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Abstract

Active learning is a paradigm of machine learning which aims at reducing the amount of labeled
data needed to train a classifier. Its overall principle is to sequentially select the most informative
data points, which amounts to determining the uncertainty of regions of the input space. The main
challenge lies in building a procedure that is computationally efficient and that offers appealing
theoretical properties; most of the current methods satisfy only one or the other. In this paper, we
use the classification with rejection in a novel way to estimate the uncertain regions. We provide
an active learning algorithm and prove its theoretical benefits under classical assumptions. In
addition to the theoretical results, numerical experiments have been carried out on synthetic and
non-synthetic datasets. These experiments provide empirical evidence that the use of rejection
arguments in our active learning algorithm is beneficial and allows good performance in various
statistical situations.

Keywords: active learning, rejection, nonparametric learning, classification

1 Introduction

The aim of machine learning consists in designing learning models that accurately maps a set of inputs
from a space X called instance space to a set of outputs Y called label space. Nowadays, with the
data deluge, obtaining a powerful learning model requires a lot of data from X to be labeled, which
is time consuming in many modern applications such as speech recognition or text classification. This
motivated the development of other paradigms beyond classical prediction tasks. In this paper, we
focus on prediction in the binary classification setting, that is Y = {0, 1}. In this framework, one of
the most studied techniques to deal with this specificity is the iterative supervised learning procedure
called active learning (Cohn et al., 1994; Castro & Nowak, 2008; Balcan et al., 2009; Hanneke, 2011;
Locatelli et al., 2017, 2018) that aims at reducing the data labeling effort by carefully selecting which
data need to be labeled. The goal of active learning is to achieve a high rate of correct predictions
while using as few labeled data as possible. One of the key principles of active learning is to identify
at each step the region of the instance space where the label requests should be made, called uncertain
region in this paper, also known as disagreement region in the active learning literature (Hanneke,
2007; Balcan et al., 2009; Dasgupta, 2011). Many techniques have been developed to this aim, both in
parametric (Cohn et al., 1994; Hanneke, 2007; Balcan et al., 2009; Beygelzimer et al., 2009; Hanneke
et al., 2014) and nonparametric setting (Minsker, 2012; Locatelli et al., 2017, 2018).
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In this paper, we are particularly interested in the nonparametric setting, where several computational
difficulties have so far hampered the practical implementation of the proposed algorithms. For example,
(Minsker, 2012) provides interesting theoretical results which partly motivated Locatelli et al. (2017,
2018) as well as the present work, but it fails to provide a computationally efficient way to estimate
the uncertain region.
To overcome these shortcomings, we present a new active learning algorithm using the paradigm called
rejection. The latter typically allows the learning models to evaluate their confidence in each prediction
and to possibly abstain from labeling an instance (i.e., "reject" this instance) when the confidence in
the prediction of its label is too weak. This rejection will however be used in a novel way in this work
to conveniently compute the uncertain region, as explained below.
Rejection and active learning typically differ on how they are interested in this uncertain region. In
rejection, the interest in the uncertain region appears after the design of a learning model, that rejects
a test point in order to avoid a misprediction. This is very useful in some applications such as medical
diagnosis where a misprediction can be dramatic. However, in active learning, the uncertain region is
used during the training process to progressively improve the model’s performance by requesting labels
where the classification is difficult.
In our algorithm, we use rejection at each step k of the training process to estimate the uncertain
region Ak ⊂ X based on the information gathered up to this step. Then some points are sampled
from the region Ak and their labels are requested. Based on these labeled examples, an estimator
f̂k is provided, that is then used to assess for each x ∈ Ak the confidence in the prediction. The
points where the confidence is low are rejected and are considered to form the next uncertain region
Ak+1, thereby progressively reducing the part of instance space X on which a model remains to be
constructed. We study the rate of convergence with respect to the excess-risk of our nonparametric
active learning algorithm based on histograms under classical smoothness assumptions. It turns out
that combining active learning sampling together with rejection allows for optimal rates of convergence.
Using numerical experiments on several datasets we also show that our active learning process can be
efficiently applied to any off-the-shelf machine learning algorithm.
The paper is organized as follows : in Section 2 we provide the background notions of active learning
and rejection separately, then review some recent works that proposed to combine these two notions,
although in a way that differs from ours. Then we describe our algorithm in Section 3 along with the
theoretical guarantees about its rate of convergence. Practical considerations to take into account when
applying our algorithm are discussed in Section 4. Numerical experiments are presented in Section 5
and we conclude the paper along with some perspectives for future work in Section 6. The full proof
of our theoretical result is relegated to the Appendix.

2 Background

In this Section we review the literature related to active learning in Section 2.1, and the reject option
framework 2.2. Thereafter, in Section 2.3 we provide a review on the use of the rejection in the context
of active learning.

2.1 Active learning

Given an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) from an unknown probability distribution P defined on
X × Y, the classification problem consists in designing a map g : X −→ Y from the instance space to
the label space. However, building such mapping might become a tricky task in particular situations
where the labeling process of input instances are only available through time-consuming or expensive
requests to a so-called oracle. In such applications, one might however have access to a huge amount
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of unlabeled data from the instance space. This motivated the use of the active learning paradigm
(Cohn et al., 1994) that aims at reducing the data labeling effort by carefully selecting which data to
label.
Active learning algorithms were initially designed according to somewhat heuristic principles (Settles,
1994) without theoretical guarantees on the convergence nor on the expected gain with respect to
classical "passive" learning. The theory of active learning has then gradually developed (Cohn et al.,
1994; Freund et al., 1997; Balcan et al., 2009; Hanneke, 2007; Dasgupta et al., 2007; Castro & Nowak,
2008; Minsker, 2012; Hanneke & Yang, 2015; Locatelli et al., 2018, 2017; Kpotufe et al., 2022).
We are particularly interested in the nonparametric setting, where regularity and noise assumptions are
made on the regression function. Two types of regularity assumptions are made on the regression func-
tion. The first one was introduced in the seminal work by (Castro & Nowak, 2008) and was also used in
(Locatelli et al., 2018), where it is assumed that the decision boundary {x, η(x) = 1

2} (where η is the
regression function) is the graph of a smooth function. The second one, which was used in (Minsker,
2012; Locatelli et al., 2017), assumes that the whole regression function is smooth. In this work, we
will use similar regularity assumption as in (Minsker, 2012). Besides, the noise margin assumption
corresponds to the so-called Tsybakov noise condition, and it was observed that it corresponds to the
situation in which active learning can outperforms passive learning (Castro & Nowak, 2008).
In this work, we design an efficient active learning algorithm, similar to that considered in (Minsker,
2012), but handling the uncertain region in an explicit and computationally tractable way using rejec-
tion.

2.2 Classification with reject option

In the present contribution, we borrow some techniques from learning with reject option. Indeed, as
detailed in Section 3, a core component of our active strategy relies on the confidence we have on
labels of the input instances. In contrast to the classical statistical learning framework where a label is
provided for each observation x ∈ X , learning with reject option is based on the idea that an observation
for which the confidence on the label is not high enough should not be labeled. From this perspective,
given a prediction function g : X → Y, an instance x ∈ X can be either classified and the corresponding
label is g(x) or rejected and no label is provided for x (according to the literature, the output for x is
∅ or any symbol as ⊕ meaning reject). A classifier with reject option g̃ is then a measurable mapping
g̃ : X → Y ∪{⊕}. Reject option has been first introduced in the classification setting in (Chow, 1957).
More recently, and since the development of conformal prediction in (Vovk et al., 1999, 2005), reject
option has become more popular and has been brought up to date to meet the current challenges.
The paper by (Herbei & Wegkamp, 2006) proposed the first statistical analysis of a classifier based
on reject option. After these pioneer works, more papers on reject options appeared (e.g., (Naadeem
et al., 2010; Grandvalet et al., 2009; Yuan & Wegkamp, 2010; Lei, 2014; Cortes et al., 2016; Denis &
Hebiri, 2019) and references therein). They mainly differ on the way they take into account the reject
option. In particular, we can distinguish three main approaches: i) use the reject option to unsure a
predefined level of coverage; ii) use the reject option to unsure a pre-specified proportion of rejected
data; iii) consider a loss that balances the coverage and the proportion of rejected data. It has been
established that, while there is no best strategy, controlling the coverage requests more labeled data
than controlling the rejection rate, which in turn asks more (unlabeled) data that the last strategy that
does the trade-off. On the other hand this last approach does not control any of the two parameters.
Reject option has also been used in different contexts, such as in regression (Vovk et al., 2005; Denis
et al., 2020) or algorithmic fairness (Schreuder & Chzhen, 2021). These papers show how reject option
can be used to efficiently solve issues that are intrinsic to the problem.
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2.3 Active learning with reject option

Most active learning schemes mentioned in Section 2.1 attempt to find the most "informative" samples
in a region close the decision boundary, called uncertain region or disagreement region. Some recent
works have refined this idea by adding an option to abstain from labeling the points (i.e., reject) that
are considered too close to the decision boundary.
Although the intersection of rejection and active learning seems natural, their combination is fairly
recent. Current studies can be grouped into two differents settings: the first one is focused on us-
ing reject option for improving performance guarantees of some standard active learning algorithms
(Puchkin & Zhivotovskiy, 2021; Zhu & Nowak, 2022) and the second one is focused on providing a
classifier which takes into account reject option (Shekhar et al., 2021; Shah & Manwani, 2020), similarly
to the standard reject option setting (Herbei & Wegkamp, 2006; Denis & Hebiri, 2019).
In the first setting, (Puchkin & Zhivotovskiy, 2021) considered the parametric framework, particularly
the model misspecification. That is, given a class of classifiers F (which possibly do not contain the
Bayes classifier), the aim is to find an estimator f̂ which achieves minimum excess error of classifica-
tion. By using the reject option, (Puchkin & Zhivotovskiy, 2021) proved that exponential savings in
the number of label requests are possible in model misspecification under Massart noise assumption
(Massart & Nédélec, 2006). Their algorithm is related to the disagreement-based approach (Hanneke,
2007; Balcan et al., 2009) and outputs an improper classifier f̂ , that is f̂ /∈ F possibly. The work of
(Puchkin & Zhivotovskiy, 2021) was extended by (Zhu & Nowak, 2022) which provides a more efficient
active learning algorithm that overcomes the difficulty of computing the uncertain region. In (Zhu
& Nowak, 2022), the authors build a classifier based on the rejection rule with exponential saving in
labels, for which they establish risk bounds in a general parametric setting. At each trial, the classifier
does not label points for which the doubt is substantial. This decision of abstaining from classifying
a point is taken by considering a set of "good" classifiers among a parametric class of functions. In
particular, a point is rejected if all "good" classifiers consider it as a difficult point, that is, the corre-
sponding score is within the interval [1/2−γ, 1/2+γ], where γ is a (small) positive real value. However
an analysis of this algorithm sheds light on three arguments. First, the score at point x should be
evaluated for all "good" functions in the class. Second, tuning the parameter γ is not discussed and it
might be tricky. Finally, the empirical performance of the proposed algorithm is not considered in the
paper.
In the second setting, (Shekhar et al., 2021), considered the nonparametric framework under some
smoothness and margin noise assumptions. The authors designed an active learning algorithm which
outputs a classifier that takes into account the reject option in a standard way as in (Denis & Hebiri,
2019) by deciding not to label the instances which are located near to the decision boundary. In par-
ticular, the final outputted algorithm is a classifier with reject option. In their framework, they derived
rates of convergence for an excess-risk dedicated to the reject option framework and showed that these
rates are better to those obtained by the passive learning counterpart (Denis & Hebiri, 2019). However
it is not obvious in this setting to obtain computationally tractable algorithms, among others because
the hypothesis class needs to be restricted. In contrast, in the present paper, we focus on the classical
active problem and derive rates of convergence for this problem, along with a practical implementation
of the algorithm.

2.4 Contributions

The recent works mentioned in Section 2.3 (Puchkin & Zhivotovskiy, 2021; Shekhar et al., 2021; Zhu
& Nowak, 2022) provide interesting theoretical contributions showing the interest of combining active
learning and reject option. However the practical implementation of the related algorithms is not
straightforward, notably because it is computationally difficult to estimate the uncertain region.
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In this work, we use a peculiar combination of the rejection and active learning to propose an active
learning which is easy to compute in practice. More precisely, our contributions are threefold:

• We transform the typical classification with reject option framework (from Sections 2.2 and 2.3)
to estimate the so-called uncertain region in a novel way. Not only does this methodology provide
a computationally efficient algorithm for active learning, but it also can be remarkably applied to
any off-the-shelf machine learning algorithm. This is a twofold major improvement over (Minsker,
2012).

• Beyond the appealing numerical properties of our procedure, we show that it achieves optimal
rates of convergence for the misclassification risk and the active sampling under classical assump-
tions in this setting.

• We illustrate the benefit of our method in synthetic and real datasets.

3 Active learning algorithm with rejection

In this section, after introducing some general notations and definitions, we present our algorithm in a
somewhat informal way, and then provide the theoretical guarantees under some classical assumptions.

3.1 Notations and definitions

Throughout this paper X denotes the instance space and Y = {0, 1} is the label space. Let P be the
joint distribution of (X,Y ). We denote by Π the marginal probability over the instance space and by
η(x) = P (Y = 1|X = x) the regression function. The performance of a classification rule g : X 7→ {0, 1}
is measured through the misclassification risk R(g) = P (g(X) ̸= Y ). With this notation, the Bayes
optimal rules that minimises the risk R over all measurable classification rules (Lugosi, 2002) is given
by g∗(x) = 1{η(x)≥1/2} and we have:

R(g∗) = 1− EΠ(f
∗(X)) ,

where f∗(·) = max(η(·), 1− η(·)) is called score function. For any classification rule g, the excess risk
is given by

R(g)−R(g∗) = 2E
[∣∣∣∣η(X)− 1

2

∣∣∣∣ 1{g(X )̸=g∗(X)}

]
. (3.1)

In this work, we consider the following active sampling scheme. For each A ⊂ X , and M ≥ 1, we can
sample (Xi, Yi)1≤i≤M i.i.d. random variables such that

1. for all i = 1, . . . ,M , Xi is distributed according to Π(.|A);

2. conditional on Xi, the random variable Yi is distributed according to a Bernoulli random variable
with parameter η(Xi).

As is commonly done in the active learning setting, we assume that the marginal distribution of X is
known (Minsker, 2012; Locatelli et al., 2017). In the next paragraph, we describe our active algorithm
for classification. As important tools that nicely merge the active sampling and the use of the rejection,
we will pay a particular attention to the definition of the uncertain region and the rejection rate.
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3.2 Overall description of the algorithm

With a fixed number of label requests N (called the budget), our overall objective is to provide an
active learning algorithm which outputs a classifier that performs better than its passive counterpart.
The framework that we consider (Algorithm 1) is inspired from that developed in (Minsker, 2012), in
which we incorporate rejection to estimate the uncertain region.
In the following, let (εk)k≥0 be a sequence of positive numbers. Let (Nk)k≥0 be a sequence defined
such that N0 =

√
N and Nk+1 = ⌊cNNk⌋ with cN > 1 (e.g., cN = 1.2 in Section 5). Furthermore, we

consider A0 = X = [0, 1]d the initial uncertain region, and thus ε0 = 1. We construct a sequence of
uncertain regions (Ak)k≥1 and for k ≥ 1, an estimator η̂k of η on Ak is provided.
First, our algorithm performs an initialization phase:

• Initially, the learner requests the labels Y of N0 points X1, . . . , XN0 sampled in A0 according to
Π0 = Π.

• Based on the initial labeled data DN0 = {(X1, Y1), . . . , (XN0 , YN0)}, an estimator η̂0 of η on A0

is computed and an initial classifier gη̂0 = 1{η̂0≥1/2} is provided.

• An estimator of the score function f̂0(x) = max(η̂0(x), 1− η̂0(x)) associated to η̂0 is computed.

Afterwards, our algorithm iterates over a finite number of steps until the label budget N has been
reached. Step k ≥ 1 is described below.

• Based on the previous uncertain region Ak−1, a constant λk is computed such that conditional
on the data

λk = max
{
t, Π

(
f̂k−1(X) ≤ t|Ak−1

)
≤ εk

}
, (3.2)

These (εk)k≥0 define explicitly the sequence of the rejection rates (Denis & Hebiri, 2019).

• This constant λk is used to construct the current uncertain region Ak which is the set where the
previous classifier gη̂k−1

(·) = 1{η̂k−1(·)≥1/2} might fail and thus abstains from labeling :

Ak = {x ∈ Ak−1, f̂k−1(x) ≤ λk} ,

where f̂k−1(x) = max(η̂k−1(x), 1− η̂k−1(x)).

• According to π (.|Ak) the learner samples i.i.d. (Xi, Yi), i = 1, . . . , ⌊Nkεk⌋ used to compute an
estimator η̂k of η on Ak.

• The learner updates the classifier over the whole space X as follows

η̂ =

k−1∑
j=0

η̂j1{Aj\Aj+1} + η̂k1{Ak} .

After the iteration process, the resulting active classifier with rejection is defined point-wise as

ĝ(x) = 1{η̂(x)≥1/2} . (3.3)

3.3 Theoretical guarantees

This section is devoted to the theoretical properties of the proposed procedure under common assump-
tions which are presented in Section 3.3.1. Thereafter, we state our main result in Section 3.3.2 that
mainly shows that our algorithm achieves an optimal rate of convergence for the excess-risk when the
considered classifier is the histogram rule.
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3.3.1 Assumptions

We assume that X = [0, 1]d and consider two assumptions that are widely considered for the study
of rates convergence in the passive (Audibert & Tsybakov, 2007; Gadat et al., 2016) or active set-
tings (Minsker, 2012; Locatelli et al., 2017).

Assumption 3.1 (Smoothness assumption). The regression function η is s-Lipschitz-continuous for
some s ≥ 0, that is, for all x, z ∈ [0, 1]d:

|η(x)− η(z)| ≤ s. ∥ x− z ∥∞ .

Assumption 3.2 (Strong density assumption). The marginal probability admits a density pX and
there exist constants µmin, µmax > 0 such that for all x ∈ [0, 1]d with pX(x) > 0, we have:

µmin ≤ pX(x) ≤ µmax .

Assumption 3.1 imposes the regularity of the regression function η while Assumption 3.2 ensures
in particular that the marginal distribution of X admits a density which is bounded from below.
Furthermore, we also assume that f(X) admits a bounded density.

Assumption 3.3 (Score regularity assumption). Let f(x) = max(η(x), 1−η(x)) be the score function.
The random variable f(X) admits a bounded density (bounded by C > 0).

Assumption 3.3 has two important consequences. The first one is that the cumulative distribution
function Ff of f(X) is Lipschitz. The second one is that the so-called Margin assumption (Tsybakov,
2004) is fulfilled with margin parameter α = 1. This Margin assumption is also considered in (Minsker,
2012) for the study of optimal rates of convergence in the active learning framework.

3.3.2 Rates of convergence

In this section, we present our main theoretical result (Theorem 3.5) which highlights the performance
of our algorithm. While our methodology can handle any machine learning algorithm for the estimation
of the regression function η, we provide theoretical guarantee with the histogram rule (whose definition
is recalled in Definition 3.4) for the estimation of the regression function at each step of the procedure
described in Section 3.2, as in (Minsker, 2012). For completeness, we provide the full proof of our
result in this particular case in the Appendix.
Let us denote by Cr = {Ri, i = 1, . . . , r−d} a cubic partition of [0, 1]d with edge length r > 0.

Definition 3.4 (Histogram rule). Let A be a subset of [0, 1]d. Consider a labeled sample DNA
={

(XA
1 , Y1), . . . , (X

A
NA

, YNA
)
}

of size NA ≥ 1, such that XA
i (i = 1, . . . , NA) is distributed according to

Π(.|A). The histogram rule on A is defined as follows. Let Ri ∈ Cr with Ri ∩A ̸= ∅. For all x ∈ Ri,

η̂A,NA,r(x) =
Π(A)

Π(Ri)

1

NA

NA∑
j=1

Yj1{Xj∈Ri} .

It is known that in the passive framework, the histogram rule achieves optimal rates of convergence (De-
vroye et al., 1996).

Theorem 3.5. Let N be the label budget, and δ ∈
(
0, 12
)
. Let us assume that Assumptions 3.1, 3.2,

and 3.3 are fulfilled. At each step k ≥ 0 of the algorithm presented in Section 3.2, we consider

i) η̂k := η̂Ak,⌊NkΠ(Ak)⌋,rk , with rk = N
−1/(d+2)
k ,
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(ii) and define (εk)k≥0 as ε0 = 1, and for k ≥ 1, εk = min
(
1, log

(
N
δ

)
log(N)N

−1/(2+d)
k−1

)
.

Then with probability at least 1− δ, the resulting classifier defined in Equation(3.3) satisfies

R(gη̂)−R(g∗) ≤ Õ
(
N− 2

1+d

)
, (3.4)

where Õ hides some constants and logarithmic factors.

The above result calls for several comments. First, our active classifier ĝ based on the histogram
rule is optimal for the active sampling w.r.t. the misclassification risk up to some logarithmic factors
(see (Minsker, 2012) for the minimax rates, by considering Lipschitz regression function and the margin
parameter equal to 1. This rate is better than the classical minimax rate in passive learning under
the strong density assumption which is of order N− 2

2+d , see for instance Audibert & Tsybakov (2007).
Second, the sequence of the rejection rates (εk)k≥0 should be chosen in an optimal manner guided by
our theoretical findings. In particular, for each k, the value of εk is of the same order as an upper
bound on the error w.r.t. the ℓ∞-norm of η̂k−1, valid with high probability. This value of the εk is
also linked to the probability of the uncertain region in the procedure proposed by Minsker (2012).
However, the major different with the latter reference is that our rejection rate is explicit and then our
algorithm can be efficiently computed due to the use of rejection arguments to determine the uncertain
regions. Finally, let us notify that our work can easily be extended for Hölder regression functions with
parameter β. Indeed, for β ≥ 1, we can consider a similar estimator as that introduced in Definition 3.4
with higher order histogram rule using smoothing kernel (Giné & Nickl, 2021).

Remark 3.6. Theorem 3.5 is established assuming the knowledge of the marginal distribution of X.
This is a classical assumption in active learning that helps for sampling. However, it is possible to
extend our result to unknown distributions at the price of an additional unlabeled sample and then an
additional factor 1/

√
size of the unlabeled sample.

In view of the above remark, we discuss the practical implementation of our proposed algorithm in the
following section.

4 Practical considerations

Some practical aspects of the procedure are discussed in Section 4.1 and a simple numerical illustration
is provided in Section 4.2. The full numerical experiments are presented in Section 5.

4.1 Uncertain region

In this section, we discuss the effective computation of the uncertain regions. Let k ≥ 1 represent the
current step k of our algorithm. We denote by DM = {X1, Y1), . . . , (XM , YM )} the data that have
been sampled until step k. The random variable f̂k−1 is the score function built at step k − 1.
The construction of the uncertain region Ak relies on λk which is solution of Equation (3.2). First
of all, we randomize the score function f̂k−1 by introducing a variable ζ distributed according to a
Uniform distribution on [0, u] independent of DM and by defining the randomized score function f̃k−1

as
f̃k−1(X, ζ) = f̂k−1(X) + ζ .

Considering the randomized score f̃k−1 instead of f̂k−1 ensures that conditionally on DM , the cu-
mulative distribution function of f̃k−1(X, ζ), denoted by Ff̃k−1

, is continuous. Therefore, it implies
that

λ̃k = max
{
t, Π

(
f̃k−1(X) ≤ t|Ak−1

)
≤ εk

}
= F−1

f̃k−1
(εk) .
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Hence, λ̃k is expressed simply as the εk-quantile of the c.d.f. Ff̃k−1
. To preserve the statistical properties

of f̂k−1, the parameter u is chosen sufficiently small (e.g., u → 0).
Note that the computation of the c.d.f. Ff̃k−1

requires the knowledge of the marginal distribution of
X. In practice, this distribution may be unknown. In a second step, based on a unlabeled dataset
DU

Mk
= {Xi, i = 1, . . . ,Mk} with Xi ∼ Π(.|Âk−1), and (ζ1, . . . , ζMk

) i.i.d. copies of ζ, we consider an
estimator λ̂k of λ̃k defined as follows

λ̂k = F̂−1

f̃k−1
(εk),

where conditionally on the data, F̂f̃k−1
is the empirical c.d.f. of the random variable f̃k−1(X, ζ):

F̂f̂k
(t) =

1

Mk

Mk∑
i=1

1{f̃k(Xi,ζi)≤t} .

Furthermore, the unlabeled set DU
Mk

is assumed to be independent of DM , and since it remains unla-
beled, it does not contribute to the budget.
Formally, the uncertain region Ak is then defined as follows

Ak =
{
(x, ζ) ∈ X × [0, u], f̃k−1(x, ζ) ≤ λ̂k

}
.

Therefore, XM+1 ∼ Π(.|Ak), is sampled from Π such that f̃k−1(XM+1, ζ) ≤ λ̂k with ζ distributed
according to U[0,u].

4.2 Illustrative example

For illustrative purposes, a two-dimensional dataset of 106 data points was generated using a regression
function η(x1, x2) =

1
2(1+ sin(πx2

2 )). We chose the estimators η̂k to be linear, to make the comparison
with the best linear classifier (x2 = 0) straightforward. The budget was set to N = 5000, and the
sequences of Nk and εk were chosen as Nk = ⌊1.2Nk−1⌋ and εk = 0.95 εk−1, starting with N0 = ⌊

√
N⌋

and ε0 = 1. The parameter Mk was set to 150. A discussion of this choice of parameters can be found
in Section 5.1.
Figure 1 represents the situation after the step k = 2 of the algorithm. At step k = 1 and k = 2, λk has
been computed using (3.2), which allows to classify the points in Âk−1 \ Âk (represented in black for
k = 1 and in brown for k = 2). For visualization purposes, the points remaining in Â2 have been colored
according to their labels (y = 1 in green and y = 0 in blue), even though these labels are unknown at
this step of the algorithm. The yellow points are those in Â2 whose label has already been requested
to the oracle. At subsequent steps, points in Ak are selected according to the rejection rates shown
in the center part of Figure 1, which shows the theoretical reject rates (εk, defined in Algorithm 1) in
blue and the experimental ones (ε̂k, counted as the number of points effectively rejected) in red. The
latter were computed by repeating the simulations 10 times, to present the average results along with
the standard deviations in grey. As a whole, the rejection rate is well estimated with only Mk = 150
unlabeled samples. However, the standard deviations indicates that the rejection rate is harder to
control towards the end of the algorithm, because less points are available to estimate εk.
The resulting learning curves for passive and active procedures are represented on the right of Figure 1.
As expected with this simplistic illustrative dataset, using active learning does not provide a substantial
advantage in the long run (test precision = 0.817± 0.005 for active; 0.816± 0.003 for passive), because
the optimal classifier is relatively easy to find in passive learning, even with noisy data. However, the
right panel of Figure 1 shows that for a given small budget (e.g., N < 500), active learning converges
faster than passive learning. This will be further examined in Section 5.
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Algorithm 1: Active learning with rejection
Input: label budget N

1 Initialization
2 The uncertain region Â0 = [0, 1]d

3 N0 = ⌊
√
N⌋

4 k = 1
5 B = N0

6 ε0 = 1, for all k ≥ 1, define the rejection rate εk
7 for i = 1 to N0 do
8 Sample i.i.d (Xi,0, Yi,0) with Xi,0 ∼ Π

9 DN0 = {(X1,0, Y1,0) . . . , (XN0,0, YN0,0)}
10 Based on DN0 , compute an estimator η̂DN0

.
11 η̂0 := η̂DN0

12 while B + ⌊Nkεk⌋ ≤ N do
13 Sample i.i.d DU

Mk
= {Xi, i = 1, . . . ,Mk} with Xi ∼ Π(.|Âk−1).

14 Based on DU
Mk

, compute λ̂k such that P̂(f̂k−1 ≤ λ̂k|Âk−1) = εk

15 Âk := {x ∈ Âk−1, f̂k−1(x) ≤ λ̂k}
16 Nk = cNNk−1

17 for i = 1 to ⌊Nkεk⌋ do
18 Sample i.i.d (Xi,k, Yi,k) with Xi,k ∼ Π(.|Âk)

19 DNk
= {(X1,k, Y1,k) . . . , (X⌊Nkεk⌋,k, Y⌊Nkεk⌋,k)}

20 Based on DN0 , compute an estimator η̂DNk

21 η̂k := η̂DNk

22 η̂ =
∑k−1

j=0 η̂j1{Âj\Âj+1} + η̂k1{Âk}
23 B = B + ⌊Nkεk⌋
24 k = k + 1

Output: ĝη̂(x) = 1{η̂(x)≥1/2}for all x ∈ [0, 1]d

Figure 1: Left: Illustrative dataset after the step k = 2 of the algorithm. The points in black belong
to Â0 \ Â1 and the brown ones to Â1 \ Â2. In Â2 are the yellow points whose label have been requested
to the oracle and the remaining points in green and blue correspond to y = 1 and y = 0, respectively.
Center: theoretical (εk, blue) and experimental (ε̂k, red with error bars in grey) rejection rates. Right:
active vs. passive learning curves.
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5 Numerical experiments

5.1 Parameters choice and sampling strategy

This Section discusses some aspects of the practical implementation of our algorithm.

Parameters choice To perform numerical experiments, a few parameters of our model have to
be set. First, the sequence of rejection rates was defined such that εk+1 = cεεk, with ε0 = 1 and
cε ∈]0, 1[. If cε is small, the uncertain region Âk will be small, which corresponds to an "aggressive"
strategy where many points are considered to be correctly classified at each step. Conversely, if cε is
large, the strategy will be more "conservative". Second, the constant cN defines the sequence Nk as
Nk = ⌊cNNk−1⌋ and thus the number of points asked to the oracle at step k (⌊Nkε̂k⌋ on line 17 of
Algorithm 1). If cN is large, the algorithm will use many points at each step, thereby consuming the
budget faster. A larger budget therefore allows a larger cN . Third, the number of points to build the
initial classifier is theoretically set to N0 = ⌊

√
N⌋. In practice, this number can be increased to get a

better estimate of η̂0. Using a larger N0 will however consume the budget faster. Third, Mk unlabeled
data points in DU

Mk
are used at each step to estimate λ̂k. If Mk is large, the estimation of λ̂k will be

more accurate. As these Mk points remain unlabeled, they do not contribute to the budget, and Mk

could in principle be large. The only restriction is that at each step k these (unlabeled) points have to
be sampled independently of the (labeled) points asked to the oracle, it indirectly limits the number
of points available to the oracle. Several experiments (results not shown) indicate that Mk ≥ 100
provides a reasonable estimate of λ̂k. Finally, the parameter u in Section 4.1 has been set to 10−5. Its
precise value does not affect much the results, as long as it remains close to 0.
Unless otherwise stated, our numerical experiments were performed using a "conservative approach,
with the parameters discussed above set to cε = 0.95, cN = 1.2, N0 = 2⌊

√
N⌋ and Mk = 150.

Sampling strategy We designed a sampling strategy that re-uses points whenever possible, using
two recycling procedures explained below. This is not so important in our numerical experiments with
synthetic data (Section 5.2), where 105 data points are used to mimic the theoretical situation with an
"infinite" pool of data. However it can become crucial in practical applications with limited labeled
data, as in the non-synthetic datasets used in Section 5.3.
The first recycling procedure is that the unlabeled points from step k−1 will be re-used at step k. This
does not invalidate our theory just because of the additive form of the risk over cells Ak. Indeed, our
trained estimator has the form ĝ(·) =

∑
k ĝk(·)1Ak

(·) and then its overall risk R(ĝ) can be decomposed
on the different regions Ak (by conditioning on the data used to approximate the region from the
previous iteration).
The second recycling procedure is that the data already labeled by the oracle at previous iterations (up
to k− 1 included) are reused to train η̂k, as long as they belong to the region Ak. A similar procedure
was used in (Urner et al., 2013). This allows to improve the estimation of η̂k and to limit the budget
consumption. This sampling strategy is permitted because of the expression of the estimator and the
decomposition of the risk as noted above. It is particularly useful in practical applications where the
total amount of labeled data is limited.

5.2 Synthetic datasets

Setting These numerical experiments were performed using 105 data points with a budget of N =
5000. The accuracy was tested on an independent test set of 5000 points, that were never used at any
step in the algorithm. The parameters are set according to Section 5.1.
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The algorithm was first challenged on three synthetic two-dimensional binary datasets (named dataset
1, 2, and 3, respectively), to study cases in which it is favorable. Dataset 1 aims at reproducing in
two dimensions a toy example used by (Dasgupta, 2011), where the best linear classifier is located at
x1 = −0.3 but active learning algorithms could be misled to x1 = 0. Dataset 2 represents a situation
where some data (x1 < 0) are easy to classify while others (x1 > 0) are not. Dataset 3 is a mixture
of Gaussian distributions, whose parameters can be adjusted to create various degrees of overlap. The
results presented here correspond to σ = 0.3.

Figure 2: Top : From left to right, synthetic datasets 1, 2, and 3 used in this study with the points
colored in blue or cyan depending on their class. Bottom : corresponding learning curves for active
and passive linear classifiers.

The datasets are presented on Figure 2 as well as the corresponding learning curves for our active
learning algorithm and its passive counterpart in the case of several classifiers: linear SVM, SVM with
a Gaussian kernel, random forests and k nearest neighbors. These classifiers are from the scikit-learn
library (Pedregosa et al., 2011). Several parameters were tested, with similar results. The results in
Table 1 are with the following parameters: regularization constant C = 5 for SVM, 100 trees for
random forests, k = 5 for kNN. The other parameters are kept to their default value.

Results for datasets 1 and 2 In the case of SVM linear classifiers, our active learning algorithm is
clearly superior to its passive counterpart for datasets 1 and 2, either with the larger budget (N = 5000)
or with the smaller budget (N = 200). The situation is similar for SVM with Gaussian kernel, although
it is less pronounced for dataset 2 at large budget. In the case of random forests and kNN, the difference
is barely noticeable at large budget, but our algorithm is clearly superior with the smaller budget.

Results for dataset 3 Dataset 3 was designed to represent an easier classification problem. In this
case our active learning algorithm does not present any advantage, although it does not significantly
deteriorates the results (only slightly for SVM with Gaussian kernel).

5.3 Non-synthetic datasets

Several experiments were performed with various dataset from the UCI machine learning repository.
Three "large" (more than 10000 data points) were used: skin (245057 points in R3), fraud (20468
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dataset classifier budget test precision

id N passive active

1 SVM linear 5000 0.935 ± 0.020 0.974 ± 0.00

200 0.945 ± 0.023 0.959 ± 0.012

SVM rbf 5000 0.975 ± 0.003 0.996 ± 0.002

200 0.964 ± 0.012 0.989 ± 0.022

random forests 5000 1.000 ± 0.000 1.000 ± 0.000

200 0.989 ± 0.004 0.997 ± 0.008

kNN (k = 5) 5000 0.995 ± 0.002 0.995 ± 0.002

200 0.956 ± 0.011 0.993 ± 0.013

2 SVM linear 5000 0.852 ± 0.015 0.909 ± 0.000

200 0.871 ± 0.026 0.910 ± 0.016

SVM rbf 5000 0.966 ± 0.003 0.968 ± 0.003

200 0.951 ± 0.007 0.967 ± 0.005

random forests 5000 0.965 ± 0.003 0.965 ± 0.003

200 0.957 ± 0.005 0.965 ± 0.003

kNN (k = 5) 5000 0.965 ± 0.003 0.967 ± 0.003

200 0.950 ± 0.012 0.963 ± 0.010

3 SVM linear 5000 0.951 ± 0.003 0.948 ± 0.007

200 0.949 ± 0.003 0.948 ± 0.007

SVM rbf 5000 0.952 ± 0.003 0.943 ± 0.012

200 0.948 ± 0.003 0.942 ± 0.011

random forests 5000 0.944 ± 0.002 0.943 ± 0.006

200 0.942 ± 0.008 0.943 ± 0.007

kNN (k = 5) 5000 0.946 ± 0.004 0.945 ± 0.004

200 0.944 ± 0.005 0.945 ± 0.003

Table 1: Results on synthetic datasets 1, 2, and 3 for budgets of 5000 or 200, with several classifiers:
linear SVM, SVM with Gaussian kernel (called SVM rbf here), random forests (with 100 trees), and k
nearest neighbors (kNN, with k = 5)
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points in R113) and EEG (14980 points in R14). For those "large" datasets a maximum budget of
N = 3000 was used.
Three "small" (less than 1000 data points) were also considered: breast (683 points in R10), cleveland
(297 points in R13), credit (690 points in R14). For those "small" datasets a maximum budget of
N = 500 was used.
The results for the largest dataset (skin) are presented as learning curves on Figure 3. All results are
summarized in Table 2.

Figure 3: Skin dataset with linear SVM, rbf SVM, kNN5, and random forests: active vs. passive
learning curves.

These results indicate that for the skin and fraud datasets, the converged accuracy (at large budget)
is superior for active learning in the case of SVM linear, but very similar for the other classifiers. This
is partially due to the fact that the resulting active classifier is not linear anymore. However, when the
budget is limited to smaller values (see the inserts of Figure 3), the active learning procedure provides
a clear advantage.
The picture remains unchanged when we consider the "small" datasets. Indeed, most of the time the
active method improves the passive one (see Table 3). However, this improvement is rather limited,
expect for cleveland dataset where the use of the active algorithm is particularly beneficial.

5.4 Summary of the results and discussion

The study on synthetic datasets shows that our active learning algorithm using rejection provides a
clear advantage for the first two datasets, especially at low budget, but not for the third dataset.
This indicates that our algorithm is most useful in situations where the classification problem is more
difficult.
In non-synthetic datasets, the active learning procedure appears to be most effective on larger datasets.
The explanation is as follows. For small datasets (e.g., a few hundreds points), the number of points
N0 has to be chosen quite small. The estimate η̂0 is thus likely to be inaccurate, which in turn implies
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name classifier passive active

skin SVM linear 0.931 ± 0.004 0.944 ± 0.001

SVM rbf 0.994 ± 0.000 0.998 ± 0.000

random forests 0.995 ± 0.001 0.997 ± 0.000

kNN (k = 5) 0.996 ± 0.000 0.994 ± 0.000

fraud SVM linear 0.994 ± 0.000 0.999 ± 0.000

SVM rbf 0.988 ± 0.002 0.993 ± 0.001

random forests 0.991 ± 0.006 0.998 ± 0.002

kNN (k = 5) 0.946 ± 0.003 0.959 ± 0.002

EEG SVM linear 0.555 ± 0.005 0.534 ± 0.000

SVM rbf 0.549 ± 0.006 0.559 ± 0.000

random forests 0.833 ± 0.005 0.877 ± 0.028

kNN (k = 5) 0.763 ± 0.007 0.716 ± 0.009

Table 2: Results on "large" non-synthetic datasets with several classifiers for active and passive
procedures, with a budget of N = 3000.

name classifier passive active

breast SVM linear 0.965 ± 0.008 0.972 ± 0.006

SVM rbf 0.961 ± 0.008 0.968 ± 0.011

random forests 0.968 ± 0.009 0.970 ± 0.008

kNN (k = 5) 0.964 ± 0.008 0.965 ± 0.011

cleveland SVM linear 0.829 ± 0.047 0.821 ± 0.011

SVM rbf 0.804 ± 0.025 0.906 ± 0.017

random forests 0.778 ± 0.029 0.879 ± 0.059

kNN (k = 5) 0.797 ± 0.038 0.815 ± 0.014

credit SVM linear 0.848 ± 0.023 0.847 ± 0.020

SVM rbf 0.862 ± 0.017 0.851 ± 0.022

random forests 0.845 ± 0.025 0.853 ± 0.014

kNN (k = 5) 0.851 ± 0.024 0.857 ± 0.019

Table 3: Results on three "small" non-synthetic datasets with several classifiers and a budget not to
exceed 500.
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an inaccurate estimation of the uncertain region in the first steps and then leads to a poorly controlled
algorithm.
Interestingly, even in such small datasets, our algorithm is rarely detrimental to the final precision
reached and can even be useful when the budget is extremely limited.

6 Conclusion and perspectives

Recently several works have started to combine active learning and rejection arguments by abstaining
to label some data within an active learning algorithm. This combination is very natural since active
learning and rejection both focus on the most difficult data to classify. In this work, instead of
completely abstaining to label some data, we use rejection principles in a novel way to estimate the
uncertain region typically used in active learning algorithms. We therefore propose a computationally
efficient active learning algorithm that combines active learning with rejection. We theoretically prove
the merits of our algorithm and show through several numerical experiments that it can be efficiently
applied to any off-the-shelf machine learning algorithm. The benefits are more pronounced when the
label budget is limited, which is promising for practical applications.
Nevertheless, in the last steps of our algorithm the uncertainty about the label of some points can
become very substantial, in which case it becomes natural to completely abstain from labeling. This
abstention will be included in future work combined with our use of the reject option.
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Appendix

The section is devoted to the proof of the main result.

A Technical result

Let us first introduce some general notations: Let A be a subset of [0, 1]d, and a cubic partition Cr as
introduced in Definition 3.4. For R ∈ Cr, with R ∩ A ̸= ∅, we introduce the regression function in R
as:

η̄(R) =
1

Π(R)

∫
R
η(z)Π(dz|A).

and we define η̄(x) := η̄(R) for all x ∈ R.
Here, for each k ≥ 0, and rk = N

−1/(d+2)
k , we consider the estimator:

η̂k := η̂Ak,⌊NkΠ(Ak)⌋,rk , (A.1)

where η̂Ak,⌊NkΠ(Ak)⌋,rk is defined according to Definition 3.4, and Ak is defined in algorithm 1. im-
portantly, defining η̂k in this way for all k ≥ 0 allows us to characterize the set Ak in an explicit
form:

Ak =
⋃

R∈Crk , R∩Ak ̸=∅

R.

We firstly provide a high probability bound on the estimation error:

Lemma A.1 (Favorable event with high probability).
Let L be defined as:

L = max{j ≥ 1, N >

j∑
k=0

⌊NkΠ(Ak)⌋}. (A.2)

Let k ∈ {0, . . . , L} and E be the event defined by:

E = ∩L
k=0Ek, (A.3)

where
Ek =

{
∥ η − η̂k ∥∞,Ak

≤ c5 log

(
N

δ

)
N

−1/(2+d)
k

}
, (A.4)

with ∥ η − η̂k ∥∞,Ak
:= supx∈Ak

|η̂k(x) − η(x)| and c5 is a constant independent of N and Nk, but
dependent on L and d. Under Assumptions 3.1 and 3.2 we have:

P(E) ≥ 1− δ.

Proof.
Let first note that L is deterministic as for all k ≥ 1, Π(Ak) = εk, where εk is stated in our algorithm.
Let k ∈ {0, . . . , L} and the corresponding estimator η̂k (see (A.1)). Let Crk the cubic partition consid-
ered in Definition 3.4, and fix R ∈ Crk . Let x ∈ R with R ∩Ak ̸= ∅.
Let Tj,k = Yj1{Xj∈R}

Π(Ak)
Π(R) . We observe that conditional to Ak, E [Tj,k] = η̄(R), and

|Tj,k| ≤
Π(Ak)

Π(R)
. (A.5)
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Furthermore

Var(Tj,k) =
Π(Ak)

2

Π2(R)
Var(Yj1{Xj∈R}) ≤

Π(Ak)

Π2(R)

∫
R
η(z)Π(dz|Ak) ≤

Π(Ak)

Π(R)
. (A.6)

Hence, from Bernstein Inequality, we deduce that for t ≤ 1,

P (|η̂k(x)− η̄(R)| ≥ t) ≤ exp

− ⌊NkΠ(Ak)⌋t2

V ar(Tj,k) +
tΠ(Ak)
3Π(R)

 ≤ exp
(
−⌊NkΠ(Ak)⌋Π(R)t2/Π(Ak)

)
by using (A.6).
Note that for t > 1, the inequality is always satisfied. Now, applying the above inequality, we deduce

P

(
|η̂(x)− η̄(x)| ≥ t

√
Π(Ak)

⌊NkΠ(Ak)⌋Π(R)

)
≤ exp(−t2),

Hence choosing t =

√
log
(
N(L+1)

c1δ

)
, (where c1 will be defined later) we deduce that for all x ∈ R, with

probability at least 1− c1δ
N(L+1) , we have

|η̂(x)− η̄(x)| ≤

√
log

(
N(L+ 1)

c1δ

)
2

NkΠ(R)

From the strong density assumption, we then obtain that for all x ∈ R, with probability at least
1− c1δ

N(L+1) ,

|η̂(x)− η̄(x)| ≤ c2

√
log

(
N(L+ 1)

c1δ

)
1

Nkr
d
k

. (A.7)

Where c2 =
√

2
c1

, and c1 is such that Π(R) ≥ c1r
d
k by Assumption 3.2.

To get a result in L∞-norm on Ak, it remains to consider the union bound over all R ∈ Crk such that
R ∩Ak ̸= ∅.

∥η̂ − η̄∥∞,Ak
≤ max

R, R∩Ak ̸=∅
∥η̂ − η̄∥∞,R.

By definition, for all k ≥ 0, the estimator η̂k is constant on each cell R, in this case, we have:

Π(Ak) =
∑

R, R∩Ak=∅

Π(R)

Then, by using Assumption 3.2, we have:

Π(Ak) ≥ |{R, R ∩Ak ̸= ∅}| c1rdk.

As rk = N
−1/(d+2)
k , we get for all k ∈ {0, . . . , L},

|{R, R ∩Ak ̸= ∅}| ≤ 1

c1
Π(Ak)N

d/(d+2)
k ≤ 1

c1
(Π(Ak)Nk) ≤

N

c1
(A.8)

Thus we have (conditional on Ak):
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P

∀x ∈ Ak, |η̂(x)− η̄(x)| > c2

√√√√ log
(
N(L+1)

c1δ

)
Nkr

d
k

 ≤ P

 max
R, R∩Ak ̸=∅

∥η̂ − η̄∥∞,R > c2

√√√√ log
(
N(L+1)

c1δ

)
Nkr

d
k


≤

∑
R, R∩Ak=∅

P

∥η̂ − η̄∥∞,R > c2

√√√√ log
(
N(L+1)

c1δ

)
Nkr

d
k


≤ |{R, R ∩Ak ̸= ∅}| c1δ

N(L+ 1)

≤ δ

L+ 1
by (A.8)

Besides, Assumption 3.1 leads to
∥η − η̄∥∞,Ak

≤ c3rk, (A.9)

where c3 depends on s (from Assumption 3.1) and d. Thus, by combining (A.7), (A.9) and (A.8), we
can obtain that with probability at least 1− δ

L+1 ,

∥η̂k − η∥∞,Ak
≤ c4

(√
log

(
N(L+ 1)

c1δ

)
1

Nkr
d
k

+ rk

)
,

where c4 = max(c2, c3).
Finally, as rk = N

−1/2+d
k , by considering the union bound over all steps, we get with probability at

least 1− δ,

∥η̂k − η∥∞,Ak
≤ c5 log

(
N

δ

)
N

−1/(2+d)
k for all k ∈ {0, . . . , L} (A.10)

where c5 depends on c4, c1 and L.

Because the constant c5 in (A.4) depends on L, we provide below a result which states that the variable
L defined in (A.2) does not affect drastically the bounds in (A.4).

Lemma A.2 (Bounds on the maximum number of steps L).
Let us consider the variable L defined in (A.2), we have:

log2

c8

(
1

log
(
N
δ

)) d+2
1+d

N
d+3
2+2d

 ≤ L

and

L ≤ min

1 + log2

( 1

c6 log
(
N
δ

))(2+d)/(1+d)

N (3+d)/(2+2d)

 , log2

(√
N
) ,

where c8, c6 are the constants respectively defined in (B.8), and (B.2).

Proof.
By definition of L, we have

N ≤
L+1∑
i=0

NiΠ(Ai)
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and we have as in the proof of Lemma B.2

NL ≥ c8

(
1

log
(
N
δ

))(d+2)/(1+d)

N (d+2)/(1+d).

Besides, as NL = 2LN0 and N0 =
√
N , we obtain the first inequality

L ≥ log2

c8

(
1

log
(
N
δ

))(d+2)/(1+d)

N (d+3)/(2+2d)

 (A.11)

We can get the second inequality by starting with (A.2), that is:

NLΠ(AL) ≤ N.

Furthermore, as Π(AL) = εL = min
(
1, c6 log

(
N
δ

)
N

−1/(2+d)
L−1

)
(see (B.3)), we get

NLmin

(
1, c6 log

(
N

δ

)
N

−1/(2+d)
L−1

)
≤ N.

If 1 ≤ c6 log
(
N
δ

)
N

−1/(2+d)
L−1 , then

L ≤ log2

(√
N
)

(A.12)

On the other hand, if 1 > c6 log
(
N
δ

)
N

−1/(2+d)
L−1 then

L ≤ 1 + log2

( 1

c6 log
(
N
δ

))(2+d)/(1+d)

N (3+d)/(2+2d)

 (A.13)

Finally, by combining (A.11), (A.12), and (A.13), we get the second inequality.

B Proof of Theorem 3.5

We firstly prove that in the event E, the classifier gη̂k does not make any error of classification in the
set Ak \Ak+1 for all k = 0, . . . , L− 1, where L is defined by (A.2).

Lemma B.1 (Correct classification).
Let E be the event defined by (A.3). Under Assumption 3.3, the Bayes classifier g∗ agrees with gη̂k

on the set Ak \Ak+1 for k ∈ {0, . . . , L− 1}, where L is defined by (A.2), and η̂k by (A.1).

Proof.
Let us start by stating general facts that hold for a generic estimator η̂ and the corresponding score
function f̂(x) = max(η̂(x), 1− η̂(x)). We consider Ff , and Ff̂ the cumulative distribution of f(X) and
f̂(X), where f(x) = max(η(x), 1− η(x)). Let t ∈ (1/2, 1), we have that conditional on the data

Ff̂ (t) ≤
∣∣∣Ff̂ (t)− Ff (t)

∣∣∣+ Ff (t).

Besides, the following relation holds:∣∣∣Ff̂ (t)− Ff (t)
∣∣∣ ≤ EX

[
1{∥f̂−f∥∞≥|f(X)−t|}

]
≤ 2C∥f̂ − f∥∞,
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where C is the bound on the density f provided in Assumption 3.3. Using again Assumption 3.3 we
can write

Ff (t) ≤ C

(
t− 1

2

)
.

We then deduce that for all t ∈ (1/2, 1), conditional on the data

Ff̂ (t) ≤ 2C∥f̂ − f∥∞ + C

(
t− 1

2

)
≤ 2C∥η̂ − η∥∞ + C

(
t− 1

2

)
. (B.1)

Given iteration k ∈ {0, . . . , L− 1}, we set t̂k = ∥η̂k − η∥∞,Ak
, and tk = 1

2 + t̂k. Thanks to (B.1), with
η̂ = η̂k and t = tk, we deduce that (conditional on Ak)

Ff̂k
(tk) ≤ 3Ct̂k.

Then, in the event E, we have that

Ff̂k
(tk) ≤ c6 log

(
N

δ

)
N

−1/(2+d)
k , (B.2)

where c6 = 3c5C, and c5 is defined in (A.10). Hence,

Ff̂k
(tk) ≤ min

(
1, c6 log

(
N

δ

)
N

−1/(2+d)
k

)
≤ εk+1 (B.3)

This implies that λk+1 ≥ 1
2 + t̂k by the definition of of λk+1.

Let x ∈ Ak \Ak+1 = {x ∈ Ak, f̂k(x) > λk+1}. Necessarily, we have

f̂k(x)−
1

2
> ∥η̂k − η∥∞,Ak

≥ |η̂k(x)− η(x)|

which implies gη(x) = gη̂k(x).

Lemma B.2 (Excess-error).
Let gη̂ be the classifier provided by our algorithm, on the event E, we have

R(gη̂)−R(gη) ≤ Õ
(
N− 2

d+1

)
,

where Õ hides some constants and logarithmic factors.

Proof. Let us consider the sequence (Ak)0≤k≤L used in our algorithm. It is not difficult to see that
{Ak \Ak+1, k = 0, . . . , L− 1} ∪AL forms a partition of [0, 1]d, where L is defined by (A.2).
In this case, the excess-risk of gη̂ can be rewritten as:

R(gη̂)−R(g∗) =
L−1∑
j=0

∫
{gη̂ ̸=g∗}∩{Aj\Aj+1}

|2η(x)− 1|dΠ(x) +
∫
AL∩{gη̂ ̸=g∗}

|2η(x)− 1|dΠ(x)

and thus

R(gη̂)−R(g∗) = 2

L−1∑
j=1

EX

[
|η(X)− 1

2
|1{g∗(X) ̸=gη̂j (X)}1{Aj\Aj+1}

]
+2EX

[
|η(X)− 1

2
|1{g∗(X )̸=gη̂L (X)}1{AL}

]
(B.4)
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Due to the Lemma B.1, the first term in the r.h.s of (B.4) is zero in the event E. Thus we get

R(ĝ)−R(g∗) = 2EX

[
|η(X)− 1

2
|1{g∗(X )̸=gη̂L (X)}1{AL}

]
≤ 2EX

[
|η(X)− 1

2
|1|η̂(X)− 1

2
|<|η̂L(X)−η(X)|1{AL}

]
We thus have

R(ĝ)−R(g∗) ≤ 2∥η̂L − η∥∞,AL
.EX

[
1|η̂(X)− 1

2
|<|η̂L(X)−η(X)|

]
≤ 4C∥η̂L − η∥2∞,AL

by Assumption 3.3. (B.5)

By Lemma A.1, we get with probability at least 1− δ

R(ĝ)−R(g∗) ≤ 4Cc6 log
2

(
N

δ

)
N

−2/(2+d)
L . (B.6)

Besides, because of the geometric progression of Nj , and the definition of L, we have

N ≤
L+1∑
j=0

NjΠ(Aj)

=
L+1∑
j=0

Njεj

≤ N0 + c6 log

(
N

δ

) L+1∑
j=1

NjN
−1/(2+d)
j−1

= N0 + 2c6 log

(
N

δ

) L+1∑
j=1

N
(d+1)/(2+d)
j−1

≤ N0 + c7 log

(
N

δ

)
N

(d+1)/(2+d)
L+1 for some constant c7.

Thus we get

N −N0 ≤ c7 log

(
N

δ

)
N

(d+1)/(2+d)
L+1 =⇒ 1

4
N ≤ c7 log

(
N

δ

)
N

(d+1)/(2+d)
L+1 as N0 =

√
N ≤ 3

4
N

=⇒ NL ≥ c8

(
1

log
(
N
δ

))(d+2)/(1+d)

N (d+2)/(1+d), (B.7)

where

c8 =
1

2

(
1

4c7

)(d+2)/(1+d)

. (B.8)

Thus, (B.6) becomes

R(gη̂)−R(gη) ≤ Õ
(
N− 2

d+1

)
.
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