
HAL Id: hal-03764650
https://hal.science/hal-03764650v1

Preprint submitted on 30 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A robust DG-ALE formulation for nonlinear shallow
water interactions with a partially immersed object

Ali Haidar, Fabien Marche, Francois Vilar

To cite this version:
Ali Haidar, Fabien Marche, Francois Vilar. A robust DG-ALE formulation for nonlinear shallow water
interactions with a partially immersed object. 2022. �hal-03764650�

https://hal.science/hal-03764650v1
https://hal.archives-ouvertes.fr


A robust DG-ALE formulation for nonlinear shallow water interactions with
a partially immersed object

Ali Haidara,∗, Fabien Marchea, Francois Vilara

aIMAG, Univ Montpellier, CNRS, Montpellier, France

Abstract

We introduce a new numerical strategy designed for the modelization and simulation of nonlinear
interactions between surface waves in shallow water and a stationary partially immersed surface
piercing object. At the continuous level, the flow domain is globally modeled with the nonlinear
hyperbolic shallow-water equations, while the description of the flow beneath the object reduces
to a nonlinear ordinary differential equation. The coupling between the flow and the object is for-
mulated as a free-boundary problem, associated with the computation of the time evolution of the
spatial locations of the air-water-object interface. At the discrete level, the proposed formulation
relies on an arbitrary-order discontinuous Galerkin approximation, which is stabilized with a recent
a posteriori Local Subcell Correction method. The time evolution of the air-water-object interface
is computed from an Arbitrary-Lagrangian-Eulerian description and a suitable smooth mapping
between the initial frame and the current configuration. For any order of polynomial approxima-
tion, the resulting global approximation algorithm is shown to: (i) preserve the Discrete Geometric
Conservation Law, (ii) ensure the preservation of the water height positivity at the sub-cell level,
(iii) preserve the class of motionless steady states (well-balancing), possibly with the occurrence of
a partially immersed object. Several numerical computations, involving solitary waves and bores
propagations and transformations over varying topographies and/or in the vicinity of the object,
highlight that the proposed numerical model: (i) effectively allows to model the flow-object in-
teractions and provides the time-evolution of the air-water-object contact points, (ii) is able to
accurately handle strong flow singularities without any robustness issues, (iii) retains the highly
accurate sub-cell resolution of discontinuous Galerkin schemes.

Keywords: nonlinear shallow water, discontinuous Galerkin, a posteriori local sub-cell correction,
Arbitrary-Lagrangian-Eulerian, wave-object interactions

1. Introduction

The mathematical and numerical study of the propagation and transformations of surface waves in
the presence of a floating structure is a complex problem in which one has to model the time evolu-
tion of a mechanical system made of a solid object which is partially immersed in an incompressible
fluid. Besides the hydrodynamic issues generally associated with the simulation of nonlinear free-
surface flows, an important additional difficulty is that the immersed part of the structure, called the
wetted surface in what follows, generally depends on time, leading to an additional free-boundary
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problem. The modelization of such a system can be traced back to the pioneering work [19], in
which a linear potential model is used for the hydrodynamics (the fluid is assumed irrotational and
inviscid), and the motion of the solid is assumed to be of small amplitude around a steady mean
position. Although being over-simplified for applications of interest, this approach put the light on
the important and difficult issue of defining suitable transmission conditions between the exterior
area (where the surface waves do not interact with the structure) and the interior area (the fluid
under the solid, applying a pressure on the wetted surface). Such a linear strategy has been refined,
extended and adapted in several subsequent studies: let mention for instance the important appli-
cation domains of offshore structures [26], floating Wave Energy Converters (WEC) [23] or floating
breakwaters, see for instance [34, 21]. When combined with Boundary Element Methods (generally
a linear-BEM applied in the frequency domain) for the computation of the hydrodynamics, the
linear potential theory still defines the background of several popular dedicated software. Indeed,
linear models are particularly fast, especially when compared to Reynolds Averaged Navier-Stokes
(RANS) simulations (see for instance [36] for an application to WEC) or to potential approaches
with a nonlinear surface boundary condition. Moreover, for small to moderate sea states, the
assumptions related to linear theory generally provide numerical previsions with reliable leading
orders of approximation.
However, for larger sea states, nonlinear effects may become overriding. Hence, several attempts
to account for nonlinear effects have been reported in the literature and most of them rely on fully
nonlinear potential flow models used together with nonlinear BEM, in time/physical domain, also
allowing to account for varying bathymetry [13]. Another strategy, yet far less investigated, is to use
some simplified asymptotic nonlinear models instead of the full water-waves equations and this may
appear as an interesting compromise between linear models and CFD strategies. Depth-integrated
models may be used at least to describe the free-surface fluid evolution, like in [20] where floating
breakwater are modelized using a Boussinesq-type (BT) model and a Finite-Difference (FD) scheme.
The flow under the breakwater is regarded as a confined flow and the pressure field beneath the
floating structure is determined by solving implicitly the Laplace elliptic equation. But asymptotic
flow models may be also used to describe the flow beneath the floating structure, see for instance [4]
where the Kadomtsev-Petviashvili (KP) equations are used to compute wave generation by ships in
shallow water, or [17, 35, 18] where some BT equations also model the interactions in the near-ship
flows. Let also mention the recent numerical study [2], in which a BT model computes the heave
(vertical) motion of objects with straight-sided boundaries, which are assumed vertical at the fluid-
structure contact line in order to avoid the update of the contact points location.
Recently, a new formulation of the fully nonlinear floating object problem has been introduced in
[22], describing the flow with respect to the free-surface elevation and the horizontal depth-integrated
discharge instead of the velocity potential, with a particular emphasize put on the elliptic equation
solved by the pressure of the fluid on the underside of the partially immersed object. Specifically
focusing on the hyperbolic Nonlinear Shallow Water (NSW) equations, some Initial Boundary Value
Problems (IBVP) are analyzed in [16], for the horizontal surface dimension d = 1. In particular, a
general theory for a class of quasi-linear hyperbolic IBVP with a free-boundary is introduced, and
applied to the coupling between the NSW equations and a partially immersed object, providing a
firm mathematical background to the numerical study proposed in the present work.
Indeed, the NSW equations of [6] are one of the most widely used set of equations for simulating
long wave hydrodynamics. Considering their hydrostatic and hyperbolic nature, in comparison to
the dispersive nature of more sophisticated models such as the BT models, the NSW equations gen-
erally provide an accurate representation of steep-fronted flows, such as dam-breaks, flood waves or
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bores propagation. There are however very few studies concerning possible extensions of the NSW
equations to incorporate partly immersed objects. Let mention for instance the very recent studies
[9, 10] for the computation of congested shallow water flows with a compressible/incompressible
projection scheme, or again [2] as the dispersive effects of the chosen BT equations are actually
neglected in the vicinity of the floating structure, hence locally reducing to the NSW equations.
Indeed, the study of a fluid with freely moving boundaries is a difficult problem, involved in several
engineering domains like aeroelasticity or fluid-structure interactions. From a numerical viewpoint,
in order to avoid interface-tracking methods, one requires the formulation to handle moving domains
in a robust way, while ensuring the needed accuracy and conservation properties. Additionally, the
interactions of flows with moving boundaries may also result in additional unsteady phenomena,
coming with the need of high-order accurate approximations to resolve the unsteadiness of flows at
various scales.
In such a context, the Arbitrary Lagrangian-Eulerian (ALE) description is a popular choice for
several flow problems involving time-varying boundaries. Initially developed within some Finite-
Difference (FD) methods in [15], and later extended to Finite-Element (FE) and Finite-Volume (FV)
methods for both fluids and structures, see for instance [7] for a review, the ALE method is gener-
ally put forward as combining the best of both Lagrangian and Eulerian worlds: the computational
mesh can move with an arbitrary velocity, which may be chosen independently from the material
velocity. This provides a welcome flexibility in handling moving computational domains, avoiding
the issues usually associated with the tracking of interfaces in the purely Eulerian approaches, as
well as the large distortions generally encountered in the pure Lagrangian framework, when larger
time evolutions and spatial motions are considered.
Besides the issue of handling moving meshes, reaching an optimal (possibly high-) order of accuracy
where the solution is smooth is also a major concern in the design of discrete formulations for such
problems and the development of high-order methods for solving real-world problems is a broad and
very active research topic in computational physics. In this context, discontinuous Galerkin (DG)
methods have encountered considerable improvements in recent years. They are now widely used
in several large classes of problems, in fluid dynamics, geophysical flows, aero-acoustics or electro-
magnetism. We refer the reader to the review [5] for more details and references concerning the
various applications of DG methods to flow problems. It is known that DG methods successfully
combine features and capabilities coming from both FE methods and FV methods, accounting for
the underlying physical processes. Among the acknowledged assets of DG methods, let mention
the arbitrary-order of accuracy in space through high-order polynomials within mesh elements, the
compact stencils (in comparison with high-order FV methods), the compliance towards complex ge-
ometries and general unstructured / non-conforming meshes or h/p-adaptivity. DG methods with
an ALE description for moving boundaries problems in fluid-structure interactions or free-surface
flows have also been considered for instance in [32, 25, 27], or in the (closely related) space-time DG
methods of [31, 30]. Let also mention the recent Residual Distribution (RD) formulation in ALE
description for the NSW on the sphere proposed in [1].
In the present work, we focus on a class of free-boundary hyperbolic problems arising in the study
of nonlinear surface wave-structure interactions, and for which the evolution of the free-boundary
is governed by a singular equation. Specifically, we aim at designing a robust and accurate DG
discrete formulation, with an underlying ALE description of the motions which is directly modeled
from the class of IBVP introduced and analyzed in [16]. This provides a new way of simulating
adaptive and time-varying solutions for partially immersed structures in nonlinear shallow water
flows with varying topography. As any arbitrary regular-shaped object may be considered, the wet-
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ted surface and contact points locations are expected to evolve over time, and the computational
grid is expected to move accordingly. To achieve this, a smooth and explicit mapping between the
initial (time-independent) reference configuration and the current (time-varying) configuration is
introduced, borrowed from the analysis of the continuous problem provided in [16]. The NSW equa-
tions are then recast in the reference domain, with the introduction of additional geometric terms
related to the grid’s motion, before being approximated through some high-order DG polynomial
approximations.
Of course, it is well-known that the solution of nonlinear hyperbolic equations may encounter some
loss of regularity in finite time and high-order DG methods usually suffer from the lack of nonlinear
stability, as they may produce spurious oscillations in the vicinity of the solution’s singularities
(discontinuities but also steeply varying gradients or dry-areas for fee surface flows). To alleviate
such a limitation, a stabilization strategy has to be added in order to enforce the required robustness
properties, and the development of such stabilization methods is still an active field of research. Let
mention [5] for the description of a widely used slope-limiter strategy for high-order DG methods
applied to hyperbolic problems. However, the use of limiters in DG methods may prevent from
converging towards steady-states and may also negatively impact the overall accuracy of the com-
putation. Very recently in [14], we design and equip an arbitrary-order DG approximation for the
NSW equations with an a posteriori Local Sub-cell Correction (LSC) method, which relies on some
lowest-order corrected interface fluxes operating on a dedicated sub-partition, adapted from the
general stabilization strategy for hyperbolic conservation laws developed in [33]. This method is
proved to be extremely robust, while retaining the accuracy of the high-order polynomial descrip-
tion of the flow variables and coming with appealing sub-mesh resolution capabilities.
Hence, another objective of this paper is therefore to extend the stabilization operator of [14] to
the proposed DG-ALE framework and enforce some nonlinear stability and monotonicity mini-
mal requirements to the high-order approximations of nonlinear flows with a floating object. This
stabilization procedure through corrected fluxes also comes with some suitable local conservative
variables reconstructions borrowed from [24], and a definition of the Lax-Friedrichs interface flux
suitable for moving meshes, rigorously ensuring that robustness and well-balancing (for motionless
steady states) are embedded properties of the targeted limit lowest-order scheme. Within ALE sim-
ulations of flow problems with moving boundaries, it is also important to ensure that a numerical
scheme reproduces exactly any constant solution. The Geometric Conservation Law (GCL) is a
relation between the ALE mapping’s Jacobian and the mesh velocity, stating that a uniform flow
should not be influenced by any arbitrary grid’s motion. The notion of GCL was first introduced
in [29] and is also discussed for instance in [25, 27] and [12] where relations between GCL and time
stability are investigated. It is also demonstrated that the global stabilized DG-ALE formulation
proposed in this paper naturally ensures such a property, both at the semi-discrete level (GCL) and
the fully discrete level with the Discrete GCL (DGCL), hence successfully combining well-balancing
with geometric conservation. The proposed modelization and approximation strategies are then ap-
plied and validated through several test-cases involving solitary waves and bores interactions with
a stationary and partially immersed object. The position of the object is specified and does not
vary over time. This obviously leads to a simpler model in the interior domain, but we emphasize
that even within this simplified configuration, the wetted surface and the locations of the air-water-
object contact points may vary with respect to time, due to changes in the flow configuration coming
from the exterior domain. This study also paves the way towards more elaborated coupling models,
allowing to incorporate a floating object that may move over time.
The remainder of this paper is structured as follows. In the next section, we introduce the governing
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models, based on the NSW equations for the fluid description, both for the exterior and interior
domain and the coupling between the NSW equations and a stationary and partially immersed
object is stated. The discrete setting, as well as the numerical discretization in space and time, are
described in §3. In particular, we discuss the ALE description and the corresponding mapping, the
stabilization and robustness enforcement through the a posteriori LSC method and exploiting the
fact that the proposed DG-ALE formulation can be regarded as a FV-like scheme on a sub-mesh
with particular high-order interface fluxes, as done in [14]. The resulting ability of the stabilized
DG-ALE setting to preserve the well-balancing property, as well as the DGCL, are also investi-
gated. In §4, we show several numerical assessments of the global algorithm, involving nonlinear
waves run-up and reflections over objects with elliptic boundaries.

2. Modelization

In this section, we state a general description of the fluid-structure interactions problem based on
the NSW equations, in the particular case d = 1. This model is then particularized for the case of
a stationary (time-independent) and partly immersed object. Finally, an IBVP is stated from [16],
as a firm mathematical basis for the next section devoted to numerical approximation.

2.1. Free-surface flow in shallow water

Given a smooth parameterization of the topography b : R → R, denoting by H the water height, by
η := H + b the free-surface elevation, by u the horizontal (depth-averaged) velocity and by q := Hu
the horizontal discharge (see Fig.1), the NSW equations may be written as follows:

∂tv + ∂xF(v, b) = B(v, b′), (1)

where v : R× R+ → Θ gathers the flow’s conservative variables and is assumed to take values in
the convex and open set Θ defined as

Θ := {v := (η, q) ∈ R2, H ≥ 0}, (2)

F : Θ × R → R2 is the (nonlinear) flux function and B : Θ × R → R2 is the topography source
term, defined as follows:

F(v, b) :=

(
q

uq + 1
2gη(η − 2 b)

)
, B(v, b′) :=

(
0

−g η b′

)
. (3)

The benefits of using this pre-balanced formulation instead of the classical form are highlighted in
[24, 8] and also briefly recalled in the next section.
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Figure 1: Free-surface flows: main notations

2.2. Free-surface shallow water flow with a partly immersed object

We consider the previous free-surface flow model and incorporate a partially immersed object on
the water surface, under the assumption that there are only two contact points where the water, the
air, and the object meet, see Fig. 2. We also assume that overhanging waves do not occur. For any
given time value t ≥ 0, the horizontal spatial coordinate of these contact points are denoted by x−(t)
and x+(t), with x−(t) < x+(t). Let split the horizontal line into two time-dependent sub-domains,
namely the interior sub-domain, denoted by I(t), and the exterior sub-domain E(t), E(t) and I(t)
being the projections on the horizontal line of the areas where the water surface get in touch with
the partially immersed object and the air:

I(t) :=
]
x−(t), x+(t)

[
, E(t) := E−(t) ∪ E+(t), E−(t) :=

]
−∞, x−(t)

[
, E+(t) :=

]
x+(t), +∞

[
, (4)

The vectors of conservative variables respectively in E(t) and I(t) are denoted by ve(x, t) and vi(x, t)
with

ve :=

(
ηe

qe

)
, vi :=

(
ηi

qi

)
, (5)

and the corresponding water heights are defined by

He(x, t) := ηe(x, t)− b(x), H i(x, t) := ηi(x, t)− b(x).

x- +x (t)(t)

Figure 2: Shallow water interacting with a partially immersed object.
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Let pi(x, t) be the pressure of the water at the underside of the object. The pressure field in the
whole domain is assumed to be hydrostatic:

p(x, z, t) :=


patm − ρg(z − ηe(x, t)) in E(t),

pi(x, t)− ρg(z − ηi(x, t)) in I(t),
(6)

where ρ is the density of the water and patm the atmospheric pressure. Thus, the general shallow
water model with a partly immersed object reads as follows:

E(t) =
]
−∞, x−(t)

[
∪
]
x+(t), +∞

[
and I(t) =

]
x−(t), x+(t)

[
,

∂tη
e + ∂xq

e = 0,

∂tq
e + ∂x

(
ueqe +

1

2
gηe(ηe − 2b)

)
= −gηeb′,

 in E(t)

∂tη
i + ∂xq

i = 0,

∂tq
i + ∂x

(
uiqi +

1

2
g(H i)2

)
= −gH ib′ − 1

ρH
i∂xp

i,

 in I(t)

ηe = ηi, qe = qi and pi = patm at x±(t)

(7a)

(7b)

(7c)

(7d)

In what follows, for any regular enough function v(·, t) defined on I(t), we introduce the following
jump operator over the interior sub-domain:

JvKI(t)
:= v(x+(t), t)− v(x−(t), t).

2.3. Free-surface shallow water flow with a stationary partly immersed object

Assuming that the object is stationary, the profile ηi on the underside of the structure is prescribed
by the parameterization of the object’s profile and does not explicitly depend on time (though it
implicitly depends on time as I(t) does):

ηi(x, t) := ηlid(x) on I(t) ⊂ Ilid, (8)

where ηlid is a given function defined on Ilid, which is the open interval where the parameterization
of the object’s underside is defined, see Fig. 3. Thus, the continuity equation in I(t) in (7) yields
∂xq

i = 0 and therefore qi(x, t) = qi(t). Injecting this into the momentum equation for the interior
sub-domain in (7), we obtain:

1

Hi

d qi

dt
+ ∂x

(1
2

( qi
H i

)2
+ gH i

)
= −gb′ − 1

ρ
∂xp

i,

so that pi satisfies the following Boundary Value Problem (BVP):
∂xp

i = −ρ
(

1

Hi

d qi

dt
+ ∂x

(1
2

( qi
H i

)2
+ gηi

))
in I(t),

pi = patm on E(t) ∩ I(t).

(9a)

(9b)
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Integrating (9a) on I(t), we get:

d qi

dt
= −

(∫
I(t)

1

H i
dx
)−1r1

2

( qi
H i

)2
+ gηi

z

I(t)
. (10)

As a consequence, in the particular case of free-surface shallow water flows with a stationary partially
immersed object, the general model (7) may be simplified as follows:

E(t) =
]
−∞, x−(t)

[
∪
]
x+(t), +∞

[
and I(t) =

]
x−(t), x+(t)

[
,

∂tv
e + ∂xF(v

e, b) = B(ve, b′) in E(t),

ηi = ηlid,

d qi

dt
= −

(∫
I(t)

1

H i
dx
)−1r1

2

( qi
H i

)2
+ gηi

z

I(t)
,

 in I(t),

ηe = ηi and qe = qi at x±(t).

(11a)

(11b)

(11c)

(11d)

x- +x (t)(t)

t
t= 0

Figure 3: Water interacting with a partially immersed object.

2.4. An IBVP for the stationary object problem

Let consider the initial partition of the computational domain: Ω0 := E0 ∪ I0 with

I0 :=
]
X−

0 , X+
0

[
, E0 := E−

0 ∪ E+
0 , with E−

0 :=
]
−∞, X−

0

[
, E+

0 :=
]
X+

0 , +∞
[
, (12)
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where X±
0 are the initial locations of the contact points, see Fig. 3. Supplementing (11) with the

following initial data: 

ve
|t=0 := ve

0 ∈ Hs(E0)2,

(x−, x+)|t=0 := (X−
0 , X

+
0 ),

ηi|t=0 := ηlid ∈ C1(I0),

qi|t=0
:= qi0,

(13a)

(13b)

(13c)

(13d)

where Hs(E) is the Sobolev space of functions v ∈ L2(E) such that their weak derivatives up to
order s have a finite L2-norm, a local well-posedness result is stated in [16] for the particular model
of shallow water flow with a stationary object, with additional assumptions on the data which aim
at ensuring that: (i) no dry-state occurs in the vicinity of the object, (ii) the flow is initially sub-
critical at the free boundaries, (iii) the first-order spatial derivative of the free-surface is singular at
the contact points:

ηe0
′ − η′lid ̸= 0 at X±

0 , (14)

and (iv) ηlid and its weak derivatives up to order s are uniformly bounded, then there exists a
maximum time Tmax and a unique solution of (11) such that ve ◦ χ ∈ C0 ([0, Tmax];H

s(E0)) ∩
C1
(
[0, Tmax];H

s−1(E0)
)
, q ∈ Hs+1(0, Tmax), (x−, x+) ∈ (Hs(0, Tmax))

2, where the smooth mapping
χ, applying from the initial domain E0 to the current one E(t), is defined in (28).

Remark 1. In the next section, as for the numerical validations of §4, we consider the coupled
problem (11) on bounded computational domains of the form

Ωt := E−(t) ∪ I(t) ∪ E+(t) :=
]
xleft, x−(t)

[
∪
]
x−(t), x+(t)

[
∪
]
x+(t), xright

[
,

so that the exterior domain’s boundary is defined as ∂Ω := {xleft, xright} and (11) has to be supple-
mented both with the initial data (13) and some prescribed boundary conditions on ve

|xleft
and/or

ve
|xright

depending on the flow regime, see also Remark 10.

3. Discrete formulations

3.1. Discrete setting for DG-ALE on mesh elements and FV-ALE on sub-cells

Computational domain, sub-domains and mesh

We consider an open bounded computational domain Ωt :=
]
xleft, xright

[
, with boundary ∂Ω :=

{xleft, xright} and for any time value t ∈ [0, Tmax], we introduce a partition PΩ(t) := {E−(t), I(t), E+(t)}
of Ω into disjoint sub-domains, defined through the knowledge of the contact points x−(t) < x+(t)
such that I(t) =

]
x−(t), x+(t)

[
and we set E(t) := E−(t)∪E+(t). We consider a conforming partition

Th(t) :=
{
ωi(t)

}
1≤i≤nel

of Ωt into |Th(t)| disjoint segments, such that we have Ωt =
⋃

ω(t)∈Th(t)
ω(t).

We make the following additional assumptions:

♯1 |Th(t)| = nel does not vary over time,

♯2 the limit cases x−(t) → xleft or x+(t) → xright do not occur,
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♯3 Th(t) is compatible with PΩ(t) in the following sense: each mesh element ω(t) ∈ Th(t) is a
subset of only one set of the partition PΩ(t),

the first assumption being not essential for our purpose and could easily be removed. As a conse-
quence, we can write:

Th(t) = T e
h (t) ∪ T i

h (t), with E(t) =
⋃

ω(t)∈T e
h (t)

ω(t) and I(t) =
⋃

ω(t)∈T i
h (t)

ω(t),

where T e
h (t) and T i

h (t) are respective partitions of the sub-domains E(t) and I(t), and at any time
t ∈ [0, Tmax], the contact points x−(t), x+(t) are uniquely identified with some mesh interfaces. For
any specified mesh element ωi(t) ∈ Th(t), we note ωi(t) =

]
xi− 1

2
(t), xi+ 1

2
(t)
[
(with the convention

that x 1
2
= xleft, xnel+ 1

2
= xright), xi(t) refers to its barycenter, and for any regular enough function

v(·, t) defined on ωi(t), we define the following jump:

q
v(·, t)

y
∂ωi(t)

:= v(·, t)|x
i+1

2
(t) − v(·, t)|x

i− 1
2
(t).

DG: approximation spaces, basis functions and projectors

For any integer k ≥ 0, we consider the broken polynomials space defined on the exterior domain:

Pk(T e
h (t)) :=

{
v(·, t) ∈ L2(E(t)), v|ω(t) ∈ Pk(ω(t)), ∀ω(t) ∈ T e

h (t)
}
,

where Pk(ω(t)) denotes the space of polynomials of total degree at most k defined onto ω(t), with
dim

(
Pk(ω(t))

)
= k + 1. Piecewise polynomial functions belonging to Pk(T e

h (t)) are denoted with
a subscript h in the following, and for any ω(t) ∈ T e

h (t) and vh(·, t) ∈ Pk(T e
h (t)), we may use the

convenient shortcut: vω := vh|ω when no confusion is possible.

For any mesh element ω(t) ∈ T e
h (t) and any integer k ≥ 0, we consider a basis for Pk(ω(t)) denoted

by
Ψω(t) :=

{
ψω
j (·, t)

}
j∈J1, k+1K.

We observe that we have:

∀t ∈ [0, Tmax], ∀ω(t) ∈ T e
h (t), ∀j ∈ J1, k + 1K, supp(ψω

j (·, t)) ⊂ ω(t).

A basis for the global space Pk(T e
h (t)) is obtained by gathering the local basis functions:

Ψh(t) := ×
ω(t)∈T e

h (t)

Ψω(t) =
{{
ψω
j (·, t)

}
j∈J1, k+1K

}
ω(t)∈Th(t)

.

Remark 2. In what follows, the chosen basis functions are the set of monomials in the physical
space. These are defined as follows:

∀ωi(t) ∈ T e
h (t), ∀j ∈ J1, . . . , k + 1K, ∀x ∈ ωi(t), ψωi

j (x, t) :=

(
x− xi(t)

|ωi(t)|

)j

. (15)
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For any given time value, the degrees of freedom are chosen to be the functionals that map a given
discrete unknown belonging to Pk(T e

h (t)) to the coefficients of its expansion on the chosen basis
functions. Specifically, the degrees of freedom applied to a given function vh ∈ Pk(T e

h ) return the
real numbers {

vωj

}
j∈ J1, k+1K

ω∈T e
h

, such that vω :=
k+1∑
j=1

vωj ψ
ω
j , ∀ω(t) ∈ T e

h (t). (16)

With a little abuse, we refer hereafter to the real numbers (16) as the degrees of freedom associ-
ated with vh and we note v ω ∈ Rk+1 the vector gathering the degrees of freedom associated with vω.

For ω(t) ∈ T e
h (t), we denote by pkω the L2-orthogonal projector onto Pk(ω(t)) and pkT e

h
the L2-

orthogonal projector onto Pk(T e
h (t)). Similarly, we denote ikω the element nodal interpolator into

Pk(ω(t)), where the nodal distributions in mesh elements are chosen to be the approximate optimal
nodes of [3]. The global ikT e

h
interpolator into Pk(T e

h (t)) is obtained by gathering the local inter-

polating polynomials defined on each elements. We also introduce the following shortcut notations
for smooth scalar-valued functions:(

v, w
)
T e
h (t)

:=
∑

ω(t)∈T e
h (t)

∫
ω(t)

v(x, t)w(x, t)dx,
〈
µ, ν

〉
∂T e

h (t)
:=

∑
ω(t)∈T e

h (t)

q
µν

y
∂ω(t)

,

for v, w ∈ L2(T e
h ) and µ, ν ∈ L2(∂T e

h ). Extensions to vector-valued functions are straightforward.
Whenever needed, similar spaces and projectors may be introduced on I(t).

FV on sub-cells: sub-partitions, sub-resolution basis and sub-mean values

For any mesh element ωi(t) ∈ T e
h (t), we introduce a sub-partition Tωi(t) into k + 1 open disjoint

sub-cells:

ωi(t) =
k+1⋃
m=1

S
ωi

m (t), (17)

where the sub-cell S ωi
m (t) :=

[
x̃ ωi

m− 1
2

(t), x̃ ωi

m+ 1
2

(t)
]
is of size

∣∣∣S ωi
m

∣∣∣ω∣∣∣x̃ ωi

m+ 1
2

−x̃ ωi

m− 1
2

∣∣∣, with the convention

x̃ ωi
1
2

= xi− 1
2
and x̃ ωi

k+ 3
2

= xi+ 1
2
, see Fig. 4. When considering a sequence of neighboring mesh

elements ωi−1, ωi, ωi+1, the convenient conventions S ωi
0 := S

ωi−1

k+1 and S ωi
k+2 := S

ωi+1

1 may be used.
For any regular enough function v(·, t) defined on Sω

m(t), we use the following shortcut for the
sub-cell jump:

q
v(·, t)

y
∂Sω

m(t)
:= v(·, t)|x̃ω

m+1
2

(t) − v(·, t)|x̃ω

m− 1
2

(t).

For ω(t) ∈ T e
h (t), we define the sub-cell indicator functions

{
1
ω
m(·, t), m ∈ J1, k + 1K

}
as follows:

1
ω
m(x, t) :=

{
1 if x ∈ Sω

m(t)

0 if x ̸∈ Sω
m(t)

, ∀m ∈ J1, k + 1K,

and the sub-resolution basis functions
{
ϕωm(·, t) ∈ Pk(ω(t)), m ∈ J1, k + 1K

}
as follows:

ϕωm(·, t) := pkω (1ωm(·, t)) , ∀m ∈ J1, k + 1K. (18)

11



xi−1
2

xi+1
2

x̃ωi
1
2

x̃ωi

k+3
2

x̃ωi
3
2

x̃ωi

m−1
2

x̃ωi

m+1
2

S ωi
m

Figure 4: Partition of a mesh element ωi in k + 1 sub-cells

One can then check that this definition also entails that for any given value of t:∫
ω(t)

ϕωmψdx =

∫
Sω
m(t)

ψdx, ∀ψ ∈ Pk (ω(t)) . (19)

For any ω(t) ∈ T e
h (t), we introduce the set of piecewise constant functions on the sub-grid:

P0(Tω(t)) :=
{
v(·, t) ∈ L2(ω(t)), v|Sω

m
∈ P0(Sω

m(t)), ∀Sω
m(t) ∈ Tω(t)

}
.

For ω(t) ∈ T e
h (t), and vω ∈ Pk(ω(t)), let denote

v ω
m with m ∈ J1, k + 1K, (20)

the lowest-order piecewise constant components defined as the mean-values of vω on the sub-cells
belonging to the subdivision Tω(t), called sub-mean values in the following, which may be gathered
in a vector vω ∈ Rk+1. Whenever a sequence of neighboring mesh elements ωi−1, ωi, ωi+1 and
associated neighboring approximations is considered, the following convenient convention may be
used: v ωi

0 := v
ωi−1

k+1 and v ωi
k+2 := v

ωi+1

1 .

Remark 3. We observe that any polynomial function vω ∈ Pk(ω) can be expressed equivalently
either in terms of the degrees of freedom vω, or the sub-means values vω. Indeed, the degrees
of freedom

{
v ω
m

}
m∈ J1, k+1K are uniquely defined through the sub-mean values

{
v ω
m

}
m∈ J1, k+1K, and

reversely. Considering the local transformation matrix Πω =
(
πωm,p

)
m,p

defined as:

πωm,p =
1

|Sω
m(t)|

∫
Sω
m(t)

ψω
p dx, ∀ (m, p) ∈ J1, k + 1K2, (21)

the following identities hold:

Πω v ω = vω and Π−1
ω vω = v ω.

We introduce the (one-to-one) following projector onto the piecewise constant sub-grid space:

πkTω
: Pk(ω(t)) → P0(Tω(t))

vωh 7→ πkTω
(vωh ) := vω.

(22)
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Time discretization

Concerning time discretization, for a given final computational time Tmax > 0, we consider a
partition (tn)0≤n≤N of the time interval [0, Tmax] with t0 := 0, tN := Tmax and tn+1 − tn =:

∆tn. Details on the computation of the time step ∆tn, related to the choice of the time marching
algorithms and some stability requirements, are given in § 3.7. For any sufficiently regular function
of time w, we set wn := w(tn) and in what follows, such shortcuts relying on a superscript n may
be used with any time varying entity, which is evaluated at discrete time tn. For instance, we set:

En := E(tn), In := I(tn), x n
− := x−(tn), x n

+ := x+(tn), T n
h := Th(t

n), T e,n
h := T e

h (t
n),

and so on.

3.2. ALE description

In this section, we introduce an ALE description of the coupled problem (11). A central aspect
of any ALE description is the construction of a continuous and regular coordinate transformation,
allowing to recast the equations from the initial (stationary) domain Ω0 to the current (moving)
domain Ωt:

Ω0 × [0, Tmax] ∋ (X, t) 7→ x(X, t) ∈ Ωt, (23)

where X refers to the reference coordinate (in the reference frame) and x := x(X, t) the associated
physical coordinate (in the current frame). Further assuming this mapping to be continuously
differentiable with respect to time, piecewise continuously differentiable with respect to X, and
denoting by vg(x, t) the grid’s velocity at the physical point x := x(X, t), the following identity
holds:

vg(x(X, t), t) = ∂tx(X, t). (24)

Now, for the sake of notations, considering any function v(x, t), let introduce ṽ(X, t) its counterpart
defined on the referential frame as

v (x(X, t), t) =: ṽ(X, t). (25)

Then, for any arbitrary and regular enough function v(x, t), the fundamental ALE relation between
the total time derivative, the Eulerian time derivative and the spatial derivative is

d

dt
v
(
x(X, t), t

)
:=
(
∂t + vg ∂x

)
v(x(X, t), t) =: ∂tṽ(X, t). (26)

Frame’s motion

In order to build such a mapping, for any given time value, the velocity of the contact points may
be deduced from the current flow configuration, deriving the free-surface continuity condition (11d)
with respect to time, as follows:(

∂t + vg∂x
)
ηe =

(
∂t + vg∂x

)
ηi on x±,

so that using the identity ∂tη
e = −∂xqe, together with ∂tηi = 0, one has:

vg|x± =

(
∂xq

e

∂xηe − ∂xηi

)∣∣x± . (27)
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Having such contact points velocity at hand, let consider the following smooth diffeomorphism
χ(·, t) : E0 → E(t), defined as:

χ(X, t) :=


X + φ

(
X−X−

0
ε

) (
x−(t)−X−

0

)
for X ∈ E−

0 ,

X + φ
(
X−X+

0
ε

) (
x+(t)−X+

0

)
for X ∈ E+

0 ,

(28)

where φ ∈ C∞
0 (R) is a cut-off function satisfying φ(x) = 1 for |x| ≤ 1 and ε := ε0ℓ (the reader is

referred to Appendix A for the practical definition of φ, ε0 and Remark 5 for additional consider-
ations regarding the value of ℓ). Then, for any moving grid’s interface xi+ 1

2
(t) := x

(
Xi+ 1

2
, t
)
, we

define the corresponding interface’s velocity as follows:

vg|i+1
2

(t) := ṽg(Xi+ 1
2
, t),

with:

ṽg(Xi+ 1
2
, t) :=



∂tχ(·, t)|X
i+1

2

=


φ

(
X

i+1
2
−X−

0

ε

)
vg|x9 if Xi+ 1

2
∈ E−

0 ,

φ

(
X

i+1
2
−X+

0

ε

)
vg|x+ if Xi+ 1

2
∈ E+

0 ,

(X+
0 −Xi+ 1

2
)

|I0|
vg|x9 +

(Xi+ 1
2
−X−

0 )

|I0|
vg|x+ if Xi+ 1

2
∈ I0.

(29)

Once the grid’s velocity is prescribed at the grid’s interfaces, the updated locations of such interfaces
may be obtained as the solutions of the following family of IVPs:∂tx(Xi+ 1

2
, t) = vg|i+1

2

(t),

x(Xi+ 1
2
, 0) = Xi+ 1

2
.

(30)

Gathering (27), (29) and solving (30), for any time value, one have available the following sets of

discrete grid’s interfaces velocities
(

vg|i+1
2

(t)
)
0≤i≤nel

and locations
(
xi+ 1

2
(t)
)
0≤i≤nel

.

Remark 4. The relation (27) is initially well-defined, thanks to the assumption (14) on the initial
data. For t > 0, and under the assumptions recalled in §2.4, the solution of (11)-(13) may exist as
long as ∂x(η

e − ηi)|x± ̸= 0.

Remark 5. Knowing x±(t), (28) offers a way to dispatch the mesh elements in the moving exterior
sub-domain E(t), avoiding elements collapsing, distorting and related stability issues. We also
emphasize that (28) allows to properly deal with the possible occurrence of dry-areas, provided that
such areas are initially far enough from the object to prevent the water height from vanishing at
contact points. Indeed, assuming that the distance between x±(t) and the nearest mesh interface
where the water height vanishes is greater than ℓ, then (28) ensures that this mesh interface location
does not vary over time.
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Mapping and geometric parameters

We are now able to provide a suitable definition for the mapping (23) and we consider a piecewise
linear and globally continuous transformation such that:

x|ωi(0)(X, t) :=

(
Xi+ 1

2
−X

)
|ωi(0)|

xi− 1
2
(t) +

(
X −Xi− 1

2

)
|ωi(0)|

xi+ 1
2
(t), (31)

for any ωi(0) :=
[
Xi− 1

2
, Xi+ 1

2

]
∈ Th(0). Deriving this definition with respect to time gives:

ṽg|ωi(0)(X, t) =
(Xi+ 1

2
−X)

|ωi(0)|
vg|i− 1

2

(t) +
(X −Xi− 1

2
)

|ωi(0)|
vg|i+1

2

(t). (32)

The deformation gradient associated with the grid’s motion is obtained as the Jacobian of this
mapping. In particular, we observe that:

∂Xx(X, t)|ωi(t) =: Jωi(t) =
|ωi(t)|
|ωi(0)|

,

∂kXx(X, t)|ωi(t) = 0, ∀k ≥ 2,

(33a)

(33b)

so that the mapping is invertible and orientation-preserving. Also, for any (Xa, Xb) ∈ (ωi(0))
2, we

have:

x(Xb, t) = x(Xa, t) + (Xb −Xa)Jωi(t), (34)

and in particular, we deduce that:

vg|ωi(t)

(
x, t
)
=

(
xi+ 1

2
(t)− x

)
|ωi(t)|

vg|i− 1
2

(t) +

(
x− xi− 1

2
(t)
)

|ωi(t)|
vg|i+1

2

(t). (35)

Let us recall that the deformation gradient J satisfies the fundamental relation, generally referred
to as Geometric Conservation Law (GCL):

∂t J (X, t) = J ∂xvg(x(X, t), t). (36)

Remark 6. It is important to note that the chosen basis functions follow the trajectories. Indeed:

ψωi
p (x, t) = ψωi

p (x(X, t), t) =

(J (X −Xi)

J |ωi(0)|

)p

=

(
X −Xi

|ωi(0)|

)p

= ψ̃ωi
p (X),

and thus the following fundamental relation is ensured:

∀ωi(t) ∈ T e
h (t), ∀p ∈ J1, . . . , k + 1K,

d

dt
ψωi
p (x(X, t), t) = 0. (37)

This relation also holds for the sub-resolution basis functions ϕωm, i.e.:

∀ωi(t) ∈ T e
h (t), ∀m ∈ J1, . . . , k + 1K,

d

dt
ϕωi
m (x(X, t), t) = 0. (38)

This property derives from the piecewise linearity of the mapping. Indeed, in this configuration the
sub-resolution basis functions can be alternatively defined through their referential frame counter-

part as ϕωm(x(X, t), t) = ϕ̃
ω(0)
m (X), where
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ϕ̃ω(0)m := pkω(0)(1
ω(0)
m ), ∀m ∈ J1, k + 1K, (39)

which directly implies (38).

Remark 7. Multiplying (11b) by any ψ(., t) ∈ Pk(T e
h (t)) satisfying

d

dt
ψ(x(X, t), t) = 0, and

integrating over ωi(t) gives:∫
ωi(t)

ψ ∂tv
e dx+

∫
ωi(t)

ψ ∂xF(v
e, b) dx =

∫
ωi(t)

ψ B(ve, b′) dx. (40)

We observe that (36) and (37) lead to the following identity:

d

dt

∫
ωi(t)

ve ψ dx =

∫
ωi(t)

ψ ∂tv
e dx+

∫
ωi(t)

ψ ∂x(v
evg) dx,

and (40) becomes:

d

dt

∫
ωi(t)

ve ψ dx+

∫
ωi(t)

ψ ∂xG(ve, b, vg) dx =

∫
ωi(t)

ψ B(ve, b′) dx, (41)

where we have set G(ve, b, vg) := F(ve, b)− vevg. Another integration by parts gives:

d

dt

∫
ωi

ve ψ dx−
∫
ωi

G(ve, b, vg) ∂xψ dx+
q
ψG(ve, b, vg)

y
∂ωi(t)

=

∫
ωi

ψ B(ve, b′) dx. (42)

3.3. DG-ALE formulation for the fluid/stationary structure model

In this section, we introduce a general DG formulation in ALE description for the fluid-structure
problem. Let consider the coupled problem (11), together with initial data as specified in (13) and
with the assumptions of §2.4. Then, the associated DG-ALE semi-discrete formulation reads:

∀t ∈ [0, Tmax], find ve
h(·, t) ∈

(
Pk(T e

h (t))
)2
, vi

h(·, t) ∈ Pk(T i
h (t)) × P0(T i

h (t)) and (x−(t), x+(t)) ∈]
xleft(t), xright(t)

[2
such that, ∀φh(·, t) ∈ Pk(T e

h (t)) satisfying
d

dt
φh(x(X, t), t) = 0, the following

system is satisfied:
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d

dt

(
ve
h, φh

)
T e
h (t)

+
(
Ah(v

e
h), φh

)
T e
h (t)

= 0,

ve
h(·, 0) := pk

T e,0
h

(ve
0),

ηeh|x± = ηih|x± ,

qeh(x±, ·) = qi,

ηih(·, t) := pkT i
h (t)

(ηi(·, t)),

d

dt
qi(t) = −

(∫
I(t)

dx

H i
h

)−1r1
2

(qi(t)
H i

h

)2
+ g ηih

z

I(t)
,

qi(0) := qi0,

d

dt
x±(t) = vg(x±, t),

x±(0) := X±
0 ,

vg|x± :=
∂xq

e
h|x±

∂xηeh|x± − ∂xηih|x±
,

bh(·, t) := IkTh(t)
(b),

(43a)

(43b)

(43c)

(43d)

(43e)

where:

(i) the discrete nonlinear operator Ah in (43a) is defined by(
Ah(v

e
h), φh

)
T e
h (t)

:=−
(
G(ve

h, bh, vg), ∂hxφh

)
T e
h (t)

+
〈
G⋆, φh

〉
∂T e

h (t)
−
(
B(ve

h, b
′
h), φh

)
T e
h (t)

, (44)

where G⋆ is an interface numerical flux which aims at approximating F(v, b) − vgv at an interior
element boundary moving with the velocity vg, and defined as G⋆ := F⋆ − vgv⋆, with F⋆ and v⋆

are respectively consistent with F and v, and computed with the Lax-Friedrichs formula:

F⋆(vR,vL, bR, bL) :=
1

2
(F(vR, bR)− F(vL, bL)− σ(vR − vL)) ,

v⋆(vR,vL, bR, bL) :=
1

2

(
vR + vL − 1

σ
(F(vR, bR)− F(vL, bL))

)
,

(45)

(46)

with

σ := max
ω∈T e

h

(
|ue − vg|+

√
gHe

)
|∂ω

. (47)

(ii) we introduce the following projection for ηih and interpolation for bh:

ηih(·, t) := pkT i
h (t)

(ηi), bh(·, t) := IkTh(t)
(b), H i

h := ηih − bih,
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where the implicit time dependency of bh, due to L
2-projections onto time-dependent sub-domains,

is made explicit for the sake of clarity. Note that the interpolation of the smooth parameterization
b into Pk(Th) is not mandatory, but we choose however to introduce the interpolation of b into
Pk(Th), as it allows to preserve the continuity of b at the mesh interfaces (provided that the ele-
ments boundary is included into the set of interpolation nodes) and to easily compute a polynomial
approximation of the first-order derivative of b.

Remark 8. This general DG-ALE formulation still has to be supplemented with some stabilization
process to ensure its robustness and handle the topography variations in a well-balanced way. These
issues are addressed in the remainder of this section. A global flowchart of the resulting general
algorithm, detailing the processing order of these various numerical ingredients, is also provided in
§3.10.

Remark 9. The eigenvalues and eigenvectors of the Jacobian matrix for F(v, b)−vvg are trivially
obtained from the NSW system written in ALE description:

∂ (F(v, b)− vvg)
∂v

(v, b) =

(
vg 1

−u2 + gH 2u− vg

)
,

leading to the eigenvalues that account for the frame velocity:

λ± := u− vg ±
√
gH.

Remark 10. The boundary conditions for (43a) are not included into (43), but are classically
enforced weakly through the numerical fluxes G⋆. As far as boundary conditions are concerned
on ∂Ωt, we may enforce any type of boundary conditions usually available for the NSW equations,
including inflow and outflow conditions within subcritical or supercritical configurations relying on
local Riemann invariants, periodic conditions or solid-wall conditions.

3.4. DG-ALE as a FV-ALE scheme on sub-cells

It is well-established that the discrete formulation (43a) needs some additional stabilization in order
to ensure the positivity of He

h at the discrete level, and to avoid Gibbs phenomenon in the vicinity
of spatial discontinuities, sharp gradients or smooth extrema. In order to design some suitable
correction mechanisms, we show that the FV sub-cell reformulation of the DG method for the NSW
equations developed in [14], and initially introduced in [33] for general hyperbolic conservation laws,
may be extended to the current DG-ALE framework. We follow the lines of [14] while highlighting
the differences due to the frame’s motion. Let introduce the following projections onto Pk (T e

h (t))
2:

Fe
h := pkT e

h (t) (F(v
e
h, bh)) and Be

h := pkT e
h (t)

(
B(ve

h, b
′
h)
)
, (48)

together with the respective shortcuts Fωi(t) = Fe
h|ωi(t)

, Bωi(t) = Be
h|ωi(t)

, Gωi = Fωi − vgvωi . We

substitute these projections into (43a) and integrate by parts the second term to obtain, for all

ψ ∈ Pk (T e
h (t)) satisfying

d

dt
ψ (x(X, t), t) = 0:

d

dt

∫
ωi(t)

ve
ωi
ψ dx = −

∫
ωi(t)

∂xGωiψ dx+
q
(Gωi −G⋆)ψ

y
∂ωi(t)

+

∫
ωi(t)

Bωiψ dx. (49)

For a given mesh element ω(t) ∈ T e
h (t), we consider a sub-partition Tω(t) defined in (17), to-

gether with the sub-resolution basis functions (18). Substituting ψ = ϕωi
m into (49), for all m in
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J1, . . . , k + 1K, recalling the definition of the sub-mean values vωi
m in (20), recalling also that vωi ,

∂x(vωivg), ∂xFωi and Bωi all belong to Pk (ωi(t))
2 and finally using identity (19), the following

discrete formulation holds, for all m in J1, . . . , k + 1K:

d

dt
(|Sωi

m (t)|vωi
m ) = −

q
Gωi

y
∂Sω

m(t)
+

q
(Gωi −G⋆)ϕωi

m

y
∂ωi(t)

+ |Sωi
m (t)| Bωi

m . (50)

We introduce the k + 2 sub-cell’s reconstructed fluxes, denoted by
{
Ĝωi

m+ 1
2

}
m∈J0, k+1K, and defined

as the solution of the following linear system:

Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

:=
q
Gωi

y
∂Sω

m(t)
−

q
(Gωi −G⋆)ϕωi

m

y
∂ωi(t)

, ∀m ∈ J1, k + 1K,

Ĝωi
1
2

:= G⋆
i− 1

2

and Ĝωi

k+3/2 := G⋆
i+ 1

2

,

so that (43a) may be recast as a FV-ALE formulation on the sub-partition:

d

dt
(|Sωi

m (t)|vωi
m ) = −

(
Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

)
+ |Sωi

m (t)|Bωi

m , ∀m ∈ J1, k + 1K. (51)

Remark 11. For practical purpose, an explicit formula for the computation of the interior recon-
structed fluxes for m ∈ J1, . . . , kK is:

Ĝωi

m+ 1
2

= Gωi

(
x̃m+ 1

2

)
− c

i− 1
2

m+ 1
2

(
Gωi

(
xi− 1

2

)
−G⋆

i− 1
2

)
− c

i+ 1
2

m+ 1
2

(
Gωi

(
xi+ 1

2

)
−G⋆

i+ 1
2

)
, (52)

with

c
i− 1

2

m+ 1
2

=

k+1∑
p=m+1

ϕωi
p

(
xi− 1

2

)
and c

i+ 1
2

m+ 1
2

=

m∑
p=1

ϕωi
p

(
xi+ 1

2

)
. (53)

Simple explicit expression of the correction coefficients can be found in [33].

Remark 12. We require that the integrals and source term in (43a) are exactly computed at
motionless steady states. This can be achieved, thanks to the pre-balanced formulation of the NSW
equations, by using any quadrature rule that is exact for polynomials of degree up to 2 k. Let us
recall that 2 k is in any case the minimum requirement to reach the expected k+1 order of accuracy.

3.5. Sub-cell low-order corrected FV-ALE fluxes

In this section, we show that the reconstructed fluxes may be locally corrected to enforce some
required properties. As investigated in [14] for the NSW equations, lowest-order FV fluxes may
be introduced in order to: (i) prevent high-order approximations from spurious oscillations in the
vicinity of discontinuities and sharp gradients, (ii) ensure the preservation of the water height’s
positivity. Additionally, one needs to introduce some states reconstructions, inspired from [24] in
order to ensure a well-balancing property. In what follows, we recall the definition of such corrected
fluxes, highlighting the new terms associated with the frame’s motion. The specification of suitable
admissibility criteria is postponed to the next section.
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For any time value t ∈ [0, Tmax], ωi(t) ∈ T e
h (t), and any marked sub-cell Sωi

m (t) ∈ Tωi(t), let define
the sub-partition interface values for b, where the subscript ωi and the time dependency are forgotten
for the sake of simplicity:

bm+ 1
2
:= max(bm, bm+1), b

±
m := bm± 1

2
−max

(
0, bm± 1

2
− ηm

)
.

sub-cell’s interfaces reconstructions for the water height are defined as follows:

H
±
m := max

(
0, ηm − bm± 1

2

)
,

and the corresponding free-surface elevation and discharge are deduced as follows:

η±m := H
±
m + b

±
m, q±m := H

±
m

qm
Hm

, v±
m := (η±m, q

±
m), (54)

where b̄±m refer to the trace of b̄m at the sub-cell’s interfaces. Related lowest-order numerical fluxes
on sub-cell’s Sm(t) left and right interfaces are built accordingly:

F l
m+ 1

2

:= F⋆
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
+

 0

gη+m

(
b
+
m − bx̃

m+1
2

)  , (55)

Fr
m− 1

2

:= F⋆
(
v+
m−1,v

−
m, b

−
m, b

−
m

)
+

 0

gη−m

(
b
−
m − bx̃

m− 1
2

)  , (56)

where bx̃
m± 1

2

are respectively the interpolated polynomial values of bh at x̃m+ 1
2
and x̃m− 1

2
. The

associated numerical flux, in the ALE description, are deduced as follows:

Gl
m+ 1

2

:= F l
m+ 1

2

− vg|m+1
2

v⋆,l

m+ 1
2

, and Gr
m− 1

2

:= Fr
m− 1

2

− vg|m− 1
2

v⋆,r

m− 1
2

, (57)

with

v⋆,l

m+ 1
2

:= v⋆
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
, and v⋆,r

m− 1
2

:= v⋆
(
v+
m−1,v

−
m, b

−
m, b

−
m

)
. (58)

Using such corrected FV-ALE fluxes, it is possible to modify the reconstructed fluxes Ĝm+ 1
2
in

a robust way, in some particular sub-cells, where the uncorrected DG scheme (51) has failed to
produce an admissible solution. We are thus left with the issues of identifying the local sub-cells
that may need some corrections and defining a robust correction procedure, which are respectively
addressed in §3.6 and §3.8.

3.6. Admissibility criteria

A large number of sensors or detectors have been introduced in the literature in order to identify
the particular cells/sub-cells in which some additional stabilization mechanisms are required. We
use two admissibility criteria: one for the Physical Admissibility Detection (PAD) and the other
to address the occurrence of spurious oscillations, called sub-cell Numerical Admissibility Detection
(SubNAD). This last criterion is supplemented with a relaxation procedure to exclude the smooth
extrema from the troubled cells. These criteria, which definitions are not recalled in the present
work, are detailed in [14].
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3.7. Time marching algorithm

So far, we only consider a semi-discrete spatial discretization. When fully-discrete formulations are
considered, the time-stepping may be carried out using explicit Strong-Stability-Preserving Runge-
Kutta (SSP-RK) schemes, [11, 28], and following the notations introduced in §3.1, we denote the
time-dependency on discrete time tn with a superscript n:

ve,n
h := ve

h(·, tn), qi,n := qi(tn), x n
± := x±(tn).

Writing the semi-discrete equation (43a) in the operator form

∂tv
e
h +Ah(v

e
h) = 0,

we advance the discrete solution ve,n
h ∈

(
Pk
(
T e,n

h

))2
from time level n to level (n + 1), with

ve,n+1
h ∈

(
Pk(T e,n+1

h )
)2
, through the a SSP-RK scheme. Let us explicit the third-order RK case:

v
e,n,(1)
h = ve,n

h −∆tnAh(v
e,n
h ),

v
e,n,(2)
h =

1

4
(3ve,n

h + v
e,n,(1)
h )− 1

4
∆tnAh(v

e,n,(1)
h ) ,

ve,n+1
h =

1

3
(ve,n

h + 2v
e,n,(2)
h )− 2

3
∆tnAh(v

e,n,(2)
h ) ,

where v
e,n,(i)
h , 1 ≤ i ≤ 2, are the solutions obtained at intermediate stages, ∆tn is obtained from

the CFL condition (59). As the stability enforcement operator described in the previous sections
relies on both DG approximations on mesh elements ωn ∈ T e,n

h (t) and FV scheme on the sub-cells
Sω,n
m ∈ T n

ω , the time step ∆tn is computed adaptively using the following CFL condition:

∆tn =

min
ωn∈T e,n

h

(
hnω

2k + 1
, min

Sω,n
m ∈T n

ω

|Sω,n
m |
)

σ
, (59)

where σ is the constant previously introduced in (47). The same SSP-RK method for the discretiza-
tion of equations of type (30) leads to the following discrete algorithm:

xn,(1) = xn +∆tnvn
g ,

xn,(2) =
3xn + xn,(1)

4
+

∆tn

4
vn,(1)
g ,

xn+1 =
xn + 2xn,(2)

3
+

2∆tn

3
vn,(2)
g .

(60)

Reversely, one may compute the grid’s interfaces velocity from their locations as follows:

vn
g =

xn,(1) − xn

∆tn
,

vn,(1)
g =

4xn,(2) − 3xn − xn,(1)

∆tn
,

vn,(2)
g =

3xn+1 − xn − 2xn,(2)

2∆tn
.

(61)
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3.8. A posteriori Local Sub-cell Correction (LSC) method

Gathering all the previous ingredients, we introduce a global algorithm that ensures the stability
and robustness of the flow’s computation in E(t). This algorithm is adapted from [14] and extended
to the current DG-ALE framework. We only provide a qualitative description and focus on the steps
that require further comments, due to the additional ALE description. Starting from an admissible
piecewise polynomial approximate solution ve,n

h ∈
(
Pk(T e,n

h )
)2

at discrete time tn, we first compute

a predictor candidate solution ve,n+1
h ∈

(
Pk(T n+1

h )
)2

at time tn+1 using the uncorrected DG-ALE
scheme (44), together with the corresponding SSP-RK time discretization of §3.7. Then, for any
mesh element ωn+1

i ∈ T e,n+1
h , we compute the predictor candidate sub-mean values:

P0(T e,n+1
ωi

) ∋ ve,n+1
ωi

= πT e,n+1
ωi

(ve,n+1
ωi

).

For any sub-cell Sωi,n+1
m ∈ T n+1

ωi
, we check admissibility of the associated sub-mean values vωi,n+1

m

using the criteria of §3.6. For a given sub-cell Sωi,n+1
m that needs additional stabilization, the

corresponding DG reconstructed interface fluxes Ĝm± 1
2
defined in (52), which were initially used

to compute the predictor candidate ve,n+1
h , will be replaced by the FV corrected fluxes Gl/r

m± 1
2

of

(57) into the update process to compute a new candidate sub-cell value through the local FV-ALE
formulation (51). As we want the a posteriori LSC method to ensure conservation at the sub-cell
level, the left and right sub-cells of a troubled one have to be also recomputed through a FV-like
scheme but this time with possibly only one high-order reconstructed flux to be replaced by a first-
order one. Let us emphasize that for the remaining sub-cells, nothing has to be done and their
associated mean value will be the one obtained through the uncorrected DG scheme. For more
details on the a posteriori LSC method , we refer to [33, 14]. The complete set of substituting rules
is not recalled here, but concisely, the new updating process for sub-cell value vωi,n+1

m may fall into
one of the following alternative:

i)
d

dt
(|Sωi

m (t)|vωi
m ) = −

(
Gl
m+ 1

2

− Gr
m− 1

2

)
+ |Sωi

m (t)|Bωi

m ,

ii)
d

dt
(|Sωi

m (t)|vωi
m ) = −

(
Gl
m+ 1

2

− Ĝωi

m− 1
2

)
+ |Sωi

m (t)|Bωi

m ,

iii)
d

dt

(
|Sωi

m (t)|vωi
m

)
= −

(
Ĝωi

m+ 1
2

− Gr
m− 1

2

)
+ |Sωi

m (t)|Bωi

m .

(62a)

(62b)

(62c)

For mesh elements ωi(t) in which such fluxes corrections have occurred, leading to the computation
of updated/limited sub-mean values, a new high-order polynomial candidate solution, still denoted
by ve,n+1

h for the sake of simplicity, is built upon these updated sub-mean values:

Pk(ωn
i ) ∋ ve,n+1

ωi
= π−1

T n+1
ωi

(ve,n+1
ωi

),

and the process may go further in time after checking that this new candidate is admissible.

The whole detection-correction-projection iterative process may be conveniently summarized through
the application of a stabilization/correction operator denoted as follows:

Λk,n
h :

(
Pk
(
T e,n

h

))2 →
(
Pk
(
T e,n

h

))2
,

ve,n
h 7→ Λk,n

h (ve,n
h ),

(63)
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where the resulting broken polynomial Λk,n
h (ve,n

h ) satisfies all the admissibility criteria, see §3.6.
Embedding such a stabilization operator into a fully discrete version of (43a), with for instance a
third order SSP-RK method, would simply gives:

v
e,n,(1)
h = Λ

k,n,(1)
h

(
ve,n
h −∆tnAh(v

e,n
h )
)
,

v
e,n,(2)
h = Λ

k,n,(2)
h

(1
4
(3ve,n

h + v
e,n,(1)
h )− 1

4
∆tnAh(v

e,n,(1)
h )

)
,

ve,n+1
h = Λk,n+1

h

(1
3
(ve,n

h + 2v
e,n,(2)
h )− 2

3
∆tnAh(v

e,n,(2)
h )

)
.

(64)

3.9. Properties of the DG-ALE formulation with a posteriori LSC

In this section, we show that the resulting global fully discrete DG-ALE scheme with a posteriori
LSC is globally well-balanced for motionless steady states and satisfies the DGCL.

Well-balancing for motionless steady states

Let begin with the well-balanced property. Motionless steady states for problem (11) are trivially
defined as follows:

ve(·, t) = vc =

(
ηc

0

)
, qi(t) = 0, x±(t) = X±

0 , ∀t ≥ 0. (65)

We highlight that proving that the global semi-discrete formulation (43) preserves such steady states
is equivalent to prove that the DG-ALE scheme (43a) is well-balanced on E(t) = E−(t)∪E+(t), which
again reduces to ensure the property on E−(t) and E+(t) separately. Indeed, it is straightforward
to observe that at steady states, (43b)-(43c) lead to

d

dt
qi(t) = 0, vg|x±(t) = 0, ηix± = ηc,

so that the coupling with the partially immersed object actually does not disturb the flow steady
state, thanks to the discontinuous nature of the approximation. Hence, we have the following result
for the first-order in time fully discrete formulation:

Proposition 13. The discrete formulation (43) with possible occurrence of local corrected lowest-
order fluxes in one of the three possible formulations (62a)-(62b)-(62c), together with a first-order
Euler time-marching algorithm, preserves the motionless steady states (65), provided that the in-
tegrals of (43a) are exactly computed at motionless steady states. Specifically, for all n ≥ 0,(

ηe,nh = ηc and qe,nh = 0
)

=⇒
(
ηe,n+1
h = ηc and qe,n+1

h = 0
)
.

Proof. At steady states, for any given t and any mesh element ω(t), we have

∂xF(vω(t), bω(t)) = B(vω(t), b
′
ω(t)). (66)

Furthermore, both F(ve
h, bh) and B(ve

h, b
′
h) belong to

(
Pk(T e

h (t))
)2

so that we have:

Fh := pkT e
h (t)(F(v

e
h, bh)) = F(ve

h, bh),

Bh := pkT e
h (t)(B(ve

h, b
′
h)) = B(ve

h, b
′
h).

(67)

(68)
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We also emphasize that it is equivalent to prove the property for the formulation (51) on the sub-
partitions or for the formulation (43a) on T e,n

h . We choose to work with (51) to show that the
scheme is well-balanced even at the sub-cell level, and we drop the superscript e in the remainder
of this proof for the sake of simplicity:

∀ωn ∈T e,n
h , ∀m ∈ J1, . . . , k + 1K, ηω,nm = ηc, qω,nm = 0

=⇒ ∀ωn+1 ∈ T e,n+1
h , ∀m ∈ J1, . . . , k + 1K, ηω,n+1

m = ηc, qω,n+1
m = 0.

(69)

As stated in §3.8, investigating the various possibilities for the definition of the interface fluxes im-
plies to investigate the ”uncorrected” situation (51) (corresponding to high-order DG reconstructed
fluxes at all sub-cells interfaces) plus three ”corrected” situations enumerated in (62a)-(62b)-(62c)
(and corresponding to the occurrence of modified lowest-order FV fluxes at (some of) the sub-cells
interfaces). As (62b) and (62c) boil down to the same situation with a permutation of left and right
fluxes, we have, for any given value m ∈ J1, . . . , k + 1K, to distinguish three different situations:

case 1 - admissible sub-cell: Sωi
m−1, S

ωi
m and Sωi

m+1 are all admissible. The sub-cell mean value

vωi,n+1
m is then one obtained through the uncorrected DG scheme. Equivalently, the local time-

update formula with reconstructed fluxes writes

|Sωi,n+1
m | vωi,n+1

m = |Sωi,n
m | vωi,n

m −∆tn
(
Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

)
+∆tn|Sωi,n

m | Bωi

m . (70)

where Ĝωi

m+ 1
2

and Ĝωi

m− 1
2

are defined in (52). We observe that at steady state:

η+
i± 1

2

= η−
i± 1

2

= ηc, q+
i± 1

2

= q−
i± 1

2

= 0, and b+
i± 1

2

= b−
i± 1

2

,

and therefore,

F⋆
i± 1

2

=

(
0

1
2gη

c
(
ηc − 2bi± 1

2

) ) = F
(
vωi|xi± 1

2

, bωi|xi± 1
2

)
, (71)

and,

v⋆
i± 1

2

=

(
ηc

0

)
= vωi|xi± 1

2

,

resulting in

G⋆
i± 1

2

= F
(
vωi|xi± 1

2

, bωi|xi± 1
2

)
− vg|i± 1

2

vωi|xi± 1
2

. (72)

Using (67), we also have:

Gωi|xi± 1
2

= F
(
vωi|xi± 1

2

, bωi|xi± 1
2

)
− vg|i± 1

2

vωi|xi± 1
2

, (73)

thus, using the definition (52) of Ĝωi

m± 1
2

, we obtain:

Ĝωi

m± 1
2

= Gωi|x̃m± 1
2

= F
(
vωi|x̃m± 1

2

, bωi|x̃m± 1
2

)
− vg|i± 1

2

vωi|x̃m± 1
2

, (74)
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allowing to compute the difference:

Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

=

∫
Si
m

∂xF(vωi , bωi) dx− (vg|m+1
2

− vg|m− 1
2

)vc. (75)

Additionally, updating in time the frame’s interfaces with a first-order Euler scheme leads to:

xn+1 = xn +∆tnvn
g ,

so that the geometric term may be simplified as follows:

(vg|m+1
2

− vg|m− 1
2

) vc =
x̃n+1
m+ 1

2

− x̃n+1
m− 1

2

− (x̃n
m+ 1

2

− x̃n
m− 1

2

)

∆tn
vc =

|Sωi,n+1
m | − |Sωi,n

m |
∆tn

vc.

Finally, (70) writes:

|Sωi,n+1
m | vωi,n+1

m = |Sωi,n
m | vc −∆tn

(∫
S
ωi,n
m

∂xF(v
n
ωi
, bωi)−B(vn

ωi
, ∂xbωi) dx

)
+ |Sωi,n+1

m | vc − |Sωi,n
m | vc,

and using (66), we obtain:

vωi,n+1
m = vc = vωi,n

m . (76)

case 2 - neighbor of a non-admissible sub-cell: Sωi
m , Sωi

m−1 are admissible but Sωi
m+1 is non-admissible

(the symmetric situation of Sωi
m , Sωi

m+1 are admissible but Sωi
m−1 is non-admissible may be treated

in a similar way). The corresponding time-update formula is :

|Sωi,n+1
m | vωi,n+1

m = |Sωi,n
m | vωi,n

m −∆tn
(
Gωi,l

m+ 1
2

− Ĝωi

m− 1
2

)
+∆tn|Sωi,n

m | Bωi

m , (77)

with Gωi,l

m+ 1
2

and Ĝωi

m− 1
2

defined in (55)-(57) and (52). To evaluate Gωi,l

m+ 1
2

at steady state, we observe

that η+m = η−m+1 = ηc, leading to:

F⋆
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
=

1

2

(
0

gηc
(
ηc − 2b

+
m

) ) ,
and

Fωi,l

m+ 1
2

= F
(
vωi|x̃m+1

2

, bωi|x̃m+1
2

)
. (78)

As we also have
v⋆,l

m+ 1
2

= v⋆
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
= vωi|x̃m+1

2

,

we obtain
Gωi,l

m+ 1
2

= F
(
vωi|x̃m+1

2

, bωi|x̃m+1
2

)
− vg|m+1

2

vωi|x̃m+1
2

.
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The computation of Ĝωi

m− 1
2

is performed as in case 1, leading to (74) and we may evaluate the

difference as follows:

Gωi,l

m+ 1
2

− Ĝωi

m− 1
2

=

∫
S
ωi
m

∂xF(vωi , bωi) dx− (vg|m+1
2

− vg|m− 1
2

) vc, (79)

so that,

vωi,n+1
m = vc = vωi,n

m .

case 3 - corrected sub-cell: Sωi
m is non-admissible. The time-update formula is:

|Sωi,n+1
m | vωi,n+1

m = |Sωi,n
m | vωi,n

m −∆tn
(
Gωi,l

m+ 1
2

− Gωi,r

m− 1
2

)
+∆tn|Sωi,n

m | Bωi

m . (80)

with Gωi,l

m+ 1
2

and Gωi,r

m− 1
2

defined in (57). Reproducing the computation steps as in case 2, we obtain:

Gωi,l

m+ 1
2

= F
(
vωi|x̃m+1

2

, bωi|x̃m+1
2

)
− vg|m+1

2

vωi|x̃m+1
2

,

Gωi,r

m− 1
2

= F
(
vωi|x̃m− 1

2

, bωi|x̃m− 1
2

)
− vg|m− 1

2

vωi|x̃m− 1
2

,

(81)

(82)

and

Gωi,l

m+ 1
2

− Gωi,r

m− 1
2

=

∫
S
ωi
m

∂xF(vωi , bωi) dx− (vg|m+1
2

− vg|m− 1
2

) vc, (83)

so that,
vωi,n+1
m = vc = vωi,n

m .

Remark 14. This well-balanced property can be extended to any higher-order SSP-RK time dis-
cretization as those methods can be expressed as a convex combination of first-order Euler schemes.

Discrete Geometric Conservation Law (DGCL)

In simulations of free-surface flows involving free moving boundaries, it is important to ensure
that the proposed numerical scheme in ALE description exactly preserves uniform flows. Such
preservation property is called Geometric Conservation Law in the literature and simply states that
the moving mesh procedure does not disturb the uniform flow configuration. Hence, considering
Ωt = E(t) (no object) and b = 0, we inject a constant solution ve

h(·, t) = (ηc, qc) into (43a), together
with

φh(x, t) := 1
ωi(x, t) =

{
1 if x ∈ ωi(t)

0 if x ̸∈ ωi(t)
,

to obtain:

vc d

dt

∫
ωi(t)

dx = −
q
F(vc, 0)− vgvc

y
∂ωi(t)

= vc
q

vg
y
∂ωi(t)

,

and thus the GCL reduces to the following (automatically satisfied) property:

d |ωi(t)|
dt

=
q

vg
y
∂ωi(t)

. (84)

At the fully discrete level, we show that a fully discrete formulation, relying on an high-order SSP
Runge-Kutta time discretization, satisfies the DGCL.
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Proposition 15. The DG-ALE semi-discrete scheme (43a), together with SSP-RK time-marching
algorithm and the embedded stabilization operator with possible occurrence of corrected lowest-
order fluxes in one of the following formulations (62a)-(62b)-(62c), preserves the Discrete Geometric
Conservation Law. Specifically, assuming b = 0, we have, for any discrete time tn:(

ve,n
h = vc

)
=⇒

(
ve,n+1
h = vc

)
.

Proof. Under the assumption ve,n
h = vc, we have F(ve

h, bh) ∈
(
Pk(T e,n

h )
)2
, and we observe that the

following identity holds:

Fn
h := pkT e,n

h
(F(ve,n

h , bh)) = F(ve,n
h , bh). (85)

As in the proof of Proposition 13, it is equivalent to show that the property holds at the sub-cell
level, using formulation (51). Let us emphasize that Proposition 15 holds for any SSP-RK time
discretization. The demonstration will be here specified for the third-order SSP-RK case. Let

denote by |Sωi,(1)
m |, |Sωi,(2)

m |, and |Sωi,n+1
m | the length of the sub-cell Sωi

m at the three different time
stages (and whenever the RK stage dependency has to be specified, we apply the superscripts (.)(1),
(.)(2) and (.)n+1 to the concerned quantities). The 3rd order SSP-RK discretization reads as follows:

|Sωi,(1)
m |vωi,(1)

m = |Sωi,n
m |vωi,n

m +∆tnRωi,n
m ,

|Sωi,(2)
m |vωi,(2)

m =
3|Sωi,n

m |vωi,n
m + |Sωi,(1)

m |vωi,(1)
m

4
+

∆tn

4
Rωi,(1)

m ,

|Sωi,n+1
m |vωi,n+1

m =
|Sωi,n

m |vωi,n
m + 2|Sωi,(2)

m |vωi,(2)
m

3
+

2∆tn

3
Rωi,(2)

m .

(86)

We have, for any given value m ∈ J1, . . . , k + 1K, to distinguish three different cases:

case 1 - admissible sub-cell: Sωi
m−1, S

ωi
m and Sωi

m+1 are all admissible. The residual Rωi,(j)
m is:

Rωi,(j)
m = −

(
Ĝ

ωi,(j)

m+ 1
2

− Ĝ
ωi,(j)

m− 1
2

)
, (87)

As we assume ve,n
h = vc, using (85), we get :

Ĝωi,n

m± 1
2

= Gn
ωi|x̃m± 1

2

= F (vc, 0)− vn
g|m± 1

2

vc,

so that
Ĝωi,n

m+ 1
2

− Ĝωi,n

m− 1
2

= (vn
g|m+1

2

− vn
g|m− 1

2

)vc.

Using the SSP-RK time update of the grid velocity (61), we obtain:

|Sωi,(1)
m |vωi,(1)

m = |Sωi,n
m |vc +∆tn

 x̃(1)m+ 1
2

− x̃n
m+ 1

2

− x̃
(1)

m− 1
2

+ x̃n
m− 1

2

∆tn

vc

= |Sωi,n
m |vc + |Sωi,(1)

m |vc − |Sωi,n
m |vc,

= |Sωi,(1)
m |vc,
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and therefore:
vωi,(1)
m = vc.

In a similar way, we show that v
ωi,(2)
m = vc and vωi,n+1

m = vc, leading to the desired conclusion.

case 2 - corrected sub-cell: Sωi
m is non-admissible. The residual Rωi,(j)

m is:

Rωi,(j)
m = −

(
Gl,ωi,(j)

m+ 1
2

− Gr,ωi,(j)

m− 1
2

)
, (88)

and one can show that we have:

Gl,ωi,n

m+ 1
2

= F (vc, 0)− vn
g|m+1

2

vc, and Gl,ωi,n

m− 1
2

= F (vc, 0)− vn
g|m− 1

2

vc,

leading to
Gl,ωi,n

m+ 1
2

− Gr,ωi,n

m− 1
2

= (vn
g|m+1

2

− vn
g|m− 1

2

)vc,

and therefore
vωi,n+1
m = vc.

case 3 - neighbor of a non-admissible sub-cell: Sωi
m , Sωi

m−1 are admissible but Sωi
m+1 is non-admissible

(the symmetric situation of Sωi
m , Sωi

m+1 are admissible but Sωi
m−1 is non-admissible may be treated

in a similar way). The residual Rωi,(j)
m in a mixed DG/FV context is:

Rωi,(j)
m = −

(
Ĝ

ωi,(j)

m+ 1
2

− Gr,ωi,(j)

m− 1
2

)
. (89)

As in the two previous situations, we have:

Ĝωi,n

m+ 1
2

= F (vc, 0)− vn
g|m+1

2

vc,

Gr,ωi,,n

m− 1
2

= F (vc, 0)− vn
g|m− 1

2

vc,

leading to
Ĝωi,n

m+ 1
2

− Gr,ωi,n

m− 1
2

= (vn
g|m+1

2

− vn
g|m− 1

2

)vc,

so that,
vωi,n+1
m = vc.

3.10. Flowchart

Let summarize the global numerical strategy associated with (43) for the simulation of free-surface
waves and a stationary partly immersed object interactions in shallow water. For the sake of simplic-
ity, a first-order Euler time-marching scheme is assumed to produce some fully discrete approxima-
tions. This procedure may be straightforwardly extended to higher-order time-marching algorithms.

Starting from available and admissible values of ve,n
h , x n

±, q
i,n, ηi,nh := pk

T i,n
h

(ηi), bnh := IkT n
h
(b),

1. locally compute the frame’s velocity at contact points vn
g|x± using (27),
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2. globally compute the frame’s velocity vn
g for all mesh interfaces for T e,n

h and T i,n
h , using (29),

3. globally compute the updated locations of mesh interfaces at discrete time t = tn+1 using the
frame’s velocity vn

g and the family of IVP (30). In particular, the updated positions of the

contact points x n+1
± are obtained,

4. from the set of discrete values for grid points velocity and interfaces location, we reconstruct
continuous profiles for both quantities inside mesh elements using (31) and (32), in order
to qualify updated quadrature nodes or sub-cells interfaces and compute velocities at these
points (used in the definition of numerical fluxes),

5. compute the updated solution ve,n+1
h and qi,n+1 while accounting for the geometric terms

related to the displacement of the mesh, as well as for the stabilization procedure. Increment
time and cycle to step 1.

4. Numerical validations

In this section, we provide several numerical assessments of the DG-ALE discrete formulation (43).
In the following test-cases, if not stated differently, we display sub-mean values instead of point-wise
values of the polynomial approximations, as it allows to precisely illustrate the sub-cell resolution of
the scheme. Also, in the following numerical validations, we choose to consider partially immersed
objects with elliptic profiles. Such a choice is of course arbitrary and may be straightforwardly
adapted to alternative object’s profiles. The reader is referred to the Appendix B for explicit
formula.

4.1. Dam-break over a flat bottom

This first test-case is dedicated to the numerical assessment of the DG-ALE implementation with
a posteriori LSC method for the NSW model and we consider classical dam-break problems over a
flat bottom, without incorporating any partially immersed structure for the time being. Hence we
only consider the formulation (43a) associated with the shallow water equations, considering that
E(t) = Ω, and replacing the coupling conditions at the free boundaries by classical homogeneous
Neumann boundary conditions for the NSW equations. The computational domain is defined as
Ω = [0, 1] and the initial data is defined as follows:

η0(x) :=

{
1 if x ≤ 0.5,
0.5 elsewhere,

, q0 := 0, b := 0.

We set Tmax = 0.075 s, nel = 50, k = 3 and for this particular test-case only, the frame’s velocity is
defined in a pseudo-Lagrangian way, directly connected to the fluid’s local velocity as follows:

vg|i+1
2

:=
1

2

(
u+
i+ 1

2

+ u−
i+ 1

2

− 1

σ

(
Fq(v+

i+ 1
2

, bi+ 1
2
)− Fq(v−

i+ 1
2

, bi+ 1
2
)

))
, (90)

where u±
i+ 1

2

are the left and right traces of the fluid’s velocity at the mesh interface xi+ 1
2
and σ is

defined as σ := max
ω∈Th

σω with

σω := max
m

(√
gH

ω
m

)
.

We show on Fig. 5-left a snapshot of the free-surface at t = 0.075 s and we highlight the corrected
and uncorrected sub-cells on the right. This illustrates that the correction is activated only in a
very thin area in the vicinity of the discontinuity, preventing the occurrence of spurious oscillations.
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Figure 5: Test 1 - Dam break over a flat bottom - Free-surface elevation computed at t = 0.075 s, for k = 3 and
nel = 50 (left). The corrected and uncorrected sub-cells are displayed on the right.

4.2. Well-balancing property

In this second test-case, we aim at assessing the motionless steady-states preservation property.
This property has already been studied for the DG method with a posteriori LSC method in [14]
and, as a consequence, we only consider the validation of the following new features: (i) the case
of a moving grid without incorporated object, (ii) the case of a partially immersed object over a
varying bottom. Firstly, we consider the computational domain Ω = [0, 1] without any immersed
object, together with a varying bottom defined as follows:

b(x) :=

 A

(
sin

(
(x− x1) · π

75

))2

if x1 ≤ x ≤ x2,

0 elsewhere,

(91)

where A = 4.75, x1 = 0.125m and x2 = 0.875m, and the initial data is defined as:

η0 := 10, q0 := 0,

see Fig. 6. We set k = 3, nel = 50 and for this particular test-case only, the grid’s velocity is
uniformly defined as vg := 0.01 m · s−1. We evolve in time the initial data up to 106 time iterations,
which correspond to Tmax = 50 s, and we observe that this initial data is preserved up to machine
precision. We also observe that the initial computational domain Ω0 is translated of 0.5m after 50 s
of time evolution. A similar behavior is of course reported for alternate combinations of k, nel and vg.

In a second configuration, we introduce a partially immersed object, together with a dry-area. The
computational domain is Ω := [−50, 200] and the object is located at (xG, zG) := (50, H0 + 2.5).
The topography profile is defined as follows:

b(x) :=



A

(
sin

(
(x− x1) · π

75

))2

if x1 ≤ x ≤ x2,

1

β
(x− x3) if x ≥ x3,

0 elsewhere,

(92)
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Figure 6: Test 2 - Preservation of a motionless steady state with a moving frame - Free-surface elevation at t0 = 0 s
(left), and Tmax = 50 s (right).

where A = 1.5m, β = 11, x1 = 12.5m, x2 = 87.5m and x3 = 90m. Initial data in E0 are defined as

ηe0(x) := max (5.0, b(x)) and qe0 := 0,

while in the interior domain I0 we set:

ηi0 := pk
T i,0
h

(ηlid) and qi0 := 0.

We evolve this initial configuration up to Tmax = 50 s, with k = 3, ne
el = 50 and n i

el = 10. The free-
surface elevation obtained with the DG-ALE scheme using the a posteriori LSC method is shown on
Fig. 7. The corrected and uncorrected sub-cells are exhibited on Fig. 8, with a zoom in the vicinity
of the object. The motionless steady state is preserved up to the machine accuracy and this feature
can be reproduced with any other choices for k, ne

el and n i
el.
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Figure 7: Test 2 - Preservation of a motionless steady state with a stationary object - Free-surface elevation at
Tmax = 50 s, with k = 3, ne

el = 50, ni
el = 10.
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Figure 8: Test 2 - Preservation of a motionless steady state with a stationary object - Free-surface elevation at
Tmax = 50 s, with a zoom near the object (left) and the shoreline (right), showing the corrected and the uncorrected
sub-cells, for k = 3, ne

el = 50, ni
el = 10.

4.3. A solitary wave interacting with a stationary object

In this third test-case, we focus on the interactions between a weakly nonlinear solitary wave prop-
agating towards a stationary partially immersed object, over a varying topography made of a bump
followed by a sloping beach. We consider the computational domain Ω := [0, 100], with H0 = 5m
and the topography profile is defined as follows:

b(x) :=

 Ab

(
sin

(
(x− x1) · π

75

))2

if x1 ≤ x ≤ x2,

0 elsewhere,

(93)

where Ab = 1.5m, x1 = 12.5m and x2 = 87.5m. A stationary object is placed over the bump and
the initial data is prescribed as follows:

ηe0(x) := H0 +Aw sech (γ (x− x0)) , qe0(x) := gcq2(η
e
0(x)−H0)H

e
0 ,

and
ηi0 := pk

T i,0
h

(ηlid), qi0 := 0,

where Aw = 0.35m, cq1 = 1, cq2 = 0.5, γ := cq1

√
3Aw

4H0
and x0 = 20m stands for the initial location

of the solitary wave’s center. The elliptic object is defined with respective horizontal and vertical
radius a = 10m and b = 5m, and its center of mass is located at (xG, zG) = (50, H0 + 2.5) (see
Appendix B for the explicit definition of the object and the parameterization of its underside).
We set ne

el = 50, n i
el = 10 and k = 3. Snapshots of the free-surface at various times during the

propagation are shown on Fig. 9, together with the corresponding values of the discharge, and the
normalized pressure beneath the object. Interestingly, we observe a partial run-up, run-down and
reflection on the object’s left side. This reflected wave goes back towards the inlet boundary, while
the transmitted wave propagates further beyond the object, into the right exterior domain, finally,
both reflected and transmitted wave are evacuated from the computational domain, thanks to the
Neumann boundary conditions on ∂Ωt. In order to exhibit some quantitative informations regarding
the accuracy of the resulting approximation, we gather in Table 1 the global L2-errors computed
for an increasing number of elements and k = 3, for the inner pressure at Tmax = 100 s.
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Figure 9: Test 3 - A solitary wave interacting with a partially immersed stationary object: surface elevation, discharge
and inner pressure at the underside of the object for ne

el = 50, ni
el = 10 and k = 3.

4.4. A shock-wave interacting with a stationary object

In this fourth test-case, we consider a shock-wave propagating over a flat bottom, with a stationary
partially immersed object located in the middle of the domain, in order to highlight the stabilization
capabilities of the a posteriori LSC method in the vicinity of the object and emphasize the robustness
of the resulting global DG-ALE formulation. We set Ω := [−20, 120], ne

el = 70, n i
el = 10 and k = 3.
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h E
p
i

L2

100/20 1.72E-3

100/50 8.07E-4

100/100 1.25E-5

100/150 4.40E-6

100/200 1.33E-7

Table 1: Test 3 - A solitary wave interacting with a partially immersed stationary object: L2-errors between numerical
and exact solution for the inner pressure p

i
, for k = 3 at time Tmax = 100 s.

The initial data is defined as follows:

ηe0(x) :=

{
6.5 if x ≤ 0,
5 elsewhere,

, ηi0 := pk
T i,0
h

(ηlid), qe0 := 0, qi0 := 0.

Snapshots of the free-surface elevation at several time are shown on Fig. 10. We observe that the
discontinuity, initially located in E−

0 , propagates towards the object, generating some interesting
nonlinear interactions. We emphasize that this configuration simultaneously involves a shock-wave
propagation and reflection, displacement of the frame through the ALE description, a partial run-up
over the surface-piercing object which is associated with the collision between the shock-wave and
the object left-side and a partial transmission of the wave beyond the object with the formation of
an interesting free-surface profile that looks like a rarefaction wave. This highlights the robustness
of the global formulation and in particular the stabilization effect associated with the a posteriori
LSC method . The dynamic of the free-boundaries is indeed computed in a very stable way, without
any spurious oscillations or further time-step restriction. Additionally, a zoom on the free-surface
discontinuity is displayed on Fig. 11, highlighting that the a posteriori LSC method is only activated
in a very thin area in the vicinity of the propagating shock-wave.

4.5. Run-up of a solitary wave partially reflected by a stationary object

In this last test-case, we follow the propagation and run-up of a solitary wave over a plane beach,
with a stationary partially immersed object placed on the way. The computational domain is set
to Ω := [−200, 150], the topography is made of a constant depth area followed by a sloping beach
of constant slope 1/11. We set k = 3, ne

el = 50 and n i
el = 10. The initial data is defined as follows:

ηe0(x) := H0 +Aw sech(γ(x− x0)), qe0 := cq2g(η
e
0 −H0)He0, (94)

ηi0(x) := pk
T i,0
h

(ηlid), qi0 := 0.

with Aw = 0.55m, x0 = −80m, cq1 = 0.1, cq2 = 0.5 and γ := cq1

√
3Aw

4H0
.

We show on Fig. 12 some snapshots of the free-surface elevation at several discrete times in the
range (1 s, 300 s). We observe a partial run-up and reflection of the wave on the object, while the
remaining part of the wave is transmitted beyond the object, propagating further in E(t). This
secondary wave subsequently reaches the shore, generating a run-up on the beach followed by a
reflection. This reflected wave is itself again partially reflected by the object, generating a third
sequence of run-up and reflection, while the transmitted wave propagates back in E−(t) towards the
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Figure 10: Test 4 - A shock-wave interacting with a stationary partially immersed object - Free-surface elevation
computed at various times: t = 2.7 s, 5.5 s, 14.8 s and 44 s with k = 3, ne

el = 70 and ni
el = 10.

domain’s left boundary. In Fig. 13, we zoom on the shoreline area, highlighting the corrected and
uncorrected sub-cells which are respectively plotted with green squares and blue dots. Again, we
observe that the a posteriori LSC method is only activated in a very thin area in the vicinity of the
wet/dry front. We also display on Fig. 14 a comparison between the maximum run-up observed
with and without the embedded partially immersed object on place, in order to highlight the impact
of the object presence on the run-up amplitude.

5. Conclusion

In this paper, we introduce a novel numerical approximation algorithm allowing to compute fluid-
structure interactions between a partially immersed and stationary object in shallow water flows.
This new discrete formulation is based on a DG-ALE global discretization for the flow model, coupled
with a set of nonlinear ordinary differential equations for the resolution of the free-boundary prob-
lems associated with the time evolution of the air-fluid-structure interface, and the time evolution of
the discharge beneath the object. In order to allow the computation of general waves interactions,
possibly involving non-smooth surface waves, we extend the a posteriori LSC method of [14] to the
current DG-ALE description. In particular, we show that the resulting global flow discrete formu-
lation preserves the DGCL, as well as the well-balancing property for motionless steady states, for
any order of approximation in space. The resulting numerical strategy combines the high accuracy
of DG approximations, with a robust stabilization process which ensures the positivity of the water
height at the sub-cell level, as well as preventing from the occurrence of spurious oscillations in the
vicinity of discontinuities, discontinuities of the gradient and extrema. More general configurations
involving moving floating objects are currently investigated and will be studied in future works.
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Figure 11: Test 4 - A shock-wave interacting with a stationary partially immersed object - Free-surface elevation
computed for different values of time t = 2.7 s, 5.5 s and 14.8 s. The corrected and uncorrected sub-cells are respectively
plotted with blue squares and green dots, with a zoom on the discontinuity, for k = 3, ne

el = 70 and ni
el = 10.
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Appendix A. Cut-off function

The cut-off function φ ∈ D(R) used in (28) is defined as follows:

∀x ∈ R, φ(x) := eψe(ε0x),

where
∀x ∈ R, ψe(x) := ϕe(1− |x|2),
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Figure 12: Test 5 - Run-up of a solitary wave partially reflected by a stationary object - Free-surface obtained at
several times in the range [1 s, 300 s], with k = 3 and ne

el = 50, ni
el = 10.
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Figure 14: Test 5 - Run-up of a solitary wave partially reflected by a stationary object - Snapshot of the free-surface
corresponding to the maximum run-up observed with the embedded partly immersed object (in dashed-line) and
without the object (in blue).

and

∀t ∈ R, ϕe(t) :=

 e−t−1
if t > 0

0 elsewhere,

Note that we have supp(ψe) ⊂ B(0, 1), supp(φ) ⊂ [− 1
ε0
, 1
ε0
] and ε0 chosen such that we have

φ(x) = 1, ∀|x| ≤ 1.

Appendix B. Definition of the elliptic object

In this work, we consider a partially immersed object Obj, which center of mass is located at (xG, zG)
and which boundary is denoted by ∂Obj. Denoted respectively by a, b its major and minor radius,
we define ∂Obj as an ellipse, so that we have:

(x, y) ∈ ∂Obj ⇐⇒ (x− xG)
2

a2
+

(z − zG)
2

b2
= 1.

The underside of the object may be locally parameterized as follows:

∀x ∈ Ilid := [xG − a, xG + a], ηlid(x) := zG − b

√
1− (x− xG)2

a2
.

Note that denoting zG = H0 + e0, we have:

X±
0 := xG ±

√
a2 − a2e02

b2
.
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