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Abstract

The elastic properties of crystals are fundamental for structural material. However,

in the absence of macroscopic single crystals, the experimental determination of the

elastic tensor is challenging because the measurement depends on the transmission of

stress inside the material. To avoid arbitrary hypotheses about stress transfer, we

combine hydrostatic pressure and uniaxial-stretching experiments to investigate the

elastic properties of cellulose Iβ. Three orthogona0.5l compressibilities are 50.0, 6.6,

and 1.71 TPa−1. Combining Poisson’s ratios from a uniaxial stretching experiment

directly gives the Young’s modulus along the chain direction (E33). However, Poisson’s

ratio depends on the deformation rate leading to apparent modulus E33 = 113 GPa

using a slow cycle (hours), and 161 GPa using a fast cycle (minutes). The lattice

deformation along the chain is not time dependent, so the off-diagonal elements are

time-dependent on the scale of minutes to hours.
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Cellulose exists in nature as slender crystalline microfibrils with nanometric lateral di-

mensions and form the main tensile-load-bearing components in plants, wood, and fiber

products.1 Thus, the intrinsic elastic properties of cellulose crystals are of fundamental in-

terest.2,3 The most abundant cellulose allomorph is Iβ,4 which has a monoclinic unit cell

(Fig. 1). In this case, the elastic tensor has 13 independent elements5 in the framework of

continuum mechanics and is highly anisotropic because the bonding depends on direction.

However, in the absence of macroscopic single crystals, the experimental determination of

these tensor elements is challenging.

A straightforward experimental technique to probe the elastic properties of crystals is to

stretch a bundle of well-aligned crystalline fibers, such as ramie fiber, while monitoring the

lattice spacing along the chain direction. For ramie fibers, several studies give a reproducible

crystal modulus of 127–138 GPa along the chain direction.6,7 The sharp diffraction peak

allows the lattice strain to be determined to high precision. However, converting load to stress

in the crystal is less straightforward because the cross section of natural fibers are irregular

and may even contain voids. To overcome this difficulty, Sakurada and Nishino estimated the

fiber cross sections from the weight-per-length of dry samples and then used the sample or

crystal density to derive the effective cross section. In their work, the macroscopic modulus

of the fiber was less in the wet state than in the dry state, whereas the lattice displacement as

a function of load remained unchanged between the two states, so they assumed that stress

was completely transmitted to the crystallites. Conversely, if one considers the natural fibers

to have crystalline domains and amorphous phases not only when arranged in series, then

estimating the crystalline modulus becomes more complicated.8,9

Another experimental technique to probe the elastic properties of crystals consists of

using an atomic force microscope to bend crystal samples ,10 where the cross-sectional crystal

shape is decisive and the force needed to bend the crystal to the same extent is proportional

to the crystal height cubed. The phonon velocity obtained by x-ray inelastic scattering gives

220± 50 GPa along the c direction and 15± 1 GPa along the a∗ direction.11
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Figure 1: (A) Cellulose Iβ unit cell and Cartesian bases used in this study. (B) Projection
of crystal structure along fiber axis.

Figure 2: Uniaxial-stretching experiment to measure lattice strain. (A) Sample-mounting
setup on beamline A2 at DESY. (B) Typical x-ray diffraction pattern with indices given for
major diffraction spots. (C) (top) Results of typical cyclic-loading experiment with step-wise
sample strain imposed, (middle) macroscopic tensile stress, and (0 0 4) peak position, all
as functions of time. (D) Macroscopic stress versus (0 0 4) lattice strain of cellulose for
cellulose-PVA composite fiber with 72% cellulose.

The elastic tensor can also be predicted theoretically to different levels of precision. To

calculate the elastic tensor of cellulose, density-functional theory (DFT) with dispersion

correction depends less on ad hoc parameters than on modeling based on molecular force

fields. Dri et al. used simple stress derivatives to estimate the Young’s modulus along the

cellulose chain axis at 206 GPa,12 and other estimates give 202 GPa at 0 K and 196 GPa
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at 300 K13 upon accounting for thermal vibrations. These values fall within the range of

estimates based on x-ray inelastic scattering measurements but are substantially greater than

estimates based on tensile measurements. In addition, no experimental validation exists for

other tensor elements.

Tunicin is cellulose from the mantle of sea animals, and serves as typical model cellulose

because it has the same crystal structure (i.e., Iβ allomorph) as most native cellulose but

with a much larger crystallite size (on the order of 10–20 nm), so it produces well-resolved

diffraction peaks.4 In this work, we combine hydrostatic pressure and uniaxial-stretching

experiments to obtain the Young’s modulus of cellulose crystals.

In the generalized form of Hooke’s law, the elastic tensor relates the strain tensor ε to

the stress σ as

ε = Sσ, (1)

where S is the compliance matrix.5 For a monoclinic continuum system,

S =



s11 s12 s13 0 0 s16

s21 s22 s23 0 0 s26

s31 s32 s33 0 0 s36

0 0 0 s44 s45 0

0 0 0 s54 s55 0

s61 s62 s63 0 0 s66


. (2)

A hydrostatic experiment allows us to determine the relation



ε1

ε2

ε3

ε6


=



s11 s12 s13

s21 s22 s23

s31 s32 s33

s61 s62 s63




σ

σ

σ

 , (3)
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which is related to the compressibility Xi along direction i as

Xi =
∑
j

sij. (4)

In addition, based on uniaxial stretching of a composite fiber and assuming that the fraction

of apparent stress a transits through the crystal, we obtain



ε1

ε2

ε3

ε6


= aσ



s13

s23

s33

s36


, (5)

from which Poisson’s ratios

νij = −sij/sii (6)

can be obtained. Even if a is unknown, if the tensor is symmetric (i.e., sij = sji), we should

be able to combine two experimental observations to obtain Young’s modulus along the chain

axis as

E33 =
1

s33
=

1− ν31 − ν32
X3

. (7)

As we see later, this estimation of E33 is highly dependent on Poisson’s ratios, but we can

measure them quite accurately. Equations (3) and (5) gives seven independent observations

that can be directly compared with theoretical predictions.

Figure 2 presents a typical uniaxial-stretching experiment involving a composite fiber of

highly oriented (standard deviation of 4◦, Hermans orientation parameter14 of 0.98) tunicin

embedded in an amorphous poly(vinyl alcohol) matrix, with the fiber axis horizontal and

tilted with respect to the plane normal to the incident beam to bring the 0 0 4 reflection into

the Bragg condition. This gives the asymmetric fiber pattern shown in Fig. 2B. Figure 2C

gives an overview of a measurement in which the macroscopic sample strain reaches about
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Figure 3: Lateral Lagrange strains a) e11, b) e12 and c) e22 as a function of 0 0 4 lattice
strain in the uniaxial-stretching experiment. Solid lines are weighted least-squares fit to the
data.

1%, the macroscopic tensile stress on the whole fiber reaches about 0.5 GPa based on the

load cell read-out, and the 0 0 4 reflection shifts by up to 5 pixels as a function of time.

The sample strain was maintained for 1 minute, during which three diffraction patterns were

recorded. The macroscopic strain was applied cyclically at different amplitudes to verify

that the process is reversible. At higher strain, the tensile stress tends to relax, which is

probably due to the viscoelasticity of the PVA matrix, but the stress remains proportional

to the crystal strain over the whole experiment (2D).

The weight fraction of cellulose in our sample was 72%, corresponding to a volume fraction

(φ) of 65%. If we assume that 100% of the load is transmitted through the cellulose, then

Young’s modulus E33 along the chain direction would be 153 ± 3 GPa, which is the higher

bound. Since the aspect ratio of tunicin is above 50,15 one could consider the composite as
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parallel system (uniform strain), in which case the stress-strain (σ-ε) relation becomes

σ = [φE33 + (1− φ)EPVA] ε (8)

attenuating the stress transferred through crystal by (1−φ)/φEPVA so the Young’s modulus

of cellulose along chain would be

E33 = 153− 0.54EPVA [GPa], (9)

where EPVA is the effective modulus of PVA matrix. In reality this is an underestimation

since the macroscopic strain is larger than the lattice strain. Although individual crystals

have high aspect ratio, they can form domains of lower aspect ratio. A typical modulus

of neat PVA samples prepared in the same condition is in range of 10 – 15 GPa, so the

contribution of the second term would below 10 GPa.

Figure 3 shows the Lagrangian strains in the 1-2 plane as a function of strain along 3,

with weighted least-squares fits shown as solid lines. The strains are calculated from the

shift in the diffraction peak, as detailed in Sec. 1 of the Supplemental Information (SI). The

slopes correspond to the negative of the Poisson ratios, −ν3i. Figure 1 shows the reference

frame used (i.e., 1 is parallel to the a∗ axis and 3 is parallel to the c axis).

Figure 4A shows the x-ray diffraction data acquired with the sample under hydrostatic

pressure in a diamond anvil cell, and Fig. 4B shows the resulting diffraction profiles of

tunicin as a function of pressure. The 2 0 0 diffraction intensity decreases by about 15%

at 2.7 GPa with respect to ambient conditions, whereas the other diffraction peaks labeled

in the figure remain essentially constant (within a few percent). The 0 0 4 d spacing varies

linearly with pressure below 3 GPa, whereas the d spacings of other equatorial reflections

vary parabolically with pressure (Fig. 4C).

The errors estimated for ε33 and ε11 are small because of the sharpness of the 0 0 4 and

2 0 0 diffraction peaks. However, ε22 and ε12 fluctuate slightly due to the low intensity and
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Figure 4: X-ray diffraction under hydrostatic pressure. (A) Schematic illustration of di-
amond anvil cell with cellulose sample mounted and ruby as calibrant using fluorescence.
(B) Diffraction profile as a function of pressure after subtraction of background using the
Sonneveld algorithm.16 (C) Components of Lagrange strain deduced from peak positions in
panel (B) as a function of pressure.

high background in the 1 1̄ 0 reflection. Still, the statistics are sufficient to determine the

strain tensor as a function of hydrostatic pressure.

Table 1 summarizes the measured compressibility, Poisson’s ratio, and off-diagonal tensor

elements obtained from the curve fit in Figs. 4 and 3 as well as from theoretical calculations

and from the literature. Although the experimentally determined hydrostatic pressure on

the cotton is consistent with our result for X1, the compressibility in other directions is not
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available, and the deformation data contain uninterpreted outliers, especially with respect to

the chain direction (direction 3). Given the small compressibility in this direction, a precise

measurement would require a stable experimental setup. We improved the precision of X1

and X3 by over an order of magnitude and determined X2 and X6 with 15% accuracy.

When compared with the compressibility obtained from elastic tensors deduced by DFT,

the present experimental results for X1 and X2 lie between the values obtained with and

without the inclusion of thermal vibrations. However, the measured compressibility along

the chain direction X3 is much less than that obtained from the DFT tensor. We also used

DFT to calculate the elastic properties by (1) combining deformations and (2) imposing

hydrostatic stress equivalent to that imposed by a hydrostatic-pressure experiment, and the

resulting compressibilities are closer to the experimental values (including X3). Conversely,

all DFT calculations are consistent with the experimentally determined elastic modulus E33

to be in the range of 195–207 GPa.

Although uniaxial-stretching experiments with the strain monitored by x-ray diffraction

are not new,6 efforts to monitor Poisson’s ratio are relatively recent.19 Poisson’s ratio ν31

from higher plant cellulose such as ramie fibers has been reported by several groups. The

results for ramie fibers are relatively scattered from 0.4 to 0.6 and, for kraft cooked wood

pulp, an apparent negative Poisson ratio was reported. This apparent result, which is not an

intrinsic property of the crystal, was attributed to the stress component being perpendicular

to the hydrogen-bonded sheets or to the shear stress21 occurring inside the fiber during the

tensile tests.

Due to the highly anisotropic nature of the mechanical properties and the slight tilt of the

crystals with respect to the fiber axis, complex internal stress is likely to affect the apparent

Poisson ratio. The slight differences in results from different samples may be due in part to

partial structural modification that, while being to a much smaller extent than with kraft

cooking, could still induce tensile stress orthogonal to the chain direction. Another problem

with some of the published experimental report is that the incident x-ray beam was normal
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to the stretching direction, so the crystals that were probed for axial deformation along

the chain direction were inclined by θ (i.e., half the scattering angle) with respect to the

stretching direction. This complicates the data interpretation in Ref.20 and may have led

to an underestimation of the chain stretching and a concomitant overestimation of Poisson’s

ratio.

In the current experiment, only crystals that are parallel to the stretching direction

contribute to the 0 0 4 diffraction intensity. Poisson’s ratios obtained from elastic tensors

calculated by DFT or force-field are in general lower than the experimentally determined

ratios. Upon considering thermal vibrations, dispersion-corrected DFT produces an even

lower Poisson ratio. In other words, the axial strains are uncoupled, which is probably due

to reduced intermolecular interactions resulting from increased intermolecular distances as

the cell parameter a increases to 7.896�A at 300 K rather than 7.56�A, as per the simple energy

minimization by the same authors.12 Despite the significant discrepancy between theoretical

predictions and the present measurements, our experimental Poisson-ratio estimates are

reliable because we find no mechanisms in our current setup to produce a higher Poisson

ratio.

Using Eq. (7) and the present experimental results, Young’s modulus E33 along the chain

direction is 113 GPa, which is much lower than other published estimates. Based on our

stress measurement, the effective modulus of the amorphous PVA in the sample must be

as high as 74 GPa, which is impossible. Although the experimental compressibility X3 is

lower than that determined by numerical simulation (i.e., the structure deforms less under

pressure), Young’s modulus E33 is less than that calculated by DFT. E33 of 113 GPa is

also less than estimates from lattice strain measured on pure oriented fiber such as ramie,

which are usually taken as benchmarks. Given the large crystallite sizes and slightly denser

packing, we expected a larger E33 .

The small estimated Young’s modulus along the chain is related to the large Poisson

ratios. The estimated Young’s modulus is linearly related to the sum of the Poisson ratios
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ν31 and ν32, and a 10% change in the sum modifies the estimated modulus by 58 GPa. For

example, if Poisson ratio ν31 = 0.297, as measured by Nakamura et al.19 on ramie fibers, the

estimated Young’s modulus would increase to 277 GPa according to Eq. (7).

The stress in pure cellulose samples, even with high uniaxial orientation, can be complex

due to the small tilt of the crystal axis with respect to the fiber direction. In this case, a

non-negligible stress component develops perpendicular to the chain direction and constrains

the deformation along the c axis, or, in the extreme case, produces a negative Poisson ratio.21

The extent of this effect depends on the fine structure of the fiber and the moisture content,

resulting in a high variability in the Poisson ratio of different samples.20 In this case, the

crystal modulus measured from 0 0 4 displacement can appear larger and the Poisson ratio

can be suppressed.

Note, however, that the simple linear elasticity analysis presented herein may overlook

some factors, such as an asymmetric elastic tensor or a time dependence.

Equation (7) is based on the idea that the elastic tensor is symmetric. The uniaxial-

stretching experiment measures si3/s33, whereas the contribution to the compressibility X3

is s3i. One explanation for the small Young’s modulus calculated from the compressibility

and Poisson’s ratio is that the elastic tensor of cellulose is not symmetric but
∑
s3i <

∑
si3.

Note that the orthotropic elastic tensor of wood22 is asymmetric on a macroscopic scale,

although the mechanism is not understood.

To check whether the elastic tensor is asymmetric, we derive the elastic tensor without

the symmetry constraint by using the stress given by the DFT deformation simulation. This

leads to a difference of about 20% between s31 and s13 (Table 1), which suggests that, at

the molecular level, cellulose cannot be considered as a continuum and thus can depart from

the continuum mechanics description. However, the calculated tendency of the off-diagonal

tensor elements to be asymmetric does not explain the discrepancy in E33 directly estimated

from uniaxial stretching and estimated from a combination of compressibility and Poisson’s

ratios, since |s13|+ |s23| < |s31|+ |s32|.
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Is strain rate influencing the result? Figure 3 plots all the experimental strain relations

together. In addition, we calculated the Poisson ratios from each loading and unloading

segment, which each took about 10 minutes. This leads to average Poisson’s ratios of ν31 =

0.524 ± 0.005 and ν32 = 0.20 ± 0.01, which are significantly lower than those obtained by

fitting to the data and lead to E33 = 161± 6 GPa, consistent with the direct estimate from

uniaxial stretching, and estimates from different methods in the literature.10,23

The hydrostatic pressure experiment took about 2 h to reach 1 GPa, which is comparable

to the duration of the uniaxial stretching experiment. However, the strain rate was 0.05 and

0.02 h−1 along directions 1 and 2, respectively, for the hydrostatic pressure experiment,

which is about an order of magnitude greater, overall, than in the stretching experiment.

In the stretching experiment, the strain rates during the 10 minute loading and unloading

segments approach that of the hydrostatic experiment.

These results paint a picture of a time-dependent elastic tensor where the off-diagonal

elements depend on the strain rate on a time scale of minutes to hours. Under slow de-

formation, coupling between normal deformations parallel and perpendicular to the chain

direction would increase, leading to a low compressibility X33 and a high Poisson ratio. The

DFT-calculated tensor corresponds to a fast deformation, where the coupling between the

chain direction and the hydrogen-bonded direction is especially weak. The small deformation

along the hydrogen-bonded direction in the DFT simulation may also result from a periodic

constraint imposed in the simulation. Although loss of periodicity to fit a structure into

a smaller space under pressure is common and is seen, for example, in ice crystals,24 it is

not possible in periodic DFT calculations based on a small cell. The response along the

chain direction thus remains relatively constant in time, as can be seen from Fig. 2D, but

the experimental estimates of Young’s modulus E33 may be smaller than that calculated by

DFT partially because of a time dependence on a shorter time scale. This also corroborates

the high modulus estimated based on inelastic x-ray scattering, which probes the fast re-

sponse of the material, although the error is too large to be conclusive. We also measured
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compressibility at different compression rates, which suggests a smaller compressibility at a

higher compression rate (Table S1), but better data quality is required to confirm this result.

Experimental

Cellulose nanocrystals typically 10–20 nm wide and microns long were prepared from the

mantle of sea animal tunicate. The mantle material was treated successively with 5% NaOH

and a an equal-volume mixture of 0.3% NaClO2 in 0.1 M acetate buffer (pH = 4.5). The

material was then cut into pieces and disintegrated in a double-cylinder-type homogenizer

(Physcotron, Microtec Nichion, Co., Tokyo) and treated with 50% H2SO4 at 70 ◦C for 8

h under strong stirring. A non-flocculating, flow-birefringent aqueous suspension of tuni-

cate cellulose whiskers were obtained after thorough washing by centrifugation and dialysis

against deionized water.

Uniaxially oriented samples embedded in polyvinyl alcohol (PVA: ≈100 kDa, 99% saponi-

fied) matrix were prepared as previously reported.25 Briefly, the ≈ 4%-concentrated suspen-

sion of cellulose whiskers were mixed with 4% aqueous PVA solution. A drop of saturated

borax solution was added to make a viscoelastic physical gel from which a fiber was slowly

spun with the aid of tweezers. The gel was stretched and dried with a suspended weight

to obtain uniaxial orientation. Finally, the borax was washed out with methanol and the

sample was further dried in an oven at 80 ◦C.

For uniaxial measurement, a tensile tester was assembled using a 250µm stepper-motor

actuator, a load sensor from Loadstar Sensors (Fremont, USA), and guide shafts, as shown in

Fig. 3A. The apparatus was installed horizontally at beamline A2 of HASYLAB, Hamburg.

The tester was positioned so that the sample was oriented at about 17° with respect to the

plane normal to the incident beam, bringing the 0 0 4 reflection along the stretching direction

into the Bragg condition. A MAR165 detector served to record the x-ray diffraction pattern,

and the peak positions were fit to two-dimensional pseudo-Voigt functions to extract the
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peak positions and convert the data to Lagrangian strain, as detailed in the SI.

X-ray diffraction experiments under hydrostatic pressure at room temperature were done

at High-Pressure Station 4W2 of the Beijing Synchrotron Radiation Facility.26 A 0.6199 Å

(20 keV) beam with a 36 × 14 µm2 spot served as light source, and a Pilatus3 2M area

detector recorded the diffraction pattern. The sample was 30 cm from the detector, and the

beam center and detector tilt with respect to the incident beam were calibrated by using

CeO2 powder. Screw-driven diamond anvil cells with culet diameters of 800µm applied the

pressure. The sample was contained in a stainless steel gasket pre-indented to a thickness

of about 100µm and with a hand-drilled 400-µm-diameter hole. Small ruby spheres were

added to determine the pressure in situ by using the fluorescence method implemented with

a 532 nm laser.27 The pressure was transmitted by a 4 : 1 mixture of methanol and ethanol.

For each pressure point, the data were acquired by (1) manually turning the screws, (2)

measuring the ruby fluorescence, (3) allowing the pressure to equilibrate for 5 to 10 minutes,

(4) acquiring the diffraction pattern for 450 s, and (5) again measuring the ruby fluorescence.

The pressure before and after data acquisition varied by less than 50 MPa. The experimental

details are available in Sec. 2 of the SI.

Computational Methods

The elements of the symmetric elastic tensor were estimated by using the energy-strain ap-

proach.28 Thirteen deformation modes were generated to deduce the 13 tensor elements of

the monoclinic unit cell of cellulose Iβ.4 The geometry of each deformed structure was opti-

mized by using a periodic DFT calculation implemented in the Quantum Espresso package

(version 6.6)29 using the generalized gradient approximation (GGA), the Perdew, Burke,

Ernzerhof functional, and the pairwise DFT-D2 correction for long-range van der Waals

dispersion. The results were fit to obtain the second derivative of energy as a function of

strain.
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To calculate the 36 elements of the asymmetric tensor, we used the stress tensors for all

deformations to determine the asymmetric tensor by linear least-squares fitting.

Energy optimization in DFT was also done under hydrostatic pressures ranging from 0

to 3 GPa in steps of 0.3 GPa. The isotropic compressibility was estimated directly from the

optimized unit-cell parameters as a function of pressure.

The details of the simulations and a summary the results are available in Sec. 4 of the

SI.
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Table 1: Elastic properties of cellulose Iβ determined experimentally and theo-
retically.

Present study Literature
X-ray DFT DFT X-ray DFT13c

Units diffraction (strain)a (stress)b diffraction MM17 c DFT12 c(300K)

X1

TPa−1

49.6± 0.4 61± 3 52.4± 0.6 50.5± 7.318 41.7 43.7± 0.7 61.4
X2 6.5± 1 5.0± 0.1 5.0± 0.2 10.6 4.3± 0.2 8.3
X3 1.71± 0.02 1.72± 0.02 1.64± 0.04 2.8± 0.418 3.7 2.16± 0.06 3.89
X6 −2.6± 0.4 8± 1 10± 2 10.7 −3.6± 3 8.6

X ′1
TPa−2

×103

4.5± 0.2 10± 1 0 NA NA NA
X ′2 0.5± 0.3 0.17± 0.02 0 NA NA NA
X ′3 0 0 0 NA NA NA
X ′6 −0.6± 0.1 −1.7± 0.4 0 NA NA NA

ν31 0.577± 0.006 0.44± 0.02 0.52± 0.01 0.32–0.6419,20 0.26 0.49± 0.01 0.21
-s13 TPa−1 3.7d- 5.1e 2.2± 0.1 2.64± 0.04 1.8 2.60± 0.06 1.1
-s31 TPa−1 NA 2.9± 0.1 2.90± 0.04
ν32 0.23± 0.01 - 0.059± 0.003 0.19 0.06± 0.002 0.03
-s23 TPa−1 1.5 - 2.0 - 0.59± 0.02 1.3 0.27± 0.01 0.15
-s32 TPa−1 NA - 0.46± 0.01
ν36 0.057± 0.005 NA 0.55± 0.02 0.27 −0.37± 0.02 0.19

E33 GPa 153± 3f 202± 0.8 200.0± 0.1 135 146 206.5± 0.2 195
113± 6g

a By applying deformation. b By applying pressure. c After rotation of the tensor to match
the frame (Sec. 3 of the SI). d Assuming E33 = 153 GPa. e Assuming E33 = 113 GPa.
f From uniaxial stretching. g From compressibility and Poisson’s ratios
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