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Abstract—Bistable piezoelectric energy harvesters are 

prominent solutions in the field of vibration energy harvesting 

due to their broadband behavior. However, the impact of the 

electrical interface and especially the load impedance needs to 

be addressed. In this study, the impact of the electrical load 

resistance on the dynamic of the bistable piezoelectric energy 

harvester has been studied. Through a parametric study, the 

present paper shows that the load resistance impacts both the 

harvested power and the bandwidth of the harvester. The 

analytical expression of the mass displacement, critical angular 

frequency and harvested power have been obtained, based on a 

truncated harmonic balance method. A comparison between the 

analytical model and experimental measurement on a custom 

bistable energy harvester is then presented. The experimental 

results are in good agreement with the analytical model, which 

proves the validity of the proposed model and analysis. The 

results presented in this study should be considered in the 

development of maximum power point tracking algorithms and 

orbit jump strategies. 

Keywords—piezoelectricity, energy harvesting, nonlinear 

dynamical systems, electromechanical systems  

I. INTRODUCTION 

During the last decades, there has been a growing interest 
for new energy harvesting solutions that could enable the 
development of battery-less sensors. Piezoelectric energy 
harvesters (PEH) are of particular interest because of their 
high energy density and their integration capability. PEH 
based on linear mechanical resonators [1] show interesting 
results provided that the vibration frequency matches the 
resonant frequency of the resonator. However, a slight 
mismatch of the vibration frequency leads to a drop of the 
harvested power.  This constitutes a major issue in real 
applicative cases where both the vibration frequency and the 
PEH resonant frequency might vary with time [2]. To enlarge 
the bandwidth of PEH, researchers proposed to add 
nonlinearities to the mechanical resonator. Among the various 
nonlinear PEH that have been investigated in the literature, 
one of the most promising is the bistable PEH [3] [4]. 

Many research articles have focused on the mechanical 
optimization and analysis of bistable PEH. Erturk et al. [5] and 
Stanton et al. [6] demonstrated that bistable PEH exhibit high-
power orbits that allow to considerably enlarge the bandwidth. 
In their work, Sneller et al. studied the impact of the inertial 
mass in order to optimize bistable PEH [7]. More recently, Liu 
et al. [8] and Saint-Martin et al. [9] proposed parametric 

analysis of bistable PEH, describing the impact and influence 
of each parameter of bistable PEH.  

Since PEH exhibit bidirectional electromechanical 
coupling, it has been proven that the electrical interface has a 
certain impact on the behavior of the system. Previous works 
focused on the load resistance impact on the bandwidth for 
linear piezoelectric energy harvesters [10] [11] and non-linear 
monostable piezoelectric energy harvesters [12]. The works 
presented in [13] focused on the load resistance optimization 
in order to maximize the harvested power for bistable PEH. 
However, to date and to the authors knowledge, no analytical 
and compact model of the impact of the load resistance on 
bistable PEH has been derived.  
  
 In this paper, we propose an analytical model with 
experimental validation of the load resistance impact on the 
harvested power as well as on the bandwidth of the system. 
First, we present the bistable PEH electromechanical model. 
In a second time, an analytical model of the electrical interface 
influence on the bistable dynamics is derived, by mean of a 
truncated harmonic balance. The experimental testbench and 
protocol are then presented. The experimental measurements 
are finally discussed and compared with the analytical model.  

II. ELECTROMECHANICAL MODEL OF BISTABLE PEH 

A. Bistable piezoelectric energy harvester 

A piezoelectric energy harvester is a mechanical-to-
electrical energy converter. It uses ambient vibrations as 
mechanical energy source. In this paper, we focus on a 
bistable piezoelectric energy harvester made of an inertial 
mass connected to two parallel buckled beams. The beams are 
clamped on one side and connected to an amplified 
piezoelectric actuator (APA) on the other side as depicted in 
Fig. 1. The APA is built around a stack of lead titano-zirconate 
piezoelectric ceramic (PZT) installed in an elliptical metallic 
shell.  

When the beams are horizontal (which corresponds to an 
unstable position of the mass), the mass compresses the shell 
in its width, thereby stretching the piezoelectric ceramic stack 
and resulting in a negative voltage across the piezoelectric 
material. Conversely, when the mass reaches a positive (or 
negative) extremum, it stretches the shell in its width, thereby 
compressing the piezoelectric ceramic stack and resulting in a 
positive voltage across the piezoelectric material. 



Fig. 1. Bistable piezoelectric energy harvester. 

 As detailed in [14], the differential equations modeling the 
electromechanical dynamic of the bistable piezoelectric 
energy harvester can be written as:  
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In (1), 𝑥, 𝑥0, 𝛼  and 𝑣  stand for the dynamic mass 
displacement, the “positive” equilibrium position of the mass, 
the force factor and the piezoelectric output voltage, 
respectively. 𝑀, 𝐿, 𝑅 and 𝐶0 represent respectively the mass, 
the length of the buckled beams, the electrical load resistance 
and the capacitance of the piezoelectric material. 𝑄 and 𝜔0 
stand for the mechanical quality factor and the natural 
resonant frequency of the equivalent linear resonator of the 
bistable, obtained for small displacements of the mass around 
one of its equilibrium positions.  

Due to its bistability, the harvester may exhibit two 
families of orbits, known as intra-well and inter-well motions 
[9]. Intra-well motion consists in small oscillations of the 
inertial mass around one of the two stable positions 𝑥 = ±𝑥0 
whereas inter-well motion consists in oscillations around the 
two stable positions. Intra-well and inter-well motions can be 
defined respectively as low and high energy orbits.  

B. Analytical modelling 

From (1), it can be seen that an electrical term (
2𝛼

𝑀𝐿
𝑥𝑣) is 

included in the mechanical equation. This electrical term can 
be associated with an electrically induced damping due to the 
electrical energy extracted from the harvester, as shown in 
[10] and [12] for instance. The first equation of (1) is 
reformulated to show the ratio between the electrical and the 
mechanical damping, noted β. Considering that the vibration 
is sinusoidal, the acceleration is expressed as: 𝛾(𝑡)  =
−𝛾𝑚𝑐𝑜𝑠(𝜔𝑡). 
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The harmonic balance method is applied to (2) considering 
only the first harmonic of the mechanical displacement 
(higher order harmonics are not considered in the analytical 
expression). This approximation is reasonable since the 
waveform of the displacement is experimentally shown to be 
close to a sine wave. Considering that the system is at the 

resonance (𝜔 = 𝜔𝑐), a phase lag of 90° exists between 𝑥𝑚 
and 𝛾 as detailed in [15]. The resonance corresponds to the 
frequency for which the amplitude of the inter-well motion is 
maximal before this orbit suddenly disappears, therefore this 
frequency 𝜔𝑐 is called critical frequency in the following. The 
expression of the inertial mass displacement at 𝜔 = 𝜔𝑐  can 
then be written as: 𝑥 = 𝑥𝑚sin (𝜔𝑡) . Applying harmonic 
balance on the first equation of (2) leads to: 
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From (3) the expression of the mass displacement 
amplitude 𝑥𝑚𝑐  and the critical angular frequency 𝜔𝑐  can be 
obtained by cancelling the factor terms of sin (𝜔𝑡)  and 
cos(𝜔𝑡) respectively:  
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From (5), the critical angular frequency depends on 𝛽 and 
therefore on the electrical damping. Increasing the electrical 
damping implies the decrease of the critical angular frequency 
for which the high orbit disappears. Conversely, decreasing 
the electrical damping implies the increase of the critical 
angular frequency.  

In the second equation of (1), the voltage frequency is 
considered twice greater than the excitation frequency. This is 
due to the fact that the piezoelectric element is constrained 
twice per cycle (one time for each equilibrium position). The 
piezoelectric voltage can therefore be expressed as: 𝑣 =
𝑣𝑎 sin(2𝜔𝑡) + 𝑣𝑏cos (2𝜔𝑡) where 𝑣𝑎 and 𝑣𝑏 stand for the in-
phase and the out-of-phase components of the piezoelectric 
voltage. Applying the harmonic balance to the electrical 
equation of (1) leads to: 
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Equation (6) leads to the expression of 𝑣𝑎 and 𝑣𝑏: 

{
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From (7), we can express the piezoelectric output voltage: 
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Injecting (8) into the first equation of (1) leads to the 
expression of the electrical term of the mechanical equation: 
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phase with the mechanical velocity at the resonant frequency 
(�̇� = 𝑥𝑚𝜔𝑐cos (𝜔𝑐𝑡)). From this term yields the expression 
of the electrical damper:  
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Where 𝑘𝑚
2  stand for the electromechanical coupling 

coefficient. From (10), it can be seen that 𝛽 depends on the 
load resistance. Moreover, there exists a value of the load 

resistance (𝑟 =
1

2Ω
) that maximizes the electrical damping. If 

the load resistance is smaller or larger than this value, the 
electrical damping is decreased. 

The harvested power is estimated as the power dissipated 
in the resistive load 𝑅 and is expressed as: 
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2𝑄
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Injecting (4) in (11) leads to the expression of the 
harvested power and the maximum harvested power at the 
resonance: 
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 From (12) and (13), the harvested power depends on 𝛽. 
The harvested power reaches its maximum when 𝛽 = 1 
which is the optimal value and means that the electrical 
damping is equal to the mechanical damping. Thus 𝑃ℎ|𝜔=𝜔𝑐 =
𝛾𝑚
2 𝑄𝑀

8𝜔0
 and the harvested power decreases if 𝛽  is smaller or 

larger than 1, which is a standard result for linear resonators. 

Unless specified otherwise, the parameters that have been 
applied in order to compute Fig. 2 and Fig. 3 are presented in 
Table I. Fig. 2.a shows the harvested power as a function of 
the load resistance for three different values of the coupling 
coefficient. For a small coupling coefficient (𝑘𝑚

2 = 1 %), the 
harvested power is close to 3 𝑚𝑊 and there exist only one 

value of the load resistance (𝑅 =
1

2𝐶𝑝𝜔
) that maximizes the 

harvested power. Increasing the coupling coefficient (e.g. 

𝑘𝑚
2 = 5 %) allows to reach the power limit 𝑃ℎ|𝜔=𝜔𝑐 =

𝛾𝑚
2 𝑄𝑀

8𝜔0
 

and there exists two load resistances that are relatively close 
from each other and for which the harvested power reaches its 
maximum. For even higher coupling coefficient (e.g. 𝑘𝑚

2 =
20 %) , there exist two load resistances that maximize the 
harvested power. However, these two resistances are 
relatively spaced from each other compared to a smaller 
coupling coefficient. The critical frequency as a function of 
the load resistance for three different values of the coupling 
coefficient is illustrated in Fig. 2.b. For a small coupling 
coefficient (𝑘𝑚

2 = 1 %), the critical frequency is relatively 
high (𝑓𝑐 = 74.85 𝐻𝑧) whereas a larger coupling coefficient 

( 𝑘𝑚
2 = 20 %)  induces a relatively low critical frequency 

(𝑓𝑐 = 32.38 𝐻𝑧). Increasing the coupling coefficient implies 
the increase of the electrical damping, thus resulting in the 
decrease of the critical frequency. Moreover Fig. 2.b shows 
that the resistance which maximizes the electrical damping 

(𝑅 =
1

2𝐶𝑝𝜔
) is conversely proportional to the critical 

frequency. Increasing the coupling coefficient implies the 
decrease of the critical frequency, thus increasing the load 
resistance for which the damping is maximal. The electrical 
damping as a function of the load resistance for three different 
values of the coupling coefficient is illustrated in Fig. 2.c. As 
shown in (10), a larger coupling coefficient induces the 
increase of the damping ratio 𝛽. If the coupling coefficient is 

larger than a certain value (𝑘𝑚
2 >

16𝛺𝑥0
2

𝑥𝑚
2 𝑄

) there exists two load 

resistances allowing to reach 𝛽 = 1  and maximizing the 
harvested power. The bifurcation of the optimal resistance is 
similar to the one encountered in linear PEH [10].  

 Fig. 3.a illustrates the harvested power as a function of the 
frequency for both the bistable and the equivalent linear 
harvester (which corresponds to small oscillations of the mass 
around one of the two stable positions). The bandwidth is 
computed at half of the maximum harvested power. The 
equivalent linear harvester, exhibits a narrow bandwidth 
(1.88 𝐻𝑧) and the harvested power reaches its maximum for 
a frequency equal to the resonant frequency of the system. 
This result can be obtained only with a perfect optimization of 
the damping ratio 𝛽. This optimization of the linear harvester 
is quite complicated to perform due to the large values of 𝛽 
that are required away from the resonant frequency (much 
larger than for the bistable PEH).  

Fig. 2. (a) power, (b) critical frequency and (c) 𝛽 as a function of the load 

resistance for three different coupling coefficient.  

 

 
 



TABLE I.  PROTOTYPE PARAMETERS 

Fig. 3.  (a) harvested power and (b) optimal electrical damping for the linear 

(orange) and the non-linear (blue and yellow) model. 

 The bistable harvester with 𝛽 = 1 (no optimization of 𝛽 
as a function of the frequency), exhibits a broader bandwidth 
(26.75 𝐻𝑧) and the harvested power reaches its maximum 
when the frequency is equal to the critical frequency of the 
high orbit. Tuning the electrical damping of the bistable 

harvester ( 𝛽 = 𝛽𝑜𝑝𝑡
𝑛𝑙𝑖𝑛 ) allows to reach an even broader 

bandwidth (52.14 𝐻𝑧). Fig. 3.b shows the optimal damping 
ratio for the bistable and the equivalent linear harvesters. In 
both cases, the harvested power reaches its maximum 
(4.85 𝑚𝑊) for 𝛽 = 1. Note that in the case of bistable PEH, 
the optimal values of 𝛽  are smaller than 1 for frequencies 
higher than the critial frequency. 

III. EXPERIMENTAL VALIDATION 

A. Experimental testbench 

 An experimental testbench, depicted in Fig. 4, including a 
dSpace real time interface, an electromagnetic shaker and its 
associated power amplifier, a differential laser vibrometer and 
a programmable decade box has been set up. The piezoelectric 
energy harvester illustrated in Fig. 1 is fixed to the shaker. 
Note, that the characteristics of the prototype have been 
experimentally identified and are the same as the parameters 
used in section II (Table I). The shaker is driven in closed loop 
through the dSpace interface to control the amplitude of the 
sinusoidal excitation. Matlab scripts allow to modify the 
amplitude and the frequency of the excitation as well as the 
load resistance value. A differential laser vibrometer is used 
to measure the displacement and speed of the mass of the 
electromechanical harvester.  

Fig. 4. Experimental testbench. 

 The piezoelectric output voltage is transferred to the 
dSpace interface by mean of a voltage follower in order to 
isolate the amplified piezoelectric actuator from the dSpace 
interface input impedance. Data acquisition is done with the 
dSpace interface. The displacement and the speed of the mass 
as well as the input acceleration and the piezoelectric output 
voltage are recorded. 

B. Experimental protocol 

 As presented in the first part of this paper, the bistable 
piezoelectric energy harvester might exhibit two types of 
motion: intra-well and inter-well motions. The experimental 
characterization is performed on the inter-well motion also 
known as high-energy orbit. The PEH is submitted to a 
sinusoidal acceleration of amplitude 𝛾𝑚 = 5 𝑚. 𝑠−2  and the 
vibration frequency is swept from 30 𝐻𝑧 to 120 𝐻𝑧. In order 
to force the inter-well motion operation of the energy 
harvester, an orbit jump sequence has been developed. At 
44 𝐻𝑧, the acceleration amplitude is progressively increased 
up to 17 𝑚. 𝑠−2 . Under such large vibration amplitude, the 
energy harvester starts operating in inter-well motion. Finally, 
the acceleration amplitude is slowly decreased to 𝛾𝑚 =
5 𝑚. 𝑠−2 so that the harvester remains in inter-well operation 
even though the acceleration amplitude is smaller. The 
frequency is then swept up and down to cover the 30 𝐻𝑧 to 
120 𝐻𝑧 frequency range. 

The experimental parameters that have been applied in 
order to characterize the PEH are presented in Table II. The 
aforementioned orbit jump sequence and frequency sweep are 
performed for 70 load resistances (from 100 Ω to 30 𝑘Ω) as 
indicated in Table II. The voltage, displacement, speed and 
acceleration waveforms are stored for each combination of 
resistance and vibration frequency.  

C. Experimental validation of the proposed model 

 To validate the analytical model, we compared the results 
obtained through analytical calculations and the results 
obtained through experimental tests for the set of parameters 
shown in Table II. We also ran numerical simulations in order 
to numerically solve (1) with the parameters shown in Table 
II. Results for the inertial mass displacement are presented in 
Fig. 5.a. For the central resistance 𝑅 = 1409 Ω the analytical 
model predicted a maximum displacement at the resonance (4) 
𝑥𝑚𝑐

= 1.5 𝑚𝑚  which is in good agreement with the one 

obtained with numerical simulations and the measured 
displacement (respectively 1.56 𝑚𝑚 and 1.59 𝑚𝑚).  

Experimental parameters 

Parameter Value Unit 

Acceleration amplitude 5 𝑚. 𝑠−2 

Piezoelectric capacitance 1.232𝑒−6 𝐹 

Natural resonant frequency 335 𝑟𝑎𝑑. 𝑠−1 

Dynamic mass 6.5 g 

Buckled beam length 35 𝑚𝑚 

Mechanical quality factor 80 − 

Coupling coefficient 0.068 − 

 

 

 



TABLE II.  EXPERIMENTAL PARAMETERS  

Fig. 5. (a) displacement and (b) harvested power for 𝑅 = 229 Ω (orange), 

𝑅 = 1409 Ω (blue) and 𝑅 = 13126 Ω (yellow) in theory (dash), simulation 

(solid) and experiment (dot). 

For frequencies smaller than the resonant frequency, the 
inertial mass displacement is also well predicted. For each of 
the analytical, simulated and experimental results, the slope of 
the inter-well orbit amplitude is almost identical. Regarding 
the critical frequency, a slight difference can be observed. This 
difference increases as the displacement amplitude increases 
which is due to mechanical nonlinearities (the higher the 
displacement, the lower the mechanical quality factor). For the 
central resistance the analytical model predicted a critical 
frequency 𝑓𝑐 = 51.57 𝐻𝑧  whereas the simulation and the 
experiment critical frequencies are smaller (respectively 
48.83 𝐻𝑧 and 49.93 𝐻𝑧). Fig. 5.b shows the results for the 
harvested power. For the central resistance 𝑅 = 1409 Ω, the 
analytical model predicted a maximum harvested power at the 
resonance (13) 𝑃ℎ|𝜔=𝜔𝑐

= 4.7 𝑚𝑊  which is in good 

agreement with the one observed in simulation and 
experimental tests (respectively 4.3 𝑚𝑊  and 4.5 𝑚𝑊). For 
frequencies smaller than the resonant frequency, the harvested 
power (12) is also well predicted. The harvested powers with 
analytical, simulated and experimental results are relatively 
close.  

D. Experimental results and discussion 

 Fig. 6 illustrates the experimental impact of the load 
resistance on the dynamic of the bistable PEH. The critical 
frequency of the inter-well motion 𝑓𝑐  is a function of the 
resistance. For small resistance values (𝑅 < 200 Ω) or large 
resistance values (𝑅 > 20 𝑘Ω), this critical frequency is close 
to 70 𝐻𝑧. 

Fig. 6. Harvested power as a function of the frequency and the load 

resistance. 

 However, we can observe that 𝑓𝑐 decreases until it reaches 
a minimum of 50 𝐻𝑧 when the resistance is close to 1409 Ω. 

Indeed, this resistance is equal to 𝑅 =
1

2𝐶𝑝𝜔
 (with 𝐶𝑝 being the 

capacitance of the piezoelectric material and 𝜔 =
314.15 𝑟𝑎𝑑. 𝑠−1  the angular frequency of the vibration) 
which maximizes the electrical damping. The harvested power 
depends on the electrical damping associated to the resistance 
value. Fig. 7.a illustrates that the harvested power reaches two 
maxima for two resistances (𝑅 = 522 Ω and 𝑅 = 3220 Ω). 
These two resistances allow to reach an electrical damping 
equal to the mechanical damping, thus maximizing the 
harvested power. If the resistance is close to 1409 Ω , the 
electrical damping is greater than the mechanical damping 
(𝛽 = 1.59) . The system is therefore overdamped and the 
harvested power slightly decreases. Conversely, if the 
resistance is larger than 3220 Ω or smaller than 522 Ω, the 
electrical damping is smaller than the mechanical damping 
(𝛽 < 1)  which explains that the harvested power also 
decreases.  
These experimental results prove that it is possible to adjust 
the harvested power and the critical frequency by tuning the 
load resistance.  

Fig. 7. (a) harvested power as a function of the load resistance for the 

critical frequency, (b) maximum harvested power (blue line) and harvested 

power for the maximum electrical damping (orange line) as a function of the 

frequency. 

 

 

Experimental parameters 

Parameter Value Unit 

Acceleration amplitude 5 𝑚. 𝑠−2 

Frequency 30 − 120  𝐻𝑧 

Number of tested frequencies 910 – 

Load resistance 100 − 30 000 Ω 

Number of tested load resistances 70 –  

 

 

 



 If the resistance is finely tuned for each vibration 
frequency, it is possible to harvest more than 1 𝑚𝑊 over a 
frequency band from 30 𝐻𝑧  to 70 𝐻𝑧  as illustrated in Fig. 
7.b. This result demonstrates the wideband behavior of the 
bistable harvester as well as the interest of designing 
adaptative electrical interfaces for which the input impedance 
is dynamically optimized as a function of the vibration.  

IV. CONCLUSION 

 In this study, the impact of the electrical load resistance on 
the dynamic of a bistable piezoelectric energy harvester was 
investigated. It was shown that the load resistance not only 
impacts the harvested power but also has an impact on the 
mechanical behavior of the system and specifically on its 
bandwidth due to the damping induced by the electrical 
interface. Analytical modelling, simulation and experiments 
are in good agreement. The proposed analytical model allows 
to quickly estimate the bandwidth of the harvester as well as 
the harvested power. Moreover, these results should be 
considered in the development of maximum power point 
tracking algorithms and orbit jump strategies.  
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