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Abstract

One-sided type schemes are known to be more appropriate for monitoring a process when
the direction of a potential mean shift can be anticipated. Furthermore, if the magnitude of the
potential mean shift is unknown, it is desired to design a control chart to perform well over a wide
range of shifts instead of only optimizing its performance in monitoring a particular mean shift
level. The one-sided adaptive truncated exponentially weighted moving average (ATEWMA) X
scheme recommended in this paper is a control chart that combines a Shewhart X scheme and a
new one-sided EWMA X scheme together in a smooth way for rapidly detecting the upward (or
downward) mean shifts. The basic idea of the recommended one-sided ATEWMA X scheme is
to truncate the observations (i.e., the sample means X) first, and then to dynamically weight the
past observations according to a suitable function of the current prediction error. This helps to im-

prove the sensitivity of the proposed one-sided ATEWMA X scheme for detecting both small and
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large mean shifts simultaneously. In addition, to further improve the detection efficiency of the
recommended scheme, we also suggest integrating a variable sampling interval (VSI) feature into
the proposed one-sided ATEWMA X scheme. Markov chain models are established to analyze
the run length (RL) properties of the recommended one-sided ATEWMA X scheme in both the
zero-state and the steady-state cases. Comparison results show that the recommended one-sided
ATEWMA X scheme works better than the conventional adaptive EWMA (AEWMA) X chart
and the improved one-sided EWMA X chart in detecting a wide range of mean shifts. Finally,
a numerical example is presented to illustrate the usage of the proposed one-sided ATEWMA X

scheme for detecting process mean shifts.

Keywords: Adaptive EWMA X control chart; Markov chain model; One-sided type scheme;

Truncation method; Variable sampling interval;

1 Introduction

As one of the most important tools in statistical process monitoring (SPM), control charts have
been extensively used in various fields to monitor possible deteriorations of processes, for instance,
chemical and process industries, natural disaster monitoring, or healthcare. Readers can refer to An-
war et al. (2020), Perry (2020), Zhou et al. (2020), and Chong et al. (2020) for some recent research
works on the application of control charts. Among the traditional control charts, Shewhart-type ones
received much attention because they are easy to implement and very effective for monitoring large
shifts. On the other hand, memory-type charts ( for instance, the exponentially weighted moving aver-
age (EWMA) and the cumulative sum (CUSUM) charts), which take into account the past information
from the beginning to the most current state of the process, can be regarded as good alternatives to the
Shewhart-type schemes in monitoring small to moderate shifts (see Castagliola et al. (2019) and Hu
etal. (2019)). For more details about these traditional control charts, readers can refer to Montgomery

(2012).

According to Haq & Khoo (2020), shift sizes in real applications are commonly unknown a priori,

and they must be estimated in advance or expected to belong to a certain shift range. In general, most



of traditional control charts are designed for monitoring a particular shift level only, which leads to the
fact that these traditional schemes can hardly provide an effective way for detecting both small and
large shifts simultaneously. For example, a standard EWMA chart with a small smoothing parameter
is more effective for detecting small shifts of the process, while a large smoothing parameter of this
scheme can provide more protection against large shifts, see Tang et al. (2019a). In this context, an
adaptive EWMA (AEWMA) chart in Capizzi & Masarotto (2003) was designed to give a balanced
protection against a range of mean shifts. Different from the traditional standard EWMA chart, the

charting statistic (); of the conventional AEWMA chart is defined as,

Q1 = w(e) Xy + (1 —wler)) Qir1,

where { X, X5, .-+, X;} is ai.i.d. (independent and identically distributed) sequence of normal ran-
dom variables with mean o and standard deviation oy. Additionally, the weighted parameter w(e;)
is defined as ¢(e;)/e;, where ¢(e;) denotes a score function and e, = X; — );_; is the prediction
error. Since a suitable function of the current error e, is used to weight the past and current observa-
tions, the conventional AEWMA chart can be viewed as a smooth combination of a Shewhart chart
and an EWMA chart. As pointed out by Psarakis (2015), many research works have been done on
adaptive type schemes, especially for adaptive EWMA charts. For example, Shu (2008) extended the
basic idea of the AEWMA scheme in detecting process locations to the case of monitoring process
dispersion. Su et al. (2011) analyzed the performance of AEWMA schemes in detecting linear drifts
of process mean, and Tang et al. (2019c¢) investigated both the median run length (MRL) and the ex-
pected median run length (EMRL) performance of the AEWMA X scheme for the zero-state and the
steady-state. In addition, Tang et al. (2019d) proposed a new nonparametric AEWMA type scheme
with exact run length (RL) properties, which combines the advantages of a nonparametric chart with
the better overall shift detection capability of the AEWMA scheme. All of these research works show

that AEWMA type schemes have wide potential applications in the future.

In practice, there are many situations where only upward or downward shifts need to be detected.
For instance, an increase in the infection rate of a particular disease (such as the COVID-19) indicates

an increased risk to the public health, and the corresponding information is very important for local
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governments to adjust epidemic prevention and take measures to the public. It has been shown that
a one-sided type scheme is more appropriate for process monitoring, if the direction information of
potential shifts can be anticipated. In this paper, two commonly used one-sided EWMA type charts
are introduced. The one-sided EWMA chart with reflecting boundaries (hereafter denoted as the one-
sidled REWMA chart) was first developed by Champ et al. (1991), the basic idea of this scheme is
to reset the standard EWMA charting statistic to the value of the reflecting boundary whenever it is
below (or above) the reflecting boundary for the upper-sided (or the lower-sided) REWMA chart.

The corresponding upper- and lower-sided REWMA charting statistics can be defined as follow s,

QE,t — max (BU, T’/Xt + (1 - r/)QEJ—l) )

Qp, = min (Br, 7" X, + (1 — r’)Q;z’tfl) ,

where By, (or Bp) represents the upper-sided (lower-sided) reflecting boundary of the upper-sided
(lower-sided) REWMA scheme, and 7' € (0, 1] is the smoothing factor of the one-sidled REWMA
scheme. Up to now, this type of scheme has been adopted by many researchers. For instance,
Gan (1998) developed one- and two-sided exponential EWMA charts with reflecting boundaries for
monitoring the rate of occurrences of rare events. Zhang & Chen (2004) designed a one-sided EWMA
chart with reflecting boundaries to monitor the mean of censored Weibull lifetimes. Different from the
one-sided REWMA charts, Shu et al. (2007) proposed a new improved one-sided EWMA chart using
a truncation method (denoted as the one-sided TEWMA chart hereafter) for normally distributed data.
The idea of this scheme is to truncate the negative (or positive) deviations from the target to zero, and
to only accumulate the positive (or negative) deviations from the target in the computation of the
EWMA statistic at each timestep. The charting statistics of the upper- and lower-sided TEWMA

charts are,

Q;,t = TX;F +(1— T)Q;t—h

Qit =rX; +(1- T)Qit—lv



where X;" = max(pg, X;) = po +max(0, X; — o), and X; = min(po, X;) = o +min(0, Xy — po).
Also, r € (0, 1] represents the smoothing factor of the one-sidled TEWMA scheme. Numerical re-
sults in Shu et al. (2007) have shown that the one-sided TEWMA scheme performs better than both
the standard EWMA chart and the one-sided REWMA scheme for detecting mean shifts in terms of
zero-state, steady-state, and worst-case scenarios. Motivated by the new “resetting rule” used in the
one-sided TEWMA scheme, Shu & Jiang (2008) proposed a new EWMA dispersion chart by trun-
cating negative normalized observations to zero in the traditional EWMA statistic. Shu et al. (2012)
extended the truncation method to Poisson processes using a normalizing transformation. Further-
more, Haq (2020) constructed one-sided and two one-sided multivariate EWMA chart s using the

truncation method for monitoring mean vectors of multivariate normal process es.

A common practice of using a control chart for process monitoring is to take a fixed sample size
from the process with a fixed sampling interval (FSI). Extensive research works have shown that
varying the sampling interval as a function of the observation can make the shift detection faster than
its corresponding FSI strategy, see Saccucci et al. (1992), Reynolds Jr & Arnold (2001), and Haq
(2019). In general, two sampling intervals (i.e., a short sampling interval dg and a long sampling
interval d;) are sufficient for variable sampling interval (VSI) type schemes to provide good perfor-
mance in different shift detections (see Reynolds et al. (1988) and Reynolds Jr (1989)). The basic
idea of the VSI type scheme is that the short sampling interval dg will be taken to ensure a quick shift
detection when a possible out-of-control situation is indicated, and the long sampling interval d; will
keep being used if there is no suspected process shift. Note that the short sampling interval dg is
usually selected in the zero-state case as a safeguard to provide additional protection against possible
shifts that occur upon startup, i.e., dy = dg, where d is the initial sampling interval. More recently,
Liu et al. (2015) proposed an adaptive Phase II nonparametric EWMA chart with a VSI feature.
Tang et al. (2017) studied the effects of the VSI feature on the AEWMA X scheme, and then further
analyzed the selection of two sampling intervals based on the average time to signal (ATS) and the
adjusted steady-state AT'S (AATS). In addition, Haq et al. (2021) investigated the RL characteristics

of the adaptive CUSUM and EWMA schemes with auxiliary information and VSI strategy.
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Motivated by the fact that, (1) compared with the standard EWMA scheme and the one-sided
REWMA scheme, the truncation method used in the one-sided TEWMA chart can significantly im-
prove the sensitivity of the scheme in detecting either increase or decrease in the process mean, and
(2) the AEWMA scheme can provide better overall protection against different mean shifts than the
standard EWMA scheme, the purpose of this paper is to develop a new one-sided type scheme, which
combines the advantages of “adaptive” and “truncated”, to perform well for both small and large shifts
assuming a known shift direction. Furthermore, it is known that the VSI feature can notably improve
the performance of control charts in terms of the ATS. Therefore, we also suggest integrating a
VSI feature into the proposed one-sided type scheme to investigate its zero- and steady-state ATS

performance. To sum up, the key contributions of this paper are as follows:

» To propose a new one-sided AEWMA X type scheme using a truncation method (hereafter
named as the one-sided ATEWMA X scheme), and then to establish a dedicated Markov chain
model for evaluating the RL properties of the proposed one-sided ATEWMA X scheme in both

the zero-state and the steady-state cases.

» Tointegrate a VSI feature into the proposed one-sided ATEWMA X scheme (hereafter denoted
as the one-sided VSI-ATEWMA X scheme) to improve its detection efficiency in monitoring

upward or downward shifts of the process mean.

+ To develope an optimal design procedure of the proposed one-sided ATEWMA X scheme for

monitoring both small and large mean shifts simultaneously.

The outline of this paper is given as follow s: In Section 2, a new one-sided ATEWMA X scheme
using a truncation method is first introduced. In Section 3, a dedicated Markov chain model is es-
tablished to investigate the RL properties of the recommended one-sided ATEWMA X scheme in
both the zero-state and the steady-state cases. Furthermore, an optimal design procedure of the rec-
ommended one-sided ATEWMA X scheme is developed for monitoring both small and large shifts
simultaneously. A discussion about how to extend the proposed one-sided ATEWMA X scheme to
its VSI counterpart is introduced in detail in Section 4. Subsequently, numerical comparisons are
performed with the conventional AEWMA X chart and the one-sided TEWMA X chart in term s of

upward mean shift detection. Several guidelines for constructing the proposed one-sided ATEWMA



X scheme and its VSI counterpart are also provided in Section 5. In Section 6, a simulated ex-
ample is presented to illustrate the usage of the recommended one-sided ATEWMA X scheme for
two different scenarios. Finally, Section 7 concludes with some remarks and directions for future

researches.

2 Design of the one-sided ATEWMA X scheme

For the quality characteristic X to be monitored, let us assume that {X; 1, X; o, -+ , Xt} is a sample
of n > 1 independent normal random variables taken at regular sampling pointt = 1,2, 3, - - -. More
specifically, X;; ~ N(uo+d00,00), where i =1,2,---  n, pand oy represent the known in-control

mean and standard deviation, respectively, and J is the magnitude of the standardized mean shift. The

process is deemed to be in-control when o = 0. Otherwise (0 # 0), the process is out-of-control.

Furthermore, the sample means X; = 1 >"" X, ; are plotted on the control chart for the process
n 1= )

monitoring.

For quickly detecting increases (or decreases) of the process mean, a truncation method proposed
by Shu et al. (2007) is employed in the recommended one-sided ATEWMA X scheme. The basic
idea of the truncation method used in this paper is to truncate the sample mean X below (or above)
the in-control mean /i to the value of 1, and to only accumulate the sample mean X above (or
below) the in-control mean p in the iterative calculation of the charting statistic. Without loss of
generality, the truncation method can be achieved by using the upper- and lower-truncated random

variables defined as follow s,

)_(;r = max(uo,)_(t), ()

X, = min(po, X;). )

In this paper, the definition of the standard normal random variable Y; = /n(X; — jg)/0o is sug-
gested to simplify the design of the recommended one-sided ATEWMA X scheme. Then, the upper-

and lower-truncated random variables can be simply restated as,
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Y," = max(0,Y;), (3)

Y,” = min(0, Y;). 4)

When the process is deemed to be in-control (i.e., 0 = 0), the mean and variance of the upper-
truncated random variable Y;" are F(Y;") = 1/v/27 and V(Y,;") = (7 — 1)/2m, respectively. Sim-
ilarly, the in-control mean and variance of the lower-truncated random variable Y,” are E(Y,”) =
—1/4/2rm and V(Y;") = (7 — 1) /2, respectively (see Barr & Sherrill (1999)). Furthermore, let us

define the standardized upper- and lower-truncated random variables as follow s,

oo Y 1o 5)
t m?

Y+ 1V ©

Vi —1)/2r

Different from the standard upper-sided (or lower-sided) TEWMA X chart with a fixed weight,

Zy

the proposed upper-sided (lower-sided) ATEWMA X scheme is designed by adjusting the weighted
parameter w(e;) (or w(e; )) as a function of the prediction error e = Z;" — Q" (e = Z; — Q).
Therefore, in the current context, the upper- and lower-sided ATEWMA charting statistics can be

written as follow s,

Qf =Qf 1+ o(ef) =w(e)Z} + (1 —w(e)) QF 1, ()

Qr = Qi+ ole;) =wle)Z + (1 —wle)) Qry, (8)

where O and (Q; are the upper- and lower-sided ATEWMA charting statistics obtained at the
sampling point ¢, respectively. The initial values of @Q);” and Q); are usually taken to be F(Z,") =
E(Z;) = 0. Inaddition, w(e;) = ¢(e)/e; and w(e; ) = ¢(e; )/e; represent the variable weights
of the upper- and lower-sided ATEWMA X scheme, where ¢(-) is a score function. The score

function used in this paper is the Huber’s score function ¢ (¢e) defined as,

8



e+ (1—=XN)xk e<-—k
orle) =4 A xe, le] <k ©)
e—(1=XN)xk, e>k

where & > 0, and A € (0, 1] is the smoothing factor of the recommended one-sided ATEWMA X
scheme. It is worth noting that when k& — o0, ¢y (e) ~ Ae, and when &k — 0, ¢y (e) ~ e. For an
upward (or downward) mean shift detection, the recommended upper-sided (lower-sided) ATEWMA
X scheme will trigger an out-of-control signal if the charting statistic Q;” > H* (Q; < H~), where

H*(H") is the upper (lower) control limit of the upper-sided (lower-sided) ATEWMA X scheme.

3 Run length properties of the proposed scheme

By definition, the average run length (ARL) is the average number of observations required for a FSI
type scheme to trigger an out-of-control signal. Generally, the RL properties of EWMA type con-
trol charts are approximated by using integral equations, Markov chain methods or Monte Carlo
simulations. In this paper, a dedicated Markov chain model is established to evaluate the ARL
performance of the recommended one-sided ATEWMA X schemes. Due to the space limita-
tion, only the upper-sided ATEWMA X scheme is discussed here for illustration. For more de-
tails about the Markov chain model of the recommended lower-sided ATEWMA X scheme, readers

can refer to the Appendix A. It is easy to verify that the upper-sided ATEWMA charting statis-

tic Qf = w(ef)Z + (1 —wl(ef)) Qf 1 > —==, and then the in-control region [ = ,H*} can

Vr—1’° vr—1
be divided into m subintervals of width A* = (H' + —==)/m. The charting statistic Q" is
said to be in transient state 7, at the sampling point ¢, if vj — % < Qf < "U;— + %, where
j=12,---,m, and v;f = \/;%1 +(j— %)AJr represents the midpoint value of the jth subinter-
val B = |v) — & v+ %] The transition probability matrix P of the Markov chain model is
defined as,

Q (I-Q)1

P = ( ) , (10)
or 1



(%)

where Q denotes an m x m-dimensional submatrix that contains the transition probabilities ¢; ; of
the charting statistic ;" from state i to state j. In addition, 0 is an m x 1 column vector of 0’s, 1 is
an m x 1-dimensional vector of 1’s, and I is an m x m-dimensional identity matrix. The transition

probabilities g; ; in the matrix Q can be computed as follow s,

¢; =Pr (Qt* € state j | Q;", € state z)

A+ +
=Pr(j+——<@t <of+ QLZU?) . (1
AT AT
:PI‘(U;_—U:_—T<¢H(Z:_—U:_)< j_—’l} +7)

According to Capizzi & Masarotto (2003) and Tang et al. (2017), the Huber’s inverse function ¢ ;' (u)

can be defined as follow s,

—(1=N)xk, u<-M\k
O (u) =9 u/), lu| < M - (12)
ut (1= xk, u>M\k

Furthermore, the transition probabilities ¢, ; are written as follow s,

AT AT
‘Pr<“ voit (v ot =57 ) <z <o vt (- + 7))

+

(E (V) + 4/ V() {vf + o5 <uj+ — v — %)} <Yt , (13)

E(Y+)+\/M{U +ou' (J — Y +A7+)D

where E(Y,*) = 1/V27 and V(Y,;") = (7 — 1)/27. For the proposed upper-sided ATEWMA X

scheme, let us define,

10



AT
b o e (o - 2], s

/T + AT
Agzm—i— o [v —|—¢H (] —v; —1—7)] (15)

Therefore, the elements ¢; ; of matrix Q can be stated as,

0 Ay <0
% =19 P(Ay—dv/n) Ay >0and 4, <0, (16)
D(Ay —6y/n) —P(A; —dy/n) Ay >0and A; >0
where ®(-) represents the c.d.f. of the standard normal distribution, and ¢ is the magnitude of the

standardized mean shift.

The ARL performance of control charts is commonly evaluated in the zero-state case. As defined
by Dickinson et al. (2014), the zero-state ARL performance is based on the assumption that a shift in
the parameter occurs at the beginning of the Phase II monitoring. Furthermore, the zero-state ARL

value of the suggested upper-sided ATEWMA X scheme can be computed using,

ARL =q;(I-Q)7'1, (17)
where q. = (¢.,, Gz, -+ , Gz, )" is the initial probabilities associated with m transient states for the
zero-state case, and

1, Qy € Ef
Qz; = - (18)

0, otherwise

Compared with the zero-state case, the steady-state case is usually based on the assumption that
the process remains at the in-control state at the start of Phase II monitoring, and then some random
shift occurs later. This assumption makes the steady-state ARL performance of a scheme more
realistic and informative than its corresponding zero-state counterpart. In the steady-state case, the

ARL value of the proposed upper-sided ATEWMA X scheme can be defined as,

11
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ARL =q/(I-Q)™'1, (19)

where qs = (¢s;, sy, 5 qs,,) " 1S the steady-state initial probability vector of size m. A simplified
procedure designed by Champ (1992) is considered here to directly calculate the steady-state initial

probability vector qs, say,

q; = (1's)7's. (20)
As defined in Champ (1992),
s=(G-Q")7'U, (€3}
where
2 11 1
010 0
G=1001 0 |
000 ---1
and U = (1,0,0,---,0)T is an m x 1 column vector. Finally, one can easily compute both the zero-

state and the steady-state ARL performance of the recommended upper-sided ATEWMA X scheme

by using (17) and (19), respectively.

In general, the optimal design strategy of traditional control charts aims at finding a scheme that
can provide the minimum out-of-control ARL (denoted as ARL;) for a specified shift §, with the
constraint that an acceptable in-control ARL (denoted as ARLy) is satisfied. This approach leads to
a problem that the performance of a scheme with optimal parameters is extremely dependent on the
specified magnitude of the shift 9. Moreover, in practice, the magnitude of a shift is rarely known in
advance. Hence, it is necessary to design an optimal design strategy for the recommended one-sided

ATEWMA X scheme to make it more sensitive in monitoring a wide range of shifts. Similar to the

12



optimal design strategy proposed in Capizzi & Masarotto (2003), the optimal design procedure of the

recommended upper-sided ATEWMA X scheme for the zero-state case is summarized as follow s,

Step 1: Set a desired ARLy = C, the sample size n, and two different designed shift values, i.e., a

small mean shift dg, and a large mean shift J.

Step 2: Based on the desired ARLy, search the optimal parameters 0* = { H" A\, k} of the proposed
upper-sided ATEWMA X scheme providing the minimum ARL; for the specified large
shift d;. In other words, the optimal parameters 6* is the solution of the following nonlinear

minimization problem, i.e.,

0" = argmin ARL(0,d.,n).
O={H+ \k}

Subject to : (22)

ARL(Q*, 5L = O,?’L) = ARL(),
\

where the ARL value for the zero-state case can be computed using (17).

Step 3: Choose a small positive constant « (say, « = 0.05 in this paper), and then find the solution
©* of the following nonlinear minimization problem, where ©* is defined here as the optimal
parameters of the proposed upper-sided ATEWMA X scheme,

(

©" = argmin ARL(0,ds,n).
O={H+ )k}

Subject to : 23)

ARL(6", 65 = 0,n) = ARL,,

| and ARL,(©%,6z,n) < (1 +a) x ARLy (0%, 6L,n).

This means, find the optimal upper-sidled ATEWMA X scheme with the minimum ARL;
value at the small shift §g among those schemes for which the ARL; value at the large shift

0, 1s “nearly minimum”.

It must be noted that the optimal design procedure associated with the steady-state case is similar
to the procedure introduced above, except that both ARLy and ARL; in Steps 2 and 3 should be

computed using (19). Furthermore, for more details on how to solve the nonlinear minimization

13
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problems (i.e., (22) and (23)) in the optimal design procedure presented above, readers can refer to

the Appendix B.

4 Implementation of the VSI feature

Traditional control charts are commonly implemented by taking the observations from the process
with a FSI feature. Conversely, VSI type schemes operate by varying the sampling interval as a
function of the observations. By using the control limits (i.e., H+ and H~) and the corresponding
warning limits (say, W™ and W ™), the suggested one-sided ATEWMA X scheme with a VSI feature
(i.e., the one-sided VSI-ATEWMA X scheme) can be partitioned into three regions, namely, the safe
region, the warning region, and the out-of-control region. For simplicity, a flowchart for the VSI

strategy of the proposed upper-sided VSI-ATEWMA X scheme is given as follow s,
(Please insert Figure 1 here)

Different from the ARL, the average time to signal (ATS) is a popular index for control charts
with VSI feature, and it is defined as the average time from the beginning until the VSI type scheme
generates a signal (see Li et al. (2014)). Note that the ATS of the recommended one-sided ATEWMA
X scheme with the FSI feature is just a multiple of its ARL, i.e., ATS™! = ARLF®! x ¢!, where
d"S" denotes the fixed sampling interval used in the one-sided ATEWMA X scheme. But for the ATS
of the suggested one-sided VSI-ATEWMA X scheme, it depends on both the ARL and the varying
sampling intervals, say, ATSV®' = ARLYS' x E(d), where E(d) is the average of sampling intervals
d (i.e., d;, and dg) used in the one-sided VSI-ATEWMA X scheme, and it is commonly considered to
be E(d) = 1 time unit. The transition probability matrix Q developed in Section 3 can also be used
to compute the ATS value of the recommended one-sided VSI-ATEWMA X scheme, except that the

zero-state ATS value should be obtained through the following expression,
ATS =q/(I-Q) g (24)

where g, is an m X 1 initial probability vector defined in (18) for the zero-state scenario. In addition,

g is an m X 1-dimensional sampling interval vector, and the elements g; of g are,

14



ds, ’Uj c (W+,H+]
9j = ; (25)
dr, v; € [—1/\/7‘( - 1,W+]

where v; represents the midpoint value of the jth subinterval Ej

Unlike the steady-state ARL, when computing the ATS value of the recommended one-sided
VSI-ATEWMA X scheme in the steady-state case, it is necessary to consider the position where the
shift occurs randomly, say, during a short or a long sampling interval. As a more realistic criterion in
the steady-state case, the adjusted time to signal (AATS) is defined in Reynolds et al. (1988) as the

length of time from the process shift to the scheme signals, and it can be obtained by using,

AATS =q, ((I -Q) ' - %I) g, (26)

where q, represents an m x 1-dimensional initial probability vector, and the jth element ¢, of q,

can be defined as,

o qu' ng

= 27
o xg 27)

q{l]‘

where ¢, and g; denote the jth element of g, defined in (20) and the jth element of g defined in (25),

respectively.

In order to provide a fair comparison between the one-sided VSI-ATEWMA X scheme and its
FSI counterpart, ATSYS' = ATS"! is set. More specifically, E(d) = ps x dg + (1 — pg) x d, =
d™! = 1, where d; > 1, and pg denotes the probability of adopting the short sampling interval d.
Furthermore, a two-stage optimal design procedure of the suggested upper-sided VSI-ATEWMA X

scheme is given as follow s,

Step 1: Choose a desired ARLy, = C', the sample size n, a small mean shift value Jg, and a large
mean shift value 7. Additionlly, specify a short sampling interval dg, and the probability
ps of adopting the short sampling interval.

Step 2: Based on the optimal design procedure developed in Section 3, search for the corresponding
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©* = {H™, \, k} of the proposed upper-sided VSI-ATEWMA X scheme with the constraint
that the desired ARL, is satisfied.

Step 3: Compute the corresponding long sampling interval d;, by using,

E(d) — ps x ds
dr = 28
L (1 _ps) ) ( )

where E(d) = d*™' = 1.

Step 4: Set the magnitude of the shift 6 = 0, and then determine the value of W by solving the

following problem,

( ATSo(W*, 0", ds, dy, 5 = 0,n) = C.

Subject to :
(29)

ARLy(0*,6 = 0,n) = C,

and F(d) = d™" =1,

Similar to the case of the proposed one-sided ATEWMA X chart with the FSI feature, the optimal
design procedure introduced above for the zero-state case is also suitable for the steady-state case,
except that the corresponding ARL and ATS, computations in Steps 2 and 4 should be replaced by
(19) and (26), respectively. In what follows, the ARL and ATS are used to evaluate the detection

capabilities of the upper-sided ATEWMA schemes with FSI and VSI features, respectively.

5 Comparative studies

Before conducting comparative studies, some comparisons of ARL (or the ATS) obtained using the
Markov chain model and the Monte Carlo simulation, respectively, are provided in Table 1. Due to
the space limitation, only four sets of optimal parameters associated with (dg,d.,) = (0.75, 2) are con-
sidered here for illustration. For example, H™ = 0.6346, A = 0.0979, k = 8.8393, W+ = —0.0315
for the zero-state ATS with the sample size n = 1, and H" = 0.5705, A\ = 0.0617, k = 3.9254 for

the steady-state ARL with the sample size n = 3. Moreover, it is worth noting that the number of
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subintervals m used in the Markov chain model is set as 201, and the the number of runs used in the
Monte Carlo simulation is 10°. As we can see from Table 1, the largest discrepancy between these two
methods is approximately 0.5% of the ARL (or ATS). This fact means that the Markov chain model
established in this paper obtains a good agreement with the Monte Carlo simulation, and m = 201

seems to be sufficient for most computations.
(Please insert Table 1here)

Two competing control charts, namely, (1) the conventional AEWMA X scheme, and (2) the
one-sidled TEWMA X scheme, are used in this paper for comparison with the recommended one-
sided ATEWMA X scheme. Meanwhile, the corresponding VSI counterparts of these two com-
peting schemes are also respectively used to compare with the suggested one-sided VSI-ATEWMA
X scheme in terms of the ATS and the AATS. Due to the space limitation, only the performance
comparisons of the upper-sidled ATEWMA X and VSI-ATEWMA X schemes with n = 1andn = 3
are shown in this Section. For more details about the Markov chain models used in the conventional
AEWMA X scheme, the one-sided TEWMA X scheme, and the VSI-AEWMA X scheme, readers
can refer to Capizzi & Masarotto (2003), Shu et al. (2007) and Tang et al. (2017), respectively. Fur-
thermore, to provide a fair comparison, all these mentioned schemes are designed based on a desired
ARLy = ATSy = 370, and m = 201. It is also worth noting that, as the comparison schemes, both
the conventional AEWMA X scheme and the VSI-IAEWMA X scheme also utilize the optimal de-
sign procedures developed for the one-sided ATEWMA X scheme and the one-sided VSI-ATEWMA

X scheme, respectively, to search for their optimal parameters.

The zero-state and the steady-state optimal parameters of the proposed upper-sided ATEWMA X
scheme, the conventional AEWMA X scheme, and the upper-sidled TEWMA X scheme are, respec-
tively, listed in Tables 2 and 3, for different pre-specified upward mean shifts. For example, when
the specified shift combination (g, d;,) = (0.25, 2), the zero-state optimal parameters { H, \, k} of
the proposed upper-sided ATEWMA X scheme for n = 3 are {0.4553,0.0420,3.9207}. Mean-
while, the corresponding zero-state optimal parameters { H', \', k’} of the conventional AEWMA X
scheme for n = 3 are {0.4508,0.0457,2.8025}, where \’ is the smoothing factor of the conven-

tional AEWMA X scheme, and the corresponding upper and lower control limits are UCL = H’
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and LCL = —H', respectively. Additionally, for the existing upper-sided TEWMA X scheme, the
zero-state optimal parameters {r, h*} forn = 3 are {0.7578,3.1319} when the designed mean shift
81 = 2, where dr is a particular shift size for which the upper-sided TEWMA X scheme is optimally
designed, and r and h* represent the smoothing factor and the upper control limit of the upper-sided

TEWMA X scheme, respectively (see Table 2).
(Please insert Table 2 and Table 3 here)

To evaluate the ARL performance of the recommended upper-sided ATEWMA X scheme and the
conventional AEWMA X scheme, both the zero-state and the steady-state ARL values of these two
schemes for detecting different mean shifts 6 € {0.25,0.5,0.75,1,1.25,1.5,1.75,2,2.5, 3} are listed
in Tables 4 and 5, respectively, with the constraint on the desired ARLy = 370. For instance, if both
of these two schemes are designed based on (dg,d.) = (0.5,2) and n = 1, the ARL; values of the
upper-sided ATEWMA X scheme and the AEWMA X scheme in the zero-state case for § = 1 are
8.35 and 9.59, respectively (see Table 4), and the corresponding steady-state ARL; values of these

two schemes for 6 = 1 are 8.43 and 9.55, respectively (see Table 5).
(Please insert Table 4 and Table 5 here)
As it can be drawn from Tables 4 and 5,

* Irrespective of the zero-state or the steady-state cases, the proposed upper-sided ATEWMA
X scheme works better than the conventional AEWMA X scheme in monitoring the whole

upward shift domain, especially in the small mean shift range.

* For each mean shift combination (Jg, 1), both the zero-state and the steady-state ARL values
of the proposed upper-sidled ATEWMA X scheme and the conventional AEWMA X scheme
tend to be similar, as the magnitude of the upward mean shift ¢ increases. For example, when
(8s,0r) = (0.5,3) and n = 3, the zero-state ARL values of the upper-sided ATEWMA X
scheme and the AEWMA X scheme for § = 0.25 are 35.98 and 40.52, respectively. Then, as
0 increases to 3, the corresponding zero-state ARL values of these two charts become 1.02 and

1.05, respectively.
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On the other hand, to provide some intuitive comparisons between the recommended upper-sided
ATEWMA X scheme and the upper-sided TEWMA X scheme, both the zero-state and the steady-
state ARL curves of these two schemes for n € {1, 3} are presented in Figures 2 and 3, respectively.
It is worth noting that the ARL scale in these figures is chosen to be logarithmic. Due to the
space limitation, only the upper-sided ATEWMA X scheme designed based on (dg, ;) = (0.5,2) is
considered here for illustration. Additionally, three competing upper-sided TEWMA X schemes
in Figures 2 and 3 are, respectively, designed to generate the minimum ARL; values for different

specified upward mean shifts 07 € {0.5,1.25,2.0}.
(Please insert Figure 2 and Figure 3 here)

As it is shown in Figures 2 and 3, the suggested upper-sidled ATEWMA X scheme can provide a
balanced protection against both small and large upward shifts simultaneously. In other words, the
upper-sided ATEWMA X scheme performs better than the upper-sided TEWMA X scheme in de-
tecting a mean shift § that is much larger or smaller than the designed size dp, especially for the
case of sample size n > 1. For instance, the proposed upper-sided ATEWMA X scheme and the
upper-sided TEWMA X scheme designed for 47 = 0.5 have almost the same steady-state ARL
profiles when the sample size n = 3 and the magnitude s of the upward shift 6 < 1. But if a large
upward shift (say, 6 > 2) occurs, the proposed scheme can provide a more effective protection than

the upper-sided TEWMA X scheme designed for §7 = 0.5 (see Figure 3 (d)).

For the upper-sided VSI-ATEWMA X scheme and the other two competing schemes with the
VSI feature, two sampling intervals, say, d¢ = 0.3 and d;, = 1.7, are used here for illustration.
Following the two-stage optimal design procedure introduced in Section 4, both the zero-state and
the steady-state optimal parameters of the recommended upper-sided VSI-ATEWMA X scheme, the
conventional VSI-AEWMA X scheme, and the upper-sided VSI- TEWMA X scheme are listed in
Tables 6 and 7, respectively. For example, for the specified shift combination (dg,dz) = (0.25, 3)
and the shift size n = 3, the steady-state optimal parameters {H ", A\, k, W} of the proposed
upper-sided VSI-ATEWMA X scheme are {0.6516,0.1006, 5.5516, —0.0459}, and the correspond-
ing steady-state optimal parameters { H’, \', k', w'} of the conventional VSI-AEWMA X scheme are

{0.5407,0.0780, 3.3726,0.2314}. Note that the upper (or lower) warning control limit of the conven-
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tional VSI-AEWMA X scheme are defined as UWL = w’ x H' and LWL = —w' x H’, respectively,
where w’ is a constant implemented to determine the proportion of time used for the short or the
long sampling interval. Additionally, when the sample size n = 3 and the specific shift oy = 1.5,
the steady-state optimal parameters {r, h*,w*} of the upper-sided VSI- TEWMA X scheme are
{0.5291,2.2975, —0.1770} (see Table 7). It must be noted that, due to the implementation of the trun-
cation method, the warning control limits of the proposed upper-sided VSI-ATEWMA X scheme
are all negative. This fact implies that the initial sampling interval used in the proposed scheme for
the zero-state case is dy = dg. Conversely, if we do not expressly set dy = dg, the initial sampling
interval used in the conventional VSI-AEWMA X scheme for the zero-state case is dy = d.. In this
context, for a more comprehensive comparison, the zero-state optimal parameters of the conventional

VSI-AEWMA X scheme for both dy = d;, and dy = dg are provided in Table 6.
(Please insert Table 6 and Table 7 here)

For comparison, both the zero-state and the steady-state ATS profiles of the proposed upper-sided
VSI-ATEWMA X scheme, the conventional VSI-AEWMA X scheme, and the upper-sided FSI-
ATEWMA X scheme for n € {1, 3} are presented in Tables 8 and 9, respectively. As it is expected,
irrespective of the zero-state or the steady-state case, the proposed upper-sided VSI-ATEWMA X
scheme performs better than its FSI counterpart in terms of the ATS and the AATS. Furthermore,
the suggested upper-sided VSI-ATEWMA X scheme in the zero-state case is uniformly more sen-
sitive than the conventional VSIFAEWMA X scheme using dy = dj or dy = dg (see Table 8).
Meanwhile, the proposed upper-sided VSI-ATEWMA X scheme in the steady-state case is superior
to the conventional VSI-AEWMA X scheme in most scenarios, except that in several large upward
mean shift detections. For example, when (dg,d;) = (0.75,3) and n = 3, the AATS values of the
upper-sided VSI-ATEWMA X scheme and the VSI-AEWMA X scheme for § = 3 are 0.76 and 0.75,

respectively (see Table 9).
(Please insert Table 8 and Table 9 here)

The ATS and AATS comparisons between the upper-sided VSI-ATEWMA X scheme and the
upper-sided VSI- TEWMA X scheme are shown in Figures 4 and 5, respectively. Similar to the

settings in the FSI case s, the upper-sided VSI-ATEWMA X scheme is designed based on (dg,d;) =
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(0.5,2), and both the zero-state and the steady-state optimal parameters of this proposed scheme can
be obtained from Tables 6 and 7, respectively. Meanwhile, three different upper-sided VSI- TEWMA
X schemes designed assuming 67 € {0.5,1.25,2.0} are plotted in Figures 4 and 5, respectively,
for comparison. It can be observed that, irrespective of the zero-state or the steady-state case, the
competing upper-sided VSI- TEWMA X schemes can provide slightly better performance than the
suggested upper-sided VSI-ATEWMA X scheme, as long as an upward mean shift § is near the
designed shift size d7, but the proposed upper-sided VSI-ATEWMA X scheme works better than
the upper-sided VSI- TEWMA X scheme in detecting an upward mean shift ¢ that is much larger

or smaller than the designed size Or.

(Please insert Figure 4 and Figure 5 here)

6 A numerical example

This example aims to illustrate the implementation of the recommended upper-sidled ATEWMA X
scheme for upward shift detection. The simulated dataset s employed in this paper are similar to
the one in Tang et al. (2017), which consists of 25 samples generated from a normal distribution

N (100, 3). Two different scenarios are assumed in this illustrative example, say,

* the zero-state scenario: all 25 samples of the datasets are adjusted with either 0.75 x o or 2 X o

upward mean shift;

* the steady-state scenario: only the last 15 samples of the datasets are adjusted with either 0.75 x

0p or 2 X oy upward mean shift,

For comparison, the conventional AEWMA X scheme and the upper-sidled TEWMA X scheme are
constructed in this example. The desired ARL( values of these three schemes are all set at 370.
For the shift combination (dg,d,) = (0.75,2) and the sample size n = 1, it is easy to obtain from
Tables 2 and 3 that, the zero-state and steady-state optimal parameters { H, A, k} of the proposed
upper-sided ATEWMA X scheme are {0.6346,0.0979,8.8393} and {0.6802,0.1071, 8.6228}, re-
spectively. Meanwhile, the zero-state and steady-state optimal parameters { H', \', &’} of the conven-

tional AEWMA X scheme are {0.7481,0.1353,8.1341} and {0.6525,0.1081, 4.4318}, respectively,
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and the corresponding optimal parameters {r, h™} of the upper-sided TEWMA X scheme designed
for 67 = 1.5are {0.2043,1.1003} and {0.2251, 1.1841}, respectively. Irrespective of the zero-state
or the steady-state cases, the datasets and the corresponding charting statistics are presented in Table

10.
(Please insert Table 10 here)

The upper-sided ATEWMA X scheme, the AEWMA X scheme, and the upper-sided TEWMA X
scheme for monitoring the zero-state (or the steady-state) datasets with 6 = 0.75 X gg and = 2 X 0
are presented in Figure 6 (Figure 7), respectively. The control chart triggers an out-of-control signal

if a charting statistic plots outside the control limit.

* As it can be seen in Figure 6, when the zero-state dataset with upward shift 6 = 0.75 x oy is
monitored, the proposed upper-sided ATEWMA X scheme gives an out-of-control signal at the
13th observation, while the conventional AEWMA X scheme and the upper-sided TEWMA X
scheme all signal at the 16th observation (see Figure 6 (a), (b), and (c)). Meanwhile, if the up-
ward shift in zero-state dataset corresponds to 6 = 2 X o, the proposed upper-sided ATEWMA
X scheme generates an out-of-control signal at the 7th observation, while the conventional
AEWMA scheme X and the upper-sided TEWMA X scheme all signal at the 9th observation
(see Figure 6 (d), (e), and (f)). This indicates that the recommended upper-sided ATEWMA
X scheme in the zero-state case of this example outperforms the conventional AEWMA X
scheme and the upper-sided TEWMA X scheme in monitoring the small and the large upward

mean shifts simultaneously.

* For the steady-state case shown in Figure 7, the proposed upper-sided ATEWMA X scheme
gives an out-of-control signal at the 22th observation when the upward shift 6 = 0.75 X oy,
and the conventional AEWMA X scheme and the upper-sidled TEWMA X scheme all signal
at the 25th observation (see Figure 7 (a), (b), and (c¢)). Additionally, for the upward shift
2 x 0, scenario, the proposed upper-sidled ATEWMA X scheme generates an out-of-control
signal at the 13th observation, while the conventional AEWMA X scheme signals at the 15th
observation, and the upper-sidled TEWMA X scheme signals at the 14th observation (see

Figure 7 (d), (e), and (f)). This means that, in the steady-state case of this example, the upper-
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sided ATEWMA X scheme is also superior to the AEWMA X scheme and the upper-sided

TEWMA X scheme in monitoring the small and the large upward mean shifts simultaneously.

(Please insert Figure 6 and Figure 7 here)

Note that all the charting statistics that are detected to be out-of-control are in bold in Table 10. In
addition, it can be observed from Figure 7 (a) and (b) that the conventional AEWMA X scheme
with a small smoothing parameter \" takes a longer time than the proposed upper-sided ATEWMA
X scheme to detect the upward mean shift, when a (); value of the conventional AEWMA statistic
is closer to LCL. This means that the proposed upper-sidled ATEWMA X scheme seems to be able
to avoid the inertia problem better than the conventional AEWMA X scheme, and this could be an

interesting problem for future research.

7 Conclusion

In this study, we proposed a new one-sided ATEWMA X scheme that combines a Shewhart X scheme
and a one-sided TEWMA X scheme in a smooth way for a rapid upward (or downward) shift detec-
tion. Similar to the one-sided TEWMA scheme developed by Shu et al. (2007), a truncation method
is employed in the proposed one-sided ATEWMA X scheme to improve its detection efficiency. The
basic idea of the truncation method for the suggested upper-sided (lower-sided) ATEWMA X scheme
is to truncate the sample means X below (or above) the in-control mean o to the value of p, and
then to accumulate the sample means X above (below) the in-control mean g only. A dedicated
Markov chain model has been established to evaluate the RL properties of the recommended one-
sided ATEWMA X scheme, and the corresponding optimal design procedure of this recommended
scheme has also been presented based on the ARL criteria. Furthermore, a VSI feature has been
integrated into the recommended one-sided ATEWMA X scheme for improving the sensitivity of the
scheme in detecting either upward or downward mean shifts. Numerical results showed that the rec-
ommended one-sided ATEWMA X scheme with optimal parameters is uniformly more sensitive than
the conventional AEWMA X scheme in monitoring upward mean shifts, especially for small mean

shift range. In addition, compared with the one-sided TEWMA X scheme, the proposed one-sided
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ATEWMA X scheme can provide good protection against both small and large mean shifts simul-
taneously. In other words, it works better than the one-sided TEWMA X scheme in monitoring
an upward mean shift J that is much larger or smaller than . It is also indicated that the VSI
feature can substantially improve the detection efficiency of the recommended one-sided ATEWMA
X scheme. Comparisons with other competing VSI type charts also showed that the suggested one-
sided VSI-ATEWMA X scheme can provide a better overall performance for a wide range of mean

shifts.

A possible future extension for the current research is to investigate the RL properties of the
recommended one-sided ATEWMA X scheme in the worst-case scenario. Meanwhile, similar to Li
et al. (2009), the necessary and sufficient conditions for non-interaction of the suggested upper-sided
and lower-sided ATEWMA X schemes are also worth studying. Finally, the suggested one-sided

ATEWMA X scheme with estimated parameters could also be considered.
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Appendix A

Similar to the recommended upper-sided ATEWMA X scheme, the in-control region of the proposed

lower-sided ATEWMA X scheme is [H -, \/%] , and the width of each subinterval is given as A~ =

( \/ﬂlj — H~)/m. The charting statistic Q;” of the proposed lower-sided ATEWMA X scheme is said

to be in transient state j, at sampling point ¢, when v; — % < Qy < v+ 7, where j =
L,2,---,m, and v; = \/% - (- %)A* represents the midpoint value of the jth subinterval
£ = [v; — A—;, vy + %] Therefore, the corresponding elements g; ; of the matrix Q can be

computed as follow s,

=Pr(Q, € statej ‘ Q,_, € state @)

( ——<¢H( —v;)év;—v[#—%)
A A~
(v —|—¢H(j—vi—7><Zt<Ui+¢Hl(vj—vi+T>), (A.1)

E(Y, V(Y )[vi—l—qﬁHl (vj—vi—%>
|

where ¢;'(-) is the Huber’s inverse function defined in (12), E(Y;") = —1/y/27 and V(Y,") =
(m — 1)/27 denote the in-control mean and variance of the random variable Y, ™, respectively. Then,

let,

-1 m—11 _ a( _ AT
A3—\/—2—7T+ o |:Ui + On (Uj — U _7>]7 (A.2)

-1 T—1 B AT
A4:E+ 271‘ |:’U +¢H(J—Uz+7>} (AB)

Furthermore, the elements ¢; ; of the matrix Q are,
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0, A3 >0
%ij =19 1—®(A3+5vn), A; <0Oand A4 >0 (A4)
D(Ay +0y/n) — (A3 +v/n), A3 <0and A4 <0
By using (17), (19), (24) and (26), the ARL and ATS values of the proposed lower-sided ATEWMA
X scheme in both the zero-state and the steady-state cases can also be easily computed, except that

the corresponding elements of q. and g in (19) and (26) should be replaced by using,

1, Qo € E}
qu == 9 (A.S)
0, otherwise

and

ds, v; € [H_,W_)
g = , (A6)
dr, vje[W™,1/vVm—1]

respectively, where (), = 0.

Appendix B

In order to solve (22) and (23), a hybrid particle swarm optimization algorithm, named DNSPSO
algorithm, is used here to obtain the optimal parameters of the one-sided ATEWMA X scheme.
The DNSPSO algorithm has been firstly introduced by Wang et al. (2013), who suggested using
one diversity enhancing mechanism and two neighborhood search strategies, to achieve a trade-off
between exploration and exploitation abilities. The basic idea of the DNSPSO algorithm is to select
a better particle between F; and 7' F; as the new particle P; after updating the fitness values, and then
two neighborhood search strategies are conducted with a certain probability to avoid a premature

convergence. The pseudocode of the DNSPSO algorithm used in this paper is given as follows:
(Please insert the pseudocode here)

where NV is the number of particles in the swarm, ¢ = 1,2,--- N, and j = 1,2,---, D, where D

is the dimension of the nonlinear minimization problem. Meanwhile, OV; = (ov; 1,002, - ,00; p)
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and OX; = (ox;1,0x;2, -+ ,ox; p) denote the velocity and position of the ith particle P;, respec-
tively, pbest; = (pbest; 1, pbest; o, - - - , pbest; p) represents the best previous position associated with
the best fitness value for the ith particle, and gbest = (gbesty, gbests, - - -, gbestp) is the global best
particle found by all particles so far. In addition, w, is the inertia factor used to balance the global and
local search abilities of particles, c¢; and ¢, are two positive constants, representing the weight of the
“cognitive” and “social” components, respectively (see Shi & Eberhart (1998)). randl; ; and rand?2;
are two random numbers within [0, 1], and ¢ is the iteration number. Moreover, FEs and MaxFEs de-
note the number and maximum number of function evaluations, respectively. rand,(0, 1) is a uniform
random number within [0, 1], and p, is a predefined probability used to control the swarm diversity,
fa(+) is the fitness evaluation function, and p,, is the probability of conducting a neighborhood search.
Furthermore, O X, and O X, are the position vectors of two random particles in the k,-neighborhood
radius of P;, where k,, € [0, %], c,d € i — kp,i+ ky] A c#d+#i.ry, ry, and r3 are three uniform
random numbers within (0, 1), such that | + 5 + r3 = 1. Note that ry, 5, and 73 are the same for all
j =1,2,---,D. Similarly, OX., OX; are the position vectors of two random particles chosen for
the entire swarm, e, f € [1, N] A e # f # i, r4, 15, and r¢ are three uniform random numbers within
(0,1), such that ry + r5 + rg = 1. Also, ry, 5, and 74 are the same for all j = 1,2,--- | D, and they
are generated anew in each generation. For more details about the DNSPSO algorithm, readers can

refer to Wang et al. (2013).

According to Liang et al. (2006) and Tang et al. (2019b), a population size N = 20 is sufficient for
the case of D = 3 (i.e., in our case, three design parameters H* (or H ™), \, and k of the proposed one-
sided ATEWMA X scheme). Additionally, the other parameters, w, = 0.7298 ¢; = ¢, = 1.49618,
kn, = 2,p, = 0.3, pps = 0.8, and MaxFEs = 5000, are considered here to find the optimal parameters
©* of the proposed one-sided ATEWMA X scheme with the DNSPSO algorithm. Furthermore, for
the proposed one-sided VSI-ATEWMA X scheme, once the optimal parameters ©* searched by the
DNSPSO algorithm is given, it is easy to find the warning control limit W+ of the scheme by using

either the enumerative algorithm or the DNSPSO algorithm with D = 1.
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Pseudocode: The DNSPSO Algorithm

1  Uniformly randomly initialize each particle in the swarm;

2 Specity N, w,, ¢1, ¢2, kn, pr» Pns, and initialize pbest; and gbest;
3 While FEs < MaxFEs do
4 Fori=1to N
5 Update the velocity OV; and position O X; of particle P; using:
ov; j(t+ 1) = w, X ov; j(t) + ¢1 x randl; ; x (pbest; ;(t) — ox; j(t)) + c2 X rand2; ; x (gbest;(t) — ox; ;(t));
ox;;(t+ 1) = ox; j(t) + ov; ;(t + 1);
6 Calculate the fitness value of particle P;;
7 FEs=FEs+1;
%* Diversity enhance mechanism *%
8 Generate a new trial particle TP, = (T'X;, T'V;) using the following diversity enhanced mechanism:
ox;;(t+ 1), if rand;(0,1) < pr,
tr;j(t+1) =
ox; ;(1), otherwise;
tv; ;(t+1) = ov; ;(t +1);
9 Calculate the fitness value of T'F;;
10 Select a better fitness value between P; and T'F; as the new P, i.e.,
TP, if fo(TP) < fu(P),
o P, otherwise;
11 Update pbest; and gbest;
12 End

13 Fori=1to N
%* Neighborhood search strategy* %
14 If rand(0, 1) < pps
15 Generate a trial particle L; = (LX;, LV;) using the local neighborhood search (LNS) strategy:
LX; =11 x OX; + 19 X pbest; + 13 X (0X, — 0Xy);
LV; = 0V;;
16 Generate a trial particle G; = (GX;, GV;) using the global neighborhood search (GNS) strategy:

GX; =ry x OX; +r5 x gbest +rg x (OX. — OXy);

GV; =0V;
17 Calculate the fitness values of L; and Gj;
18 FEs=FEs+2;
19 Select a better fitness value among P;, L; and G; as the new P;;
20 End
21 Update pbest; and gbest;
22 End
23 End
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Table 1: ARL and ATS values computed using the Markov chain model versus those values
obtained using the Monte Carlo simulation (m = 201, n € {1,3}, and ¢ € {0,0.5,1.5,2.5}).

ATEWMA X VSI-ATEWMA X
Scenarios 0
Markov Chain Monte Carlo Markov Chain Monte Carlo
n=1
H*™ =0.6346, A = 0.0979, k = 8.8393, W = —0.0315
0 370 370.64 369.45 371.46
0.5 24.60 24.63 11.23 11.30
1.5 4.68 4.69 1.59 1.59
2.5 2.51 2.52 0.77 0.77
Zero-state
n=3
HT =0.6424, ) = 0.0768, k = 3.9556, W = —0.0250
0 370 370.43 369.15 369.02
0.5 12.44 12.44 4.69 4.68
1.5 2.17 2.17 0.66 0.66
2.5 1.08 1.08 0.32 0.32
n=1
H* =0.6802,\ = 0.1071, k = 8.6228 W = —0.0430
0 370 369.64 369.49 371.04
0.5 25.12 24.94 14.58 14.43
1.5 4.74 4.65 2.80 2.75
2.5 2.54 2.49 1.48 1.48
Steady-state
n=23
H*™ =0.5705, A = 0.0617, k = 3.9254, W = —0.0255
0 370 369.82 370.16 371.28
0.5 12.98 12.71 7.79 7.31
1.5 2.16 2.14 1.41 1.39
2.5 1.08 1.08 0.79 0.83
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Table 2: Optimal parameters of the recommended upper-sided ATEWMA X scheme, the
conventional AEWMA X scheme, and the upper-sided TEWMA X scheme (Zero-state case,

ARLq = 370, n € {1,3}).

ATEWMA X AEWMA X TEWMA X

55 5L 5T
Ht A k H N K r ht

n=1
0.25 1.00 0.4000 0.0534 6.1642 0.5246 0.0767 5.3905 0.25 0.0101 0.0711
0.50 1.00 0.6054 0.0919 7.1278 0.5125 0.0739 6.9808 0.50  0.0102 0.0715
0.75 1.00 0.4928 0.0701 8.1906 0.5679 0.0870 4.3315 0.75 0.0735 0.5109
0.25 2.00 0.5649 0.0839 7.4515 0.7634 0.1395 3.9524 1.00  0.1094 0.6900
0.50 2.00 0.6046 0.0918 6.8834 0.7632 0.1395 3.9527 1.25 0.1509 0.8773
0.75 2.00 0.6346 0.0979 8.8393 0.7481 0.1353 8.1341 1.50  0.2043 1.1003
0.25 3.00 0.6947 0.0974 4.2221 0.3588 0.0258 2.7698 2.00  0.3698 1.7263
0.50 3.00 0.7109 0.1045 4.3796 0.4427 0.0353 2.7045 2.50  0.4959 2.1783
0.75 3.00 0.7418 0.1125 4.4691 0.7481 0.1212 2.8638 3.00 0.6547 2.7502
n=23

0.25 1.00 0.5729 0.0855 6.8447 0.7473 0.1351 9.9843 0.25 0.0101 0.0711
0.50 1.00 0.5617 0.0833 7.8306 0.7134 0.1253 6.4174 0.50  0.0885 0.5894
0.75 1.00 0.7970 0.1327 6.9773 0.7844 0.1452 3.6739 0.75 0.1730 0.9715
0.25 2.00 0.4553 0.0420 3.9207 0.4508 0.0457 2.8025 1.00  0.2647 1.3365
0.50 2.00 0.6660 0.0845 4.0193 0.6822 0.0891 2.6678 1.25 0.3941 1.8139
0.75 2.00 0.6424 0.0768 3.9556 0.6529 0.0838 2.6929 1.50  0.5129 2.2390
0.25 3.00 0.3432  0.0426 5.0539 0.4580 0.0591 3.2324 2.00  0.7578 3.1319
0.50 3.00 0.7199 0.1043 4.2893 0.7336 0.1277 3.2731 250 09164 3.7448
0.75 3.00 0.7600 0.1191 4.6588 0.7017 0.1190 3.2921 3.00 0.9814 4.0057
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Table 3: Optimal parameters of the recommended upper-sided ATEWMA X scheme, the
conventional AEWMA X scheme, and the upper-sided TEWMA X scheme (Steady-state case,

ARLq = 370, n € {1,3}).

ATEWMA X AEWMA X TEWMA X

55 5L 5T
Ht A k H N K r ht

n=1
0.25 1.00 0.5559 0.0819 7.7593 0.6613 0.1104 6.0966 0.25 0.0335 0.2752
0.50 1.00 0.5173 0.0744 6.1899 0.5521 0.0826 6.6094 0.50  0.0588 0.4322
0.75 1.00 0.6367 0.0981 9.2143 0.5944 0.0930 7.3121 0.75 0.0909 0.6023
0.25 2.00 0.7013 0.1116 8.5037 0.6335 0.1024 3.6737 1.00  0.1304 0.7881
0.50 2.00 0.6838 0.1079 8.2647 0.6914 0.1187 6.2633 1.25 0.1761 0.9856
0.75 2.00 0.6802 0.1071 8.6228 0.6525 0.1081 4.4318 1.50  0.2251 1.1841
0.25 3.00 0.7207 0.1034 4.2555 0.6222 0.0870 2.8613 2.00  0.3481 1.6479
0.50 3.00 0.6019 0.0833 4.4195 0.6377 0.1018 3.3457 2.50  0.5025 2.2027
0.75 3.00 0.6923 0.0974 4.2464 0.7118 0.1140 2.9462 3.00 0.6519 2.7402
n=23

0.25 1.00 0.5548 0.0800 5.1039 0.6801 0.1156 5.0431 0.25 0.0519 0.3917
0.50 1.00 0.7201 0.1156 8.4973 0.7129 0.1247 6.8712 0.50  0.1073 0.6808
0.75 1.00 0.7692 0.1263 8.3073 0.7815 0.1447 8.7480  0.75 0.1823 1.0111
0.25 2.00 0.6419 0.0847 4.1518 0.5532  0.0668 2.7959 1.00  0.2781 1.3885
0.50 2.00 0.7442 0.1026 4.0843 0.7664 0.1228 2.8047 1.25 0.3937 1.8133
0.75 2.00 0.5705 0.0617 3.9254 0.7872 0.1049 2.5600 1.50  0.5291 2.2975
0.25 3.00 0.6516 0.1006 5.5516 0.5407 0.0780 3.3726 2.00  0.7772 3.2054
0.50 3.00 0.7868 0.1295 5.5469 0.6726 0.1095 3.2134 2.50  0.9336 3.8130
0.75 3.00 0.7498 0.1204 5.1788 0.7423 0.1231 2.9635 3.00 09913 4.0460
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Table 4: Zero-state ARL comparisons between the suggested upper-sided ATEWMA X scheme and
the conventional AEWMA X scheme for ARLy, = 370 and n € {1, 3}.

0
025 050 075 1.00 125 150 1.75 2.00 2.50 3.00

Og or, Schemes

n=1

AEWMA 81.57 27.06 14.78 10.03 7.60 6.13 5.16 446 355 297

0.25 1.00
ATEWMA 60.05 2298 12.88 8.63 640 5.05 416 354 272 219
050 1.00 AEWMA 8231 26.56 14.17 944 7.02 557 461 393 3.03 246
' ) ATEWMA 67.72 2437 12.89 834 6.05 472 3.86 328 254 2.12
075 1.00 AEWMA 85.00 27.53 1473 9.88 743 596 500 431 339 278
' ' ATEWMA 6336 2348 12.81 846 621 488 4.01 342 266 221
025 2.00 AEWMA 102.57 31.03 15.16 9.59 695 546 450 3.84 297 239
' ’ ATEWMA 6598 2393 1279 833 6.07 475 3.89 331 257 2.14
050 2.00 AEWMA 102.55 31.02 15.16 9.59 695 546 451 384 297 239
' ’ ATEWMA 67.71 2437 12.89 835 6.06 472 3.87 328 255 2.12
075 2.00 AEWMA 100.83 30.61 15.07 9.58 697 549 455 389 3.06 254
’ ) ATEWMA 68.83 2460 1291 831 6.01 4.68 3.82 324 251 2.09
025 3.00 AEWMA 11441 40.00 2258 1524 11.11 840 6.46 5.00 3.06 2.01
' ' ATEWMA 82.37 2850 1441 9.04 640 487 388 320 229 174
050 3.00 AEWMA 130.21 41.37 22.16 14.63 1058 7.98 6.15 479 298 1.98
' ’ ATEWMA 79.64 27.66 14.01 880 6.24 477 3.82 3.15 229 1.5
075 3.00 AEWMA 117.09 3472 16.58 1035 740 571 4.60 3.80 2.72 201
ATEWMA 79.54 27.60 1391 871 6.16 470 3.77 3.12 228 1.76

n =

025 100 AEWMA 39.70 11.94 6.62 460 357 294 252 223 191 1.63
ATEWMA 30.05 1032 576 394 3.01 247 212 188 149 1.19
050 1.00 AEWMA 38.61 1190 6.69 4.67 3.63 3.00 257 227 195 1.69
' ’ ATEWMA 2989 1032 578 396 3.02 248 213 1.88 150 1.19
075 1.00 AEWMA 41.27 12.06 6.58 452 344 276 227 188 136 1.11
' ) ATEWMA 3354 1052 560 375 283 231 197 1.72 134 1.10
025 2.00 AEWMA 4257 1515 870 572 393 276 200 1.54 1.13 1.02
' ) ATEWMA 4045 1372 735 464 315 224 1.69 136 107 1.01
050 2.00 AEWMA 51.63 1464 783 508 354 255 191 150 1.12 1.02
' ’ ATEWMA 3872 12.07 636 4.09 290 217 1.69 138 1.09 1.01
075 2.00 AEWMA 4947 1448 784 512 357 258 192 151 1.12 1.02
' ' ATEWMA 39.87 1244 654 419 293 217 1.68 137 1.08 1.01
025 3.00 AEWMA 3447 1280 7.67 538 401 3.06 234 181 124 1.05
' ) ATEWMA 28.44 10.85 6.28 431 322 251 201 1.63 1.19 1.04
050 3.00 AEWMA 40.52 12,16 6.71 460 346 272 218 1.77 125 1.05
' ) ATEWMA 3598 11.25 596 390 282 216 1.71 141 1.11 1.02
075 3.00 AEWMA 3941 1212 677 466 352 277 221 1.79 126 1.06

ATEWMA 3450 1079 572 378 278 217 175 147 1.14 1.03
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Table 5: Steady-state ARL comparisons between the suggested upper-sided ATEWMA X scheme

and the conventional AEWMA X scheme for ARLy = 370 andn € {1, 3}.

)

dg or, Schemes

0.25 050 075 100 125 1.50 1.75 2.00 2.50 3.00
n =
025 1.00 AEWMA 92.01 2853 14.64 960 7.13 5.69 475 4.10 324 271
’ ' ATEWMA 65.78 24.17 13.09 8.62 632 496 4.08 347 269 222
050 1.00 AEWMA 82.81 27.06 14.67 994 752 6.07 5.11 443 353 296
) ) ATEWMA 64.54 24.01 13.16 872 642 504 4.15 352 269 2.17
075 1.00 AEWMA 86.23 2754 14.61 9.78 7.35 591 496 429 341 286
' ' ATEWMA 68.81 2474 13.08 848 6.16 4.81 394 334 259 2.15
025 2.00 AEWMA 90.33 28.27 14.68 9.68 721 574 477 407 3.10 243
' ' ATEWMA 7130 2531 13.15 842 6.07 4.72 3.85 326 252 2.09
050 2.00 AEWMA 9473 29.07 1470 9.55 7.05 5.60 4.67 4.02 3.18 2.66
' ' ATEWMA 70.66 25.16 13.13 843 6.09 4.74 3.87 328 2.54 2.10
075 2.00 AEWMA 91.27 2840 14.63 9.62 7.15 571 477 410 322 2.65
’ ’ ATEWMA 70.50 25.12 13.12 843 6.10 474 388 329 254 2.10
025 3.00 AEWMA 105.89 32.17 16.30 10.57 7.71 598 481 395 276 2.00
' ' ATEWMA 8226 2842 1435 899 6.36 483 385 3.16 226 1.71
050 3.00 AEWMA 92.60 28.80 14.86 9.76 7.23 572 472 398 296 226
' ' ATEWMA 7438 2645 1390 895 6.43 494 396 326 234 1.77
075 3.00 AEWMA 108.68 3243 15.85 10.05 7.26 5.63 455 377 270 201
ATEWMA 81.35 2821 1434 9.04 641 488 388 3.18 227 172
n =

025 1.00 AEWMA 37.15 11.78 6.74 476 371 3.07 263 230 1.80 1.40
' ' ATEWMA 30.62 1072 6.02 408 3.03 237 191 1.58 1.18 1.04
050 1.00 AEWMA 38.12 11.78 6.66 467 3.64 301 259 229 1.89 1.63
' ' ATEWMA 32.17 1049 573 388 295 240 205 1.80 146 1.22
075 1.00 AEWMA 40.38 11.85 6.52 453 351 289 248 220 1.82 1.57
' ' ATEWMA 3293 10.52 5.68 383 290 236 201 1.77 143 1.19
025 2.00 AEWMA 4256 1396 787 519 362 261 195 153 1.13 1.02
' ' ATEWMA 36.15 11.64 622 404 2.87 215 1.68 1.38 1.09 1.01
050 2.00 AEWMA 4721 13.11 696 458 328 246 190 152 1.14 1.02
’ ' ATEWMA 3854 1176 6.14 395 280 211 166 1.37 1.09 1.01
075 2.00 AEWMA 63.04 1558 784 494 339 244 183 146 1.11 1.02
' ' ATEWMA 40.20 1298 687 434 298 2.16 1.66 135 1.08 1.01
025 3.00 AEWMA 3472 1223 724 508 383 296 232 1.84 127 1.06
' ' ATEWMA 3142 1053 582 394 296 236 194 1.63 1.23 1.05
050 3.00 AEWMA 3845 1206 6.81 468 349 270 212 1.71 1.22 1.05
' ' ATEWMA 3343 1058 5.67 379 284 226 187 1.58 1.22 1.05
075 3.00 AEWMA 43.01 1250 6.79 455 332 252 197 158 1.18 1.04
ATEWMA 33.13 1060 5.71 382 2.84 224 184 1.54 1.17 1.03
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Table 6: Optimal parameters of the recommended upper-sided VSI-ATEWMA X scheme, the
conventional VSI-AEWMA X scheme, and the upper-sided VSI- TEWMA X scheme (Zero-state
case, ATS; = 370, and n € {1, 3}).

5 5 VSI-ATEWMA X VSI-AEWMA X 5 VSI-TEWMA X
s Ht A k Wt H X K W (do=dy) w (do = dg) ’ r B wt
n=1
025 1.00 04000 0.0534 6.1642 -0.0234  0.5246 0.0767 5.3905 0.2481 0.2477 025  0.0101 0.0711 -0.0549
050 1.00  0.6054 0.0919 7.1278 -0.0313  0.5125 0.0739 6.9808 0.2441 0.2405 0.50  0.0102 0.0715 -0.0574
075 1.00 04928 0.0701 8.1906 -0.0307  0.5679 0.0870 4.3315 0.2455 0.2422 075  0.0735 0.5109 -0.0316
025 200 05649 0.0839 7.4515 -0.0326  0.7634 0.1395 3.9524 0.2300 0.2371 1.00  0.1094 0.6900 -0.0315
0.50 2.00  0.6046 0.0918 6.8834 -0.0276  0.7632 0.1395 3.9527 0.2336 0.2307 125  0.1509 0.8773 -0.0442
075 2.00  0.6346 0.0979 8.8393 -0.0315  0.7481 0.1353 8.1341 0.2328 0.2381 1.50  0.2043 1.1003 -0.0563
025 3.00  0.6947 0.0974 42221 -0.0319  0.3588 0.0258 2.7698 0.2161 0.2149 200 03698 1.7263 -0.1064
0.50 3.00 07109 0.1045 43796 -0.0332  0.4427 0.0353 2.7045 0.2065 0.2040 250 04959 2.1783 -0.1623
0.75 3.00  0.7418 0.1125 4.4691 -0.0400  0.7481 0.1212 2.8638 0.2235 0.2258 3.00  0.6547 27502 -0.2320
n=3
025 1.00 05729 0.0855 6.8447 -0.0347 07473 0.1351 9.9843 0.2297 0.2385 025  0.0101 0.0711 -0.0559
0.50 1.00  0.5617 0.0833 7.8306 -0.0328  0.7134 0.1253 6.4174 0.2316 0.2289 0.50  0.0885 0.5894 -0.0396
075 1.00 07970 0.1327 6.9773 -0.0318  0.7844 0.1452 3.6739 0.2301 0.2367 075 01730 09715 -0.0528
025 2.00  0.4553 0.0420 3.9207 -0.0150  0.4508 0.0457 2.8025 0.2224 0.2234 1.00 02647 1.3365 -0.0750
0.50 2.00  0.6660 0.0845 4.0193 -0.0233  0.6822 0.0891 2.6678 0.2138 0.2170 125 03941 1.8139 -0.1064
0.75 2.00  0.6424 0.0768 3.9556 -0.0250  0.6529 0.0838 2.6929 0.2188 0.2101 150 05129 22390 -0.1546
025 3.00 03432 0.0426 5.0539 -0.0258  0.4580 0.0591 3.2324 0.2448 0.2484 200  0.7578 3.1319 -0.2951
0.50 3.00  0.7199 0.1043 4.2893 -0.0358  0.7336 0.1277 3.2731 0.2316 0.2319 250 09164 3.7448 -0.4935
075 3.00 07600 0.1191 4.6588 -0.0342  0.7017 0.1190 3.2921 0.2308 0.2293 3.00 09814 4.0057 -0.6113
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Table 7: Optimal parameters of the recommended upper-sided VSI-ATEWMA X scheme, the
conventional VSI-AEWMA X scheme, and the upper-sided VSI- TEWMA X scheme (Steady-state
case, AATS, = 370, and n € {1, 3}).

s VSL-ATEWMA X VSI-AEWMA X s VSI-TEWMA X
s H* A k Wt H % K u? " B Bt wt
n=1

0.25 1.00 0.5559 0.0819 7.7593 -0.0400 0.6613 0.1104 6.0966 0.2313 0.25 0.0335 0.2752 -0.0420
0.50 1.00 0.5173 0.0744 6.1899 -0.0468 0.5521 0.0826 6.6094 0.2311 0.50 0.0588 0.4322 -0.0420
0.75 1.00 0.6367 0.0981 9.2143 -0.0453 0.5944 0.0930 7.3121 0.2327 0.75 0.0909 0.6023 -0.0413
0.25 2.00 0.7013 0.1116 8.5037 -0.0517 0.6335 0.1024 3.6737 0.2367 1.00 0.1304 0.7881 -0.0432
0.50 2.00 0.6838 0.1079 8.2647 -0.0433 0.6914 0.1187 6.2633 0.2307 1.25 0.1761 0.9856 -0.0580
0.75 2.00 0.6802 0.1071 8.6228 -0.0430 0.6525 0.1081 4.4318 0.2362 1.50 0.2251 1.1841 -0.0724
0.25 3.00 0.7207 0.1034 4.2555 -0.0393 0.6222 0.0870 2.8613 0.2251 2.00 0.3481 1.6479 -0.1047
0.50 3.00 0.6019 0.0833 4.4195 -0.0349 0.6377 0.1018 3.3457 0.2316 2.50 0.5025 2.2027 -0.1674
0.75 3.00 0.6923 0.0974 4.2464 -0.0370 0.7118 0.1140 2.9462 0.2285 3.00 0.6519 2.7402 -0.2341

n=3

0.25 1.00 0.5548 0.0800 5.1039 -0.0424 0.6801 0.1156 5.0431 0.2294 0.25 0.0519 0.3917 -0.0428
0.50 1.00 0.7201 0.1156 8.4973 -0.0356 0.7129 0.1247 6.8712 0.2323 0.50 0.1073 0.6808 -0.0461
0.75 1.00 0.7692 0.1263 8.3073 -0.0467 0.7815 0.1447 8.7480 0.2349 0.75 0.1823 1.0111 -0.0634
0.25 2.00 0.6419 0.0847 4.1518 -0.0356 0.5532 0.0668 2.7959 0.2218 1.00 0.2781 1.3885 -0.0816
0.50 2.00 0.7442 0.1026 4.0843 -0.0341 0.7664 0.1228 2.8047 0.2203 1.25 0.3937 1.8133 -0.1236
0.75 2.00 0.5705 0.0617 3.9254 -0.0255 0.7872  0.1049 2.5600 0.2010 1.50 0.5291 2.2975 -0.1770
0.25 3.00 0.6516 0.1006 5.5516 -0.0459 0.5407 0.0780 3.3726 0.2314 2.00 0.7772 3.2054 -0.3394
0.50 3.00 0.7868 0.1295 5.5469 -0.0493 0.6726 0.1095 3.2134 0.2372 2.50 0.9336 3.8130 -0.5349
0.75 3.00 0.7498 0.1204 5.1788 -0.0513 0.7423 0.1231 2.9635 0.2209 3.00 0.9913 4.0460 -0.6469
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Table 8: Zero-state AT'S comparisons among the proposed upper-sided VSI-ATEWMA X scheme,
the proposed upper-sided FSI-ATEWMA X scheme, and the conventional VSI-AEWMA X scheme
for AT'S) = 370 and n € {1, 3}.

0

ds or Schemes

025 050 075 1.00 125 150 1.75 2.00 2.50 3.00
n=1
FSI-ATEWMA 60.05 2298 12.88 8.63 640 5.05 4.16 354 272 2.19
025 1.00 VSI-AEWMA(d, = dy,) 66.69 1859 998 691 535 442 379 335 276 242
: : VSI-AEWMA(d, = ds) 6529 17.19 858 551 395 3.02 239 195 136 1.02
VSI-ATEWMA 34.18 10.06 5.06 3.17 222 1.68 134 1.11 0.83 0.66
FSI-ATEWMA 67.72 2437 12.89 834 6.05 472 386 328 254 212
050 1.00 VSI-AEWMA(d, = dy,) 65.69 1852 10.02 695 539 445 382 337 278 244
: : VSI-AEWMA(d, = ds) 64.29 17.12 862 555 3.99 3.05 242 197 138 1.04
VSI-ATEWMA 41.64 11.17 524 3.16 217 1.61 127 1.04 078 0.64
FSI-ATEWMA 6336 2348 12.81 846 6.21 4.88 4.01 342 266 221
075 1.00 VSI-AEWMA(dy = dy,) 70.50 1895 989 6.77 522 430 3.69 325 2.69 235
: . VSI-AEWMA(dy = ds) 69.10 17.55 849 537 3.82 290 229 1.85 129 095
VSI-ATEWMA 3723 1047 511 3.5 219 164 130 1.08 081 0.67
FSI-ATEWMA 6598 2393 1279 833 6.07 475 3.89 331 257 214
025 2.00 VSI-AEWMA(d, = dy,) 88.03 2144 9.81 632 476 3.88 3.32 293 245 218
i : VSI-AEWMA(d, = ds) 86.63 20.04 841 492 336 248 192 153 1.05 0.78
VSI-ATEWMA 40.02 10.82 513 311 214 1.60 126 1.04 0.79 0.65
FSI-ATEWMA 67.71 2437 12.89 835 6.06 4.72 3.87 328 255 212
050 2.00 VSI-AEWMA(d, = dy,) 88.01 2144 981 632 476 3.88 332 293 245 218
i : VSI-AEWMA(d, = ds) 86.61 20.04 841 492 336 248 192 153 105 0.78
VSI-ATEWMA 41.60 11.17 524 316 217 1.61 127 1.04 078 0.64
FSI-ATEWMA 68.83 24.60 1291 831 6.01 4.68 382 324 251 2.09
075 2.00 VSI-AEWMA(d, = dy,) 86.18 21.10 9.77 633 478 390 3.34 296 248 222
: : VSI-AEWMA(d, = ds) 84.78 19.70 837 493 338 250 194 156 1.08 0.82
VSI-ATEWMA 4238 1123 521 312 214 159 125 1.03 0.77 0.63
FSI-ATEWMA 82.37 2850 1441 9.04 640 4.87 3.88 320 229 1.74
025 3.00 VSI-AEWMA(d, = dy,) 76.02 2496 1458 1024 7.84 630 521 439 329 2.60
. : VSI-AEWMA(d, = ds) 74.62 2356 13.18 884 644 490 381 299 189 120
VSI-ATEWMA 4931 1259 570 337 227 1.65 127 1.02 0.70 0.52
FSI-ATEWMA 79.64 27.66 14.01 880 6.24 477 382 315 229 175
050 3.00 VSI-AEWMA(d, = dy,) 86.14 2456 1374 952 726 5.83 4.83 4.10 3.09 247
i : VSI-AEWMA(d, = ds) 84.74 23.16 1234 8.12 586 443 343 270 1.69 1.07
VSI-ATEWMA 49.10 1251 562 331 223 1.63 125 1.01 0.70 0.3
FSI-ATEWMA 79.54 27.60 1391 871 6.16 470 3.77 3.12 228 1.76
075 3.00 VSI-AEWMA(d, = dy,) 97.41 2273 1034 6.67 5.00 4.04 342 298 241 2.08
. : VSI-AEWMA(d, = ds) 96.01 2133 894 527 3.60 2.64 202 158 101 0.68
VSI-ATEWMA 49.27 1252 557 326 219 1.60 124 099 0.70 0.53
n=3

FSI-ATEWMA 30.05 1032 576 394 301 247 212 1.88 149 1.19
025 1.00 VSI-AEWMA(d, = dy,) 28.58 777 457 337 277 242 221 209 198 1.89
. : VSI-AEWMA(dy = ds) 27.18 637 317 197 137 1.02 081 069 058 049
VSI-ATEWMA 1429 398 201 128 094 075 064 056 045 036
FSI-ATEWMA 29.89 1032 578 396 3.02 248 213 188 150 1.19
050 1.00 VSI-AEWMA(d, = dy,) 2756 7778 462 342 280 245 223 210 199 191
i VSI-AEWMA(d, = ds) 26.16 638 322 202 140 1.05 083 070 0.59 0.51
VSI-ATEWMA 14.13 398 202 129 094 075 0.64 057 045 036
FSI-ATEWMA 3354 1052 560 375 283 231 197 172 134 1.10
075 1.00 VSI-AEWMA(d, = dy,) 2997 781 453 333 272 236 214 198 181 1.73
. : VSI-AEWMA(dy = ds) 2857 641 313 193 132 096 074 058 041 033
VSI-ATEWMA 17.02 419 201 125 0.89 071 059 052 040 033
FSI-ATEWMA 4045 1372 735 464 3.15 224 1.69 136 107 101
025 2.00 VSI-AEWMA(dy = df,) 27.19 10.00 6.17 444 342 274 229 201 176 1.71
: VSI-AEWMA(d, = ds) 2579 860 477 3.04 2.02 134 089 061 036 031
VSI-ATEWMA 16.87 504 251 150 098 0.68 0.51 041 032 030
FSI-ATEWMA 3872 1207 636 4.09 290 217 1.69 138 1.09 1.01
050 2.00 VSI-AEWMA(d, = dy,) 3262 9.03 528 377 293 241 2.09 190 174 1.71
: : VSI-AEWMA(dy = ds) 3122 763 388 237 153 101 0.69 050 034 031
VSI-ATEWMA 17.65 461 223 135 091 0.66 051 041 033 030
FSI-ATEWMA 39.87 1244 654 419 293 217 1.68 137 1.08 1.01
075 2.00 VSI-AEWMA(d, = dy,) 31.16  9.00 532 380 296 243 210 190 1.74 1.71
: VSI-AEWMA(d, = ds) 2976 760 392 240 156 1.03 070 050 0.34 031
VSI-ATEWMA 17.66 469 228 137 092 0.66 051 041 032 030
FSI-ATEWMA 2844 1085 628 431 322 251 201 1.63 1.19 1.04
025 3.00 VSI-AEWMA(d, = dy,) 2394 879 550 406 3.22 267 228 203 178 1.71
. . VSI-AEWMA(d, = ds) 2254 739 410 266 1.82 127 088 0.63 038 0.31
VSI-ATEWMA 1270 404 213 138 0.99 0.76 0.60 049 036 0.31
FSI-ATEWMA 3598 1125 596 390 282 216 171 141 111 1.02
050 3.00 VSI-AEWMA(d, = dy,) 2890 790 465 341 276 237 212 195 178 1.72
: VSI-AEWMA(d, = ds) 2750 650 325 201 136 097 072 055 038 032
VSI-ATEWMA 17.07 435 210 128 0.89 0.66 052 042 033 030
FSI-ATEWMA 3450 10.79 572 378 278 217 175 147 1.14 1.03
075 3.00 VSI-AEWMA(d, = dy,) 27.89 791 470 345 279 239 213 196 178 1.72

VSI-AEWMA(d, = dg) 2649 6,51 330 205 139 099 0.73 0.56 038 0.32
VSI-ATEWMA 16.85 420 202 124 0.87 0.66 053 044 034 031
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Table 9: Steady-state ATS comparisons among the proposed upper-sided VSI-ATEWMA X B
scheme, the proposed upper-sided FSI-ATEWMA X scheme, and the conventional VSI-AEWMA X
scheme for AATS, = 370 and n € {1, 3}.

ds 0, Schemes
025 050 075 1.00 1.25 150 1.75 2.00 2.50 3.00

n=1

FSI-ATEWMA 65.78 24.17 13.09 8.62 632 496 4.08 347 2.69 222
0.25 1.00 VSI-AEWMA 76.19 1840 8.61 550 4.04 320 265 226 176 145
VSI-ATEWMA 4425 14.63 8.02 535 393 3.07 251 212 1.62 134

FSI-ATEWMA 64.54 2401 13.16 872 642 504 4.15 352 269 2.17
0.50 1.00 VSI-AEWMA 6599 17.15 870 5.78 433 346 288 247 193 1.59
VSI-ATEWMA 4329 1474 820 550 4.06 3.17 259 218 1.65 1.33

FSI-ATEWMA 68.81 2474 13.08 848 6.16 481 394 334 259 215
0.75 1.00 VSI-AEWMA 69.79 1755 8.63 566 421 335 278 238 185 1.53
VSI-ATEWMA 46.37 1453 7.70 5.06 3.69 2.88 234 198 152 1.27

FSI-ATEWMA 71.30 2531 13.15 842 6.07 472 3.85 326 252 2.09
0.25 2.00 VSI-AEWMA 74.07 18.11 8.64 558 4.12 326 269 228 174 1.38
VSI-ATEWMA 48.11 1457 7.53 489 355 276 224 189 146 1.22

FSI-ATEWMA 70.66 25.16 13.13 843 6.09 4.74 3.87 328 254 2.10
0.50 2.00 VSI-AEWMA 7920 18.86 8.63 545 398 3.14 259 221 172 142
VSI-ATEWMA 4790 14.62 7.60 495 3.60 2.80 228 192 148 1.24

FSI-ATEWMA 7050 25.12 13.12 843 6.10 4.74 3.88 329 254 2.10
0.75 2.00 VSI-AEWMA 7535 1828 8.61 552 4.06 321 266 227 176 144
VSI-ATEWMA 47.64 1458 7.60 495 3.60 2.80 228 192 148 1.24

FSI-ATEWMA 8226 2842 1435 899 636 4.83 385 3.16 226 1.71
0.25 3.00 VSI-AEWMA 8335 1954 934 6.04 442 345 280 233 1.67 126
VSI-ATEWMA 53.87 15.78 8.02 5.15 3.69 282 225 1.86 135 1.07

FSI-ATEWMA 7438 2645 1390 895 643 494 396 326 234 1.77
0.50 3.00 VSI-AEWMA 7596 1840 8.74 563 4.14 327 268 227 170 1.33
VSI-ATEWMA 4879 1542 826 542 393 303 242 200 145 1.13

FSI-ATEWMA 81.35 2821 1434 9.04 641 4838 388 3.18 227 1.72
0.75 3.00 VSI-AEWMA 88.81 2023 9.02 5.64 4.08 3.17 258 215 157 121
VSI-ATEWMA 52.65 15.70 8.10 523 3.776 288 230 1.89 1.37 1.08

n=3

FSI-ATEWMA 30.62 10.72 6.02 4.08 3.03 237 191 158 1.18 1.04
0.25 1.00 VSI-AEWMA 2534 681 380 264 203 166 141 124 1.03 0.88
VSI-ATEWMA 1853 659 374 252 186 146 1.19 101 0.82 0.76

FSI-ATEWMA 32.17 1049 573 388 295 240 205 1.80 146 1.22
0.50 1.00 VSI-AEWMA 2626 6.78 374 259 199 162 139 123 1.05 0.95
VSI-ATEWMA 19.44 613 339 229 173 141 121 1.09 095 0.85

FSI-ATEWMA 3293 1052 568 383 290 236 201 1.77 143 1.19
0.75 1.00 VSI-AEWMA 2844 6779 363 249 190 155 133 1.18 1.02 0.92
VSI-ATEWMA 1934 595 326 220 1.66 136 1.18 1.06 093 0.84

FSI-ATEWMA 36.15 11.64 622 4.04 287 215 1.68 138 1.09 1.01
0.25 2.00 VSI-AEWMA 2621 8.08 461 3.10 223 1.66 128 1.04 081 0.75
VSI-ATEWMA 2043 6778 373 243 1.74 133 1.08 092 0.79 0.75

FSI-ATEWMA 3854 11.76 6.14 395 280 2.11 1.66 137 1.09 1.01
0.50 2.00 VSI-AEWMA 31.34 731 389 260 190 146 1.17 098 0.80 0.75
VSI-ATEWMA 2128 6.56 354 230 1.66 128 1.04 090 0.78 0.75

FSI-ATEWMA 4020 1298 6.87 434 298 216 1.66 135 1.08 1.01
0.75 2.00 VSI-AEWMA 38.08 820 427 278 197 147 1.16 096 0.79 0.74
VSI-ATEWMA 2241 7779 427 273 190 141 1.11 094 0.79 0.76

FSI-ATEWMA 31.42 1053 582 394 296 236 194 1.63 123 1.05
0.25 3.00 VSI-AEWMA 2275 720 420 293 221 1.74 139 1.14 086 0.76
VSI-ATEWMA 18.60 620 347 234 175 140 1.17 1.01 0.83 0.77

FSI-ATEWMA 3343 10.58 5.67 379 284 226 1.87 158 122 1.05
0.50 3.00 VSI-AEWMA 2597 698 389 267 200 156 126 1.06 0.83 0.76
VSI-ATEWMA 19.55 594 324 217 163 131 1.11 098 0.83 0.76

FSI-ATEWMA 33.13 1060 571 382 284 224 184 154 1.18 1.04
0.75  3.00 VSI-AEWMA 28.68 7.02 379 256 1.89 147 1.18 099 0.80 0.75
VSI-ATEWMA 1920 6.00 329 220 1.64 131 1.10 096 0.81 0.76
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Table 10: The charting statistics of the recommended upper-sided ATEWMA X scheme, the conventional AEWMA X scheme, and the
upper-sided TEWMA X scheme corresponding to the zero-state and the steady-state datasets (1o = 100, g = 3, n = 1).

Zero-state case

Steady-state case

6 =0.75 X oy 0 =2X oy 0 =0.75 X oy 0 =2X oy
t X QF Q Q7. t X Qr Q QF, t X QF Q Q7. tX QF Q QF,
- - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0
1. 100.68 -0.03 0.03 -0.06 1. 103.72 0.14 0.17 0.29 1. 96.84 -0.07 -0.11 -0.15 1. 102.14 0.06 0.08 0.12
2. 103.85 0.12 0.20 0.26 2. 99.28 0.06 0.11 0.09 2. 99.01 -0.14 -0.14 -0.27 2. 96.00 -0.02 -0.08 -0.06
3. 103.79 0.26 0.34 0.51 3. 104.40 0.23 0.30 0.45 3. 103.62 0.02 0.01 0.10 3. 103.19 0.10 0.05 0.21
4. 100.91 0.21 0.34 0.37 4. 10545 0.45 0.50  0.85 4. 100.53 -0.02 0.03 -0.01 4. 99.84 0.02 0.04 0.01
5. 101.80 0.23 0.37 0.37 5. 103.33 0.52 0.58 0.93 5. 96.98 -0.09 -0.09 -0.16 5. 100.04 -0.05 0.03 -0.14
6. 103.74 0.35 0.49 0.59 6. 102.16 0.53 0.60 0.85 6. 9493 -0.15 -0.26 -0.28 6. 95.70 -0.12 -0.12 -0.26
7. 100.84 0.29 0.46 0.43 7. 104.69 0.67 0.73 1.08 7. 102.66 -0.05 -0.14 -0.03 7. 105.46 0.15 0.09 0.34
8. 107.08 0.59 0.72 1.03 8. 102.00 0.65 0.72 0.96 8. 98.34 -0.12 -0.18 -0.18 8. 102.71 0.23 0.17 0.46
9. 102.35 0.60 0.73 0.95 9. 108.76 1.01 1.02 1.64 9.  96.57 -0.18 -0.28 -0.29 9. 9275 0.13 -0.11 0.20
10. 96.60 0.47 0.48 0.62 10. 108.02 1.29 1.24 2.10 10. 95.82 -0.23 -0.40 -0.38 10. 90.87 0.04 -0.42 0.00
11. 104.52 0.61 0.62 0.88 11. 104.05 1.32 126 201 11. 106.73 0.13 -0.12 0.42 11. 106.59 0.37 -0.14 0.70
12. 101.63 0.58 0.61 0.75 12. 108.32 1.59 146 243 12. 10247 0.20 -0.02 0.49 12. 105.37 0.58 0.07 1.08
13. 103.92 0.67 0.70 091 13. 110.07 1.93 1.72 2.97 13. 103.66 0.33 0.12 0.69 13. 103.85 0.684 0.20 1.17
14.  99.60 0.54 0.59 0.59 14. 106.88 2.06 1.80 3.02 14. 103.30 0.42 0.22 0.81 14. 110.34 1.17 0.55 2.09
15. 103.67 0.63 0.67 0.76 15. 107.16 2.19 1.88 3.10 15. 98.93 0.30 0.16 0.47 15. 106.10 1.34 0.71 2.25
16. 106.21 0.84 0.86 1.19 16. 108.22 2.37 1.99 3.29 16. 103.33 0.40 0.26 0.64 16. 98.46 1.13 0.58 1.59
17. 98.92 0.70 0.70 0.80 17. 107.14 2.47 2.05 3.31 17. 105.74 0.63 0.44 1.08 17. 108.78 1.47 0.83 2.20
18. 100.27 0.58 0.62 0.53 18. 101.88 2.27 1.85 2.71 18.  98.00 0.49 0.32 0.68 18. 101.99 1.36 0.81 1.81
19. 98.42 0.45 0.46 0.28 19. 105.93 2.31 1.87 2.71 19. 101.34 0.45 0.34 0.55 19. 104.23 1.40 0.88 1.79
20. 103.09 0.51 0.54 0.45 20. 112.23 2.70 2.17 3.44 20. 102.95 0.51 0.41 0.65 20. 106.00 1.54 1.00 2.01
21. 109.36 0.92 0.89 1.31 21. 108.07 2.82 2.24 3.54 21. 101.24 0.46 0.41 0.51 21. 106.00 1.67 1.11 2.17
22. 10592 1.09 1.03 1.59 22. 109.13 2.99 2.35 3.74 22. 106.74 0.75 0.61 1.11 22. 108.07 1.91 1.28 2.57
23. 100.44 0.94 091 1.18 23. 109.17 3.14 2.44 3.91 23. 101.58 0.69 0.60 091 23. 104.26 1.90 1.29 2.38
24. 98.77 0.78 0.73 0.80 24. 107.64 3.19 2.46 3.86 24. 101.88 0.66 0.60 0.79 24. 107.65 2.09 1.43 2.68
25. 101.08 0.70 0.68 0.62 25. 105.29 3.11 2.36 3.55 25. 106.79 0.93 0.78 1.33 25. 101.73 1.90 1.34 2.14
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Figure 1: The flowchart for the VSI strategy used in the proposed upper-sided ATEWMA X scheme.
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Figure 2: Zero-state ARL comparisons between the proposed upper-sided ATEWMA X scheme

and the upper-sided TEWMA X scheme for ARLq = 370 and n € {1, 3}.
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Figure 3: Steady-state ARL comparisons between the proposed upper-sided ATEWMA X scheme
and the upper-sidled TEWMA X scheme for ARLy = 370 and n € {1, 3}.
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Figure 4: Zero-state ATS comparisons between the proposed upper-sided VSI-ATEWMA X
scheme and the upper-sided VSI- TEWMA X scheme for ATS, = 370 and n € {1, 3}.

45



370 - - - .VSLTEWMA (é7 = 0.5) 370 == VSLTEWMA (§7 = 1.25) CICH N — VSLTEWMA (37 = 2.0)
VSLATEWMA (ds = 05,3, = 2.0) VSEATEWMA (35 = 05,6, = 2.0) 3 VSLATEWMA (ds = 05,3, = 2.0)
" 100 " 100 " 100
< < <
20 20 20
B 3 B
o} o} o}
=2 5 =2 5 = 5
< < <
1 1 1
0.3 0.3 0.3
0 1 2 3 0 1 2 3 0 1 2 3
Shift § Shift § Shift &
(a)n=1 (b)yn=1 (c)n=1
370 - - - .VSLTEWMA (¢ = 0.5) 370 =~ VSLTEWMA (57 = 1.25) CLC R S— VSLTEWMA (37 = 2.0)
VSLATEWMA (55 = 05,6, = 2.0) — VSLATEWMA (ds = 0.5,5;, = 2.0) . —— VSLATEWMA (ds = 05,5, = 2.0)
" 100 " 100 " 100
< < <
20 20 20
B ksl B
7} 7%} 17}
= 5 = 5 = 5
< < <
1 1 1
0.3 0.3 0.3
0 1 2 3 0 1 2 3 0 1 2 3
Shift ¢ Shift & Shift &
(d)n=3 (e)n=3 (fyn=3

Figure 5: Adjusted ATS comparisons between the proposed upper-sided VSI-ATEWMA X scheme
and the upper-sided VSI- TEWMA X scheme for AATS, = 370 and n € {1, 3}.
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Figure 6: The recommended upper-sided ATEWMA X scheme, the conventional AEWMA X
scheme, and the upper-sided TEWMA X scheme for monitoring zero-state datasets with
0 =0.75 X gg and § = 2 X 0y, respectively.
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Figure 7: The recommended upper-sided ATEWMA X scheme, the conventional AEWMA X

scheme, and the upper-sided TEWMA X scheme for monitoring steady-state datasets with
0 =0.75 X 0g and 0 = 2 X gy, respectively.
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