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a b s t r a c t 

The reproducibility crisis in neuroimaging and in particular in the case of underpowered studies has introduced 
doubts on our ability to reproduce, replicate and generalize findings. As a response, we have seen the emer- 
gence of suggested guidelines and principles for neuroscientists known as Good Scientific Practice for conducting 
more reliable research. Still, every study remains almost unique in its combination of analytical and statistical 
approaches. While it is understandable considering the diversity of designs and brain data recording, it also rep- 
resents a striking point against reproducibility. Here, we propose a non-parametric permutation-based statistical 
framework, primarily designed for neurophysiological data, in order to perform group-level inferences on non- 
negative measures of information encompassing metrics from information-theory, machine-learning or measures 
of distances. The framework supports both fixed- and random-effect models to adapt to inter-individuals and 
inter-sessions variability. Using numerical simulations, we compared the accuracy in ground-truth retrieving of 
both group models, such as test- and cluster-wise corrections for multiple comparisons. We then reproduced and 
extended existing results using both spatially uniform MEG and non-uniform intracranial neurophysiological data. 
We showed how the framework can be used to extract stereotypical task- and behavior-related effects across the 
population covering scales from the local level of brain regions, inter-areal functional connectivity to measures 
summarizing network properties. We also present an open-source Python toolbox called Frites 1 that includes 
the proposed statistical pipeline using information-theoretic metrics such as single-trial functional connectivity 
estimations for the extraction of cognitive brain networks. Taken together, we believe that this framework de- 
serves careful attention as its robustness and flexibility could be the starting point toward the uniformization of 
statistical approaches. 
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. Introduction 

Modern theories suggest that cognitive functions emerge from the
ynamic coordination of neural activity over large-scale and hierar-
hical networks ( Bressler and Menon, 2010 ; Reid, 2019 ; Varela et al.,
001 ; von der Malsburg et al., 2010 ). A standard approach in cognitive
rain networks analysis involves the characterisation of brain regions
nd inter-areal interactions that participate in the cognitive process
nder investigation ( Battaglia and Brovelli, 2020 ; Bijsterbosch et al.,
020 ). Measuring the emergence of cognitive brain networks there-
Abbreviations: FFX, fixed effect; RFX, random effect; MC, multiple comparisons; 
agnetoencephalography; sEEG, stereoelectroencephalography; FC, functional conn

rain imaging data structure; LFP, local field potential; ECoG, electrocorticography; F
∗ Corresponding authors. 

E-mail addresses: e.combrisson@gmail.com (E. Combrisson), andrea.brovelli@un

ttps://doi.org/10.1016/j.neuroimage.2022.119347 . 
eceived 14 August 2021; Received in revised form 24 May 2022; Accepted 30 May 
vailable online 31 May 2022. 
053-8119/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
ore underlies linking brain data to experimental variables, such as sen-
ory stimuli or behavioral responses. Information-based measures can
e used for this purpose as they are quantifying how much information
s shared between brain data and experimental variables ( Allefeld et al.,
016 ; Kriegeskorte et al., 2006 ; Kriegeskorte and Bandettini, 2007 ;
anzeri et al., 2017 ). Information theory ( Ince et al., 2017 ; Panzeri et al.,
008 ; Timme and Lapish, 2018 ) and machine learning ( Glaser et al.,
019 ) are two popular sets of measure of information. Information-
ased metrics are ideal tools to relate brain regions or network-level
ctivity with task variables as they are returning quantities on a mean-
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ngful scale (like bits, percentage, variance explained etc.), they support
ultivariate data and they might not need to assume any specific type

f dependency between variables. 
The fMRI community has relatively standardized statistical pipelines

o identify task-related functional activations at the population level.
ome examples are established softwares like SPM ( Friston et al., 1994 )
nd analysis pipelines developed in international initiatives, such as the
uman Connectome Project 1 ( Van Essen et al., 2013 ). While both also

nclude pipelines on neurophysiological data, there is still less consen-
us on standard pipelines for investigating task-related neural represen-
ations and task-related network-level inference from neurophysiologi-
al data, leading to a larger heterogeneity in statistical group-level ap-
roaches. Such diversity mainly depends on a richer panel of modali-
ies that can be used to record neurophysiological activity, each having
nique spatiotemporal properties (e.g., EEG, MEG and intracranial EEG)
nd on differences in analysis goals (e.g., single-area versus network-
evel analyses). As an example, invasive intracranial recordings, which
rovide an exceptional signal-to-noise ratio at the single-trial level, are
haracterised by a spatially non-uniform sampling due to unique elec-
rode implantations, which complexifies inferences at the population
evel and network level. On the other hand, M/EEG data provides an
xcellent technique for the analysis at the whole-brain level with the
dditional benefit of having an equal spatial sampling. 

The reproducibility crisis in neuroimaging has many potential causes
ncluding analytic variability, statistical power and test-retest reliabil-
ty ( Poldrack et al., 2020 ). Taken together, these issues are limiting the
bility of research groups to reproduce, replicate and generalize robust
esults ( Arnold et al., 2019 ; Niso et al., 2022 ). Concerning neurophysi-
logical M/EEG and intracranial data, several solutions have been pro-
osed, from a uniformization of brain data organization through BIDS
ormatting ( Holdgraf et al., 2019 ; Niso et al., 2018 ; Pernet et al., 2019 )
o overall good scientific practices and recommendations for data shar-
ng, analysis and reporting results ( Pernet et al., 2020 , 2018 ). The prob-
em of underpowered studies has been highlighted as one of the core
imitation explaining the lack of reproducible results ( Button et al.,
013 ; Ioannidis et al., 2014 ; Poldrack et al., 2017 ; Szucs and Ioanni-
is, 2017 ). In response, collaborative replication efforts like #EEGMany-
abs ( Pavlov et al., 2021 ) are attempting to replicate the findings of a
ubset of the most influential EEG studies using larger cohorts to im-
rove confidence in most cited results. While such large-scale projects
ombined to data-sharing are currently tackling the low statistical power
roblem, the diversity of statistical approaches and multiple hypoth-
sis testing have also been highlighted as one of the core limitations
o reproducibility ( Carp, 2012 ; Puoliväli et al., 2020 ). The flexibility
f analysis procedures is one factor of increase of false positive results
 Ioannidis et al. 2005 ; Gilmore et al., 2017 ). In other words, the larger
he spectrum of methods the researcher can explore, the more likely
e is to find one to validate an hypothesis. Therefore, there is a need
or unifying statistical framework for extracting task-related neural rep-
esentations both for single-area and network systems ( Bassett et al.,
020 ) using information-based measures combined with a statistical
ayer accounting for the heterogeneity in the population ( Mumford and
ichols, 2006 ) with the ability to adapt to the diversity of neurophysi-
logical recordings. 

Here, we address these issues by extending an existing statistical
ramework for group-level inferences on information-based measures
 Giordano et al., 2017 ) to encompass neurophysiological recordings
ith both homogeneous spatial samplings across participants (or ses-

ions), such as whole-brain source level data M/EEG data and spatially
parse recordings, such as intracranial sEEG, ECoG and LFPs. This frame-
ork supports any type of measure of information and can be used at the

evel of single brain area activity, connectivity-level inter-areal interac-
ions (e.g., (un)directed functional connectivity measures) and network-
1 https://brainets.github.io/frites/ 

2 
evel (e.g., on graph-theoretical measures). We tested the workflow on
imulated data to compare fixed- versus random-effect group inference
ith test- or cluster-wise p -values correction. We then re-analyzed cor-

ical high-gamma activity (HGA) data from different recording modal-
ties: a MEG experiment ( Brovelli et al., 2015 ), where we successfully
etrieved the visuomotor network using information metrics from both
T and ML and an intracranial experiment ( Gueguen et al., 2021 ), re-
ealing the outcome-related activity of the anterior insula during prob-
bilistic learning. Finally and as a contribution toward reproducibility,
e also provide to the community the neuroinformatics tools wrapped

n an open-source Python toolbox called Frites 2 ( Framework of Informa-

ion Theoretical analysis of Electrophysiological data and Statistics ). This
ackage includes the proposed group-level statistical framework such
s functions for the estimation of functional connectivity. By default,
rites is using metrics from the IT but it can be extended to any type of
easure of information. 

. Methods 

.1. Statistical framework for group-level inferences of information-based 

easures 

The main objective of the current work was to develop a non-
arametric framework to assess the group-level statistical significance
n measures of information computed on neural correlates of individ-
al brain areas or interareal relations, such as functional connectivity
FC) measures. This framework concerns task-designs with independent
easurements (i.e. trials or epochs). It allows investigating condition-

elated (i.e. stimulus or outcomes) effects (i.e. information shared be-
ween continuous brain data and a vector of discrete integers specify-
ng the category to which each trial belongs). It also allows investigat-
ng behavior-related effects (i.e. information shared between continuous
rain data with continuous behavioral models or psychometric measure-
ents). Contrasting effect sizes coming from two different conditions at

he group-level within this framework is possible, but it is beyond the
cope of the current paper. In the rest of the manuscript, we will use the
erm “task-related ” to encompass both condition- and behavior-related
ffects. The proposed framework ( Fig. 1 ) relies on two main steps: (i)
he estimation of the true and permuted effect size using a measure
f information between neural data X and an experimental variable Y;

ii) statistical inference at the test-wise (i.e., at a single time-point) or
luster-level ( Maris and Oostenveld, 2007 ). 

.1.1. Effect size estimation and permutation tests for fixed and random 

ffect models 

The estimation of effect size on a population depends on assump-
ions about the underlying distribution and inter-subject variability.
 fixed-effect (FFX) is a single-level model assuming that each sub-

ect brings the same fixed contribution to the observed effect (Friston
t al., 1999). It extracts the typical characteristics of a sample, which
xplain why it is massively used for reporting case studies. A FFX at the
opulation level can be estimated by computing the effect size across
ll concatenated subjects and trials ( Penny and Holmes, 2007 ). This
s equivalent to considering the data as coming from a single subject,
nd discards random variations across subjects. The true effect size
or FFX is therefore computed on the concatenated trials across par-
icipants using a measure of information (see top panel of Fig. 1 , left
ranch). Significance for fixed- or random-effects was performed using
 nonparametric approach based on permutations. Since the aim is to
uantify task-related effects, permutations are performed by randomly
wapping the task-related variable, as usually performed in other fields
 Combrisson and Jerbi, 2015 ). Permutation-based significance testing
hortcuts distributional assumptions by relying on the exchangeability
2 https://brainets.github.io/frites/ 
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Fig. 1. Statistical framework for group-level inferences using information-theoretic measures (I = Mutual-Information) to extract task-related neural activity or func- 
tional connectivity. The upper branches describe the fixed and random effect implementations, both leading to a measure of a true effect size and the estimation of 
the null distribution. Then, starting from the effect size and the permutations, bottom branches describe how both are used to infer and the p -values corrected for 
multiple comparisons using either test- or cluster-wise corrections. 

h  

h  

p  

t  

Y  

o  

i  

s  

a  

s  

t  

v  

o  

f  

o  

f  

r
 

o  

a  

c  

(  

p  

s  

t  

F  

d  

l  

d  

e  

b  

a  

F  

o  

p  

e  

r  

p  

a  

t  

o  

t
 

s  

s  

m  

i  

a  

t

2

 

f  

i  
ypothesis i.e. that the observations are exchangeable under the null
ypothesis ( Nichols and Holmes, 2002 ). In our approach, the null hy-
othesis is that no statistical relationship and significance exists between
he trial-by-trial modulation in brain activity X and task-related variable
 , as measured by means of information theoretical or ML metrics. In
ther words, the approach proposed here is valid for task-related designs
n which the random assignment of trial labels is a valid permutation
trategy (i.e., the labels assigning task-variables to trials are interchange-
ble). This means that such an approach would not hold in different
tatistical designs, such as for resting-state data. For a permutation test,
hat means that if the null hypothesis is true, the labels assigning task-
ariables to trials are interchangeable. For FFX analyses, the estimation
f the null distribution of effect sizes assumes exchangeability of results
rom different participants and trials, and it is implemented by means
f random permutation of data across both. Thus, for FFX, the null ef-
ect size corresponds to the information between brain activity X and
andomly-permuted task-related variable Y . 

While FFX shines by its simplicity, conclusions that can be drawn
nly concern the subjects that constitute the available sample as a whole,
nd therefore can not be generalized to the population-level. On the
ontrary, a random-effect (RFX) is a hierarchical model consisting in:
i) extraction of single-subject effect size and (ii) fitting a model at the
opulation level. Here, the sample of subjects is considered as a sub-
ample of a broader population and then, if new subjects are added,
heir effect size should fall into the estimated model (see top panel of
ig. 1 , right branch). First, the information shared between the neural
ata X and the experimental variable Y is computed at the single-subject
3 
evel. For the permutations, we assume exchangeability of results from
ifferent trials only, and permute trial-specific results independently for
ach participant. To then form the true effect size and the null distri-
ution at the population level, we used a one-sample t-test, computed
cross single-participants, against the null population mean (mean_p in
ig. 1 ). The null population mean was computed by taking the average
f the trial permuted measures of information across participants. This
roduced true and permuted t-values that quantified the true and null
ffects size for the RFX analysis, respectively. As information-based met-
ics are often subject to bias, it is not correct to perform a parametric
opulation level t-test against a specific value (such as 0). Obtaining
 non-parametric population null distribution from within-participant
rial permutations avoids this problem, as the permutation values are
btained from the same number of samples, and so will be subject to
he same level of bias. 

In the end, both FFX and RFX procedures led to the true effect
ize and the distributions of permutations corresponding to the effect
ize that can be obtained by chance. However, for the FFX, the sum-
ary statistics at the population level is expressed in the unit of the

nformation-based method (i.e in bits when using IT metrics or, for ex-
mple, in percentage for ML decoding) while for the RFX it corresponds
o T-values ( Fig. 1 ). 

.1.2. Inferring p -values and correcting for multiple comparisons 

In order to assess whether the estimated effect size significantly dif-
ers from the chance distribution and to correct for multiple compar-
sons ( Cao and Zhang, 2014 ; Lindquist and Mejia, 2015 ; Nichols and
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3 https://brainets.github.io/frites/api/generated/frites.workflow.WfMi.html 
ayasaka, 2003 ), we implemented both test- and cluster-wise statis-
ics ( Maris and Oostenveld, 2007 ). In the case of test-wise correc-
ion, p -values are defined as the proportion of surrogates that are
xceeding the observed true effect size estimation. The p -values are
hen corrected for multiple comparisons using the False Discovery Rate
 Genovese et al., 2002 ) or the maximum statistics, which provides a
hreshold that controls family-wise error rate ( Holmes et al., 1996 ;
ichols and Holmes, 2002 ). For cluster-level statistics, the cluster form-

ng threshold is defined as the 95th percentile across all of the permu-
ations. Such threshold is used to identify the clusters on both the true
nd permuted data. In order to infer the p -values and to correct for mul-
iple comparisons, a null distribution composed of the maximum of the
luster mass is built and the corrected p -values are obtained by assessing
he proportion of cluster masses computed on the surrogates that exceed
he cluster mass of the true effect size (one-tailed test). 

For simplicity, the description above about the statistical frame-
ork is considering the participant as the fixed or random variables.
he same description still holds if sessions are used instead or, in the
ontext of intracranial data, the recording contacts across participants
 Gueguen et al., 2021 ). 

.2. Measuring information for the analysis of cognitive brain networks 

Information theory ( Cover and Thomas, 1991 ) represents one of
he most successful and promising data-driven frameworks to quantify
ask-related information in neural signals ( Borst and Theunissen, 1999 ;
uiroga and Panzeri, 2009 ) and it has been extensively applied to
europhysiological signals ( Cogan et al., 2011 ; Giordano et al., 2017 ;
ross et al., 2013 ; Ince et al., 2016 ; Jeong et al., 2001 ; Magri et al.,
009 ; Schyns et al., 2011 ) and neuroimaging studies ( Ince et al.,
017 ; Ostwald and Bagshaw, 2011 ; Panzeri et al., 2008 ; Timme and
apish, 2018 ; Wibral et al., 2015 ). In addition, information theo-
etic measures based on the Wiener-Granger principle ( Bressler and
eth, 2011 ; Brovelli et al., 2004 ; Ding et al., 2006 ; Seth et al., 2015 ),
uch as Transfer Entropy ( Schreiber, 2000 ) and Directed Information
 Massey, 1990 ), provide means to quantify network-level directional in-
uences and can capture arbitrary (linear and nonlinear) time-lagged
onditional dependencies between neural signals ( Besserve et al., 2015 ;
nce et al., 2015 ; Vicente et al., 2011 ). Although our statistical approach
an be applied to all information-based metrics, we focused our analy-
is and application to information theoretical quantities, such as mu-
ual information (MI) and conditional MI (CMI) measures ( Ince et al.,
012 ). Regarding the permutation strategy of CMI estimates (i.e. I(X;
|Z))), we used Manly’s approach ( Manly et al., 2017 ), which consists

n randomly permuting the Y variable across trials and leaving both X
nd Z unchanged. Other strategies have been proposed in the context
f linear models ( Winkler et al., 2014 ). As one of the main points of
ur work is to use information theory to avoid specific model assump-
ions, these strategies are not all implementable within our framework.
 possible exception is the procedure by Draper and Stoneman (1966) ,
hich permutes predictors. While an in-depth comparison between the
anly and Draper-Stoneman strategies is beyond the scope of this work,
e note that implementing the Draper-Stoneman strategy would involve
o modification to the conceptual structure of our work, and it would
equire minor modifications of the related code. 

The standard method to compute entropies for the calculation of mu-
ual information (MI) and conditional MI (CMI) is the binning method.
uch “direct ” method consists in binning each univariate variable and
ollecting the bin counts, so to approximate the joint probability dis-
ribution 𝑃 ( 𝑋, 𝑌 ) by the multidimensional histogram ( Beirlant et al.,
997 ; Treves and Panzeri, 1995 ). However, binning strongly depends
n the number of samples and suffers from the curse of dimensional-
ty ( Geman et al., 1992 ). Binless strategies have also been proposed,
uch as Kernel Density Estimation (KDE) methods ( Moon et al., 1995 ).
owever, KDE estimations suffer the same limitations of direct meth-
ds linked to the curse of dimensionality ( Gramacki, 2018 ; Scott, 2015 )
4 
ypical of high-dimensional datasets, such as neurophysiological data. A
romising alternative based on semi-parametric estimation techniques
as been recently proposed, namely the Gaussian Copula Mutual Infor-
ation (GCMI) ( Ince et al., 2017 ). In short, MI does not depend on the
arginal distributions of the variables, but only on the copula func-

ion which describes their dependence. GCMI therefore first requires
ransforming the inputs so that the marginal distributions are a stan-
ard normal. This copula-normalisation step involves calculating the
nverse standard normal cumulative density function (CDF) value of the
mpirical CDF value of each sample, separately for each input dimen-
ion, before using a parametric, bias-corrected, Gaussian MI estimator
i.e., sum-rank computation). The included parametric bias-correction
s an analytic correction to compensate for the bias due to the esti-
ation of the covariance matrix from limited data (i.e. here, limited
umber of repetitions or trials). Since this parametric correction only
epends on the number of trials, the same value is going to be used for
oth permuted and non-permuted data. Therefore, this bias correction
nly impacts the estimated effect size but has no effects on statistical
esults. The GCMI provides a lower bound estimate of the MI, without
aking any assumption on the marginal distributions of the input vari-

bles ( Ince et al. 2017 ; Ma and Sun 2011 ). It is important to stress that
he rank-based copula-normalisation preserves the relationship between
ariables as long as this relation is monotonic (i.e., strictly increasing or
ecreasing). For example, if the Y variable is a parabolic function of X,
he ranking is not preserved, and thus the relation between them can
ot be detected by the GCMI. In other words, for 1D variables the GCMI
s capable of detecting linear and non-linear relations, as long as the
elation is monotonic. 

Nevertheless, GCMI has several advantages for brain network anal-
sis. The first advantage is the simplicity of the computation. This ren-
ers the algorithms applicable to large datasets with hundreds of vari-
bles (e.g., brain regions) and it makes it suitable for computationally-
ntensive nonparametric permutation tests. The second advantage is the
bility to estimate entropies on few data samples. This property allows
he estimation of MI and CMI from short time series containing hundreds
f time points, e.g., single trials or across trials. A third advantage is the
ossibility to compute MI and CMI between a combination of discrete
nd continuous variables, that can either be univariate or multivariate,
ith resulting effect sizes on a common and interpretable scale. This
rovides a tight link between information theoretic quantities and clas-
ical statistical approaches used in neuroscience. For example, if both
ariables are continuous and univariate (e.g., two time-series, one in
he parietal and one in the occipital), MI is related to the generalized
earson correlation. If 𝑋 is a continuous variable (e.g., the high-gamma
ctivity in the visual cortex) and 𝑌 is discrete and univariate (e.g., task-
elated variable), their MI is equivalent to a Student t-test and it is re-
ated to a decoding machine-learning analysis where 𝑋 is the array of
amples and 𝑌 the vector of labels. Furthermore, the CMI produces an
quivalent of partial correlation. For a more detailed description of the
elation between information theoretic quantities and other statistical
pproaches, see the Table I in Ince et al. (2017) . It should be stressed
ut that in the case of MI between a continuous and a discrete vari-
ble containing more than two categories (e.g. four visual stimuli like
at, dog, penguin and horse pictures) only a subsample of stimuli (e.g.
at and horse) can drive the MI to higher values. To disentangle the
ontribution of each stimulus, decoding analysis and inspection of the
onfusion matrix could be used in place of the MI. 

.3. Software implementation 

We implemented the framework presented in this paper in an open-
ource python package called Frites 3 ( Framework for Information Theoret-

cal analysis of Electrophysiological data and Statistics ). The key objective

https://brainets.github.io/frites/api/generated/frites.workflow.WfMi.html


E. Combrisson, M. Allegra, R. Basanisi et al. NeuroImage 258 (2022) 119347 

Fig. 2. simulated spatio-temporal ground truths (GT) reflecting the presence and the strength of the statistical dependency between the data and the stimulus. The 
simulated effect is distributed across space (region of interest) and time points with a varying color-coded covariance. The higher the covariance, the easier the effect 
should be to be retrieved. The first GT simulates a spatially broad effect, with varying covariances and temporal cluster lengths. The second GT simulates a weak 
and diffuse effect and the third, a strong and focal effect. Gray parts symbolize the absence of effect. 
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f Frites is to identify task-related neural activity or cognitive brain net-
orks through information theory and also to be able to draw inferences
t the group level. Frites contains two important classes. The first one
s the workflow of MI (frites.workflow.WfMi 4 ) to quantify the statis-
ical dependency between the neural data and a task-related variable.
he WfMi can be used to investigate the quantity of information shared
etween continuous and discrete variables (e.g. brain data and two or
ore experimental conditions or stimulus types), between two continu-

us variables (e.g. brain data and with behavioral-models or psychome-
ric measurements) or between two continuous variables conditioned
y a third discrete one (conditional mutual information). This work-
ow estimates the effect-size and the surrogates as shown in the top
art of Fig. 1 . By default and for efficient computations, Frites is using a
ensor-based implementation of the GCMI. However, custom estimators
an be defined and provided using the frites.estimator.CustomEstimator
bject to estimate effect sizes with for example decoders, measures of
istance, correlations etc. Then, the effect-size and the surrogates are
lugged into the second important workflow for group-level statistical
nferences (frites.workflow.WfStats 5 ), which corresponds to the bottom
art of Fig. 1 . Cluster-based correction is performed using the open-
ource software MNE-Python ( Gramfort et al., 2013 ). One important
spect is that, in contrast to fMRI data, electrophysiological record-
ngs do not necessarily have a spatial contiguity (e.g sparse intracranial
ata). Therefore, when using cluster-based corrections, the cluster entry
hreshold is inferred across all time and space bins but then, the clusters
re only detected across time. Finally, for correcting for multiple com-
arisons, the maximum of the cluster masses is taken across time and
pace. 

.4. Numerical simulations 

We performed numerical simulations to generate artificial task-
elated data and then measure the performance of the group-level statis-
ics when combined with information-based measures. More precisely,
e tested how FFX and RFX combined to test- or cluster-wise correc-

ions for multiple comparisons are affected by various parameters. The
4 https://brainets.github.io/frites/api/generated/frites.workflow.WfStats.html 
5 https://brainets.github.io/frites/ 
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5 
imulated data consisted in two variables: a 3D multivariate variable
, which simulates the spatio-temporal structure of electrophysiologi-

al data with the dimensions describing the number of trials, the num-
er of brain regions and the number of time points and a univariate
ariable 𝑌 , reflecting a task-related continuous variable with the same
umber of trials as in X . Both X and Y were defined as standard random
aussian variables without temporal autocorrelation. Then, for a given
rain region b , we introduced a statistical dependency between those
wo variables during a temporal interval [ 𝑡 1 ; 𝑡 2 ] : 

 𝑏, [ 𝑡 1 ; 𝑡 2 ] = 𝑠𝑖𝑔𝑛 × 𝑌 + 

√
1 − cov 𝑏 2 

cov 𝑏 2 
× 𝑟 𝑏 𝑠 (1)

here 𝑟 is a random gaussian noise of unit variance, 𝑠𝑖𝑔𝑛 that can either
e -1 or 1 and 𝑐𝑜𝑣 a correlation parameter with values between 0 < 𝑐𝑜𝑣 ≤

 for controlling the correlation strength between 𝑋 and 𝑌 . If 𝑐𝑜𝑣 is 1 a
erfect correlation is observed between 𝑋 and 𝑌 . On the contrary, the
loser to zero 𝑐𝑜𝑣 is, the less the variables are correlated. As a result, the
orrelation between both variables exist only during a certain temporal
eriod and can also vary across brain regions. However, the direction of
he correlation (i.e. correlation or anti-correlation) was the same across
ll brain regions. 

From Eqn 1 , we defined three scenarios associated with different
ask-related effects whose amplitude and duration varied across time
nd space ( Fig. 2 ). For each scenario, a boolean ground-truth array was
uilt with 0 and 1 indicating the absence or presence of effect, respec-
ively, at a specific time and in a specific region. The objective was then
o compare such a ground-truth array with the output statistics. 

In addition to the above ground-truths describing various spatio-
emporal profiles, we also measured the impact of four intertwined pa-
ameters of the simulated data, namely (i) the size of the population (i.e
he number of subjects) (ii) the within-subject size (i.e the number of
rials per subject ( Baker et al., 2020 )), (iii) the proportion of subjects
aving the effect and (iv) the inter-subject consistency or ISC. The ISC
aried between 50 and 100% and characterized the proportion of sub-
ects with either positive ( 𝑠𝑖𝑔𝑛 = 1 ) or negative ( 𝑠𝑖𝑔𝑛 = −1 ) correlation
etween the data and the stimulus. As an example, let us consider a
ataset composed of 10 subjects, among which 80% has the effect (8
ubjects out of 10). In such a case, an ISC of 50% means that 4 subjects
ave positive correlations, 4 have negative correlations and 2 have no

https://brainets.github.io/frites/api/generated/frites.workflow.WfStats.html
https://brainets.github.io/frites/
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Fig. 3. Comparison of group-level approaches on simulated data with varying number of trials (from 20 to 300) and number of subjects (from 2 to 30). The comparison 
includes the FFX ( A-C ) and the RFX ( D-F ), each combined with the three methods for correcting the p -values for multiple comparisons (maximum statistics, FDR and 
cluster-based) across time and brain regions. The MCC is computed across all three ground truths and the 10 repetitions, with 80% of the subjects having the effect 
and with a fixed ISC of 90%. Black, white and red lines respectively represent a MCC of 0.7, 0.8 and 0.9. 
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the documentation of the software . 

6 
ffect. An ISC of 100% means that, among the subjects having the effect,
ll of them have positive correlations. 

In its most general definition, mutual information is capable of cap-
uring any type of relation. However, Gaussian copula MI between two
ontinuous variables makes the assumption of a monotonic relation be-
ween the variables. When using FFX group-level approach, the MI is
omputed on data concatenated across subjects: this means that when
ositive and negative correlation coexist at the group level, the mono-
onicity assumption is broken. This does not occur in the RFX, as the
atter computed MI independently for each subject. As a consequence, a
ow ISC (i.e with a balanced proportion of subjects having positive and
egative correlations) should impact the FFX more than the RFX. 

The MI was computed across trials, at each time-point and brain
egion. The p -values estimated at the group-level were inferred using
he above-described permutation approach with 1000 permutations. We
onsidered a significance threshold of p < 0.05 to compute the fraction
f true and false positives, and true and false negatives (TP, FP, TN, and
N, respectively). Those fractions were inferred by comparing the de-
ected significant effects with the ground-truth. As an example, for the
FX model with FDR correction, we used the non-parametric framework

o find significant effects at p < 0.05. This step leads to a spatio-temporal
oolean matrix, with the same shape as the ground-truth, where 1 and 0
espectively refer to significant non-significant effects. Then the fraction
f FP corresponds to the spatio-temporal overlap between effects de-
ected as significants (i.e. ones in the boolean matrix) and the presence
f a true effect in the simulated ground-truth. Similarly, TN fractions
orrespond to the overlap between zeros in the boolean matrix and the
bsence of effect in the ground-truth. This procedure was repeated ten
imes in order to decrease the variability. We computed the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
or true positive rate) and 𝑠𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 (or true negative rate) of the var-
6 
ous approaches to group-level inference ( Nichols and Hayasaka, 2003 ;
hapiro, 1999 ) defined as: 

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

; 𝑠𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 = 

𝑇 𝑁 

𝑇 𝑁 + 𝐹 𝑃 
(2)

In practice, sensitivity measures the overall accuracy for the detec-
ion of a true effect, and specificity measures the overall accuracy for the
etection of the true absence of an effect. We then pooled information
cross measures of sensitivity and specificity defined in Eqn 2 to com-
ute a summary measure of performance for the group-level method.
o this purpose, we considered the Matthews Correlation Coefficient
MCC) ( Matthews, 1975 ) defined as: 

𝐶𝐶 = 

𝑇 𝑃 × 𝑇 𝑁 − 𝐹 𝑃 × 𝐹 𝑁 

√
( 𝑇 𝑃 + 𝐹 𝑃 ) ( 𝑇 𝑃 + 𝐹 𝑁 ) ( 𝑇 𝑁 + 𝐹 𝑃 ) ( 𝑇 𝑁 + 𝐹 𝑁 ) 

(3)

here MCC can assume any value in the [-1, 1] range, with 1 measuring
 perfect performance, -1 measuring a perfect negative correlation and
 a chance-level performance ( Chicco and Jurman, 2020 ; Mensen and
hatami, 2013 ; Roels et al., 2016 ; Vihinen, 2012 ). The MCC (see Eqn 3 )
eported in Figs. 3 and 4 was inferred by computing the fractions of T/FP
nd T/FN across the three ground-truths, across all time and space bins
nd across the ten repetitions. An example illustrating the simulated
round-truths, the computations of the statistics at the group-level such
s the definition of the fractions and statistical metrics can be found in

6 
https://brainets.github.io/frites/index.html 
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Fig. 4. Comparison of group-level approaches on simulated data with varying inter-subject consistency (from 50 to 100%) and proportion of subjects having the 
effect (from 10 to 100%). The comparison includes the FFX ( A-C ) and the RFX ( D-F ), each combined with the three methods for correcting the p -values for multiple 
comparisons (maximum statistics, FDR and cluster-based) across time and brain regions. The MCC is computed across all three ground truths and the 10 repetitions, 
across 15 subjects and 200 trials. Black, white and red lines respectively represent a MCC of 0.7, 0.8 and 0.9. 
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.5. Validation on MEG and intracranial sEEG electrophysiological data 

To validate the proposed statistical approach, we reanalysed human
rain data previously published using standard parametric approaches.
e analysed: i) source-level high-gamma activity (HGA) estimated from
EG data recorded during the execution of a visuomotor-mapping learn-

ng task ( Brovelli et al., 2017 , 2015 ) and (ii) HGA estimated from in-
racranial recordings (stereotactic electroencephalography, sEEG) ac-
uired during a probabilistic learning task ( Gueguen et al., 2021 ). 

.5.1. MEG high-gamma activity during a visuomotor-mapping learning 

ask 

We reanalysed HGA (60-120Hz) estimated at the source level on
en right-handed healthy subjects performing a visuomotor-mapping
ask ( Brovelli et al., 2015 ) consisting in executing finger movements
nstructed by a visual stimulus (digit 1 instructed the execution of the
humb, digit 2 for the index finger, digit 3 for the middle finger, and so
n). Each participant performed two sessions of 60 trials each (total of
20 trials). MEG recordings were performed using a 248 magnetometers
ystem (4D Neuroimaging, magnes 3600). Single-subject cortical parcel-
ation was performed using the MarsAtlas brain scheme ( Auzias et al.,
016 ). Single-trial and z-scored (with respect to a baseline period from
0.5 to -0.1 s before stimulus onset) HGA time-series aligned on finger
ovement were estimated for each MarsAtlas ’ parcel, as described in
revious studies ( Brovelli et al., 2017 ). The goal of the original pub-
ication was to isolate the brain regions involved in the performance
f arbitrary visuomotor associations. To this end, authors used linear
ixed-effect models to contrast the HGA activity occurring during base-

ine against the HGA while performing the visuomotor association. The
ynamic functional connectivity (DFC) was computed using the Pearson
orrelation over sliding windows of 500 ms stepped every 10 ms. 
7 
In the present study, we investigated whether it was possible to re-
rieve the visuomotor-related cortical brain regions and network using
nly information-based measures combined with the proposed group-
evel statistical framework. To this end, we computed the MI between
he single-trial HGAs and a discrete label vector describing whether the
rials belonged to one or the other separated periods (i.e. the baseline
-0.6 to -0.1s) or visuomotor-related periods). The permutation scheme
onsisted in randomly shuffling this label vector 1000 times. To high-
ight the generalizability of the proposed framework to other measures
f information, we also used machine-learning (ML) outputs. For the ML
nalysis, we used a Linear Discriminant Analysis classifier (LDA) with
 stratified 10-fold cross-validation to split the data into training and
esting sets. The LDA was used to decode whether the HGA was com-
ng from the baseline or visuomotor-related period. A new classifier was
ystematically defined at each time point to produce time-resolved anal-
sis. For summarizing the quality of predictions, we used the area under
he curve (AUC) metric. ML analysis was performed using the Python
oftware scikit-learn ( Pedregosa et al., 2011 ). 

For network-level analyses, we computed the single-trial DFC on
GA using the MI during the 500 ms baseline period and using slid-

ng windows of 500 ms stepped every 10 ms during the visuomotor-
elated period. We then computed the MI and p -values between the
FC estimated during the 500 ms baseline and visuomotor-related pe-

iods using a RFX approach with FDR correction (1000 permutations).
o illustrate how the choice of the group-level approach is impacting
he number of significant pairwise links, we performed the same con-
rast of DFC during baseline vs. DFC during visuomotor related period
sing all possible combinations between F/RFX models and correction
or multiple comparisons. Finally, to illustrate the possibility of the pro-
osed framework to analyse graph-theoretical metrics computed on DFC
atrices, we investigated task-related differences of frequently found
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etwork measures ( Bullmore and Sporns, 2009 ) by means of network
lobal efficiency, modularity and assortativity using the Brain Connec-
ivity Toolbox ( Rubinov and Sporns, 2010 ). To this end, we computed
ach measure at the single-trial level on the binarized FC matrix esti-
ated during the baseline and on each binarized FC matrix estimated
uring the visuomotor-related period using the sliding windows. Since
t is not the core point of this paper, the binarization of the DFC ma-
rices was performed using an arbitrary threshold to keep 50% remain-
ng links. A more robust analysis would require investigating multiple
hresholds ( Rubinov and Sporns, 2010 ). As a result, we got on one side a
ingle vector reflecting for example the network efficiency of each trial
uring the baseline period and on the other side, the 2D matrix of single-
rial and dynamic network efficiency estimated during the visuomotor-
elated period. Finally, we computed the mutual-information between
ach graph metric and a discrete vector specifying whether each trial
elongs to the baseline of visuomotor period using a RFX model with
luster-based correction. 

.5.2. Intracranial sEEG recordings during a probabilistic learning task 

We then investigated outcome-related effects in intracranial HGA,
reviously observed using general linear models (GLM). Previous anal-
ses revealed differently modulated activity during the reward and
unishment conditions in the anterior insula (aINS) ( Gueguen et al.,
021 ). The dataset was composed of twenty patients with medically-
ntractable epilepsy, implanted with five to seventeen stereotactic
lectroencephalography (sEEG) electrodes. Patients performed a prob-
bilistic instrumental learning task adapted from previous studies
 Palminteri et al., 2012 ; Pessiglione et al., 2006 ). The task consisted
n the presentation of visual stimuli leading either to monetary gains
r losses. Subjects were instructed to maximize their financial payoff,
hile considering reward-seeking and punishment-avoidance strategies
s equally important. During the task, four pairs of visual abstract cues
aken from the Agathodaimon alphabet were presented on a screen.
he four cue pairs were divided in two conditions (2 pairs of reward
nd 2 pairs of punishment cues), associated with different pairs of out-
omes (winning 1 € versus nothing or losing 1 € versus nothing). Sub-
ects performed three to six sessions during which each pair was pre-
ented 24 times, leading to a total number of trials across sessions be-
ween 288 and 576. SEEG data preprocessing was conducted according
o routine procedures described in previous studies ( Bastin et al., 2016 ;
ombrisson et al., 2017 ; Jerbi et al., 2013 , 2009 ). These included sig-
al bipolarization, where each electrode site was re-referenced to its di-
ect neighbor. Bipolar re-referencing can increase sensitivity and reduce
rtefacts by canceling out distant signals that are picked up by adjacent
lectrode contacts (e.g., mains power). Next, electrodes contaminated
ith pathological epileptic activity were systematically removed using
isual inspection and time-frequency decompositions. Time-frequency
nalyses were carried out using MNE-Python software ( Gramfort et al.,
013 ). Single-trials HGA aligned on outcome presentation were esti-
ated using a DPSS tapers (central frequency of 100 Hz, 15 cycles,

ime bandwidth of 15 leading to a frequency range of [50, 150]Hz).
 more detailed description of the data acquisition and the task de-
ign have already been described elsewhere ( Gueguen et al., 2021 ).
n the present study, we focused on the anterior insula and investi-
ated whether the HGA was differently modulated during the reward
nd punishment conditions. To this end, we conducted two separate
roup-level analysis were we first computed the amount of informa-
ion shared between the HGA and the discret vector of outcomes dur-
ng the rewarding condition (i.e. with the outcomes + 0 € and + 1 €) and
hen during the punishment condition (i.e. with the outcomes -1 € and
0 €). For the group-level statistics, we used the same approach as the
riginal publication, a RFX model across contacts (i.e. within a brain re-
ion, merge the contacts coming from multiple subjects, compute the MI
er contact and then perform the t-test across the contacts) with 1000
ermutations. 
8 
. Results 

In the following sections, we will first present the results of numerical
imulations assessing the performance of the workflows in statistically
etecting various spatio-temporal profiles. We will then present the re-
ults obtained from the reanalysis of cortical HGA estimated from MEG
ata during visuomotor mapping and from intracranial data during re-
nforcement learning. 

.1. Numerical simulations: accuracy comparison of the group-level 

pproaches 

Three ground-truth scenarios ( Fig. 2 ) were simulated to compare the
wo group-level approaches (FFX and RFX) combined with one of the
hree methods for correcting p -values for multiple comparisons across
ime and brain regions, namely, the maximum statistics, the FDR or the
luster-based, respectively. We also varied the number of subjects and
rials ( Fig. 3 ), such as the proportion of the subjects having the effect
nd the inter-subject consistency or ISC ( Fig. 4 ). 

Fig. 3 shows the Matthews Correlation Coefficient (MCC), an overall
easure of performance ( Sec. 2.4 ), as a function of the number of sim-
lated subjects and trials. Overall, the FFX ( Fig. 3 A-C) leads to slightly
igher values of MCC compared to the RFX ( Fig. 3 E-F) and across the
hree correction methods. This translates into a decrease in the data size
equirements. For example, using the maximum-statistics at 200 trials,
he FFX ( Fig. 3 A) reaches a MCC of 0.8 using approximately 12 subjects
hile the RFX ( Fig. 3 D) requires around 20 subjects. Additionally, for
oth the FFX and RFX, the cluster-based correction ( Fig. 3 C and F) per-
ormed systematically better than maximum statistics ( Fig. 3 A and D)
nd FDR ( Fig. 3 B and E). Note that we fixed the percentage of subjects
aving the effect at 80% and the ISC at 90%. Therefore, this set of pa-
ameters simulates a scenario where the relation between the data and
he stimulus is relatively uniform across subjects, which is in favour of
he FFX’s assumptions. 

We then investigated the dependence on an additional parameter rel-
vant in group-level analyses, namely the heterogeneity across subjects,
hich was simulated by varying the inter-subject consistency (ISC).
ig. 4 shows the MCC values as a function of the ISC (varying from
0 to 100%) and the percentage of subjects having the effect that varies
varying from 10 to 100%). A clear difference in dependence between
he FFX and the RFX was observed as a function of the ISC. The MCC
nder the RFX model was stable for varying values of ISC ( Fig. 4 D-F). On
he other hand, the FFX required that at least 80% of the subjects have
he same type of effect in order to reach a MCC of 0.8 (i.e 80% with pos-
tive or negative correlations between the simulated data and the stimu-
us) ( Fig. 4 A-C). Nevertheless, for ISC values approximately higher than
0%, the MCC scores were larger in the FFX than in the RFX setting.
he second main difference concerned the correction for multiple com-
arisons. Fig. 4 C and F show that cluster-based correction outperformed
he maximum statistics and the FDR. Interestingly, the correction had a
trong impact on the required proportion of subjects having the effect
or the RFX (larger than 80% with the maximum statistics and ∼50%
or the FDR and cluster-based). 

.2. Brain data: extracting task-related cognitive brain networks using 

nformation-based measures from human neurophysiological data 

To validate the proposed statistical approach on human neuro-
hysiological data, we reanalysed two previously-published datasets,
hich were analysed using standard parametric approaches. We anal-
sed: (i) source-level high-gamma activity (HGA) estimated from
EG data recorded during the execution of visuomotor-mapping task

 Brovelli et al., 2017 , 2015 ) and (ii) high-gamma activity (HGA) com-
uted from intracranial recordings (stereotactic electroencephalogra-
hy, sEEG) acquired during a probabilistic learning task ( Gueguen et al.,
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Fig. 5. Brain areas showing significant differences of high-gamma activity between the action and the baseline. The plotted mutual-information is obtained by taking 
the mean across single-subject MI estimations, at each time-point and parcel. P -values are corrected for multiple comparisons using a cluster-based correction and 
displayed temporal clusters are inferred by thresholding the p -values at a significant level of p < 0.05. Data are aligned on movement onset represented here with a 
vertical black line at 0 s. 
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021 ). For both modalities, we used the single-trial high-gamma activity
HGA) as the neural marker modulated by the task. 

.2.1. Visuomotor-related brain network and MEG high-gamma activity 

We computed the MI between the single-trial HGAs and a discrete
ector of conditions (baseline versus visuomotor-related periods). The
im was to identify which brain areas displayed visuomotor-related
hanges in HGA. We then performed a random-effect group-level anal-
sis, where the mutual information was estimated for each subject and
hen a t-test was applied across subjects. The p -values were corrected
or multiple comparisons using a cluster-based approach. 

We reproduced the main findings of a previous study ( Fig. 2 in
rovelli et al. 2017 ) revealing a visuomotor-related large-scale network
 Fig. 5 ) involving bilateral dorsolateral and dorsomedial motor regions
Mdl, Mdm), premotor (PMdl, PMdm) and somatosensory areas (Sdl,
dm). Parietal cortices also displayed differences in both hemispheres in
he medial and superior parietal cortex (PCm, SPC, SPCm) such as in the
id, posterior and inferior portions of the cingulate cortex (MCC, PCC,

CC). Some activations were also significant only in the left hemisphere,
amely the caudal dorsomedial part of the prefrontal cortex (PFcdm),
he ventral somatosensory (Sv) such as the dorsal and ventral parts of
he inferior parietal cortex (IPCd, IPCv). Finally, we found large differ-
nces in HGA within the occipital lobe, especially in the rostral medial
nd caudal medial part of the visual cortex (VCcm, VCrm) and cuneus
Cu) of both hemispheres. To a lesser degree, the superior and lateral
arts of the visual cortex (VCs, VCl) also exhibited differences ( Fig. 5 ).
t should be noticed that, around the movement onset, motor-related
egions (Mdl, Mdm, PMdm, PMdl, Sdl) showed stronger differences be-
ween baseline and action in the left hemisphere compared to the right
emisphere, which is an expected result as the subject performed the
ask with the right hand. In the occipital lobe, highest values of MI were
eached approximately 250ms before movement onset. 

To illustrate the proposed group-level statistical method on non-
nformation-theoretic measures, we applied it on machine-learning
9 
ML) outputs where a new classifier was systematically redefined
nd retrained at each time point and brain region for each subject
 Section 2.5.1 ). To this end, we performed the same analysis as above
classifying action versus baseline in somatosensory (Sdl), motor (Mdl)
nd visual (VCcm) parcels, all three located in the left hemisphere
 Fig. 6 ). Similarly to the MI approach, permutations were computed by
raining and testing the classifier (LDA) on a randomly shuffled version
f the label vector ( Combrisson and Jerbi, 2015 ). Finally, we applied the
andom-effect group-level analysis on the AUC to infer p -values. Group-
evel statistics on both MI and ML scores lead to very similar significant
emporal clusters with the only exception of VCcm, where the significant
luster identified by ML was narrower. 

We then tried to replicate previous visuomotor-related undirected
nd dynamic (time-resolved) functional connectivity (DFC) analyses
 Fig. 4 in Brovelli et al. 2017 ). We tested the hypothesis that interareal
FC was different during the execution of visuomotor associations with

espect to baseline. Visuomotor-related changes in DFC with respect to
aseline were estimated by using MI between the DFC and the discrete
ector specifying if the trials were coming from the baseline or action
ondition. We used the RFX group-level approach, with p -values cor-
ected for multiple comparisons across time and pairs of brain regions
sing the FDR correction. The time-averaged DFC for exhibited signif-
cant effects over the fronto-parietal network, mainly within the left
emisphere, with a strong implication of motor and premotor regions,
uperior parietal cortex such as strong bilateral connections within the
ccipital lobe ( Fig. 7 A). We replicated the temporal evolution of the con-
ectivity strength by computing the mean over pairs of brain regions
xhibiting a significant contrast with the baseline ( Fig. 7 B). In addition,
he time-course averaged across pairs displayed a first peak occurring
lightly after -0.4s, during the movement planning phase after stimu-
us presentation, a dissolution of the network around 0s and finally the
mergence of a motor-related network at 0.2s when subjects performed
he finger movement. In addition to the original paper, we computed the
umber of significant links according to the group-level model (FFX and
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Fig. 6. highlighting significant differences of high-gamma activity between the baseline and the action using group-level analysis on information theoretic and 
machine-learning metrics for three brain areas (dorsolateral somatosensory and motor cortex (Sdl, Mdl) and caudal medial visual cortex (VCcm)). The columns 
respectively refer to the high-gamma activity (blue), the mutual-information (black) and the machine-learning results (purple) expressed using the area under the 
curve (AUC). For all columns, thin lines stand for single-subject estimations and thick lines represent the mean across subjects. Green clusters highlight significant 
differences at p < 0.05. Data are aligned on movement onset represented here with a vertical black line at 0 s. 

Fig. 7. significant task-related undirected pairwise connectivity using MI ( A ) circular representation of the connectivity matrix of mean MI over time points ( B ) 
time-course of mean MI and 95% confidence interval across pairs of brain regions. Data are aligned on movement onset represented here with a vertical black line 
at 0 seconds and the time vector represents the center of each 500 ms sliding window. ( C ) number of remaining significant links for the FFX and RFX models, 
respectively combined with FDR, maximum statistics and cluster-based corrections. All subplots were obtained after selecting the significant pairs of brain regions 
( p < 0.05, corrected) 
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FX), such as approaches for correcting for multiple comparisons (FDR,
axstat and Cluster-based across time points) ( Fig. 7 C). Overall, the

umber of significant links was much larger when using the FFX model.
imilarly, FDR correction led to a much larger number of significant
dges, followed by the maximum statistics and finally the cluster-based
orrection. 
10 
Finally, we investigated task-related network properties using stan-
ard graph-theoretical metrics ( Section 2.5.1 ). To this end, we estimated
he single-trial network efficiency, modularity and assortativity during
oth action and baseline periods. As for the MI time-course of Fig. 7 B,
ll of the three metrics led to two peaks. We found a decrease of net-
ork efficiency ( Fig. 8 A) and an increase both in network modularity
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Fig. 8. significant task-related graph metrics respectively measuring (A) the network efficiency, (B) the network modularity and (C) the network assortativity. 
Top row blue and gray lines represent the time courses of the graph measures respectively estimated during action and baseline. Shaded areas represent the 95% 

confidence interval estimated across subjects. Bottom row contains the MI time course and the significant clusters are highlighted in green (RFX - p < 0.05). Data 
are aligned on movement onset represented here with a vertical black line at 0. 
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nd assortativity ( Fig. 8 B-C) with respect to baseline period. We then
omputed the MI between the single-trial graph measures and a vector
f labels indicating whether each trial was coming from the baseline
r action periods. For the model of the group, we used a random-effect
ith cluster-based correction for multiple testings. For each of the three
I time courses, we found two significant clusters prior and after move-
ent onset reflecting significant task-related differences of efficiency,
odularity and assortativity. 

.2.2. Reinforcement learning system and intracranial EEG 

We then tested our approach on intracranial HGA estimated from
EEG data recorded from the anterior Insula (aINS) in a reinforcement
earning task. We computed the MI between the HGA power, estimated
er bipolar contact, and the outcomes during both the reward ( + 1 € vs.
 0 €) and punishment (-0 € vs. -1 €) conditions ( Fig. 9 ). As for the group-

evel statistics, we used a random-effect approach across contacts with
luster-based corrected p -values. Mean HGA power across subjects in
he aINS showed clear modulations when receiving rewarding and pun-
shing outcomes ( + 1 € and -1 €) in contrast to + 0 € and -0 € outcomes
 Fig. 9 A). Overall, the difference of HGA power between outcomes was
arger during the punishment condition which was then confirmed by
he magnitude of MI and t-values ( Fig. 9 B, C). The MI showed a signif-
cant peak occurring around 500ms after outcome presentation during
oth reward and punishment conditions. To further explore the con-
istency of the effect, we detected temporal clusters within-contacts
nd reported the proportion of contacts displaying a significant effect
 Fig. 9 D). Interestingly, more than half of the contacts in the anterior
nsula showed significant differences between outcomes in the punish-
ent condition compared to 20% during the reward. 

. Discussion 

In this study, we presented a statistical framework and associ-
ted toolbox called Frites for group-level inferences using non-negative
11 
nformation-based measures (e.g mutual-information, decoding) to
dentify cognitive brain networks. Our framework extends a previ-
us approach for group-level inferences on information-based measures
 Giordano et al., 2017 ) to encompass neurophysiological recordings
ith both homogeneous spatial samplings across participants (or ses-

ions), such as whole-brain source level data M/EEG data and spatially
parse recordings, such as intracranial sEEG, ECoG and LFPs. In addi-
ion, it allows fixed- and random-effect models to adapt to inter-subject
ariability and uses non-parametric permutations with test- and cluster-
ise correction for p -values inference. We used simulated data to com-
are the group-level approaches and complementary methods for cor-
ecting for multiple comparisons. We then tested our approach on hu-
an data to reproduce and extend existing results based on MEG data

cquired during a visuomotor task ( Brovelli et al., 2017 , 2015 ) and spa-
ially sparse intracranial data for investigating neural correlates of prob-
bilistic learning ( Gueguen et al., 2021 ). Finally, we illustrated how this
ramework can be applied at the level of local neural activity, on pair-
ise functional connectivity links or on measures summarizing network
roperties. 

.1. Comparison of group-level approaches 

To compare F/RFX combined with different methods for correct-
ng for multiple testings (maximum statistics, FDR and cluster-based),
e defined three simulated ground-truths covering different scenarios:

i) weak and spatially diffuse effect; (ii) strong and spatially focal ef-
ect; (iii) varying spatio-temporal effect. For assessing the accuracy of
he group-level approaches in retrieving the ground-truths, we used the
atthews Correlation Coefficient (MCC), which returns a single value

eflecting the overall statistical performance by combining both sen-
itivity and specificity. Intuitively, the accuracy of both FFX and RFX
ncreased with the number of subjects and the number of repetition per
ubject. For the same dataset (i.e., for the same number of subjects and
epetitions), the FFX led to slightly higher accuracy than the RFX. How-
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Fig. 9. significant differences of HGA power 
between reward and punishment conditions in 
the anterior insula (13 subjects, 75 contacts). 
(A) Mean relative HGA power across subjects 
per outcome ( + 1 € and + 0 € in dark and light 
orange, -1 € and -0 € in dark and light blue) ( B ) 
Mean MI computed between the HGA power 
and the outcomes during the reward condition 
{ + 0 €, + 1 €} in blue and during the punishment 
condition {-1 €, -0 €} in red. Blue and red thick 
lines represent the significant temporal clusters 
obtained, at the group-level at p < 0.05, re- 
spectively during reward and punishment con- 
ditions. ( C ), T-values obtained by computing a 
one-sample t-test contrasting single contact MI 
estimations against permutation mean ( D ) Pro- 
portion of contacts with significant effect. Ver- 
tical black line at 0 s represents the outcome 
presentation. 
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ver, this result should be nuanced by the fact that the first simulation
sed a highly reproducible effect across subjects. Indeed, when introduc-
ng inter-subject variability, FFX performance dropped until the effect
tarted to be highly reproducible across subjects ( ∼80% in the context
f our simulations). This is explained by the fact that FFX is a single-
evel model, where the effect is estimated across subjects ( Penny and
olmes, 2007 ) and cannot adapt to the inter-subject variability. On the
ther hand, RFX performance was stable at every level of inter-subject
ariability. Indeed, the RFX is a two-level model, in which the first level
xplains the effect size at the single-subject level and the second fits the
opulation-level variance. Such capabilities to adapt to the variability
nd being able to generalize results to the population explain why, when
ossible, the RFX was preferred over the FFX ( Lazar et al., 2002 ). While
he RFX approach allows generalization to new subjects and accounts for
andom variations from subject to subject, it also comes at the cost of a
ower sensitivity compared to the FFX which should be counterbalanced
y a larger cohort. 

Results from simulations also showed that methods for correcting for
ultiple comparisons were equally impacted with increasing sample-

ize or by the inter-subjects variability. However, maximum statistics
nd FDR were more impacted than the cluster-wise correction as the
roportion of subjects having the effect was reduced. Note that while
e focus here on inference on the population mean, which is the tradi-

ional focus in neuroimaging, the proportion of subjects showing an ef-
ect is also a valid target for statistical estimation at the population level
 Ince et al 2021 ). In all scenarios, the overall performance of cluster-wise
orrection outperformed test-wise corrections. For the cluster-based cor-
ection ( Bullmore et al., 1999 ; Maris and Oostenveld, 2007 ) the test
s performed over the mass of the clusters, not on their precise spa-
iotemporal locations, therefore the p -value of the cluster is not repre-
entative of the member of the cluster. As a consequence, it was re-
ently highlighted that numerous studies are reporting overestimated
recisions of the statistical claims ( Sassenhagen and Draschkow, 2019 ).
o overcome this limitation and also to overcome the definition of the
luster forming threshold, several alternatives have been proposed like
he Threshold Free Cluster Enhancement (TFCE) and probabilistic TFCE
 c  

12 
 Smith and Nichols, 2009 ; Spisák et al., 2019 ) or the non-parametric
hreshold free LISA framework ( Lohmann et al., 2018 ). Overall, TFCE
as been shown to provide a better sensitivity compared to standard
luster extent ( Noble et al., 2019 ; Pernet et al., 2015 ). Future work
ould investigate how those modern cluster definitions perform once
ombined to the statistical framework proposed here. 

.2. Improving reproducibility through statistics 

It has been shown that almost every study is unique in its analyti-
al and statistical approach ( Carp, 2012 ). This diversity is understand-
ble considering the variety of designs and neurophysiological record-
ngs. However, such diversity is a potential source for the lack of re-
roducibility ( Gilmore et al., 2017 ; Puoliväli et al., 2020 ). The diver-
ity in statistical approaches is further extended by the known differ-
nces between parametric and non-parametric statistical approaches.
ata-driven non-parametric approaches are more likely to provide a
etter control for the FWER or FDR ( Hayasaka, 2003 ; Nichols and
ayasaka, 2003 ; Puoliväli et al., 2020 ; Thirion et al., 2007 ). On the other

ide, it was also argued that parametric statistics can achieve similar sen-
itivity and specificity than nonparametric counterparts ( Flandin and
riston, 2019 ). However, this is true at the condition that parametric
ssumptions are met, otherwise, violation of assumptions of the test can
esult in higher but also unpredictable FWER ( Eklund et al., 2016 ). Para-
etric tests can also be more conservative, which means that many ef-

ects might be missed, pushing us to only report the tip of the iceberg
 Noble et al., 2019 ). This is raising the question about our capacity to
etect both strong localized effects along with weak and spatially diffuse
ffects ( Cremers et al., 2017 ). 

While there is a growing global consensus around the quality of con-
rol of non-parametric approaches, there are also classic criticisms en-
ountered like the computational cost, the lack of reproducibility and
he exchangeability hypothesis ( Flandin and Friston, 2019 ). All three
rguments are true, but should probably be nuanced. The computa-
ional cost is a technical problem that can be compensated using modern
omputers and programming libraries (multi-cores, multi-nodes, GPU,
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7 http://www.humanconnectomeproject.org/ 
aching computations etc.). When living in the age where deep learning
s applied on millions of images, it should be doable to perform 1000 up
o 10000 permutations and get the results within a few minutes. Con-
erning the lack of reproducibility, it is true that by running the analysis
everal times the permutation scheme varies and therefore, some signif-
cant results might change. However, several reasons can explain this
ariability. First, the number of permutations is too low leading to a
oor sampling of the null distribution. Then, if the result is still unsta-
le for a larger number of permutations, it is questionable whether it
s robust enough to consider being reproduced in the future. Finally,
o avoid p-hacking (i.e. abusing of analysis techniques until nonsignif-
cant results become significant ( Head et al., 2015 )) by changing the
istribution scheme it is always possible to fix the random state of the
achine, like this is done in many softwares, which leads to replica-

le permutations schemes ( Pedregosa et al., 2011 ). The biggest dan-
er of permutations probably lies in the exchangeability hypothesis (i.e.,
he variable we consider exchangeable in order to generate a null dis-
ribution of effects achievable by chance). For a simple contrast like
aseline vs. task , where the null hypothesis is that there is no difference
etween the two conditions, the distribution of permutations should be
onstructed by permuting the labels. In other cases, choosing a permuta-
ion strategy appears sometimes as a subtle choice that requires deeper
nvestigations like for machine-learning approaches ( Combrisson and
erbi, 2015 ; Valente et al., 2021 ). An incorrect permutation strategy
e.g., shuffling a variable that contains a structure like a temporal au-
ocorrelation) can lead to a null distribution made of small effect size
hat are then going to be to easy to exceed by the true effect, leading
o overconfident results ( Brookshire, 2021 ; Liegeois et al., 2017 ). That
eing said, it is a problem the community is well aware of and much has
lready been written on how to choose the most appropriate permuta-
ion strategy ( Maris and Oostenveld, 2007 ; Nichols and Holmes, 2002 ;

inkler et al., 2014 ). 
Most studies have been shown to be underpowered which clearly

imit our capacity to reproduce results across teams ( Button et al., 2013 ;
oannidis, 2005 ; Szucs and Ioannidis, 2017 ). Increasing both the number
f subjects and within-subject data by data sharing is crucial for increas-
ng the probability of detecting true effects. However, a standardization
f group-level statistics and multiple testing, supporting both local and
etwork level inferences, combined with powerful measures of informa-
ion for minimizing assumptions on data distributions is another avenue
o investigate toward higher reproducibility. 

.3. Group-level inferences on functional connectivity estimations 

We showed that the proposed statistical framework could be used on
airwise FC to retrieve the task-related visuomotor network previously
ound using a linear mixed model on FC links estimated using correlation
 Brovelli et al., 2017 ). Here, we reproduced the findings by entirely stay-
ng within the information-theoretical framework. We should neverthe-
ess raise a note of caution concerning the interpretation of FC measures
omputed on noninvasive techniques, such as EEG and MEG, which may
uffer limitations, among which volume conduction and leakage are po-
ential confounds ( Bastos and Schoffelen, 2016 ). Indeed, pairwise GCMI
uffers the same limitations of standard correlation-based FC measures.
n fact, the GCMI between two continuous variables is equivalent to a
pearman rank correlation, as pointed out by Ince et al. (2017) . If tran-
ient common inputs affect pairs of regions on which FC measures are
omputed, the proposed pairwise GCMI analysis will reveal a signifi-
ant effect. Potential solutions have been proposed in previous studies
epending on the type of common input problem. If the common input
ignal can be recorded and it is included as a time series of the dataset,
 potential solution is the use of multivariate, rather than pairwise, ap-
roaches to FC analysis. Partial correlation ( Colclough et al., 2015 ) or
onditional Granger causality ( Ding et al., 2006 ; Wu et al. 2013 ) are
xamples of these techniques. On the other hand, if the common source
nput is not recorded and in the case of intrinsic spatial leakage, poten-
13 
ial solutions such as orthogonalisation preprocessing steps ( Hipp et al.,
012 ) or the use of FC measures that reduce zero-phase instantaneous
oupling, such as the imaginary coherence ( Nolte et al., 2004 ), may at-
enuate such biases. 

We also found that p -value correction at the edge-wise level can
ramatically influence the proportion of significant links according to
he statistical design (i.e F/RFX and the method for correcting MC). It
as shown that the choice of the parcellation scheme, with a possibly

arge number of links, might lead to a high proportion of false nega-
ives ( Marek et al., 2020 ). To improve the capacity of detecting true
ask-related FC, several studies are using cluster-based approaches for
etworks ( Baggio et al., 2018 ; Vinokur et al., 2015 ; Zalesky et al., 2010 )
r using predefined large-scale networks ( Noble and Scheinost, 2020 ).
n addition, it was recently shown that the number of significant links
nd statistical power were also highly dependent on the level of infer-
nce (i.e. at the edge, cluster or network level) ( Noble et al., 2021 ).
his is an important limitation to consider for future studies investigat-

ng task-related functional connectivity as only the tip of the iceberg
s going to be reported. Those new approaches and new levels work
n the same ideas that corrections for MC are going to be less stringent
nce informations are pooled and therefore, improve our capacity to de-
ect true cognitive brain networks at the cost of being less precise when
iscussing the results ( Sassenhagen and Draschkow, 2019 ). Those new
evelopments should still be compatible with the statistical framework
roposed here. 

.4. Information-based as a common language for cognitive brain networks

Measures of information are encapsulating the statistical depen-
ency between brain data and an experimental variable. Here, for il-
ustrating the statistical framework, we mainly used metrics from in-
ormation theory by means of the Gaussian-Copula Mutual Informa-
ion (GCMI) ( Ince et al., 2017 ). GCMI has several non-negligeable ad-
antages: (i) it can detects monotonic linear and non-linear relation-
hips; (ii) it supports any combination of uni/multivariate of continu-
us/discrete variables, quantifying relationships on a common mean-
ngful effect size scale; (iii) it contains a parametric bias-correction for
nbalanced contrasts (i.e., when the number of data points is differ-
nt); (iv) it is computationally fast. In addition, it also allows condi-
ional MI (CMI) for removing the influence of a discrete or continu-
us variable. Typical use cases of CMI could be the estimation of the
mount of information shared between the brain data and a behav-
oral variable, while conditioning of a third variable In addition, CMI
s at the heart of the estimation of partial functional connectivity mea-
ures and covariance-based Granger Causality metrics. Indeed, Trans-
er Entropy ( Schreiber, 2000 ), which is defined as the CMI between
he past of the source and the present of the target conditioned by
he past of the source, is mathematically equivalent to Granger causal-
ty for gaussian variables ( Barnett et al., 2009 ). The monotonicity as-
umption for applying the GCMI between two univariate continuous
ime-series raises the question of the potential application to resting-
tate and long time-series. While this is still an open-question, it was
ecently shown that the GCMI and the weighted pairwise phase con-
istency outperform compared to other metrics for measuring the con-
ectivity between brain and peripheral signals ( Gross et al., 2021 ).
his study used relatively long time-series, between 1 to 9 minutes
nd also showed that with longer time-series the mean distance be-
ween the connectivity measure and the surrogate distribution also
ncreased. That said, those results also depend on the stationarity of
he underlying connectivity. For an illustration of cases where the
CMI is not able to identify the relation between variables, see Fig. 2 .

nce et al. (2017) and the Python implementation comparing several
nformation-based estimators 7 . Overall, the GCMI is a versatile and gen-

http://www.humanconnectomeproject.org/
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ral approach including metrics for local and network-level brain data
nalysis. 

The framework presented here could additionally be combined with
ore powerful and feature-rich measures of information, such as en-

oding and decoding models for out-of-samples generalization, fully
on-parametric kernel-based MI ( Moon et al., 1995 ) and recent metrics
rom the Partial Information Framework (PID) ( Ince, 2017 ; Wibral et al.,
017 ; Williams and Beer, 2010 ). Once combined with PID metrics, it be-
omes possible to investigate motivated questions like if there is redun-
ant or synergistic information between a pair of brain regions about a
ariable of the task and whether this information is generalizable to the
opulation. 

Taken together, the framework presented here has the potential
o investigate complex task-related modifications of local neural ac-
ivity, but also more ambitious characterizations such as task-related
ong-range coactivations and feature-specific directed information flow
 Bím et al., 2020 ). Linking brain networks to cognitive functions has
een highlighted as one of the major challenges to overcome in the
uture ( Bassett et al., 2020 ). Group-level statistics combined with rich
easures of information represent one avenue to address this challenge

oward the characterization of cognition. 

.5. Multi-scale analysis of cognitive brain networks 

We showed how the statistical framework allows population gener-
lization from the local scale of brain region to the large scale of brain-
etworks for characterizing both task-related functional connectivity
nd graph-theoretical properties. It further adapts to whole-brain parcel-
ased analysis of any modalities, from spatially uniform recordings like
EG and MEG to highly non-uniformly sampled invasive recordings like
EEG or ECoG. Outside of the scope shown here, the framework also
as potential applications to other neurophysiological recordings like
tah arrays ( Brochier et al., 2018 ), human and animal large-scale LFPs
 Dotson et al., 2018 , 2017 ), single- and multi-unit data and fMRI data. 

.6. Software implementation 

Our approach has been implemented in an open-source Python pack-
ge called Frites 8 ( Framework for Information Theoretical analysis of Elec-

rophysiological data and Statistics ) designed for inferring cognitive brain
etworks by means of measures of information. The toolbox, partially
eveloped during Brainhack events ( Gau et al., 2021 ), includes an im-
lementation of the proposed group-level statistical pipeline, with fixed-
nd random-effect models such as test- and cluster-wise corrections.
y default, Frites is using a tensor-based implementation of the GCMI
or faster computations. We recently added the possibility to use exter-
al functions for estimating information, like standard correlation, mea-
ures of distances, scikit-learn models ( Pedregosa et al., 2011 ) or IDTxl
on-parametric kernel-based measures of MI ( Wollstadt et al., 2018 ).
he toolbox also includes functions for estimating undirected and di-
ected (covariance-based Granger Causality) single-trial functional con-
ectivity. For interoperability, the main functions and classes of Frites

re also supporting MNE-Python epochs-related objects. Frites is entirely
ritten around a relatively recent package called Xarray ( Hoyer and
amman, 2017 ), which can be seen as a generalization of Pandas

 McKinney, 2011 ) for labelled multidimensional arrays. One of the fea-
ures of Xarray is that it allows returning and saving outputs with at-
ributes. Therefore, each output of Frites ’ function and classes also con-
ains the inputs defined by the user such as the most relevant internal
ariables used for computations. The open-source accessibility of the
ackage and the ability to track both internal and external variables,
ontribute to a reproducible science as it allows sharing self-contained
8 https://brainets.github.io/frites/auto_examples/simulations/plot_ground_ 
ruth.html#sphx-glr-auto-examples-simulations-plot-ground-truth-py c

14 
les that include all of the parameters used for understanding and re-
roducing a result. From a programming perspective, we also provide
nline documentation 9 with detailed function and input descriptions
uch as script and notebook examples. Code blocks are well commented
nd follow PEP8 guidelines for code readability. Finally, to improve long
erm sustainability as other recent Python packages ( Combrisson et al.,
020 , 2019 ; Meunier et al., 2020 ) we included both smoked (i.e. testing
unction’s input types) and functional unit tests through a continuous
ntegration protocol (current coverage > 84%). 

.7. Limitations 

The present work has several limitations and possible extensions that
ould be considered in future works. We used simple gaussian-based
imulations to compare group-level approaches in terms of accuracy
f ground-truth retrieving. Even if we simulated multiple scenarios of
ffect distribution, it is not straightforward that the presented results
ill behave the same in the context of real data. Future work could
lso investigate how this framework behaves in case of noisy sinusoidal
ime-series using auto-regressive models ( Ding et al. 2006 ). The present
ork also investigated the number of required subjects, repetitions and
roportion of subjects having the effect to achieve robust statistical in-
erences. Again, our simulation-based results illustrate a trend and can
ot be used to make sample size recommendations nor replace a proper
ower study ( Baker et al., 2020 ; Maxwell et al., 2008 ). Future work
ould consider using more realistic data generation with a more so-
histicated inter-subject variability modelling. We also showed how the
ramework could be used on spatially non-uniform data like the sEEG.
owever, for both FFX and RFX inferences, measures of effect size could
e unequally affected by differences in signal to noise (SNR) ratio. A
ossible workaround to investigate in the future could be to uniformize
he SNR across brain regions by combining bootstrapping and stratifi-
ation techniques by means of subsampling such that the distributional
roperties are made as similar as possible ( Bosman et al., 2012 ). Fi-
ally, the toolbox can handle one-factorial designs with more than two
evels. For more complex designs, such as two- or three-way factorial
esigns, interaction terms need to be taken into consideration. In ad-
ition, the implemented permutation strategy, which consisted in ran-
omly shuffling the task-related variable, might not be valid in case of
ore complex designs and a different permutation scheme should be
sed instead ( Winkler et al., 2014 ; Anderson and Braak, 2003 ). In the
ontext of information-based measurements, future work could inves-
igate the use of the Partial Information Decomposition ( Williams and
eer, 2010 ) and compare redundant and synergistic components of the
ID with ANOVA and linear model interaction terms. 

. Conclusion 

There is a rising concern about our ability to reproduce results,
artly because of underpowered studies and a wide range of analyti-
al and statistical pipelines. Here, we proposed a statistical framework
or group-level inferences on information-based measures of effect size.

e demonstrated how the framework behaved according to various
odels of the group and corrections for multiple testing. We then il-

ustrated the framework using information metrics coming from both
he information-theory and machine-learning fields by reproducing and
xtending existing results on neurophysiological data. We also showed
hat the framework could be used at the level of brain regions, on func-
ional connectivity and on measures of graph. The present work tends
o provide more robust inferences on populations and therefore is a con-
ributing piece toward more reproducible results. 
9 https://brainets.github.io/frites/auto_examples/estimators/plot_est_ 
omparison.html#sphx-glr-auto-examples-estimators-plot-est-comparison-py 

https://brainets.github.io/frites/auto_examples/simulations/plot_ground_truth.html\043sphx-glr-auto-examples-simulations-plot-ground-truth-py
https://brainets.github.io/frites/auto_examples/estimators/plot_est_comparison.html\043sphx-glr-auto-examples-estimators-plot-est-comparison-py
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