasingly interdisciplinary, and not all colleagues will
ave had the opportunity to be trained in all relevant technologies
 Pernet et al., 2020 ). Furthermore, recent concerns about reliabil-
ty in neuroimaging research ( Button et al., 2013 ; Poldrack et al.,
017 ), more pressingly referred to as a “replication crisis ” ( Shrout and
odgers, 2018 ), have highlighted the importance of community stan-
ards – not just their existence, but also the community’s own awareness
f, and adherence to, such standards. Therefore, the field of neuroimag-
2 
G 2020 conference, a reflection on GSP was fostered that included explicitly
nical advances, but also emphasized intangible GSP: a general awareness of
etal realities and how they can influence MEEG research. This article provides an
veMEEG contributions and new literature, with the additional aim to synthesize
. It first covers GSP with respect to cognitive biases and logical fallacies, pre-
se and other early pitfalls, and a number of resources to enable collaborative

neral approach to minimize misconceptions. Second, it covers GSP with respect
rting, and sharing, including new tools and frameworks to support collaborative
n light of ethical implications of MEEG research and the resulting responsibility
 societal challenges. Considering among other things the benefits of peer review
eed to coordinate larger international projects, the complexity of MEEG subject
 of fairness, privacy, and the environment, we find that current GSP tends to
ork, for both scientific and for societal reasons. 

ng in general is actively and effectively working towards consolidating
SP within its community ( Poldrack et al., 2020 ). 

The virtual LiveMEEG conference on "Good scientific practices in
EG and MEG Research" was held on October 5–9, 2020, with the aim
f bringing together MEEG experts to discuss essential aspects of GSP
or the entire lifecycle of MEEG research projects. Importantly, what
merged from this meeting was that not everything that is deemed im-
ortant is captured by current or previous standards – nor, indeed, could
t be: there are many subtleties and approaches that do not lend them-
elves to being standardized per se. Instead, this different type of GSP
nables a more general reflection on the way we think and act, with re-
pect to both the work itself and the broader scientific environment. In
articular, "open science" is seen as one fundamental aspect of modern
SP. This refers to a general approach which aims to make all products
f scientific work publicly available. Among other things, this makes sci-
nce less isolated, more community-driven, and allows the results to be
ully reproduced and verified by colleagues ( Garrett-Ruffin et al., 2021 ;
layson et al., 2022 ). As we shall see, this approach is gaining traction,
nd many modern recommendations follow almost naturally from this
eneral, open mindset. 

Our two-fold aim here is to review existing and developing guide-
ines and resources for GSP, and to capture those LiveMEEG contribu-
ions that widened our understanding of what GSP means. GSP is not
erely about adhering to established protocols and avoiding mistakes:

t involves a more general awareness of personal, organizational, and
ocietal realities, of the structures that surround and influence us all,
nd of the future that we ourselves wish to see on the path of scientific
rogress. This work aims to help foster that awareness. 

.1. How to use this paper 

Part of the nature of general principles is that they can be formulated
roadly. We do this at the beginning of each section, and use the sub-
ections and subsubsections to provide increasingly detailed GSP that
llustrate these principles. To that end, each section first summarizes
he general considerations addressed in that section, and briefly intro-
uces its subsections. These subsections deal with more detailed but still
enerally relevant GSP, while any deeper sections address concrete is-
ues and provide specific suggestions. As such, the reader can use the
igher levels to navigate the paper, and choose to read those lower lev-
ls as they see fit. The three main sections of this paper, following this
ntroduction, relate to: GSP relevant to the early, e.g., planning and pre-
lanning stages of MEEG research (Section 2); issues that arise and GSP
hat can help during data collection, analysis, and reporting (Section
); and finally, considerations and GSP that go beyond the work itself,
nd touch upon ethical and social aspects that surround it (Section 4).
he reader is encouraged to look into the referenced literature in any
elevant section, as well as Appendix Table A1 for further resources. 
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ox 1 . Evolving GSP 

GSP is under constant evolution. Current GSP may not be appro- 
priate in the future, as new methods highlight limitations of cur- 
rent practice. Some examples are: 
1 GSP for gamma-band oscillatory activity measurements has 

evolved dramatically after the discovery of a microsaccadic 
spike artifact in the EEG ( Yuval-Greenberg et al., 2008 ) with 
energy in the gamma frequency range. This spike artifact led 
researchers to now routinely monitor saccadic eye movements 
prior to drawing conclusions regarding high-frequency brain 
activity recorded from the scalp. 

2 Traditionally acceptable statistical practices in neuroimaging 
consisted of selecting regions of interest for further analysis 
with the same contrast that was used to report effect sizes in 
publications. This is now a well-known case of problematic cir- 
cularity in data analysis ( Kriegeskorte et al., 2009 ; Vul et al., 
2009 ). Similarly, the failure to account for multiple compar- 
isons in mass univariate data analysis (shown with irony by 
Bennett et al. (2009) , or by Nichols and Hayasaka (2003) ) has 
become completely unacceptable. 

3 Wrong uses of powerful methods often emerge, especially if 
these are successful and widely used. For instance, the cluster- 
based correction for multiple comparisons ( Maris and Oost- 
enveld 2007 ) seems to imply a spatio-temporal extent of the 
effect under investigation and has been used for this purpose. 
However, this extent depends on an arbitrary threshold, and 
should not be used to localize effects in space or time, as has 
been reminded recently ( Sassenhagen and Draschkow, 2019 ). 

4 Similarly, increasing the number of factors in a statistical 
analysis (e.g., ANOVA) causes an exponential increase in the 
number of main effects and interactions being tested, which 
can dramatically increase the familywise Type I error rate 
( Cramer et al., 2016 ; Luck and Gaspelin, 2017 ). As a result, 
previous advice to include electrode/sensor as a factor in sta- 
tistical analyses ( Luck, 2005 ) has been replaced by advice to 
collapse across electrodes/sensors unless this factor is impor- 
tant for testing the scientific hypotheses ( Luck, 2014 ). 

. Early considerations for MEEG projects 

Some general principles of GSP come into play even before the first
nstrument is picked up. These include GSP specifically related to plan-
ing and pre-planning stages of a project, as well as GSP that is not
pecific to any one stage, but rather reflects a general approach to the
roject as a whole. 

During pre-planning stages, among other things, one may be con-
idering the outcomes of previous experiments and how they may be
ollowed up on, or brainstorming about experimental variables and ma-
ipulations. Here, it is important to be aware of the limits of one’s own
bility to properly seek out, perceive, and arrange the relevant facts.
ection 2.1 deals with GSP related to this. It emphasizes the importance
f awareness, and of availing oneself of the expertise of others early on.
his latter point also applies to planning stages, where there are a num-
er of benefits of sharing project ideas with others, both before and after
hey have been finalized. To that end, Section 2.2 explains the various
acets of public pre-registration. Finally, open science was mentioned
n the introduction as a fundamental approach to the organization and
onducting of scientific projects. Open science requires a commitment
hat impacts all stages of research, but many tools, guides, and examples
lready exist to support this, some of which are outlined in Section 2.3 .

.1. Human factors 

Scientists are trained to form beliefs about the world and test their
heoretical and experimental hypotheses with objectivity. However,
ven expert humans are fallible, as they can be victims of their own bi-
3 
ses and, consequently, make logical errors. GSP can help mitigate these
rrors by making researchers aware of them, by explicitly accounting
or biases in data analysis and representation, and by enforcing careful
lanning of experiments, with attention to the logical implications of
iven observations. 

.1.1. Cognitive biases, their manifestation, and ways to mitigate them 

Cognitive biases pervade all levels of thinking and reasoning, from
ow level perceptual processes to social representations. Because cogni-
ive capacities are limited, humans allocate resources sparingly and cre-
te mental shortcuts (heuristics) that are prone to oversights and biases
 Gigerenzer, 2008 ). Of note here are the biases that cause researchers
o perceive or understand information incorrectly during data analysis
nd viewing, and end up drawing inaccurate conclusions. We illustrate
 few effects and mention strategies to help overcome these biases. 

At the perceptual level, researchers have to grapple with sensory
rrors and visual illusions both when reading and when creating visual
ata representations. The limits and strengths of the visual system for ex-
racting information from such visual representations are well studied,
nd detailed guidelines exist: see Franconeri et al. (2021) for a recent
eview. 

A prominent example in the field of brain imaging in general, and
EEG in particular, is the question of color mapping. Because human

erception of color categories is neither linear nor equal across the color
heel ( Bae et al., 2014 ), the choice of how to represent continuous data
ith color is not trivial. The rainbow color map, widely used in the field,
nfortunately does not take perceptual limitations into account and can
ead to perceiving inaccurate steps in the data, or meaningless categor-
cal boundaries ( Cooper et al., this issue ; Borland and Taylor II, 2007 ).
nstead, there are now perceptually uniform colormaps that ensure that
he linear representation of data is correctly perceived by human ob-
ervers. See Cooper et al. (this issue) , for a review and suggestions. An-
ther example is how results can be distorted when not visualized prop-
rly, hiding underlying patterns in the raw data ( Chambers et al., 2018 ;
are, 2019 ; Allen et al., 2021 ). Therefore, it is recommended to present
ore complete visual representations such as box and density plots

hat reflect the entire distribution of the underlying data rather than
ocusing on its central tendency ( Hintze and Nelson, 1998 ; Rodu and
afadar, 2021 ). 

Beyond individual perceptual errors, other types of errors can oc-
ur when viewing data in a social context. A well-known example is
he “curse of knowledge ” effect, whereby personal experience and fa-
iliarity with a method, theory, or set of results make the presenter as-

ume more knowledge in the audience than there actually is Xiong et al.
2020) . This is almost always the case when researchers present their
wn work, and may thus lead to a miscommunication between presen-
er and observer. This disparity may be further increased due to the
act that, on the observer’s side, their high-level experiences influence
heir interpretation and even low-level perceptual processing of objec-
ive information. This can affect the reading and understanding of MEEG
ata, especially when it is likely that an experimental result strongly sup-
orts or refutes one’s own theoretical predictions. In combination with
he confirmation bias, the same viewer may be inclined to ignore data
eatures that refute their own theoretical views. There is a plethora of
igher-order cognitive biases that affect decision making at many lev-
ls. Commenting on all of them is beyond the scope of the present arti-
le, but their powerful effect on perception and understanding is impor-
ant to consider at all stages of a research project. The interested reader
ould consult references such as Baron (2006) or the seminal works of
versky and Kahneman (1974) . 

Finally, social factors also influence the socio-cultural structure
f scientific investigation, and influence scientific progress in a way
hat may be biased toward theories and representations of the most-
epresented social groups. The majority of publications in MEEG re-
earch come from Western institutions that recruit so-called W.E.I.R.D.
Western, Educated, Industrialized, Rich, and Democratic) participants,
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utting into question whether these study results generalize to a
arger population ( Henrich et al., 2010 ). Researchers must keep this
n mind when reading past work, designing new studies, and describ-
ng their own experimental conclusions. Lack of diversity and inclu-
ion is prevalent in academia, and the MEEG field is no exception
o this ( Schrouff et al., 2019 ). Gender bias, as well as marginaliza-
ion and underrepresentation of racial, ethnic, and cultural minorities,
ffect women, BIPOC (black, indigenous, and other people of color)
nd people with disabilities, not only as students and scientists, but
lso in participant samples. Some relevant resources and concrete ac-
ions to mitigate gender bias and inequity at individual and institu-
ional levels in academia have been collected recently ( Schreiweis et al.,
019 ; Llorens et al., 2021 ; Levitis et al., 2021 ). As suggested by
workin et al. (2020) , Zurn et al. (2020) we have included a cita-

ion diversity statement at the end of the manuscript for the aware-
ess of citation bias in the literature. In the field of EEG, recent studies
ave begun to address the fact that standard EEG electrodes are not
esigned to accommodate coarse and curly hair common in individu-
ls of African descent ( Etienne et al., 2020 ; Choy et al., 2021 ). This
s an important reminder that systemic bias can also occur through
nstrumentation. 

.1.2. Logical thinking and fallacious reasoning: an example 

Cognitive biases affect perception, cognition, and reasoning in sci-
nce, but fallacious conclusions can also be reached due to a failure to
ully understand and account for the logical implications of an experi-
ental work. Logical thinking is at the heart of conceiving hypotheses

nd designing experiments. Experimenters need to take certain steps at
he outset to forestall later mistakes when drawing conclusions from re-
ults. See Sinnott-Armstrong and Simmons (2021) for a list of common
allacies in MEEG data. 

Some common mistakes can be illustrated by misinterpretations of
ibet and collaborators ( Libet et al., 1983 ). In this now infamous EEG
xperiment, participants were positioned in front of a clock face, and
ere instructed to freely move their fingers or wrists at a time of

heir choosing. When they did decide to move, they were asked to re-
ort the time when the decision was made. As such, the experiment
ielded three points in time: the self-reported time of the conscious
ill or decision to move (W), the measured time that movement in-
eed took place (M), and correlated brain activity in the EEG in the
orm of a readiness potential (RP). They found that the readiness po-
ential RP occurred before the reported time of W, which in turn oc-
urred before M. Libet’s findings have been replicated often, but there
re still raging debates about their interpretation, the role of the neural
ctivity (RP) and W in producing M, and any relation of these find-
ngs to free will. Unfortunately, these debates continue to involve sev-
ral fallacies that could have been avoided by following these simple
ecommendations. 

First, spell out all theories or hypotheses that might explain possible
xperimental findings. Overlooking an option can lead to a fallacy called
alse dichotomy . For example, commentators on Libet et al. (1983) of-
en assumed that one of only three options must be true: (a) W causes
, but nothing causes W (Libertarianism); (b) W causes an RP, which

auses M (Backwards Causation); or (c) RP causes M, but W does not
ause M (Libet’s conclusion). Libet’s followers rejected the Libertarian
laim, because they assumed that every event has a cause. They also
ejected Backwards Causation, because W occurs later than RP, and
auses never come after their effects. They concluded that RP causes
, but W does not cause M. What they failed to consider was the Com-
onsense view that RP causes W, and then W in turn causes M —that

s, activity in the brain causes choices, which cause actions. To over-
ook such a plausible option is called false dichotomy because it is false
o assume that one member of the original set of alternatives must be
rue. 

Second, think carefully about which theories or hypotheses are log-
cally compatible with others. Forgetting that both of two supposed al-
4 
ernatives might be true can lead to a fallacy called affirming a disjunct .
ome readers of Libet et al. (1983) seem to reason that either RP causes
 or W causes M, so, if RP causes M, then W does not cause M (cf Sinnott-
rmstrong, 2011 ). However, this reasoning is fallacious because RP and
 might both cause M, such as when RP, W, and M form a chain of

auses across time. 
Third, define the precise category that the conclusion will cover and

nclude stimuli or tasks for all variations within that category. Failing
o include a subclass of the phenomenon can lead to a fallacy called
asty generalization . An experiment using a specific kind of action can-
ot justify a conclusion about all actions, especially when the studied
cts are atypical. In particular, Libet’s subjects arbitrarily chose when to
ex their wrists with nothing at stake. What Libet found about these ar-
itrary, simple, trivial acts might not hold for important human actions
hat are based on conscious deliberation and require complex sequences.
f one wants to draw a conclusion about all actions, one must be sure to
nclude diverse kinds of actions in the experimental data itself. 

How can one know whether one has included enough kinds of test
lternatives, considered enough theories, and specified competitors that
annot both be true? The best way to minimize the chances of these and
ther mistakes is to seek early feedback from others, especially those
ho disagree with one’s views and assumptions. This includes people

rom other fields and backgrounds. Working together instead of alone
s of great benefit: today’s team science activities have shown these ad-
antages (see examples in Section 2.3 ). 

.1.3. Example strategy to minimize biases and errors 

Experiencing cognitive biases or logical fallacies and having them
nfluence research at least in part may be inevitable, but it is possible
o diminish their impact on research practices by learning about them
nd by using concerted “slow ” critical thinking skills ( Kahneman, 2013 ).
ppendix Table A1 has a few current references on ways to characterize
nd circumvent biases and errors. 

One possible strategy is to organize a “premortem meeting ” with
ellow researchers before starting a new project ( Klein, 2007 ). This ex-
rcise involves simulating a future meeting, assuming the project has
ailed, and then working backwards from that outcome to determine
hat could have caused that “failure ”. This meeting can include a fo-

used conversation about existing biases and beliefs within the group
hat might influence the work, and then use imaginative exercises to
ollaboratively solve these issues. As researchers plan and implement
heir study, it is important to keep track of which methods are being
hosen and why (see also Section 2.2 . below). At this stage, researchers
re encouraged to document which rationales may be biased and how.
kepticism is healthy in science; listening to data is critical, and trying
o understand both how data do, or do not fit in with existing theories
s GSP. A useful set of guidelines come from Abelson’s MAGIC Criteria

 Abelson, 1995 ), which can be used to understand the Magnitude, Artic-

lation, Generality, Interestingness, and Credibility of statistical claims in
esearch. For the many reasons listed in the chapter, once researchers
re comfortable operating within a scientific paradigm, it becomes espe-
ially challenging to shift their beliefs. But in order to progress science
airly, they must be willing to do so. 

ighlights 2.1 . Human factors 

• Perceptual and cognitive biases influence how researchers per- 
ceive, interpret, and communicate data and ideas. Awareness 
is the first step towards mitigation. 

• Careful planning and reasoning can help reduce logical falla- 
cies concerning hypotheses, relevant theories, and conclusions. 

• Collective exercises such as a “premortem meeting ” can help 
highlight pitfalls and correct mistakes before they are made 
during an experimental project. 
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.2. Pre-registration 

The primary purpose of GSP during the planning stage of a scien-
ific project is to ensure the correct outcome of that project, i.e., that
alid conclusions can be drawn from the collected data. All phases of the
roject must be considered and aligned for this to be possible. Beyond
he aspects mentioned above in Section 2.1 , the many factors involved
n MEEG projects make for a complex web of interdependent decisions
hat need to be taken. Pre-registration, i.e. the practice of defining and
eventually) publicly disclosing experimental plans before data are col-
ected and/or analyzed, can help in this process in at least two ways that
e describe below, before highlighting different pre-registration proce-
ures and tackling possible concerns. 

First, MEEG analysis pipelines are particularly complex, combining
 multitude of pre-processing and analytical steps, each of which in-
olves numerous parameters. Together, these result in a large number
f combinations to choose from. This problem is known in the litera-
ure as the “garden of forking paths ” ( Gelman and Loken, 2013 ). Given
hat it is difficult to test the independent contribution of each combi-
ation (see Section 3.4.4 ), novice and even expert neuroscientists are
ften left with not knowing how strongly a given effect (or the absence
hereof) depends on their analysis choices. Without detailed planning in
dvance, researchers often make data-dependent choices, which under-
ines to some extent the logic of statistical tests designed for a priori set
ypotheses ( Gelman and Loken, 2013 ; Luck and Gaspelin, 2017 ). Pre-
egistration helps researchers to carefully plan the analysis “path ” that
est fits the goals of the experiment. 

Second, sometimes, the only valid conclusion is a null result. Un-
xpected, ambiguous, or null results are an essential part of scientific
iscovery. However, the academic incentive system rewards conclusive
esults and concise stories with publications in “high-impact ” journals.
Negative ” results are often not publishable, resulting in the infamous
file drawer ” problem ( Rosenthal, 1979 ) and the effort of the researcher
emaining unrecognized. This mismatch between the academic incen-
ive system and the reality of scientific work ("getting it published"
ather than "getting it right"; Nosek et al., 2012 ) leads to publication
ias and unreliable practices in published work. This is reflected, for
xample, in a peculiar prevalence of p -values just below the critical
yet arbitrary) cut-off of 0.05 ( Masicampo and Lalande, 2012 ) and in-
ated effect sizes in published studies ( Button et al., 2013 ). A move
owards increased transparency can help mitigate publication bias, se-
ective reporting, and suboptimal research practices, and reward accu-
ate work instead of striking results. Pre-registration is one option to
ake this happen. Initial evidence suggests that the research quality of
re-registered studies is judged higher than that of traditional publica-
ions ( Soderberg et al., 2021 ), while a comparison of registered versus
onventional reports revealed a striking imbalance of 44% versus 96%
f positive findings, respectively ( Scheel et al., 2021 ). 

.2.1. Different types of pre-registration 

As mentioned above, pre-registration is the practice of defining and
isclosing experimental plans before data are collected or analyzed.
uch (public) disclosure of plans allows for them to be scrutinized and
pdated before they are executed, essentially inviting peer review not
ust at the final stages of the research project (i.e., publication) but
hroughout the entire lifecycle of the scientific work. This is facilitated
y online platforms that allow pre-registration of work during prelimi-
ary stages and allow revision of the initial protocol (see Appendix Ta-
le A1 ). Another recently suggested format for this purpose is “prereg
osters ”, i.e., conference posters that present planned scientific projects
 Tibon et al., 2018 ; Brouwers et al., 2020 ). We use the term “unlocked

re-registration ” to refer to this process of depositing planned work in
he public domain and calling for feedback from fellow researchers. At
his preliminary stage, the project’s experimental design and analytical
pproaches are openly discussed, reviewed, and adjusted in the general
cientific arenas. These aspects of the project remain “unlocked ” and
5 
re subject to changes following peer feedback. Regardless of the plat-
orm used, presenting research plans prior to data collection allows re-
earchers to receive feedback on their hypotheses, design, and analyses
rom colleagues, a process that will likely improve the study. 

Once the protocol is finalized, it is amenable to a formal
re-registration, i.e. a time-stamped protocol on a public website
see Appendix Table A1 ) which describes the experimental and analyt-
cal procedures of the study in detail. We use the term “locked pre-

egistration ” to indicate that, at this point, the protocol is finalized in
rinciple and that any deviation will have to be clearly justified and
ocumented in the final research paper. This type of pre-registration can
elp emphasize the planning phase of a study (also as an educational re-
ource for trainees), increase procedural transparency, and serve to pub-
icly take credit for an ongoing study, hypothesis, or theoretical model
ven before the results are in. 

A study protocol can also be locked via the submission of a “Regis-

ered Report ”. This is a published article format that was pioneered by
he journal Cortex in 2013 ( Chambers, 2013 ) and has since been imple-
ented by more than 250 journals ( Nosek et al., 2018 ; Chambers and
zavella, 2022 ). In contrast to the pre-registration options discussed
bove, study protocols submitted as Registered Reports systematically
ndergo editorial triage and peer-review before data collection starts. In
he case of “in principle acceptance ” (stage 1), the journal commits to
ublishing the final report irrespective of whether the results match the
nitial hypotheses. In a second phase, following data collection and anal-
sis (stage 2), the full study is submitted and reviewed again, with guar-
nteed publication as long as the approved protocol was followed (with
hanges sufficiently documented and justified). Registered Reports are
eneficial for individual researchers as they motivate and facilitate thor-
ugh and careful planning, and provide the opportunity to receive ex-
ert feedback on the research plan before data collection. They further
nsure acceptance for publication, independent of statistically signifi-
ant results. For the scientific community in general, they increase the
ransparency of the scientific process, reduce suboptimal scientific prac-
ices (although the impact of pre-registration alone on such practices is
ebated ( Devezer et al., 2020 ; Rubin, 2020 )), and reduce publication
ias in the scientific literature. 

.2.2. Potential concerns regarding pre-registration 

Despite the benefits of the pre-registration approaches outlined
bove, there are some commonly raised concerns. First, “publicly pre-
egistered protocols might be scooped ”. However, with locked pre-
egistrations and Registered Reports, the time-stamped official report
rovides proof of when the study was originated by the researcher,
nd should therefore alleviate these concerns. In this respect, pre-
egistration could be particularly beneficial for research teams working
n competitive fields or with fewer resources. 

Second, “the project’s progress incurs a delay ”. Namely, for Regis-
ered Reports, the review process for stage 1 might add months before
ata collection can start, which might not be feasible for short project
urations or for projects investigating an acute phenomenon. In this
ase, other forms of pre-registration discussed above (posters, locked
re-registration on a dedicated website) might be more appropriate.
owever, when time permits, this can also be turned into a benefit,
s it shifts some of the heavy load from the publication phase to the
lanning phase. 

Third, “proficiency is required for all types of pre-registration ”. Com-
ng up with a detailed analysis protocol, especially for complex method-
logies like MEEG, requires considerable experience in making informed
ecisions and utilizing existing pipelines (perhaps from other laborato-
ies; Paul et al., 2021 ). Nevertheless, pre-registration can still benefit
rainees and inexperienced researchers, with support from their men-
ors and supervisors. For instance, they can gain the necessary expertise
y starting with a replication of a previously published study, where ex-
erimental and analysis parameters are more easily derived. Moreover,
he complete preprocessing pipeline (and some of the analyses) can be
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erformed on pilot data, obtained prior to pre-registration. Standardized
tudy pipelines (see Table 1 ), templates (e.g., Section 3.6.2 ), and guide-
ines (e.g., Paul et al., 2021 ) are also excellent means to narrow down the
ossibilities in MEEG analysis (a few more examples are also discussed
n Section 3.6 ). Thus, a research lifecycle that includes pre-registration
rovides methodological and research training opportunities, even prior
o the pre-registration step. 

Finally, some might worry that “such a strict format would hinder
he creative process of science ”. It is important to note that locked pre-
egistrations and Registered Reports do not prevent exploratory analyses or

eporting of unexpected findings . The only requirement is that any addition
r change to the original protocol is adequately labeled as such, so as
o keep track of the original idea and analysis plan in the published
eport. 

Despite their merits, pre-registration and Registered Reports are not
he only answer to the replication crisis, nor do they guarantee scientific
ntegrity. However, together with other good practices such as standard-
zed pipelines and open data and code, they are an important tool for
mproving the transparency and credibility of published science. 

ighlights 2.2 . Pre-registration 

• Pre-registration is the practice of publicly disclosing and 
archiving experimental plans before data are collected and/or 
analyzed. 

• Pre-registration procedures can be broadly classified as either 
“unlocked ” (publicly available research plans that might still 
undergo modifications) or “locked ” (finalized research plans, 
which should be followed precisely throughout the execution 
of the project). 

• Pre-registration has been argued to lead to better scientific 
practices through increased transparency of the scientific pro- 
cess, peer-review at early stages of the project, and reduced 
publication bias. 

• Potential concerns or limitations such as “scooping ”, increased 
project durations, or reduced applicability for trainees, should 
be carefully considered but are often mitigated when planning 
is done carefully. 

.3. Reproducibility and collaboration: some examples and resources 

GSP surrounding open science and reproducibility aims to produce
esults that can be verified by others ( Niso et al., 2022 ). “Reproducible
esearch ” here refers to different but related concepts ( Box 2 ), which
ll increase the reliability of the observations and conclusions, in the
ense that they are independent of who makes them. This goes hand
n hand with open practices, which make the processes and materials
ublic. Numerous resources exist to aid researchers in implementing
pen science and to conduct reproducible research, some of which are
isted below in this section. 

Working reproducibly and openly is not just a matter of deontol-
gy, or higher morals. There are also "selfish reasons" to pursue repro-
ucibility ( Markowetz, 2015 ). For one, it promotes careful bookkeeping
o that not just others, but also researchers’ "future self" will be able
o understand the work done in as much detail as possible, as easily as
ossible. Ensuring open access to pipelines as early as possible is also
 good way of obtaining feedback from the community, and therefore
etect potential mistakes or errors and fix them earlier. Furthermore,
orking openly and reproducibly helps write papers more efficiently,

specially results sections ( Markowetz, 2015 ), provides a citation ad-
antage ( Piwowar and Vision, 2013 ; Clayson et al., 2021 ), facilitates
ompliance with publishing guidelines ( Nosek et al., 2015 ), increases
ob competitiveness ( Nosek et al., 2022 ), expands networks (and, con-
equently, chances of collaboration), and more ( McKiernan et al., 2016 ;
llen and Mehler, 2019 ). As such, these practices do require more up-
6 
ront work, which may make them seem like they are slowing down
he research process, but they pay off in the long run for the individual
esearcher as well as for the field. It is important however, to remem-
er that the incentive structure needs to change so that the adoption of
hese practices becomes larger and its burden is not only the younger
eneration’s responsibility ( Allen and Mehler, 2019 ). 

ox 2 . Reproducible research defined 

The recent reproducibility crisis in neuroimaging ( Button et al., 
2013 ; Poldrack et al., 2017 ) has highlighted the importance of 
conducting reproducible research ( Poldrack et al., 2020 ) and 
stressed its value in GSP. While reproducibility is often used as 
an umbrella term in the literature, here we would like to provide 
more specific definitions for each of the dimensions of the process: 
reproducibility, replicability, robustness, and generalizability, as 
introduced by Community et al. (2019) . Scientific work can be 
defined as reproducible when the same results can be systemati- 
cally observed if the same analytic steps are carried out on the 
same dataset as the original study. Research is considered replica- 
ble if the same analysis performed on a different dataset (e.g., an- 
other group of participants) outputs qualitatively similar results. 
Robust scientific work occurs when the same dataset is used with 
a different analysis pipeline that nonetheless tackles the same re- 
search question as the original work (e.g., the original code in 
Python is translated to R, or when the same pipeline is run us- 
ing different analysis toolboxes) and similar results are obtained. 
Finally, generalizable work combines new but similar datasets, 
with new but similar analysis pipelines, to produce similar results. 

.3.1. Open Science Framework (OSF) 

OSF is a general platform that supports collaboration and repro-
ucibility by providing tools for efficient collaborative work and the
oordination of different actors across a wide range of activities. For
xample, it allows researchers to manage, document, and share all the
roducts of their workflow, possibly including the pre-registration of
he initial idea, code repositories, and intermediary reports, up to the
reprint of the final report. OSF is a free online platform developed by
he non-profit organization Center for Open Science. This and other re-
ources and general-purpose tools are listed in Appendix Table A1 . 

.3.2. The Turing Way 

The Turing Way (TTW, Community et al., 2019 , also see Appendix
able A1 ) provides instructional resources on how to conduct re-
roducible and replicable work. TTW is an open-source, community-
eveloped online collection of guides to reproducible, ethical, inclu-
ive, and collaborative data science. Here we highlight a selection of
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TW guides. (1) Guide for Reproducible Research provides general rec-
mmendations for implementing reproducible research practices, such
s storing and sharing the project’s computational environment, using
 version control system, and testing the code. (2) Guide for Project De-

ign covers how to effectively plan and design a research project. For
xample, it illustrates how to write a roadmap of the project’s goals, re-
ources, and needed actions, how to structure a project’s repository (e.g.,
older organization), and how to clearly set up contribution pathways
hen working openly. (3) Guide for Communication offers recommenda-

ions for communicating research to wider audiences (e.g., through blog
osts, podcasts, or social media), or to a specialized public (e.g., during
osters and conferences talks), in an inclusive and accessible way. (4)
uide for Collaboration provides advice on how to set up remote col-

aborative projects, while working openly and encouraging diversity. In
rder to prevent human conflicts overshadowing collective endeavors,
ne of these recommendations is to include a Code of Conduct that ex-
lains how contributors are expected to behave (and what to do if these
xpectations are violated). (5) Guide for Ethical Research discusses the
ain concepts and institutions associated with ethical research, and pro-

ides examples through real-world case studies. These guides are con-
inuously updated by the community, to accelerate the inclusion of new
eproducibility practices and GSP. 

.3.3. #EEGManyLabs 

The #EEGManyLabs project ( Pavlov et al., 2021 ) is a large-scale,
nternational replication effort. Concerns regarding the replicability of
sychological phenomena have been spreading to multiple subfields of
sychological science ( Open Science Collaboration, 2015 ). The scale of
he replication crisis in MEEG research has yet to be defined but, given
he relatively noisy data, challenges to acquire data from large numbers
f participants, and the analytical flexibility in MEEG analysis, MEEG
esearch is unlikely to be free from replicability concerns. In response
o this, the ongoing #EEGManyLabs project ( Pavlov et al., 2021 ) aims to
eplicate over 20 of the most influential psychophysiological EEG find-
ngs, in at least three laboratories each with largely increased statistical
ower. To ensure high quality, each replication effort takes advantage
f the Registered Reports format (see Section 2.2 ), uses standardized
perating procedures and analysis pipelines, and passes internal review
y the advisory board and original authors. 

This extensive commitment to collaborative and open research is ex-
ected to increase collective confidence in EEG research, inspire new
tandards for reporting EEG findings, provide researchers with a large
pen database of raw data and analysis pipelines for further explo-
ation, and an effect sizes catalog of various commonly studied EEG
henomena, including ERPs, in order to support the design and initia-
ion of novel research. Besides the direct outcomes, the project aims to
acilitate a shift towards collaborative psychological science and neu-
oscience. Studying increasingly subtle EEG effects requires large sam-
le sizes, which are generally not easily achievable in a single lab. For
EG research to continue to thrive in the 21st century, multi-site high-
owered studies are required, improving statistical power, reproducibil-
ty/replicability, and generalizability. 

In addition to #EEGManyLabs, similar collaborative efforts have
merged in the past several years, for example, multi-site replica-
ion initiatives by Nieuwland et al. (2018) , Nave et al. (2020) , and

hiteford et al. (2020) , or a recent Many Analysts initiative to inves-
igate effects of variability in the pre-processing and analysis pipeline
EEGManyPipelines). So far, they are still only sporadic, but may be the
eginning of a more widespread trend. These initiatives and resources
re listed in Appendix Table A1 . 

.3.4. ERP CORE 

The ERP CORE (Compendium of Open Resources and Experiments;
appenman et al., 2021 ; see also Appendix Table A1 ) is a freely available
nline resource providing stimulus presentation scripts, data recordings,
nalysis pipelines, and results for 6 well-known event-related potential
7 
ERP) paradigms. As such, it provides an example of a project that has
uccessfully replicated influential ERP experiments and made all mate-
ial freely available. 

The replicability of MEEG research can be increased by taking ad-
antage of information about optimal design and analysis provided by
rior studies. However, ground truth is not typically known, making
t difficult to know if the methods from a given prior study are actu-
lly optimal and generalizable. The ERP CORE was created to provide
 reference point for future research by taking widely replicated MEEG
aradigms, optimizing them, and providing information about them that
an be used as solid ground for subsequent studies. 

This open resource contains stimulus presentation scripts, data from
0 neurotypical individuals, and data analysis scripts for six common
EEG paradigms that are designed to isolate seven common ERP com-

onents: N170, mismatch negativity, N2pc, N400, P3b, lateralized readi-
ess potential (LRP), and error-related negativity (ERN). These effects
ave been replicated so many times that the question is not whether
hey exist, but rather how best to obtain them. The specific versions of
he paradigms in the ERP CORE were developed in collaboration with
ultiple experts with the goal of creating optimized versions that pro-
uce valid and reliable effects with approximately 10 minutes of data
ollection per task. Moreover, the online resource includes extensive
nformation about data quality and effect sizes that can be used as a ref-
rence for comparison with new studies and to conduct power analyses.
inally, data-driven recommendations have been provided for time win-
ows and electrode sites that are optimal for quantifying amplitudes of
ach component, which can be used to provide a priori analysis parame-
ers for future research. This may be particularly useful for investigators
cquiring MEEG data with low density/portable systems. 

The individual ERP CORE tasks can simply be inserted without
hange into other studies (e.g., large-scale clinical studies that include
n ERP measure) or used as a starting point for new tasks. The data pro-
essing pipelines can be used without change to provide a priori analysis
ethods or used as a starting point for new analyses. The relatively large

xisting dataset can be used to test new hypotheses (e.g., regarding cor-
elations among components) or to assess how new analysis methods
ork across a variety of paradigms. 

ighlights 2.3 . Reproducibility and collaboration 

• Tools exist to help prepare experiments in such a way to em- 
phasize reproducibility, replicability, robustness, and general- 
izability ( Box 2 ). 

• Open Science Framework is a discipline-agnostic, general- 
purpose platform for collaborative, open work. 

• The Turing Way is a community-driven guide to reproducible, 
ethical, inclusive and collaborative data science. 

• #EEGManyLabs is a large-scale Initiative for the replication of 
some of the most influential EEG papers. 

• ERP CORE is an open resource to reproduce and replicate com- 
mon ERP experiments. 

. Collecting, analyzing, reporting, and sharing 

Where the previous section considered planning and pre-planning
tages, this section considers the actual execution of the work: the col-
ection, analysis, and publication of data and results. For such work,
here exists a category of GSP that is very specific to the exact proce-
ures that are being performed, and the reader is encouraged to follow
hem where appropriate. We will cite some of them here. However, as
he main focus of this paper is on a more general form of GSP, this sec-
ion will primarily contain broader considerations. 

One key element of GSP is the understanding that hardly any deci-
ion with respect to a research project can be made without this decision
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ffecting other aspects: experimental design, data collection and storage
ethods, signal processing steps, analysis pipelines, documentation, and

eporting all interact with each other. 
With respect to data collection, Section 3.1 discusses the availabil-

ty of open acquisition protocols, considerations with respect to clinical
ecordings, the sharing of data, and the option of not, in fact, recording
ny data at all, depending on the needs of the project. Section 3.2 deals
ith software, providing help and resources both when writing code

rom scratch, and when choosing which MEEG software to use. Both
ewly written code and the choice of toolbox can have an impact on
ater steps in the project. Next, this section covers various aspects of data
nalysis: Signal processing ( Section 3.3 ), statistics ( Section 3.4 ), and ma-
hine learning ( Section 3.5 ). Here, high-level GSP primarily emphasizes
he general understanding of each method and its assumptions, espe-
ially considering its dependencies and interactions with respect to ex-
erimental design. Finally, Section 3.6 addresses standards surrounding
ata organization, analysis, and reporting. Making use, and contribut-
ng to the development, of such standards enable, among other things,
asier sharing, collaboration, and (mass) analysis during a project, and
ccurate documentation and reporting afterwards. 

.1. Data collection 

Data collection is often the next step after the project has been prop-
rly planned. Below, we describe GSP related to stimulus presentation,
resent open acquisition protocols for scientific studies, and introduce
ome relevant considerations for research studies in clinical settings. Of
ourse, not every scientific project requires acquiring new data. Open
epositories (where pre-recorded datasets can be downloaded free of
harge) or carefully designed simulations can allow some projects to go
ithout recording any data at all. Therefore, we will also present some

xamples of MEEG open data repositories and tools for data simulations.
hus, in general, GSP for data collection serves not just to record the
leanest possible data, but also to carefully consider what the needs of a
roject are, what data and procedures may already be openly available
nd verified, and which products of the current work may be of use to
thers. 

.1.1. Stimulus presentation and synchronization 

In MEEG experiments, the main experimental manipulation is usu-
lly done in software, e.g., by presenting different stimuli to the par-
icipants. For stimulus presentation and response registration, a wide
rray of software solutions is available, including online platforms. In
he context of GSP, it is important to be aware that even the same soft-
are may perform differently on different hardware with respect to a
umber of parameters, including latency and jitter. Therefore, the main
ecommendation here is to properly measure and document these pa-
ameters. This recommendation extends to all data that is simultane-
usly recorded, since any differences in timing between modalities may
eed to be corrected for during analysis. Bridges et al. (2020) provide
iming measurements for a number of stimulus presentation packages,
ut also stress the importance of making one’s own measurements. 

Besides stimuli, responses, and the MEEG itself, MEEG experiments
ay additionally record audio, video, motion capture, eye tracking, and

ny other modality deemed relevant. This can result in complex set-ups
here each modality is recorded by a different device, at a different

ampling rate, in a different format, and relying on a different internal
lock. As a result, time stamps, latency, and jitter may vary for all of
hese modalities. Both for analysis and later reproducibility, it is impor-
ant to measure these differences, and correct for them where possible.
he three most common ways for measurement and/or synchronization
re the following. 

The most accurate method employs dedicated hardware capable of
ecording and/or comparing multiple sources of data simultaneously.
or example, such a device can acquire physical measurements of vi-
ual and auditory stimuli using photodiodes and microphones, respec-
8 
ively, and compare their timings. Such physical measures may also be
ecorded directly by some MEEG amplifiers as auxiliary channels, al-
owing even jittered offsets to be corrected post hoc. 

When no direct hardware connection can be made between data
treams, one alternative is to introduce external triggers that can be
ecorded by all modalities separately. This creates one identifiable point
n time along which modalities can be aligned. Note that, because clocks
ay drift, the procedure may need to be repeated at set intervals. 

The lab streaming layer (LSL) ( Stenner et al., 2021 ) (see Appendix
able A1 ) presents a software-only solution to synchronizing different
odalities. This is a free and open source software framework that al-

ows for the transmission and collection of any number of data streams
cross one or more devices on a local network. One of its features is auto-
atic data synchronization, and an increasing number of manufacturers

f electrophysiological hardware support LSL by providing real-time ac-
ess to their data in this open format. However, LSL does not know the
ge of the sample when it is first recorded, or the delay between the
ard- and software: therefore, at least an initial hardware-based mea-
urement of this delay is still recommended. 

Also note that calibration test results represent research data in their
wn right, and the results of teams using different combinations of hard-
are and software can provide valuable information about optimal con-
gurations for certain kinds of tasks. This is particularly important in
xperimental protocols being implemented in multiple testing sites. To
ake optimal use of this information, software and hardware configura-

ions need to also be documented in detail, as discussed in Section 3.6 . 

.1.2. Open acquisition protocols and MEEG data collection 

Open acquisition protocols provide an open-science approach to op-
imizing the procedures and methods around data collection. MEEG
ecordings contain brain activity of interest, but these signals are tiny
nd are mixed with a variety of biological and nonbiological noise
ources that can dwarf the neural signals. Substantial effort and inge-
uity are required to extract reliable and meaningful brain signals from
he noise. Open acquisition protocols help formulate and communicate
ome of the required procedures. 

The most important step in dealing with noise is to record the clean-
st possible data ( Sinha et al., 2016 ). Post hoc solutions may exist, but
he most straightforward signal processing method for reducing noise

filtering — can cause significant distortion of the signals in the time
omain, shifting latencies and even producing artificial peaks and oscil-
ations ( Tanner et al., 2015 ; Widmann et al., 2015 ; Yael et al., 2018 ).
raditionally, some sources of noise in EEG recordings were reduced
y abrading the top layer of the scalp and adding conductive gel or
olution to improve the low-impedance contact between the electrode
nd the living tissue of the skin. Today many researchers use high-
mpedance systems for reasons of speed and safety. Unfortunately, these
ystems are prone to an increase in skin potentials and other sources
f low-frequency noise, especially when the recording environment is
arm, which can in turn reduce the statistical power of the study
 Kappenman and Luck, 2010 ). Another important technical factor is an
mpedance mismatch between an active EEG recording sensor and the
eference electrode, which increases the amplification of non-EEG sig-
als. Many other factors also impact the noise level, such as muscle
ension, movements, perspiration, and nearby electronic devices. Thus,
e are trying to record a needle of brain activity in a haystack of noise.

To promote optimal methods for clean data recording, a group of re-
earchers has published a detailed EEG recording protocol that provides
 precise description of the “special sauce ” that they developed over
ecades for maximizing the signal-to-noise ratio (SNR) ( Farrens et al.,
020 ). For example, participants are asked to vigorously comb their
calps prior to electrode application, and the electrode wires are ori-
nted during electrode application to minimize lead tension and move-
ent artifacts. Details like these do not typically appear in Method sec-

ions of journal articles. A revised version of the protocol is also available
ith modifications designed for safe testing during the COVID-19 pan-
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emic ( Simmons and Luck, 2020 ). In addition to sharing these tried and
ested methods, this protocol also serves as a model for other researchers
ho wish to publish their protocols. It is published on Protocol Exchange

see Appendix Table A1 ) — a free protocol repository that also provides
n automatic way to create a digital object identifier (DOI) and indexing
n Google Scholar. Other researchers are strongly encouraged to pub-
ish their recording protocols, which should increase transparency and
eproducibility as well as spreading more effective recording methods. 

In recent years, several scientific publications have provided guide-
ines for the collection of MEG data ( Bagic et al., 2011 ; Gross et al., 2013 ;
ari et al., 2018 ). In the clinic, patients present their own confounds and
ontaminants that must be accounted for, discussed in detail in the next
ection. Recently, ( Mosher and Funke, 2020 ) provided practical guide-
ines for the preparation of MEG instruments and patients or subjects for
outine operations. Among other things, this acquisition protocol high-
ights localization as a crucial issue in multiple ways. Recording individ-
al locations of the electrodes and, importantly, head position indicator
oils, e.g. using a polhemus stylus, is crucial for accurate source local-
zation. Also the "location" of the participant’s head as a whole needs
pecial attention: it must be deep inside the helmet, and must not be
llowed to "slump" out, lest proper brain coverage is lost and unrecover-
ble. Other considerations for MEG data collection are covered in more
etail in Mosher and Funke (2020) . 

.1.3. The clinical setting and intracranial data collection 

In the clinical setting, recordings collected from patients provide
nique opportunities not only to diagnose disease but also to advance
ur understanding of healthy brain functioning. However, working with
atients requires special considerations. For smooth clinical operations,
esearchers must respect the patient’s comfort, contemplate costs, and
nsure the collection protocol is designed and followed properly; other-
ise, not only is rescheduling the patient difficult, but the very act of

escheduling places undue stress on the patient, who may assume that
ome serious finding in their data has necessitated a second exam. For
utpatients (i.e., patients not admitted to a hospital), the procedures oth-
rwise follow the same GSP as for common acquisition protocols given
bove. For inpatients (i.e., hospitalized patients) additional considera-
ions are required, particularly for patients with surgery for the implan-
ation of invasive electrodes. 

Intracranial EEG (iEEG) signals are collected for the investigation
nd treatment of various pathological conditions including epilepsy,
arkinson’s and tumors. Epilepsy, in particular, often requires the place-
ent of dense arrays of electrodes subdurally (electrocorticography:
CoG) or intracerebrally (stereoelectroencephalography: SEEG) over
iverse cortical regions. In contrast with non-invasive techniques, in-
racranial recordings present several advantages such as: (1) enhanced
NR, (2) focal recordings directly from the neuronal source, (3) mini-
al signal distortion due to the skull and other tissues ( Fahimi Hnazaee

t al., 2020 ), and (4) the possibility to record from deep brain structures
 Buzsáki et al., 2012 ; Parvizi and Kastner, 2018 ). In addition to SEEG
r ECoG, some centers add microwire electrodes to benefit from signals
ith higher spatial and temporal resolution that give a precious and

are access to multi and putative single neuron activity in humans. Mi-
rowires are very sensitive and their use requires special attention at all
teps of the acquisition, from the implantation to the recording. For de-
ailed recommendations on microelectrode manipulation and technical
ettings, see Lehongre et al. (this special issue) . 

Research with iEEG data provides a unique opportunity to address
athophysiological, physiological or cognitive questions, but because
f their invasiveness, iEEG implantations are performed only with the
trongest consideration for the standard of care for the patient. This re-
uires carefully selected research protocols, i.e., protocols where iEEG
as a significant and specific benefit relative to non-invasive techniques
nd are suitable to the patients’ abilities. The “inpatient ” collection setup
s technically very challenging, from obtaining patient consent (explain-
ng the procedures) to data acquisition, and requires limited interference
9 
ith clinical procedures. The recruitment of participants is therefore
imited, requiring multiple months/years or the involvement of mul-
iple centers in order to accumulate an adequate number of patients.
or physiological/cognitive studies, the patient’s pathology and med-
cation regimen can affect the recorded activity relative to a healthy
articipant. Cognitive impairments can make the task difficult, frustrat-
ng the patient and impairing the protocol. The brain coverage of iEEG
lectrodes is individualized, focal, and sparse, and thus can complicate
roup studies (for further details see Dubarry et al., in the same issue ). 

Therefore, a close collaboration between clinical staff and re-
earchers is key to collecting high-quality iEEG data. Optimally, clini-
ians themselves are involved in the research protocols, and staff are
edicated to interfacing between clinicians and researchers (Mercier
t al., in the same issue). 

Simultaneous recordings of iEEG, scalp EEG, and/or MEG capitalize
n the strengths of each respective technique to describe the underly-
ng brain activity accurately (high SNR) and comprehensively (over-
ll view). First, from a clinical perspective, simultaneous recordings of
EEG with EEG and/or MEG can provide complementary information
egarding the epileptogenic zone ( Santiuste et al., 2008 ; Kakisaka et al.,
012 ; Gavaret et al., 2016 ). Second, in basic research, iEEG has some-
imes been considered as capturing the “ground truth ”, thus providing
ethodological advances for evaluating how known cortical activity is

aptured by non-invasive methods ( Koessler et al., 2015 ; Pizzo et al.,
019 ; Seeber et al., 2019 ). Finally, in systems and cognitive neuro-
cience research, the analysis of signal fluctuations evoked by individ-
al stimuli in depth and surface recordings can be exploited as a cru-
ial source of information for refining our understanding of the neu-
al activity underlying specific cognitive processes ( Dalal et al., 2009 ;
ubarry et al., 2014 ). Thus, understanding the relationship between sur-

ace signals and the spatiotemporal configuration of the underlying cor-
ical sources is central to both basic fundamental and clinical research. 

However, introducing scalp EEG and/or MEG simultaneous record-
ngs to an already highly-constrained recording setup for iEEG creates
 large number of important considerations. For scalp EEG, the pres-
nce of the surgical dressings can be challenging, and the set-up may
equire constant regelling of scalp electrodes and addition of physio-
ogical adhesive to ensure that scalp electrodes remain in place and
perational. Signal analysis must also take into account the dramatic
hanges in electric field caused by the implants, their burrholes and
raniotomies, which create large skull discontinuities ( Dalal et al., 2009 ;
irchberger et al., 1998 ). For MEG, conducting simultaneous recordings
ith iEEG requires a dedicated MEG facility housed in a clinical setting.
he complex setup presents obvious physical constraints (e.g., fitting
ulky iEEG electrode connectors within the MEG dewar) and significant
echnical challenges that occur when introducing metallic materials into
 shielded MEG environment. Because the patient is away from the clin-
cal monitoring unit, the exam must be carried out within a limited pe-
iod of time, usually not more than one hour. Furthermore, MEG signal
uality can be drastically affected by the presence of the iEEG electrodes
nd equipment (e.g., cables, connectors). To date there is only one group
hat has achieved the simultaneous acquisition of MEG, EEG and iEEG
ignals ( Dubarry et al., 2014 ; Gavaret et al., 2016 ). 

In summary, simultaneous intracranial and scalp recording sessions
equire complex logistics and organization between clinical staff, pa-
ient, technologists/research engineers, and clinicians to ensure smooth-
ess of procedures and minimization of time spent outside of the
linical monitoring unit (see also Mercier et al., in the same issue).
lanning such recordings should therefore only be considered when
learly motivated by the research hypothesis and strongly supported
y the clinical staff. Nonetheless, recordings in the clinical setting pro-
ide a unique opportunity to research various aspects of brain activ-
ty, with potentially significant benefits to understanding the human
rain. 
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.1.4. Open MEEG data repositories 

Data sharing is important for solid scientific progress
 Gorgolewski and Poldrack, 2016 ; Poldrack et al., 2017 , 2020 ).
hile significant resources have been invested in neuroimaging studies
orldwide, the number of projects which publicly share their data

emains limited. Over the last years, some initiatives have emerged to
penly share MEEG datasets. These repositories foster reproducibility
f results and help to answer specific explorative scientific questions
ot originally conceived at the time of data collection and study design,
ncreasing data usage and longevity. Furthermore, they allow data
ggregation, attaining larger sample sizes which could be used to
ncrease statistical power and for approaches involving artificial intelli-
ence (see Section 3.5 ). Open repositories also facilitate data access to
esearchers with less funding opportunities and resources, giving back
o society part of the value invested. Some examples of open MEEG
epositories are: Human Connectome Project (HCP) ( Larson-Prior et al.,
013 ), The Open MEG Archive (OMEGA) ( Niso et al., 2016 ), The
ambridge center for Ageing and Neuroscience (Cam-CAN) ( Shafto
t al., 2014 ; Taylor et al., 2015 ), The Temple University Hospital
EG Data Corpus (TUH EEG Corpus) ( Obeid and Picone, 2016 ), and
penNeuro ( Markiewicz et al., 2021 ). See more resources in Appendix
able A1 . 

.1.5. Simulating data 

Up to this point we have discussed data obtained by recording brain
ctivity from actual (human) participants or patients. However, there
re a number of reasons why the generation of so-called synthetic, toy,
r simulated data may sometimes be preferable to data from live partic-
pants. 

One practical reason concerns the cost of data collection. Record-
ng real data requires the development and validation of specific ex-
erimental paradigms, time to record from a sufficient number of par-
icipants, and the acquisition of all necessary supportive material in-
luding human resources. Simulating data can be much more efficient,
specially given the dedicated simulation tools available today. A com-
ination may also be useful, for example when testing planned anal-
sis pipelines on simulated data prior to implementing actual data
ollection. 

Another reason why it may be preferable or even necessary to use
imulated data instead of real data is that only simulated data can pro-
ide a fully known ground truth. To verify the accuracy of a method,
ts results need to be compared to a known truth. Unfortunately, with
EEG recordings no such ground-truth ideal of brain activity is avail-

ble. Therefore, researchers often construct synthetic data in such a way
hat its ground truth is known, allowing the idiosyncrasies of a method
o be properly evaluated. 

A number of software packages have recently become available
or creating simulated data using a number of fundamentally differ-
nt methods. For example, generative-adversarial neural networks can
imic existing EEG data ( Hartmann et al., 2018 ). Such neural networks

ake previously recorded real data and generate new synthetic data that
annot be distinguished from the original data it is based on. As such,
he resulting data does not contain a known ground truth, but can be
sed for data augmentation, data recovery, or up-sampling. The Vir-
ual Brain, on the other hand, uses interconnected neural mass models
ased on differential equations to simulate the low-level dynamics of
lusters of neurons ( Sanz Leon et al., 2013 ). This results in a potentially
ighly detailed ground truth. However, the most common method of
EEG data simulation employed in the past decades relies on a simpli-
ed forward model which describes MEEG as a combination at the scalp
f activity projected from a limited number of generally independent
ources in the brain. Following this approach, the simulation of MEEG
ata requires the generation of a number of source activations, the linear
ixing of these source activations to obtain scalp activations, and the

ptional addition of noise. By generating these three factors themselves,
cientists can be sure to know the ground truth of the data. Previously,
10 
esearchers often wrote their own code for such simulations, limiting
tandardization and reproducibility. However, one recent free and open-
ource MATLAB-based EEG data simulation toolbox, SEREEGA, is based
n this common method and provides a standardized, reproducible
ramework to simulate data in this fashion ( Krol et al., 2018 ). See
ppendix Table A1 for a selection of these and other MEEG simulation

ools. 
Note that any simulation approach is, itself, a method that makes

ertain assumptions. As such, it is a tool that provides certain func-
ionality, but cannot guarantee any particular quality or appropriate-
ess of the outcome. Each simulation needs to be performed for a par-
icular purpose, requires different parameters, and makes specific de-
ands with respect to different kinds of validity. As is the case with

ll tools and methods, it remains crucial to carefully consider a simu-
ation’s parameters and their appropriateness for the particular task at
and. For example, when a method that assumes linearity in the data
erforms accurately on simulated data that has been constructed using
 linear model, it has not been proven that this method will transfer
ell to real data, which may not exhibit the same linear characteristics.
hat said, simulation is a powerful tool, as it gives full control over the
ata. An appropriate simulation can provide a standardized way to ob-
ectively and reproducibly validate and evaluate the tools we develop
nd use. 

ighlights 3.1 . Data collection 

• Careful attention to data collection is crucial as conditions dur- 
ing data collection can affect data quality, with different con- 
texts and different modalities having different requirements. 

• It is important to verify the visual and temporal accuracy of 
the stimulus presentation and its recording, since this is often 
the main component in an experiment. 

• Recording clean data requires specific steps that can be, and 
have been, collected and published in open acquisition proto- 
cols. 

• Intracranial measurements provide unique benefits but are lim- 
ited to clinical settings, where special attention must be given 
to patient care and other factors. 

• Open repositories promote the reproduction of results and data 
reuse, increasing long-term value of invested efforts. 

• Sometimes a project is best served by using simulated data in- 
stead of real recordings, e.g., when a known ground truth is 
needed. 

.2. Software strategies for GSP 

Computer software is at the core of any MEEG data analysis project.
e it code that scientists write from scratch, or software toolboxes that
upport them, the main purpose of GSP at this level is generally to pro-
ote its reliability. However, correct and readable code plays a key role

n reproducibility as well. A further set of GSP is relevant when us-
ng other, published software. In this section, we first highlight a few
ey principles that scientists can benefit from when designing code, and
hen briefly review how today’s most widely used software toolboxes
ave developed and engage in GSP. In general, GSP for the proper writ-
ng and use of software can help provide clarity and transparency to
he research process, aid reproducibility, and verify the robustness of
esults. 

.2.1. Designing code for correctness and reproducibility 

A core ingredient of a scientific experiment is to document, in de-
ail, what steps have been performed, so that they may be reproduced.

hen the number of steps is small, the Methods section of an article may
ontain them in full. However, journal page limits ensure that this is fre-
uently not the case in modern MEEG studies, requiring Methods to be
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ummaries that omit many important details so as to not cloud the ‘big
icture’. This leaves the programming code itself as the authoritative
ource of the exact analysis procedures used in the collected data. With
odern programming languages and tools, code can serve this purpose
ell, if it is consciously written to do so . If, however, the programmer’s

ocus is solely on obtaining the desired output, without regard for trans-
arency in how results are obtained (e.g., documentation, easy to follow
rogram flow, version control), chances are high that the results will not
e reproducible, or maybe even wrong ( Miller, 2006 ; Casadevall et al.,
014 ; Pavlov et al., 2021 ). 

Much has been written already on the topic of how to produce code
hat clearly communicates analysis steps, and is applicable to stimulus
resentation and experimental control scripts. The reader is encouraged
o look at the writings of van Vliet (2019) and Wilson et al. (2014) . The
ost important thing is to have the mindset that scientific code is not

one until it is well organized . This has little to do with technical skills.
ather, this is about proper “housekeeping ”: making sure unneeded code
nd files are archived and removed from the main project, making sure
verything is named properly, long and convoluted scripts are cut up
nto commented modules that are easier for others to understand, etc.
s the analysis advances and new code is written, clutter inevitably ac-
umulates. Fortunately, there are tools for organizing files containing
ode, such as version control systems (see Appendix Table A1 ). With
ome discipline, these tools allow keeping track of every change made
o the code, and allows efficient collaboration at scale. Furthermore,
ore and more analysis toolboxes such as those presented below offer

cript generators to improve reproducibility and generate code that is
asy to understand and adapt ( Es et al., 2021 ), which reduces the burden
n the researcher. 

.2.2. Software toolboxes for MEEG data analysis 

A number of comprehensive software toolboxes exist for analyzing
EEG data. When considering reproducibility, the choice of an analysis

nvironment to work in should not be made lightly, as this decision may
ommit the data analyst for not only the current project but also future
tudies. Regardless, some points to consider are the required (and avail-
ble) level of programming skill and financial resources, the availability
f a graphical user interface, and the availability of local software sup-
ort and expertise. However, ultimately, not all toolboxes are equally
ell-suited for all types of analyses or modalities (EEG, MEG, fMRI…).
lthough the most common analysis methods are implemented in most

oolboxes, some offer more advanced algorithms in one or another en-
ironment, and more advanced projects may require applying methods
vailable across several toolboxes. In that case, care should be taken in
ssuring that all technical information is handled properly across envi-
onments. Monitoring and seeking advice from the community via the
elevant user forums is advisable. 

Table 1 highlights current differences and summarizes the most rel-
vant features of five of the most commonly used MEEG analysis en-
ironments to date. These toolboxes are under constant and active de-
elopment, and the developers cooperate to reimplement each other’s
ethods and reflect on the best ways to do so (e.g., Jaiswal et al., 2020 ,

r Delorme et al., 2022 ). These toolboxes all implement standard and
dvanced analyses, and enforce GSP in some way, but each with their
wn peculiarities, inherited from the laboratory traditions, equipment,
oftware environments and applications for which they were developed
see Box 3 ). Attention to these specifics may aid the decision for which
oolbox(es) to optimally use for a given project. 

In line with current GSP (see Section 3.2.1 ), these toolboxes can gen-
rate scripts and reports. In particular, reports that mix code and human
eadable narratives are handy tools that allow saving the results and
he code that generated them in one document, easily accessible, and
eadable with any document viewer. If these reports expose all (includ-
ng default) parameters and software versions, they can readily be used
o reimplement an analysis with minimal burden, even in a relatively
istant future. This feature is particularly important because backward
11 
ompatibility with previous versions can hardly be ensured. At the time
f publication, archiving of code and reports on to a public repository,
deally with a permanent digital object identifier (DOI), is a desirable
tep that greatly facilitates reproducibility. 

ox 3 . MEEG analysis software in brief 

Prior to computers becoming tools for MEEG analysis, "paper and 
pen" EEG data analysis was the norm. Acquisition hardware used 
to print time-courses on long rolls of graph paper or z-folding pa- 
per, from which amplitudes and even frequencies were measured 
with a ruler. Experimental data were noted in tables and statisti- 
cal analyses performed by hand. Computers became popular for 
MEEG data analysis in the later parts of the 20th century. Nu- 
merous toolboxes were created to enable complex data analysis of 
high-density MEEG datasets at a speed that earlier users could not 
have dreamt of. 

But with the computing power available today, it is easy to 
hunt for significant effects in the data, and ease-of-use can hide a 
method’s underlying complexity. Therefore, leading MEEG tool- 
boxes have all developed strategies to safeguard against most 
common errors. Below, we examine some widely used toolboxes 
for MEEG analysis. All five toolboxes can run complete analysis 
pipelines, are free and open source, and methods originally devel- 
oped with one toolbox are usually ported and usable in the others. 

EEGLAB ( Delorme and Makeig, 2004 ) is of the first, and cur- 
rently the most-cited open-source toolboxes for EEG analysis. It 
was created at the Swartz Center for Computational Neuroscience 
at the University of California San Diego by Scott Makeig and Ar- 
naud Delorme in the MATLAB scientific programming language 
(support for Octave starting in 2021). It is largely developed 
around independent component analysis (ICA), introduced to EEG 

by Makeig et al. (1997) . ICA is a popular blind source separa- 
tion method for both artifact rejection and data analysis (see also 
Martínez-Cancino et al., 2021 ). EEGLAB can incorporate indepen- 
dent components as virtual channels for both standard and ICA- 
specific source-level analyses. GSP: A simple graphical interface 
guides users through sequential processing steps. No programming 
experience is required, but scripts can easily be created for more 
flexibility. An open ecosystem of plug-ins allows the incorporation 
of new methods. 

FieldTrip ( Oostenveld et al., 2011 ) is developed by a team led 
by Robert Oostenveld at the Donders Institute (Radboud Univer- 
sity, Nijmegen, the Netherlands). This complete MEEG toolbox, 
also supporting human and animal invasive electrophysiology, is 
particularly well suited to oscillatory data analysis and source 
modeling. Its cluster-based permutation statistical analysis frame- 
work ( Maris and Oostenveld, 2007 ) is the current gold-standard 
method to correct for multiple comparisons in MEEG data analy- 
sis. A unique feature of this toolbox is its ability to handle trials 
of varying duration. GSP: The systematic separation of configu- 
ration parameters and data promotes a robust structure and aids 
reproducibility. Its command-line interface is suitable for experi- 
menters with basic MATLAB experience, as well as more advanced 
users. 

Brainstorm ( Tadel et al., 2011 , 2019 ) was originally created 
in MATLAB by Baillet et al. (2000) at the Laboratoire de Neu- 
rosciences Cognitives et Imagerie Cérébrale (LENA) in Paris. It 
has been entirely revamped, further developed, and profession- 
ally managed by François Tadel since 2008 in Paris, and in Syl- 
vain Baillet’s team at the Montreal Neurological Institute at McGill 
University in Montreal ( Tadel et al., 2011 , 2019 ), with large con- 
tributions from John Mosher (University of Texas Health Science 
Center at Houston) and Richard Leahy (University of Southern Cal- 
ifornia). Among others, it can handle MEG, fNIRS, scalp, and in- 
tracranial EEG within the same protocol. Its sophistical graphical 
interface includes an advanced pipeline generator and a modular 
"process" ecosystem that allows incorporating virtually any analy- 
sis method into its environment, including e.g. FieldTrip and MNE- 
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Table 1 
Widely used MEEG analysis software toolboxes. 

EEGLAB FieldTrip Brainstorm SPM MNE-python 

Toolbox link https://eeglab.org https://www.fieldtriptoolbox. 
org/ 

https://neuroimage.usc.edu/ 
brainstorm/ 

https://www.fil.ion.ucl.ac.uk/ 
spm/ 

https://mne.tools 

Environment MATLAB MATLAB MATLAB MATLAB Python 
Recommended programming level Beginners to advanced Intermediate to advanced Beginners to advanced Beginners to advanced Intermediate to advanced 
Interface GUI and scripting Scripting GUI and scripting GUI and scripting Scripting 
Supported modalities EEG, eye tracking, MoBI MEG, EEG, iEEG, fNIRS, Multiunit, 

motion capture, eye tracking, (f)MRI 
MEG, EEG, iEEG, fNIRS, Multiunit, 
motion capture, eye tracking, MRI 

(f)MRI, PET, EEG, and MEG MEG, EEG, iEEG, fNIRS 

BIDS support bids-matlab-tools ( Delorme et al., 
2021 ) 

data2bids ( github.com/fieldtrip/fieldtrip/ 
blob/release/data2bids.m ) 

BIDS tools ( neuroimage.usc.edu/ 
brainstorm/ExportBids ) 

en.wikibooks.org/wiki/ 
SPM/BIDS 

MNE-BIDS ( Appelhoff et al., 
2019 ) 

Online community and support ✔ ✔ ✔ ✔ ✔ 

Strengths - Advanced ICA integration - High flexibility - No progamming skills required - Dynamic Causal Modeling 
(DCM) 

- High flexibility 

- Mobile brain imaging (MoBI) - Frequency and time-frequency analysis - Advanced visualization & user interface - Advanced statistics (native GLM 

support) 
- Machine-learning (scikit-learn) 

- Advanced statistics inclduing GLM 

support 
- Non-parametric statistics - Automatic data organization - Bayesian source analysis 

framework 
- Source estimation 

- Numerous extensions - Sophisticated forward models - Interoperates with multiple MATLAB, 
Python packages 

- Support for fMRI, PET, VBM as 
well 

- Freesurfer integration 

References Seminal paper Delorme and Makeig (2004) , 
Delorme et al. (2011) 

Oostenveld et al. (2011) Tadel et al. (2011) Friston et al. (1994) ; Litvak et al. 
(2011) 

Gramfort et al. (2013) , (2014) 

Reproducible 
pipelines 

Pernet et al. (2021) Popov et al. (2018) Tadel et al. (2019) Henson et al. (2019) Jas et al. (2018) 
Meyer et al. (2021) Niso et al. (2019) Andersen (2018) 
Andersen (2018) van Vliet et al. (2018) 
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python. GSP: Powerful tools allow data exploration and visualiza- 
tion, and a database engine transparently handles data files. 

MNE-Python ( Gramfort et al., 2013 ) is the most recent ad- 
dition to this toolbox list, based on the older MNE-C Minimum 

Norm Estimate (MNE) ( Gramfort et al., 2014 ; Hämäläinen and Il- 
moniemi, 1994 ). Alexandre Gramfort (Inria Saclay-Île-de-France 
Research center, Paris) leads the development. It can handle MEG, 
EEG, iEEG (ECoG and DBS), EKG, EMG, and fNIRS among oth- 
ers, and interfaces with the Scikit-learn Python toolkit for ma- 
chine learning analyses ( Pedregosa et al., 2011 ). Its further ecosys- 
tem provides powerful analysis and visualization tools, including 
dipole fitting, linear methods, beamformers, and nonlinear ap- 
proaches, and interfaces with Freesurfer ( Dale and Sereno, 1993 ; 
Dale et al., 1999 ; Fischl, 2012 ). GSP: The object-oriented interface 
ensures a match between methods and data types, and a lively con- 
tributor community fosters further developments and improve- 
ments. 

Finally, SPM (Statistical Parametric Mapping) was originally 
developed for the analysis of positron emission tomography (PET) 
and subsequently fMRI data by Friston et al. (2007) . In addition 
to PET and fMRI, SPM allows analysis of MEEG data ( Litvak et al., 
2011 ) using the general linear model (GLM) and a Bayesian frame- 
work for source reconstruction. It furthermore supports analyses 
of effective connectivity and fitting biophysically realistic neu- 
ral mass models to MEEG data using dynamic causal modeling 
(DCM; Kiebel et al., 2008 ). It maintains GSP with support for both 
a graphical user interface, and scripting analyses for transparent 
data processing pipelines. 

Given that each toolbox is likely to have its own idiosyncrasies and
nique implementation even for ‘standard’ methods, it is GSP to per-
orm the same analysis pipeline in different toolboxes and compare their
utcomes in order to avoid results being affected by such issues. When
he same analyses across toolboxes support the same conclusion, this
trengthens the robustness of the results. 

ighlights 3.2 . Analysis software strategies 

• Code is often the only authoritative source of exact experimen- 
tal procedures, so well-written code greatly aids reproducibil- 
ity as well as correctness. 

• Choosing a software environment to analyze MEEG data re- 
quires considering the local lab environment, programming ca- 
pabilities, and the needs of the experiment being performed. 

• Toolbox environments evolve over time, and different imple- 
mentations of the same procedure can have different outcomes. 
It is important to document the precise version of any software 
package or coding environment, and to verify results in differ- 
ent toolboxes when in doubt. 

.3. Signal processing 

Signal processing is the step in the research lifecycle that extracts
rom the raw data the key information needed to answer the scientific
uestion being asked. Previously published GSP primarily concerns the
ature of the pitfalls or limitations with respect to various methods,
nd the recommendations to avoid them. However, these vary largely
epending on the specifics of the methods and characteristics of the
ecordings. Therefore, given the ever-growing number of tools routinely
sed to (pre)process MEEG data and the wide range of experimental
rotocols in the field, a systematic exploration and exhaustive account of
SP for all MEEG signal processing is not practically feasible (although a
umber of guideline documents exist, listed in Section 1 ). Instead, this
ection offers general high-level recommendations for better planning
nd designing the signal (pre)processing components of an MEEG study.
13 
First, the goal of the study (i.e., the question it seeks to resolve) dic-
ates a possible set of signal processing methods. From this set, the anal-
sis methods should be chosen before finalizing the experimental task
esign (e.g., see Section 2.2 ). This ensures that collected data can be
ptimally examined with the projected tools. For example, if the plan is
o examine slow oscillatory components in the signal, or run detrended
uctuation analysis on the data, it is crucial to make sure the temporal
indows that will be analyzed are long enough to allow for such anal-
ses, or that the data themselves are collected using appropriate analog
ltering. Although it is possible to consider one’s analysis options based
n the properties of the available data, this approach might result in “p-
acking ” ( Simmons et al., 2011 ) and other biases mentioned in previous
ections. 

Second, it is very important to understand how different signal pro-
essing tools transform the data, and what the transformed signal re-
ects or measures. This does not mean that everyone should master the
athematical and implementation details of the signal processing tools

hey use, but it is important to develop an intuitive understanding of these
ools and to be aware of the parameters and default settings associated
ith the various processing steps in the pipeline (e.g., what filter pa-

ameters were used and why). The minimal level of understanding of a
ool should include an appreciation of its limitations or pitfalls. A case
n point is the importance of understanding the limitations and speci-
cities of distinct connectivity metrics. For example, problems associ-
ted with metrics sensitive to zero-phase lag coupling, and the potential
imitations that arise with methods thought to overcome these very is-
ues, can be understood without formal training in mathematics, but
his is not obvious from the outset and requires practice ( Palva et al.,
018 ). 

Moreover, an issue that is sometimes overlooked is the feasibility of
onnecting various processing steps into one signal processing pipeline,
nd the order in which multiple operations are performed. Simple ex-
mples include the importance of computing time-frequency maps in
ingle-trial data before averaging across trials when investigating in-
uced responses ( Tallon-Baudry and Bertrand, 1999 ). Likewise, it is im-
ortant to verify whether certain pre-processing steps (down sampling,
ltering, ICA etc.) preclude the subsequent application of specific signal
rocessing tools ( Cohen, 2014 ). 

Third, when choosing certain methods, it is important to consider
mplicit assumptions about data properties and whether these are war-
anted. As an example, choosing to only compute power in a given fre-
uency band (e.g., theta-band) without examining the full power spec-
rum is usually based on the assumption that the data actually exhibit
pecific oscillations at that frequency. This assumption can be confirmed
y examining the entire spectrum for a peak at the frequency range of
nterest. As a matter of fact, several methods can verify the presence
f oscillations and distinguish them from the background 1/f compo-
ent of MEEG data, for example using Empirical Mode Decomposition
EMD, Quinn et al., 2021 ), Fitting Oscillations and One-Over-F (FOOOF,
onoghue et al., 2020 ) or Irregular Resampling Auto-Spectral Analysis

IRASA, Wen and Liu, 2016 ), as reviewed by Gerster et al. (2021) . 
Fourth, similar to replicating results using different toolboxes (as

entioned in Section 3.2.2 ), conducting the same analysis using alter-
ative signal processing methods can be a useful approach to test for ro-
ustness of an observed effect and potentially to troubleshoot analyses.
bviously, attempting to replicate (or compare) findings using multiple
ethods requires time and effort, and it cannot be done for all analysis

teps. However, it can be a useful practice that can be applied to a few
ey steps in the pipeline. Examples include using more than one source
stimation technique (or more than one implementations of the same
echnique, cf. Westner et al., 2022 ), or using both wavelet-based and
ilbert-based implementations of spectral analyses metrics. Likewise,
xploring a range of values for the parameters of a given analysis rather
han sticking to default values can be a way to probe the robustness of
he results as a function of parameter settings. If small changes in the
arameters lead to substantial changes in the results, one should not
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ystematially dismiss the results as unreliable, but rather view this as a
arning call for further investigation. 

A fifth, generally important habit to develop in connection with sig-
al processing is frequent data visualization. As often as possible, the
utput of intermediate analysis steps throughout the signal processing
ipeline should be plotted and carefully examined. This can be achieved
y using modular coding approaches with opportunities to examine the
utput of each signal processing stage (see also Section 3.2.1 ). This also
acilitates rapid trouble-shooting and in some cases might even trigger
ew ideas for data analyses. 

Finally, the recent proliferation of studies using machine learning
ML; e.g., brain decoding) has generated a lot of interest and excitement
n MEEG. However, the rise of "data-driven neuroscience" should not
cclude the fact that assumptions made about the data and the implicit
nowledge of the experimental paradigm both dictate analysis choices
nd/or parameter tuning (e.g., choice of extracted features, task design,
r target classes in decoding studies using supervised learning, etc.).
ata-driven approaches are not more "objective" methods, and their rise

s not a sign that hypothesis-driven neuroscience has come to an end:
oth approaches complement each other. The best practices and pitfalls
f MEEG signal processing in the context of ML analytics are largely
he same as those that apply when exploring data from other domains.
mong other things, one should watch out for violations of the strict
eparation between training and test data (e.g., avoid feature prepro-
essing that induces dependencies across the whole dataset) Section 3.5 .
resents more recommendations for the use of machine learning for
EEG data analysis. 

ighlights 3.3 . Signal processing 

• The method used to answer an experimental question sets spe- 
cific data requirements and should therefore be chosen before 
designing the experiment. 

• Data analysts should understand all signal transformation 
steps, assumptions, limits and pitfalls of the used methods, as 
well as the properties of the data itself. 

• Running the same analysis with several signal processing al- 
ternatives and visualizing the intermediate analysis steps can 
help assess the robustness of experimental results. 

.4. Statistics 

In experimental MEEG data analysis, statistics are mostly considered
s an inference tool. Given a particular experimental design, statistics
elp experimenters decide whether or not a given treatment affects mea-
urements, or if two groups have significantly different signals in a given
egion of interest (electrode, time window, frequency band, anatomical
ocation…). It is one of the challenges of GSP to keep these inferen-
ial statistics valid across the various situations in which they are used.
elevant topics are extensively covered in textbooks on statistics. Here,
e address GSP with respect to four more general statistical aspects of

merging MEEG analyses. 

.4.1. Data-driven and permutation-based analysis 

Over the last few decades, statistics have become a tool for data-
ining in exploratory (or so-called data-driven) analysis and whole-

rain inference, where mass univariate statistics ( Groppe et al., 2011 )
nd multivariate analysis ( Cichy et al., 2014 ; King and Dehaene, 2014 )
eal with the challenges of multidimensional MEEG data. These new
se cases have stimulated a number of changes in GSP. A well-
nown example is the adaptation of decision thresholds to the num-
er of tests being performed (the so-called multiple comparisons prob-
em). Performing tests across the entire data space increases the
14 
hances of reporting false positives. Methods such as family-wise er-
or rate (FWER) or false discovery rate (FDR) prevent this type of
nflation. Among those methods, non-parametric permutation-based
pproaches ( Maris and Oostenveld, 2007 ; Smith and Nichols, 2009 ;
assenhagen and Draschkow, 2019 ) currently outperform other meth-
ds ( Hayasaka and Nichols, 2003 ; Nichols and Hayasaka, 2003 ;
uoliväli et al., 2020 ). For decoding approaches and out-of-sample gen-
ralizability, permutations have also been used for a data-driven robust
stimation of “chance level ” ( Combrisson and Jerbi, 2015 ), adapting
or choices of cross-validation schemes (i.e., how to split testing and
raining sets) and decoders. For a comprehensive introduction to non-
arametric (permutation-based) statistical testing in MEEG, the reader
s referred to Maris and Oostenveld (2007) . 

.4.2. Simulations for prospective power analysis 

It was recently argued that neuroscience studies are often underpow-
red ( Ioannidis, 2005 ; Button et al., 2013 ; Szucs and Ioannidis, 2017 ),
esulting in inflated and unreplicable effect sizes. It may also waste
esources, as experiments are being conducted without ensuring that
roper power can be achieved. To avoid this, actual effect sizes are cur-
ently being measured and registered with projects such as ERP CORE, or
EEGManyLabs (see Section 2.3.3 ). In order to evaluate the detectabil-

ty of an effect of a particular size in a given experiment, simulations
re important. As already noted ( Section 3.1 ), simulations can gener-
te data containing effects and noise of known amplitudes, making it
ossible to assess statistical power as a function of e.g. sample size. In
 recent simulation-based study, Chaumon et al. (2021 , this issue) ex-
mined how the expected spatial properties of sources of MEG activity
ffect statistical power. This study clearly showed that spatial variabil-
ty in the source of the signal and the type of contrast measurements
trongly affect statistical power. Thus, taking into account individual
natomical variability of expected active regions in a given dataset is
ey in experimental MEEG studies, since the number of samples (trials
nd participants) that are required to achieve a given level of statisti-
al power vary several fold between areas with lower spatial variability
e.g., in the precentral sulcus) compared to regions with higher spa-
ial variability (e.g., lateral occipital cortex). Specific MEEG simulation
oolboxes ( Krol et al., 2018 ), or dedicated statistics simulation toolboxes
 Lakens and Caldwell, 2021 ) can be used for prospective power analy-
is. If hypothesis testing is conducted under a Bayesian approach, sim-
lations can help set a maximum sample size for a Sequential Bayes
actor design. In this design, the researchers run their analysis pipeline
fter data from each participant (or batch of several participants) are
ollected. Data collection ceases when there is strong evidence for ei-
her H1 or H0, or when the maximum sample size has been reached
 Schönbrodt and Wagenmakers, 2018 ). 

.4.3. Quantifying data quality 

A fundamental challenge in MEEG research – where signals are typi-
ally tiny relative to noise – is to obtain the highest-quality data, i.e., pre-
ise, reliable measurements of the brain signal of interest. Remarkably,
owever, the field does not have a standard and widely-used approach
o quantify data quality in a given study. In most published papers, there
s simply no way to objectively evaluate how “clean ” the data are. Two
pproaches have recently been developed to address this issue in the
ontext of averaged event-related electrical activity (but could easily be
pplied to magnetic data). 

One of these approaches takes traditional metrics of “reliability ”
rom psychometrics ( Rust and Golombok, 2014 ) and applies these
etrics to ERP amplitude or latency measures (e.g., Olvet and Haj-

ak, 2009 ; Pontifex et al., 2010 ). In psychometrics, reliability is typ-
cally defined as the proportion of the total variance across partici-
ants that is the “true score variance ” (true differences between par-
icipants, as opposed to differences due to noise in the data). This ap-
roach is particularly useful in individual differences research, which
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sks how well a neural measure correlates with some other measure
e.g., with a symptom score). The correlation between two variables is
traightforwardly limited by the psychometric reliability of the individ-
al variables. Thus, an MEEG measure must be reasonably reliable to
e used in correlational analyses. This approach has two limitations,
owever (see Luck et al. 2021 ). First, it provides a single reliability
alue for an entire group of participants and provides no information
bout the data quality for individual participants. Second, the reliabil-
ty value depends on the amount of true score variance present in the
roup of participants, making it difficult to generalize across subject
opulations. 

The second approach to quantifying ERP data quality is called the
tandardized measurement error (SME) ( Luck et al., 2021 ), and it is an
xtension of the general concept of the standard error of measurement.
he SME value for a given participant quantifies the precision of an
RP amplitude or latency score for that participant (i.e., the extent to
hich you would expect to obtain a similar score if you repeated the

xperiment multiple times for that participant). Unlike psychometric re-
iability values, the SME is computed individually for each participant.
owever, SME values can be aggregated across participants to quan-

ify the overall data quality of a given experiment and to estimate the
mpact of noise on the effect size and statistical power of the experi-
ent. The SME can also be combined with a new power calculator that

akes into account the number of trials as well as the number of partic-
pants ( Baker et al., 2020 ), making it possible to predict the effects of
hanging the number of trials in future experiments with the same ba-
ic paradigm. A basic version of the SME is now automatically provided
hen averaged ERPs are created by ERPLAB Toolbox (an EEGLAB plu-
in; Lopez-Calderon and Luck, 2014 ), and example code is provided for
ore complex applications ( Stewart and Luck, 2020 ). An important lim-

tation of the SME is that it is limited to amplitude and latency measures
btained from averaged waveforms and cannot be applied to single-trial
nalyses. 

.4.4. Multiverse analysis 

Section 2.2 already mentioned the "garden of forking paths", i.e.
he almost innumerable possible variations in recording, pre-processing,
nd analysis pipelines ( Gelman and Loken, 2013 ). This has, for exam-
le, recently been documented in a case analysis of the N400 ERP com-
onent ( Š o š ki ć et al., 2021 ) (see also Section 3.6.2 .). Of 132 analyzed
400 papers, each reported an idiosyncratic approach to acquisition,
re-processing, and analysis, with some methodological decisions being
o diverse that almost no two studies took the same approach. The re-
ults from any one specific pipeline could be misleading: for example, it
as been shown that sample size ( Boudewyn et al., 2018 ), EEG record-
ng systems ( Melnik et al., 2017 ), electrode impedance ( Kappenman and
uck, 2010 ), filters ( Tanner et al., 2015 ), statistical analysis ( Luck and
aspelin, 2017 ), and other methodological decisions ( Š o š ki ć et al., 2019 ;
andre et al., 2020 ) can all affect study outcomes. 

One of the approaches to addressing this issue ( Hoffmann et al.,
021 ) which has recently been put forward is multiverse analysis , which
nvolves applying a variety of pre-processing and analysis pipelines to
 given dataset and comparing the results of all pipelines, allowing
 more complete and a better theorizing of the constructs of interest
 Steegen et al., 2016 ). Recently, this approach was implemented in a
ew methodological studies of ERP components ( Š o š ki ć et al., 2019 ;
andre et al., 2020 ; Clayson et al., 2021 ), but this GSP can help as well
n studies which are not primarily concerned with methodology issues. 

ighlights 3.4 . Statistics 

• Current uses of statistics for univariate and multivariate data- 
driven approaches require adapting significance thresholds. 
a  

15 
• Simulations can help prospective statistical power analyses to 
aid experimental design. 

• Metrics exist to evaluate the data quality of event-related 
MEEG studies. 

• Multiverse analysis can be used to address the issue of the ‘gar- 
den of forking paths’ in MEEG research. 

.5. Machine learning for MEEG data analysis 

Artificial Intelligence (AI) is an ever-growing, transdisciplinary field
mpinging on many disciplines, including neuroscience. AI has produced
ome impactful applications in the MEEG field ( Cichy et al., 2014 ;
assabis et al., 2017 ; Lotte et al., 2018 ). This is particularly true for
ne of its emerging subfields ( Bolt et al., 2021 ), machine learning (ML):
ee, for example, Lemm et al. (2011) for an introduction to ML for brain
maging. However, its transdisciplinarity combined with the complexity
f physiological signals, inevitably could lead to important misinterpre-
ations ( Wang, 2019 ). Therefore, we here focus on a number of general
ssues and GSP with respect to ML as a tool for analyzing MEEG data. 

ML generally employs data-driven algorithms which find patterns in
ata without any expert input – or indeed, without any constraints.
hese algorithms thus optimize their outcome regardless of the data’s
neurophysiological) nature, leading to possibly unpredictable behav-
or ( Hedderich and Eickhoff, 2021 ; Roberts et al., 2021 ). For example,
nreliable or even false outcomes may arise in experimentally noise-
ontaminated data, as the algorithm may find noise to be a stronger
redictor than cortical activity. This is because noise in MEEG data is
ot always random: it may be systematically correlated to the conditions
f interest, leading the algorithm to use it to improve its performance
utcome. Such artifact-based outcomes may seem reliable, but turn out
o be meaningless for the neurophysiological effect one is trying to char-
cterize. 

Conversely, ML-based methods can produce unstable outcomes when
hey do not have enough data. Notably, deep learning-based MEEG anal-
ses ( Roy et al., 2019 ; Zhang et al., 2021 ) require a substantial amount
f data to ensure powerful analyses, which is hardly met by the current
atasets available ( Hinss et al., 2021 ). When increasing sample sizes,
are must also be taken to increase diversity in terms of participants, en-
ironments, and recording systems, in order to prevent the so-called “al-
orithmic injustice ” ( Birhane, 2021 ) which may otherwise result from
ata-driven methods. 

While the availability and ease of use of ML algorithms is on the rise,
.g., through the Scikit-learn toolbox and resources ( Pedregosa et al.,
011 ), the products of these algorithms often remain opaque. Their
lack-box nature makes it highly likely that their results are not in-
erpreted correctly due to a poor understanding of the origin of their
utcomes. Certain mathematical methods or functions, e.g., backward
odels in multivariate classification, have low to no neurophysiological

nterpretability and can lead to misinterpretations regarding the spatio-
emporal origin of the neural signals of interest ( Haufe et al., 2014 ).
o ensure that the results are reliable, researchers should verify that
lgorithmic outcomes are neurophysiologically interpretable. 

The above issues stress why signal (pre-)processing pipelines should
lso be used with a good understanding of their basic assumptions and
ffects on data so as to keep ML-based algorithm prerequisites fulfilled.
s an example, and a case-study to be avoided in the Brain-Computer

nterface community ( Roy et al., 2019 ), there are algorithms reaching
ery high classification rates thanks not to brain activity, but to muscle
nd/or ocular artifacts present in the same data. Here, experimental bias
s well as (inappropriate) data processing and poor evaluation of algo-
ithm outcomes lead to uninterpretable results in terms of brain activity.
side from signal processing, experimental design may also need to be
dapted for ML algorithms. For example, dataset slicing (mentioned in



G. Niso, L.R. Krol et al NeuroImage 257 (2022) 119056 

S  

k  

b  

d  

v
 

O  

t  

a

H

3

 

t  

l  

b  

r  

c  

m
 

i  

i  

f  

d  

a  

s  

I  

r
 

c  

a
e  

v  

e
 

n  

a  

o  

u  

t  

m  

t  

b

3

 

s  

(  

t  

a  

m  

2  

(  

f  

t  

a  

t  

d  

g  

t  

c  

r  

(  

a  

a  

P  

o  

p
n  

n  

S

3

 

q  

M  

b  

t  

s  

r
 

f  

S  

o  

a  

t  

(  

t  

s  

t  

t  

p  

B  

f  

i  

c  

2  

E  

l  

e  

b  

f  

B  

A
 

s  

i  

t  

d  

w  

f  

p  

o  

p

3

 

ection 3.3 . ) requires some conditions to be met (e.g., independence
ept between the training and testing sets). Yet, some paradigms (e.g.,
lock designs Lemm et al. (2011) ) or data processing techniques intro-
uce dependency between samples or across the whole dataset, thus
iolating these assumptions. 

One project that deals with the above-mentioned issues is the Mother
f All BCI Benchmarks (MOABB; see Appendix Table A1 ), which intends

o promote valid and reproducible BCI research through algorithm avail-
bility, benchmarking, ranking, and freely available datasets. 

ighlights 3.5 . Machine learning 

• ML algorithms are increasingly popular in MEEG contexts, in 
particular for data-driven analyses. 

• ML algorithms will always provide an outcome, but its rele- 
vance and accuracy depend on the quality and meaning of the 
input data, and may be difficult if not impossible to evaluate 
neurophysiologically. 

• Data preprocessing and experimental design need to take into 
account known ML pitfalls when ML-based methods are to be 
used. 

.6. Current efforts for data standardization, analysis, and reporting 

As mentioned in the introduction, one aim of this paper is to fos-
er a general understanding of GSP that goes beyond previously estab-
ished best practices. However, even general principles are sometimes
est aided using specific tools. Here we discuss a small selection of cur-
ent standards that provide a more specific, hands-on approach specifi-
ally for data organization and methods reporting, which have become
ore important in this era of open science. 

Data storage and organization is currently largely performed in an
diosyncratic manner, sometimes differently even within the same lab. It
s GSP, however, to organize all data in a consistent and structured way
ollowing the FAIR guiding principles ( Wilkinson et al., 2016 ), where
ata should be Findable, Accessible, Interoperable and Reusable. This
llows different analysis methods to have standardized access to it, while
haring and documenting it becomes easier and less prone to errors.
mportantly, it also benefits the experimenters themselves when they
evisit their data at later points in time. 

Even with access to the same data, it may not be possible to fully re-
onstruct a study, as journal articles generally do not include complete
nd detailed MEEG methods descriptions ( Clayson et al., 2019 ; Š o š ki ć
t al., 2021 ). This would not be a pressing issue if results were robust to
ariations in the recording, pre-processing, and analysis pipeline. How-
ver, as mentioned in Section 3.4.4 , this is not the case. 

It is for these reasons that several initiatives have emerged in the
euroimaging community to deal with dataset organization, description,
nd reporting, three of which are introduced in this section. In the spirit
f open science, these new initiatives have taken the form of living doc-
ments to keep up with ever-evolving perspectives of GSP, as well as
he development of new tools and analyses. Additionally, these tools all
ake use of the more recent option to provide rich supplementary ma-

erials to help researchers achieve the level of clarity that cannot easily
e met through methods descriptions in journal articles. 

.6.1. Data organization: BIDS 

The Brain Imaging Data Structure (BIDS) is a community-led
tandard for organizing, describing, and sharing neuroimaging data
 Gorgolewski et al., 2016 ). This standard facilitates data sharing and
he development of analysis tools in the neuroimaging community. As
n evolving standard, BIDS already supports multiple neuroimaging
odalities including MRI ( Gorgolewski et al., 2016 ), MEG ( Nisoet al.,
018 ), EEG ( Pernet et al., 2019 ), iEEG ( Holdgraf et al., 2019 ), and PET
o  

16 
 Norgaard et al., 2021 ). The BIDS specification includes concrete details
or folder and file naming, the choice of data formats, and the represen-
ation of metadata to be both human and machine-readable. Multiple
ccompanying data examples, and tools make it easy for researchers
o incorporate BIDS into their current workflows, maximizing repro-
ucibility, enabling effective data sharing, and ultimately supporting
ood data management practices (see Appendix Table A1 ). In particular,
here are numerous tools to deal with MEEG data: (1) BIDS converters in-
luded in MEEG analysis packages; (2) general tools for data querying and

elated operations , e.g., PyBIDS ( Yarkoni et al., 2019 ) and BIDS-MATLAB
 Gau et al., 2022 ); and (3) BIDS analysis tools , e.g., BIDS Apps, which
re containerized analysis pipelines that take BIDS-formated datasets
s their input and produce derivative data ( Gorgolewski et al., 2017 ).
resently, the BIDS Derivatives specifications are under active devel-
pment, setting the principles for organizing and describing outputs of
rocessing pipelines, thus broadening the BIDS standard beyond “raw ”
euroimaging data. BIDS is an open and inclusive community, and
ew members may start contributing to the initiative through the BIDS
tarter Kit (see Appendix Table A1 for links to useful resources). 

.6.2. Templates for reporting: ARTEM-IS 

As described above, achieving the level of detail sufficient to ade-
uately replicate an MEEG study has proven to be a challenging task.
etadata templates that require precise numerical/categorical data to

e filled can help to reduce error. Not only is template metadata clearer
han verbal descriptions, but the standardized data format enhances
earchability and simplicity for future metascience, data sharing, and
euse ( Gau et al., 2019 ; Styles et al., 2021 ). 

One such template is ARTEM-IS: an Agreed Reporting Template
or EEG Methodology - International Standard ( Š o š ki ć et al., 2020 ;
tyles et al., 2021 ). Its content and structure is based on an analysis
f social and technical challenges in methods reporting, with special
ttention to errors and omissions in the existing literature, as iden-
ified through systematic reviews. For example, in the Š o š ki ć et al.
2021) analysis of ERP methodology reporting, 100% of papers con-
ained at least some omissions and 46% of papers contained at least
ome ambiguities in their described procedures. The data items iden-
ified in this review were used to create an evidence-based ARTEM-IS
emplate customized for ERP research, that breaks down error-prone re-
orting items into smaller, clearer questions in a branching structure.
y its design, this template requires data to be entered in a particular
ormat, thereby improving the accuracy of documentation and standard-
zing the format of the reported details. The result is a living, version-
ontrolled document. The pilot version of this template presented at the
020 LiveMEEG conference consisted of 93 fields designed to capture
RP methodology up to the point of statistical hypothesis testing, in a
oosely formated spreadsheet ( Styles et al., 2020 ). Through community
ffort, at the time of writing in 2022 the template for methodology has
een greatly refined and is currently being integrated into a structured
ormat making up the backend of a webapp based on the model of CO-
IDAS Guidelines Checklist (see the section below and Appendix Table
1 ). 

Inspired by the learned lessons of checklist adoption in aviation and
urgery ( Styles et al., 2021 ), ARTEM-IS also includes a Statement, which
s a call to action, describing how if the community of MEEG practi-
ioners want to: (1) improve clarity; (2) improve accuracy; (3) enhance
ocumentation; and (4) deliver broad benefits, (5) community effort
ill be necessary. A link to the complete ARTEM-IS statement can be

ound in Appendix Table A1 . Signatories to the statement are invited to
articipate in the further development of the ARTEM-IS template, and
ther similar initiatives in all fields of science are welcome to adopt the
rinciples outlined in the ARTEM-IS Statement. 

.6.3. Data analysis and sharing: COBIDAS MEEG 

As already noted, MEEG communities have proactively champi-
ned GSP, with specialist society journals being the most common for-
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at for sharing them (e.g., Donchin et al., 1977 ; Pivik et al., 1993 ;
icton et al., 2000 ; Duncan et al., 2009 ; Gross et al., 2013 ; Kane et al.,
017 ; Hari et al., 2018 ). The Organization for Human Brain Mapping
OHBM) has developed GSP white papers in neuroimaging, which are
ollectively referred to as COBIDAS – an abbreviation for the “Commit-
ee on Best Practice in Data Analysis and Sharing ”. There is a version for
RI-based methods ( Nichols et al., 2017 ) and for MEEG ( Pernet et al.,

018 , 2020 ). 
COBIDAS MEEG guidelines first discuss pitfalls for data acquisition,

nalysis, and sharing for resting state and task-related studies. In gen-
ral, the COBIDAS Committee believes that guidelines should not be
rescriptive, as data (pre)processing pipelines vary by analysis method.
owever, the guidelines do include a set of Tables in the Appendix that

ist parameters that should be reported when preparing manuscripts and
rants. Experimenters can pick and choose which of these tables are rel-
vant at a given time. An used-friendly, Python-based checklist for MEG
r EEG studies supports this process. This is a complement to an already
xisting eCOBIDAS App for MRI-based data (see Appendix Table A1 ).
mportantly, COBIDAS MEEG is consistent with other neurophysiologi-
al guidelines, e.g., International Federation for Clinical Neurophysiol-
gy (IFCN) ( Kane et al., 2017 ), and uses BIDS-consistent terminology. 

COBIDAS MEEG guidelines differ in 3 main ways from existing MEEG
uidelines. First, they specifically include practices of reproducibility
nd data sharing. Second, they were prepared as a living document
ith 2 branches: (1) a WordPress blog for feedback and comments (see
ppendix Table A1 ), which remains open for the next incarnation of the
uidelines; (2) an Open Science Framework version-controlled White pa-
er ( Pernet et al., 2018 ). Third, the target population is much broader
han for previous guidelines and now also includes not only neuroim-
gers/neurophysiologists, but also the hardware and software engineers
nd physicists who write MEEG papers, theses, grants, and prepare Reg-
stered Reports and clinical trials, as well as those who review and eval-
ate them. 

Some problematic issues discussed in COBIDAS MEEG are: (i) omit-
ed critical data acquisition details (see also Š o š ki ć et al. 2021 ) from
anuscripts and grants; (ii) the distortion issue if data are acquired with
 physically-linked ear or mastoid reference; (iii) inadequate treatment
f statistical power and related issues, e.g., minimal effect size estima-
ion for features of interest, use of independent data from existing lit-
rature and/or pilot data for choosing regions/sensors of interest; (iv)
rotocols for rejecting artifactual trials, where trials need to be added
o the original design to compensate for the loss of statistical power;
v) display items, e.g., figures, that do not adequately show variability
easures, scales, or topography; (vi) inconsistent use of terminology –
articularly pertinent for ERPs and canonical MEEG frequency bands,
hich may change over the lifespan; (vii) underspecified or omitted re-

ults of statistical analyses – including model assumptions, test statistics,
ffect sizes, and statistical maps for mass-univariate and multivariate
nalyses ( Š o š ki ć et al., 2021 ). 

ighlights 3.6 . Data standardization, analysis, and reporting 

• Data standardization helps data organization, sharing, and 
analysis. 

• Standards in the form of ‘living documents’ can address ever- 
evolving issues and perspectives. 

• The Brain Imaging Data Structure (BIDS) is a community-led 
standard for organizing, describing and sharing neuroimaging 
data. 

• ARTEM-IS provides a template and tool for comprehensive re- 
porting. 

• COBIDAS MEEG provides guidelines and checklists covering all 
parts of MEEG projects, specifically including reproducibility 
and data sharing. 
r  

17 
. Beyond the signal 

Each scientific discipline has its own distinctive "way of doing
hings", and the more specialized a scientist becomes, the more they
otice the devil in the details. Much more could be written about opti-
izing experimental designs, data collection, signal processing, or any

ther specific aspect of the MEEG research cycle, but this is beyond the
eneral scope of this article. In fact, in this section, we take a further
tep back to focus on social and ethical aspects of our discipline in par-
icular, and science more generally, because these aspects, too, should
e addressed by GSP. 

The general principle is one of caring: for our work, participants,
ocieties, environments, and ourselves. As our branch of science deals
irectly with human beings, we have a duty of care for the duration that
hey are with us in the laboratory, and for as long any effects may linger.
ur concern for human well-being however should extend beyond par-

icipants to all those potentially affected by our research, including our
wn selves and our wider social communities. This section will provide
ome perspectives on how a step back from scientifically focused details
an improve our work, our field, our society, and more. Section 4.1 ad-
resses how neuroscience may influence societies for good or for bad,
s neurotechnology becomes increasingly capable and attracts increas-
ng commercial interest. A critical, philosophical look on some aspects
f progress in neuroscience is outlined in Section 4.2 , emphasizing the
eed to question the very nature of the work, and ensure its relevance.
n Section 4.3 , slow science is discussed, a movement and way of think-
ng that aims not just to fight the symptoms of current issues, but to
ethink academia in a broader light. Finally, Section 4.4 touches upon
he ever-relevant, broader environmental considerations that need to be
art of all decision making. 

.1. Social responsibilities and neuroethics 

Hume (1739) famously argued for the distinction between "is" and
ought", separating factual judgements from moral ones, and reinforc-
ng the division of scientific disciplines in "pure" and "applied" sci-
nces ( Proctor, 1991 ; Kincaid et al., 2007 ). There was, and still per-
ists, an idea that these “pure ” sciences can be "value-free", or iso-
ated from any moral considerations ( Douglas, 2014 ). Irrespective of
his larger philosophical debate, GSP requires an awareness of the
oral implications and potential (mis)uses of scientific findings, even
hen no immediate application is being investigated. With direct-to-

onsumer neurotechnology becoming increasingly available to the gen-
ral public ( Ienca et al., 2018 ), and with large international social media
nd tech companies investing in neurotechnology ( Moses et al., 2019 ;
usk, 2019 ), the possible ethical, legal, and societal implications of neu-

oscientific research are currently more pressing than ever. 
BCIs, in particular, allow neural correlates of mental states to be

dentified and used in real time ( Wolpaw and Wolpaw, 2012 ), and
re a major focus of current consumer applications. With this technol-
gy, among other things, neuroprosthetics can be developed to sup-
ort the motor-impaired ( Wolpaw et al., 2002 ), and the devices we
se every day can be made to automatically adapt to our mental states
 Zander and Kothe, 2011 ). However, it has also been shown that infor-
ation can be obtained from brain activity that people did not intend

o communicate, or did not wish to reveal ( Schultze-Kraft et al., 2016 ;
ander et al., 2016 ). As such, neurotechnology may present a danger
o the privacy of thought ( Mecacci and Haselager, 2019 ). Furthermore,
t is possible for a BCI-based device to actively attempt to manipulate
 human participant’s mental state, or to extract specific information
rom their brain activity, potentially without their knowledge or consent
 Fairclough, 2017 ; Krol et al., 2020 ). This approach is, for example, the
asis of the "guilty knowledge test", which attempts to identify incrim-
nating response patterns in a criminal suspect’s evoked brain activity
 Rosenfeld et al., 2008 ). It is not always clear whether such tests cur-
ently violate any existing rights, such as those that protect against un-



G. Niso, L.R. Krol et al NeuroImage 257 (2022) 119056 

r  

H  

l  

w  

t  

o  

t  

v  

W  

t  

l  

o  

r  

i
 

t  

o  

i  

t  

z  

a  

n  

i  

r  

t  

s  

s  

H  

a  

C  

o  

n  

b  

p  

(
 

p  

a  

g  

t  

(

4

 

c  

t  

i  

t

 

 

 

 

 

 

 

 

 

 

i  

1  

f  

u  

a  

s  

o  

n  

r  

e  

d  

t
 

t  

b  

a  

s  

c  

d  

o
 

t  

i  

s  

n  

–  

c  

d
 

E  

o  

a  

i  

e  

w  

o  

(  

a  

r  

c  

i  

c  

2  

n  

c  

w

4

 

s  

n  

t  

t  

a  

c

4

r

 

a  

M  

t  

p  

w  

l  

d  

t  

(  

2  

p  
easonable searches or self-incrimination ( Pardo and Patterson, 2013 ).
owever, what is legal is not necessarily morally right, and regulatory

aw generally lags behind new scientific developments. In the meantime,
e should thus consider whether or in what way our work might be used

o violate not just existing laws, but also any generic humane principles
r human rights that do not yet exist, but ought to exist. The right to men-

al integrity is one such proposed right that MEEG researchers may inad-
ertently violate, or allow others to violate ( Ienca and Andorno, 2017 ).
ith this in mind, the Republic of Chile recently became the first coun-

ry in the world to pass a specific “neurorights ” law ( Strickland and Gal-
ucci, 2022 ). Other issues related to neuroscience concern the potential
f "brain hacking" ( Ienca and Haselager, 2016 ), the influence of neu-
otechnology on our sense of agency ( Haselager, 2013 ), and the societal
mpact of cognitive enhancement ( Hyman, 2011 ), to name a few. 

As such, neither neuroscience in general, nor MEEG research in par-
icular, exists in moral isolation: indeed, neuroethics has a long history
f thought on this topic. Scientists and researchers are encouraged to
dentify and discuss the potential ethical, legal, and societal implica-
ions of their research in their publications. In this vein, the Organi-
ation for Economic Co-operation and Development (OECD) recently
dopted the Recommendation on Responsible Innovation in Neurotech-
ology ( OECD, 2019 ), which contains nine principles aimed at guid-
ng researchers to minimize societal risks. Among other things, it asks
esearchers to consider the multidimensional societal implications that
heir work may have, to anticipate potential misuses, and to assess the
afety of new neurotechnological developments. This process can be
upported by, for example, the five criteria introduced by Mecacci and
aselager (2019) related to accuracy, reliability, informativity, conceal-
bility, and enforceability, suggesting that we answer such questions as:
an this technology we are developing be used without the knowledge
f the subject? Can it be used against their will? Here, the issues may
ot be obvious: even "classic" evoked potentials such as the P300 may
e abused to extract information from the brain of unwitting partici-
ants ( Martinovic et al., 2012 ) using methods such as cognitive probing
 Krol et al., 2020 ). 

Accepting that moral judgment of our work is unavoidable, we can
roactively integrate ethical and societal considerations in our research
nd curricula, and look at neurotechnology not as a means (e.g., to
ather data) but as an end: we can use the possibilities afforded by
his technology to actively and explicitly "promote human flourishing"
 Kellmeyer, 2018 ). 

.2. The map and the territory 

Collecting clean data, computing accurate scores, and optimizing de-
ision boundaries are some of the cornerstones of current scientific prac-
ice. However, results without a theory to interpret them are of limited
nterest, and there is currently a glaring need for robust psychological
heories for progress in the cognitive sciences. 

“... In that Empire, the Art of Cartography attained such Perfection
that the map of a single Province occupied the entirety of a City, and
the map of the Empire, the entirety of a Province. In time, those Un-
conscionable Maps no longer satisfied, and the Cartographers Guilds
struck a Map of the Empire whose size was that of the Empire, and
which coincided point for point with it. The following Generations,
who were not so fond of the Study of Cartography as their Forebears
had been, saw that that vast map was Useless, and not without some
Pitilessness was it, that they delivered it up to the Inclemencies of
Sun and Winters ” ( Borges, 1946 ) 

This text of Borges was used by Umberto Eco for an essay on the

mpossibility of drawing a map of the empire on a scale of 1 to 1 ( Eco et al.,
995 ). There Eco argues that, once folded, the map may not depict the
olded map itself and may thus be unfaithful and useless. This reminds
s of Heisenberg’s uncertainty principle, in the sense that the potential
ccuracy of our knowledge is fundamentally limited. Eco goes on to
18 
tate that when the map is installed it does not represent the map itself
ver the territory. This is a sort of Russell’s paradox applied to maps: a
ormal map cannot map itself. In other words: (a) every 1:1 map always
eproduces the territory unfaithfully; (b) when the map is realized, the
mpire becomes unreproducible; and (c) every 1:1 map of the empire
ecrees the end of the empire as such and therefore is the map of a
erritory that is not an empire. 

If we replace the word empire with the word brain , we come closer
o the topic of interest here, and recall that we do not study the brain,
ut different representations of the brain. Paraphrasing Eco, recording
ll individual neurons of the brain, may decree the end of the scientific
tudy of the brain as such and therefore a scientific field that is not
oncerned with the brain, but with something else that is qualitatively
ifferent from it (e.g., individual neurons), and that misses its higher
rder emerging properties (e.g., the mind). 

This literary and philosophical escapade brings us to examine no-
ions of orders of magnitude in science. In general one can observe an
ncrease in the number of almost everything (but the questions): from
ingle case (or single cell) studies to Big Data, with an increase in all
umbers (of brains, of bytes, of CPUs), do we truly understand the brain
not mentioning the mind – any better by just increasing numbers? Or

an we learn to ask different scientific questions from Big Data, to solve
eeper questions in a way we have not done previously? 

These questions bring up the role of theory in scientific investigation.
EG and MEG as used in cognitive sciences rest on two fundamental the-
retical domains. On the one hand, the MEEG physics is well understood
nd electro-magnetic fields are accurately predicted from the underly-
ng neural sources ( Ilmoniemi and Sarvas, 2019 ). Computational mod-
ls with varying levels of detail therefore match observed MEEG fields
ith remarkable accuracy (see, e.g., Fig. 1 in Wendling et al. (2016) ),
r simulation frameworks such as the Human Neocortical Neurosolver,
 Neymotin et al., 2019 ). On the other hand, cognitive MEEG studies
re concerned with explaining psychological phenomena and, in this
ealm, build on much weaker and controversial theories. The "theory
risis" in psychology ( Eronen and Bringmann, 2021 ) and beyond is lim-
ting progress here, and arguably a fundamental cause of the replication
risis. A rigorous method for theory construction (e.g., Borsboom et al.,
021 ) is needed and should be part of our GSP, just like legends and an-
otations on maps make the art of cartography much more than merely
apturing every detail of the world in an objective, but meaningless,
ay. 

.3. Rethinking our narratives: the challenge of “slow science ”

Even as the open science movement participates in improving re-
earch quality, notably by developing GSP, the underlying causes of the
eed for such GSP in the first place remain largely unquestioned. In
his section, some aspects of the culture of speed , the main research cul-
ure in academia, are described. As demonstrated with several examples,
dopting the perspective of slow science can help challenge our research
ulture in a deeper way. 

.3.1. The negative consequences of the culture of speed and the limited 

esponse of the open science movement 

Publication numbers in academia have exploded as more scientists
re publishing more papers per capita than in the past ( Bornmann and
utz, 2015 ). Our current system, in which research is awarded in a way

hat favors this acceleration, shapes research practice dramatically. In
articular, it favors a "culture of speed": incentivizing data accumulation
ith no time for reflection, fostering a competition that obstructs col-

aboration, requiring time to write grant applications instead of actually
oing science. It also has negative consequences for research quality:
he use of metrics to decide grant funding or hiring encourages abuse
 Smaldino and McElreath, 2016 ) and strategic gaming ( Chapman et al.,
019 ), and decreases trust in publication quality ( Vazire, 2017 ). Im-
ortantly, it also substantially impacts researchers’ mental health, with
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ncreased levels of stress and frustration as a consequence of lack of
ime, work-overload, often coupled with fixed-term contracts, in uncar-
ng work environments (see Shaw and Ward 2014 ) for an overview of
his topic). 

Critically, this culture of speed creates strong incentives against the
SP presented in this document, which can lead to questionable research
ractices that have led to the replication crisis. The open science move-
ent is the most widely accepted response to the replication crisis, and
 strong remedy against questionable research practices. However, by
tself, it has a limited impact on these incentives. The incentives it of-
ers to encourage openness, integrity, and reproducibility, and the tools
t provides to solve current problems (reviewed in this paper and else-
here, e.g., Renkewitz and Heene, 2019 ), may not suffice to address the

oots of the culture of speed. Without a deeper reflection on these roots,
ewly created incentives may become tomorrow’s new metrics, enabling
open science washing" or turning GSP into a list of boxes to tick to get
ne’s work published or funded. As an example, the way in which the
pen science movement participates in the creation of new publication
ypes (preprints, registered reports), contributing to the rise in publica-
ion numbers mentioned above, currently remains largely unquestioned.
espite offering positive steps towards more transparency and better sci-
ntific practice, it fails to address the origins of the problem. 

.3.2. What do we do? A slow science perspective 

The slow science philosophy offers a broad response to the cul-
ure of speed ( Stengers, 2013 ). Slow science aims to transform research
nd teaching into a “sustainable collective praxis ” ( Salo and Heikki-
en, 2018 ). This movement emphasizes the collective aspects of science
ather than protecting one’s own ideas, fostering reflection about prac-
ices and the relevance of research questions. By definition, slow science
romotes more open science, where the goal is not to try to ‘fix’ but to
ethink academia. 

Importantly, slow science is not about forcing scientists to slow down
heir publication pace, even though some explicitly suggested this might
e a desirable option ( Frith, 2020 ). It is also not about returning to
ome idealized golden age where scientists could focus deeply on their
ork, immune from the needs of society and productivity imperatives.

nstead, slow science is about resisting the culture of speed and the idea
f "wasting time" with futilities ( Stengers, 2013 ). There is a need to
uestion those narratives and how time pressure and time fragmenta-
ion ( Ylijoki and Mäntylä, 2003 ) affects creativity and critical thinking
n top of jeopardizing wellbeing ( Maestre, 2019 ). For instance, over-
ork and multitasking are traditionally celebrated, and work-life bal-
nce and mental health have yet to be taken more seriously ( Berg and
eeber, 2015 ). To foster those discussions and reflections, there have to
e spaces where one can imagine and experiment with alternatives to
he current system, even at a local level. 

Initiatives already exist for paving the slow science way (see links
n Appendix Table A1 ). Some examples are research frameworks that
ave emerged from group discussions at conferences: the San Francisco
eclaration on Research Assessment (a.k.a. DORA) promotes ways of
valuating researchers that go beyond publication metrics, or the HI-
AR Research Alliance, that aims to make research and innovation more

ntegrated and aligned with society’s critical problems. These initiatives
ave already been acknowledged by several institutions (see their re-
pective lists of signatories or members). Other initiatives include dis-
ussion groups where scholars from different disciplines discuss and re-
hink academia and imagine a healthier research culture. Among them
re such groups as Slow Science in Belgium or the Better Science initia-
ive in Switzerland. Both groups have been closely working with their
ost universities to improve their working conditions or offer train-
ng programs. Finally, some researchers have created independent in-
titutes: the Ronin Institute that promotes research outside traditional
nstitutions, or IGDORE, the Institute for Globally Distributed Open Re-
earch and Education, whose objective is to improve the quality of sci-
nce, science education, and scientists’ quality of life. Close to this phi-
19 
osophy, the Learning Planet Institute is exploring new ways of doing
esearch, learning, or teaching while connecting with other parts of the
ociety (industries, citizens, etc.). These institutes show how hybrid re-
earch, both inside and outside academia, is a viable option to consider,
hallenging the traditional pipeline in academia. 

These existing networks, discussion groups, and more radical al-
ernatives are all concrete examples that individual scientists can, at
heir level, promote healthier research practices and improve condi-
ions. These examples should encourage scientists to explore other prac-
ices, question their relationship to academia, and start conversations
ith colleagues. For instance, the Wellcome Foundation developed a
iscussion kit, the Café Culture Initiative, to foster discussions about
eimagining the research culture and working together. 

In a nutshell, more needs to be done than just ‘fixing academia’ or im-
roving scientific practice. Narratives, research frameworks, and prac-
ices need to be actively rethought. As summarized by Lancaster et al.
2018 , p. 10), “Making science better is not just about “creating better in-

entives ”, but a collective cultural shift beyond viewing competition and in-

ividualistic success as the sole defining feature of science. ”

.4. GSP for environmental sustainability 

Finally, there remains an important aspect of GSP that we have not
iscussed. Current scientific practices, like many human activities, are
n an unsustainable long-term path. The current ecological collapse
The Intergovernmental Platform on Biodiversity and Ecosystem Ser-
ices (IBPES) report, Díaz et al., 2019 ) and climate change (Intergovern-
ental Panel on Climate Change (IPCC) reports) is leading planet Earth

o a disastrous state. GSP for the future therefore includes immediate
ustainable practices in all fields of science. To this end, many collec-
ive actions are taking place around the world. Over the past decade,
ost academic institutions and research foundations have created de-
artments and initiatives dedicated to studying and acting for environ-
ental sustainability on campuses and in research centers (see Appendix
able A1 ). These institutions, along with academic grassroots collective

nitiatives, are important local actors that could change GSP by setting
ocal research agendas on more sustainable paths ( Rae et al., 2022 ). As
reliminary as these actions may be, they signal that the scientific com-
unity is progressively moving towards incorporating environmental

onsiderations in the definition of GSP. 

ighlights 4 . Beyond the signal 

• No scientific discipline is free of moral implications, and MEEG 

research must consider established and proposed rights to e.g. 
mental integrity. 

• Technological innovations and increases in quantity are not 
goals in and of themselves: questions, hypotheses, and theories 
remain paramount. 

• The culture of speed creates wrong incentives that favor quan- 
tity over quality and competition over collaboration, leading 
to a stressful and uncaring work environment. 

• A slow science perspective can help to rethink academica in- 
stead of merely fixing it. 

• GSP must take environmental aspects into account. 

. Discussion 

This paper summarized select contributions to the 2020 LiveMEEG
onference, which brought together international experts to discuss cur-
ent progress and perspectives on good scientific practice in MEEG re-
earch. Virtual sessions and panels covered GSP across all stages of the
esearch lifecycle, as well as broader topics beyond experimental work,
uch as societal responsibilities and research culture. Strikingly, a com-
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on theme emerged regarding the value of collaborative work. Many
ontributors emphasized the benefits to be had from reaching out be-
ond office, lab, and institutional walls, and beyond disciplines; from
everaging each other’s competence, resources, and perspectives. 

Indeed, there were many explicit suggestions of tools and methods
or collaborative work. For example, collaborative meetings where sci-
ntists support each other to overcome human biases at early stages of
xperimental planning are proposed; pre-registration explicitly invites
ommunity feedback at early stages of the research process; different
abs are encouraged to work together to reproduce findings and pro-
ide resources to the community; guides are being developed to culti-
ate further collaborative projects; and scientists across disciplines are
eimagining science and academia in the current century. 

Of course, not all work can be done collectively. Yet, even from those
SP perspectives that do not explicitly deal with shared work, a gen-
ral theme of collaboration emerges – a common collaborative mindset,
s it were, from which many different GSP guidelines emerge almost
aturally. This mindset encourages scientists to see themselves not (pri-
arily) as solitary experts in their specific field, but as part of a larger
ovement that ultimately shares the same goals of renewing truth and
nderstanding. In essence, scientists are encouraged to either seek out
ollaborators where possible and appropriate, or otherwise imagine in-
isible or future collaborators who are eager to join or continue – but
ot usurp – the project. 

The mere idea of having collaborators, imaginary or otherwise, al-
ost automatically leads to practices that enable transparency, open

cience, and reproducibility. That is, assuming that the project at some
oint will be joined by or passed on to someone else provides clear, al-
ost automatic incentives to uphold GSP: collaborators must be able

o access previous work, understand the full experimental philosophy,
etrace analysis steps, and verify outcomes. As such, all efforts made
owards reproducibility, be it by following known protocols, by provid-
ng annotated data, legible code, or full open resources, are in essence
ollaborative endeavors, anticipating potential collaborators. Even sci-
ntific publication and citation practices can be seen as a continuous
ollaboration across time and space, building upon previous work and
reating new work for others to continue to build upon. Finally, future
ollaborators should, wherever possible, be saved from the disappoint-
ent of finding an avoidable flaw in the work on which they are build-

ng their own, emphasizing the need for GSP also in the methodological
etails. 

Now a key challenge for the shift towards a fully collaborative cul-
ure in MEEG is the need for coordination. Scientists have too long been
rained to think and act individually, or in small mentor-advisee pairs,
nd generally lack training in cooperative action. Leading or contribut-
ng to a collective effort is in no way as easy and simple as conducting
n individual project. This is perhaps where other areas of science and
ociety can aid the MEEG community. 

Thus, the collaborative mindset links perfectly with traditional GSP,
ut it also encourages scientists to “think big ” in terms of developing
ew GSP, and guides collective efforts in open communities to develop
orldwide standards, movements, and cultures. In summary, the many
iveMEEG 2020 contributors have shown that going forward, the search
or "Eureka!", or "I have found it", is best envisioned as an endeavor to,
nstead, reach " we have found it" – "Eurékamen!" 
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itation diversity statement 

Recent work in several fields of science has identified a bias in cita-
ion practices such that papers from women and other minority schol-
rs are under-cited relative to the number of such papers in the field
 Bertolero et al., 2020 ; Chatterjee and Werner, 2021 ; Dworkin et al.,
020 ; Fulvio et al., 2021 ). Here we sought to proactively consider choos-
ng references that reflect the diversity of the field in thought, form of
ontribution, gender, race, ethnicity, and other factors. First, we ob-
ained the predicted gender of the first and last author of each reference
y using databases that store the probability of a first name being carried
y a woman ( Dworkin et al., 2020 ; Zhou et al., 2020 ). Expected propor-
ions estimated from five top neuroscience journals since 1997 are 6.7%
oman(first)/woman(last), 9.4% man/woman, 25.5% woman/man,
nd 58.4% man/man ( Dworkin et al., 2020 ). By this measure, our refer-
nces contain 10.42% woman/woman, 13.57% man/woman, 15.61%
oman/man, and 60.4% man/man. This method is limited in that

a) names, pronouns, and social media profiles used to construct the
atabases may not, in every case, be indicative of gender identity and
b) it cannot account for intersex, non-binary, or transgender people.
econd, we obtained the predicted racial/ethnic category of the first and
ast author of each reference by databases that store the probability of a
rst and last name being carried by an author of color ( Ambekar et al.,
009 ; Sood and Laohaprapanon, 2018 ). Using a similar random draw
odel regressing for relevant variables, the expected race proportions

n reference lists were 11.9% for author-of-color/author-of-color, 12.8%
or white/author-of-color, 23.5% for author-of-color/white, and 51.8%
or white/white ( Bertolero et al., 2020 ). By this measure, our references
ontain 7.23% author-of-color/author-of-color, 15.48% white/author-
f-color, 17.31% author-of-color/white, and 59.98% white/white. This
ethod is limited in that (a) names and Florida Voter Data to make the
redictions may not be indicative of racial/ethnic identity, and (b) it
annot account for Indigenous and mixed-race authors, or those who
ay face differential biases due to the ambiguous racialization or ethni-

ization of their names. We look forward to future work that could help
s to better understand how to support equitable practices in science. 
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Appendix. Table A1 

Table A1 
Example resources for Good Scientific Practice in MEEG research. 

This article is based on the contributions of the LiveMEEG 2020 online conference 

LiveMEEG conference livemeeg2020.org Program and recorded sessions 

Early considerations for MEEG projects 

Human Factors 

Wikipedia’s list of cognitive biases en.wikipedia.org/wiki/List_of_cognitive_biases A collaborative listing with over 100 documented (not all strictly distinct) cognitive biases 

The cognitive bias cheat sheet betterhumans.pub/cognitive-bias-cheat-sheet- 
55a472476b18 

A highly viewed (non academic) blog post structuring all cognitive biases of Wikipedia’s list of cognitive biases, with an 

appealing visualization. 

Coursera MOOC by Sinnott-Armstrong coursera.org/instructor/~932346 An in depth practical introduction to arguments, proper reasoning and logical thinking 

Rain Cloud Plots github.com/RainCloudPlots/RainCloudPlots A a multi-platform tool for robust data visualization 

Preregistration 

OSF registries osf.io/registries Pre-registration platform of OSF 

Clinical trials clinicaltrials.gov Pre-registration platform 

As Predicted aspredicted.org Pre-registration platform 

Guidelines for ERP preregistration 10.1016/j.ijpsycho.2021.02.016 Guidelines for ERP preregistration 

Reproducibility 

The Turing Way the-turing-way.netlify.app/welcome Open source community-driven guide to reproducible, ethical, inclusive and collaborative data science 

ERP CORE erpinfo.org/erp-core Compendium of Open Resources and Experiments 

#EEGManyLabs osf.io/yb3pq A large scale crowdsourced replication project 

EEGManyPipelines eegmanypipelines.org Project involving many independent analysis teams to investigate how analysis approaches affect results 

MOABB (Mother of all BCI Benchmarks) github.com/NeuroTechX/moabb Platform to build a comprehensive benchmark of popular BCI algorithms applied on an extensive list of freely available EEG 

datasets 

BNA Credibility bnacredibility.org.uk A community working together to increase the credibility of research 

General purpose platforms for open research 

Open Science Framework (OSF) osf.io A popular, general purpose platform for collaborative project tracking, organization, storage, and referencing 

Center for Open Science cos.io A non profit organization committed to increase openness, integrity, and reproducibility of research. 

Zenodo zenodo.org An open data platform supported by the European Comission to advance their open data policy 

FigShare figshare.com Platform to upload any file format and make research outputs citable, shareable and discoverable 

GitHub github.com is a provider of Internet hosting for software development and version control using Git. 

GitLab gitlab.com is a web-based DevOps lifecycle tool that provides a Git repository manager providing wiki, issue-tracking and continuous 

integration and deployment 

Collecting, analyzing, reporting, and sharing 

Data Collection 

EEG recording protocol protocolexchange.researchsquare.com/ 
article/pex-974/v2 

Protocol for Reducing COVID-19 Transmission Risk in EEG Research 

LSL labstreaminglayer.readthedocs.io Lab Streaming Layer (LSL) is a system for the unified collection of measurement time series in research experiments 

Stimulus presentation 

Psychophysics toolbox psychtoolbox.org A free set of Matlab and GNU Octave functions for stimulus presentation in vision and neuroscience research. 

PsychoPy psychopy.org Free cross-platform package allowing to run a wide range of experiments in the behavioral sciences. 

Pavlovia pavlovia.org Platform to run, share, and explore behavioural experiments online 

Simulations 

EEGSourceSim osf.io/fmuae MATLAB-based toolbox providing individual head models and corresponding atlases to simulate noise, SSEP, and multivariate 

autoregressive signals. 

SEREEGA github.com/lrkrol/SEREEGA MATLAB-based general multipurpose toolbox to simulate event-related EEG activity, also available as EEGLAB plugin. 

simBCI gitlab.inria.fr/sb/simbci MATLAB-based toolbox focusing on testing BCI classification methods. 

SimEEG audiospeech.ubc.ca/research/brane/ 
brane-lab-software 

MATLAB-based toolbox with a focus on simulating interacting brain signals. Now integrated with Brainstorm 

The Virtual Brain thevirtualbrain.org Python-based platform to simulate whole-brain dynamics using structurally connected network models. 

( continued on next page ) 
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Table A1 ( continued ) 

Data Sharing 

Open Brain Consent open-brain-consent.readthedocs.io/en/stable Sample consent forms to facilitate data sharing in neuroimaging which have been previously approved by ethic committees in 

different institutions 

BIDS bids-standard.org The Brain Imaging Data Structure 

MEEG data repositories 

HCP-YA humanconnectome.org/study/hcp-young-adult Human Connectome Project healthy young adults 

CamCAN cam-can.org The Cambridge center for Ageing and Neuroscience (Cam-CAN). It contains epidemiological, cognitive, and neuroimaging, 

including rest and task resting-state MEG data 

Donders Repository data.donders.ru.nl An institutional data sharing repository with more than 150 published neuroimaging, MEG and EEG datasets 

OpenNeuro openneuro.org A free and open platform for sharing MRI, MEG, EEG, iEEG, ECoG, and ASL data following BIDS 

OMEGA mcgill.ca/bic/resources/omega The Open MEG Archive. A continuously expanding repository that contains MEG, EEG, anatomical MRI volumes, 

demographic and questionnaire information on hundreds of participants 

BioFIND doi.org/10.1101/2021.05.19.21257330 A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia 

CHBMP doi.org/10.1101/2020.07.08.194290 Open multimodal neuroimaging and cognitive dataset from 282 healthy participants 

MOUS doi.org/10.1038/s41597–019–0020-y A 204-subject multimodal neuroimaging dataset to study language processing (MRI + MEG) 

Temple University EEG corpus isip.piconepress.com/projects/tuh_eeg/ 
html/downloads.shtml 

Electroencephalography (EEG) Resources 

List of open datasets in ephys github.com/openlists/ElectrophysiologyData List of openly available electrophysiological data, including EEG, MEG, ECoG/iEEG, and LFP data (by Tom Donoghue) 

Software 

Brainstorm neuroimage.usc.edu/brainstorm Brainstorm main page 

EEGLAB sccn.ucsd.edu/eeglab EEGLAB main page 

FieldTrip fieldtriptoolbox.org/ FieldTrip 

MNE-python mne.tools MNE-python 

SPM fil.ion.ucl.ac.uk/spm SPM 

MMVT mmvt.mgh.harvard.edu visualization tool for multimodal imaging 

MNELAB pypi.org/project/mnelab MNELAB is a graphical user interface for MNE 

Cloud computing platforms 

brainlife brainlife.io Free and open-source cloud platform for secure neuroscience data analysis. 

Neuroscience Gateway (NSG) nsgportal.org High Performance Computing (HPC) for neuroscience researchers 

The Canadian Open Neuroscience Platform (CONP) conp.ca The Canadian Open Neuroscience Platform (CONP) 

Statistics 

Standardized Measurement Error doi.org/10.18115/D58G91 Standardized Measurement Error (SME) demo scripts 

Super Power aaroncaldwell.us/Superpower R package to simulate factorial designs and empirically calculate power 

Super Power Book aaroncaldwell.us/SuperpowerBook Book describing the capabilities of the SuperPower R package 

simstudy cran.r-project.org/web/packages/simstudy Simulation of Study Data 

simr github.com/pitakakariki/simr Power Analysis of Generalised Linear Mixed Models by Simulation 

Nilearn nilearn.github.io Tool for Statistics for NeuroImaging in Python 

Scikit-Learn scikit-learn.org Tool for Machine Learning in Python 

( continued on next page ) 
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Table A1 ( continued ) 

Standards 

BIDS bids-standard.org The Brain Imaging Data Structure (BIDS), for describing and organizing neuroimaging data 

BIDS Specification bids-specification.readthedocs.io It included BIDS core specification as well as many modality-specific extensions 

BIDS Starter Kit github.com/bids- standard/bids- starter- kit A community-curated collection of tutorials, wikis, and templates to get started with BIDS 

MNE-BIDS mne.tools/mne-bids/stable/index.html BIDS converter for MEEG data as part of the MNE-Python software 

data2bids fieldtriptoolbox.org/reference/data2bids BIDS converter for MEEG data as part of the FieldTrip toolbox 

bids-matlab-tools github.com/sccn/bids- matlab- tools BIDS converter for EEG data as part of the EEGLAB toolbox 

Brainstorm BIDS tools neuroimage.usc.edu/brainstorm/ExportBids BIDS converter for MEEG data as part of the Brainstorm toolbox 

BIDS examples github.com/bids- standard/bids- examples A set of BIDS-compatible datasets with empty raw data files 

pybids github.com/bids-standard/pybids Python library to centralize interactions with datasets conforming BIDS 

bids-matlab github.com/bids- standard/bids- matlab This repository aims at centralising MATLAB/Octave tools to interact with datasets conforming to BIDS 

BIDS Apps bids-apps.neuroimaging.io Portable neuroimaging pipelines that understand BIDS datasets 

COBIDAS MEEG cobidasmeeg.wordpress.com Blog describing the COBIDAS MEEG best parctices 

eCOBIDAS remi-gau.github.io/eCobidas electronic Python-based user-friendly checklist for COBIDAS 

ARTEM-IS osf.io/w4nt6 Template designed to supplement a paper or a preregistration and make reporting EEG methodology easier and more accurate 

by providing specific fields for specific details 

Preprint servers 

OSF preprints osf.io/preprints Preprint server in OSF 

bioRxiv biorxiv.org Preprint server for biology 

medRxiv medrxiv.org Preprint server for health sciences 

PsyArXiv psyarxiv.com Preprint server for the psychological sciences 

arXiv arxiv.org Open-access archive for scholarly articles in multiple fields ( e.g. physics, mathematics, computer science, quantitative biology, 

quantitative finance, statistics, electrical engineering and systems science, and economics) 

NeuroLibre neurolibre.org Preprint server for interactive data analyses 

Beyond the signal 

Slow Science Perspective 

DORA initiative sfdora.org The Declaration on Research Assessment (DORA) recognizes the need to improve the ways in which researchers and the 

outputs of scholarly research are evaluated 

HIBAR Research Alliance hibar-research.org Highly Integrative Basic and Responsive (HIBAR) research to contribute to solving society’s critical problems 

Ronin institute ronininstitute.org New model for scholarly research recognizes the value of people outside of traditional academia 

Slow Science in Belgium slowscience.be An interuniversity platform for discussion on academia’s future 

Better Science betterscience.ch Contributes to a rethinking of the current paradigm of quantifiable scientific and scholarly work 

IGDORE igdore.org Institute for Globally Distributed Open Research and Education (IGDORE) aims to improve the quality of science, science 

education, and quality of life for scientists, students and families 

Learning Planet Institute learningplanetinstitute.org Promotes learning, research, collective intelligence, and creativity to help with the complex challenges of the changing world, 

as a learning-society revolution 

Café Culture wellcome.org/what-we-do/our-work/research- 
culture/hosting-your-cafe-culture-discussion 

Platform to discuss about the challenges in research culture, reflect on a better culture and solutions for change 

Ecological responsibility 

Sustainability network of the Max Planck Society nachhaltigkeitsnetzwerk.mpg.de A leading network on sutainability studies 

Tyndall tyndall.ac.uk A major european research center on climate change 

Labos1point5 labos1point5.org Research initiative to reduce the Green House Gas emissions of research in the public sector 

OHBM environment action group ohbm-environment.org OHBM’s initiative to reduce the impact of neuroimaging reserach on the environment 

NoFlyClimateSci noflyclimatesci.org Grassroots academic initiative of scientists who decided to fly less and push for climate initiatives through their institutions 

Scientists4Future scientists4future.org International network of scientists supporting the global climate movement by providing facts and materials based on reliable 

and accepted scientific data 
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