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Abstract

There is still no consensus as to how to select models in Bayesian phylogenetics, and more gen-

erally in applied Bayesian statistics. Bayes factors are often presented as the method of choice,

yet other approaches have been proposed, such as cross-validation or information criteria. Each

of these paradigms raises specific computational challenges, but they also differ in their statistical

meaning, being motivated by different objectives: either testing hypotheses or finding the best-

approximating model. These alternative goals entail different compromises, and as a result, Bayes

factors, cross-validation and information criteria may be valid for addressing different questions.

Here, the question of Bayesian model selection is revisited, with a focus on the problem of finding

the best-approximating model. Several model selection approaches were re-implemented, numer-

ically assessed and compared: Bayes factors, cross-validation (CV), in its different forms (k-fold

or leave-one-out), and the widely applicable information criterion (wAIC), which is asymptotically

equivalent to leave-one-out cross validation (LOO-CV). Using a combination of analytical results

and empirical and simulation analyses, it is shown that Bayes factors are unduly conservative. In

contrast, cross-validation represents a more adequate formalism for selecting the model returning

the best approximation of the data-generating process and the most accurate estimates of the

parameters of interest. Among alternative CV schemes, LOO-CV and its asymptotic equivalent

represented by the wAIC, stand out as the best choices, conceptually and computationally, given

that both can be simultaneously computed based on standard MCMC runs under the posterior

distribution.
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Introduction

Model selection is a difficult question, which has stimulated much theoretical and practical work

over the years. The difficulty of the question is due to several factors. First, the models of interest

typically differ in their parameterisation, both in structure and in dimensionality, preventing direct

comparison of their likelihood scores and requiring careful formalization of how to penalize them

accordingly. Second, on a more conceptual front, model selection can be motivated by different

objectives, depending on the specific question of interest. These alternative goals entail different

compromises and may therefore imply different model selection procedures.

In some cases, the goal of model selection is to test alternative hypotheses about the underlying

mechanisms. A relevant example in molecular evolution is the problem of determining whether or

not a gene is under positive selection, using phylogenetic codon models. Two alternative models

are confronted, one that allows for sites and/or branches under a positive selection regime, tested

against a null model that only allows for purifying selection (Nielsen & Yang, 1998; Zhang et al.,

2005; Kosakovsky Pond & Frost, 2005). Another example in phylogenetics is the test for the

monophyly of a clade. In these examples, the alternative models being considered are meant to be

idealized representations of alternative possible states of nature. As a result, the aim is to identify

the ‘true’ model, i.e. the model formally representing the true objective situation.

In a classical frequentist context, the standard approach to deal with such hypothesis testing

problems is to use likelihood ratio tests, relying on chi-square asymptotics or on parametric (Gold-

man, 1993) and non-parametric (Shimodaira, 2004) approaches to approximate the distribution

under the null. In a Bayesian context, hypothesis testing can be addressed in two different ways.

One approach is to compare the marginal likelihoods under the two models, or equivalently, to com-

pute the Bayes factor, i.e. the ratio of the two marginal likelihoods (Jeffreys, 1935; Kass & Raftery,

1995; Oaks et al., 2019). Alternatively, a fully Bayesian formalization of the problem suggests to

also define a prior probability over the models and then to select models based on their posterior

probabilities (Kass & Raftery, 1995).

In other situations, the question is instead to select the model that gives the most accurate

estimation or the best approximation for the data-generating process, and this, without consid-

eration of any hypothesis that would be true or false. A paradigmatic example is to choose the

degree of a polynomial regression function (see e.g. Burnham & Anderson, 2002). Here, the true

regression function is not generally believed to be itself a polynomial, and thus there is no question
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of identifying the true degree. Instead, the question is to find the best tradeoff between the lack

of flexibility of polynomials of lower degree and the increased estimation error entailed by a higher

degree. Striking the correct balance between these two errors and minimizing the total error is

then the fundamental objective of model selection.

In phylogenetics, instances of this second version of model selection are often encountered. An

example is the problem of choosing between an empirical matrix such as JTT (Jones et al., 1992),

WAG (Whelan & Goldman, 2001) or LG (Le & Gascuel, 2008), or the general time reversible

(GTR) model. Empirical matrices are estimates of the average amino-acid exchange rates across a

heterogeneous set of proteins and taxonomic groups. As a result, the biochemical prior information

that they encode will fit a specific dataset of interest only approximately. If the dataset of interest

happens to be sufficiently large, re-estimation of the complete general time-reversible model may

give a more accurate model than the one proposed by any available empirical matrix. The problem

that model selection has to solve in this context is whether one can afford this re-estimation or

whether falling back onto the prior biochemical knowledge encoded into an empirical matrix repre-

sents a safer option. The answer to this question will fundamentally depend on data size, but also,

on how well the biochemical information encoded into currently available amino-acid replacement

matrices generalizes to the specific dataset of interest.

As another example, accounting for pattern heterogeneity across sites is usually done using

mixture models (Pagel & Meade, 2004; Koshi & Goldstein, 2001; Lartillot & Philippe, 2004; Quang

et al., 2008; Wang et al., 2008; Evans & Sullivan, 2012; Susko et al., 2018; Schrempf et al., 2020).

In that context, the question of model selection is important, and non trivial, whether for choosing

between alternative empirical models, for determining the number of components, or for the sake of

a more general assessment of alternative mixture designs (e.g. finite or infinite mixtures). However,

the true distribution of nucleotide or amino-acid substitution rates across sites is not itself a mixture.

Instead, the hope is just that a well chosen mixture should give a reasonable approximation of

the unknown true distribution, which would then provide increased robustness for phylogenetic

inference purposes. The situation is thus formally similar to the one described above in a regression

context using a polynomial regression function: the point of model selection with these phylogenetic

mixture models is not to identify the true number of components, but to find a good compromise

between the lack of flexibility, and potentially the systematic errors, induced by the use of few

mixture components, and the increased estimation error entailed by the use of rich mixtures.

The general problem of finding the best approximating model, as opposed to testing hypotheses,
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has been classically formalized in different ways. On one side, the approaches used for hypothesis

testing, namely likelihood ratio tests and Bayes factors, have often been employed in this context

as well. However, it is not totally clear whether they represent a correct formalization of the

question, given that there is no proper hypothesis to be tested. As pointed by Akaike (1974) and

others (Burnham & Anderson, 2002; Sullivan & Joyce, 2005), hypothesis testing is not adequately

formulated, in decision-theoretic terms, as a procedure of approximation, the two goals being

intrinsically different. In the more specific context of Bayesian inference, Bayes factors or model

posterior probabilities have been recognized as appropriate only in circumstances where it was

believed that one of the competing models was in fact true, and that in other circumstances,

other criteria may be more appropriate (Bernardo & Smith, 1994; Konishi & Kitagawa, 2007).

Accordingly, approaches have been developed, which are more decisively framing the question in

terms of finding the best approximation, without predicating on any model being true. Among

these approaches, two main types can be identified: cross-validation and information criteria.

The idea of cross-validation is to train the model on a subset of the data and then evaluate

the fit of the model over another non-overlapping subset of the observations. The procedure is

typically repeated over multiple random splits of the data into a training and a validation set, and

the cross-validated log likelihood is finally averaged over these replicates. Cross-validation has been

considered both in the context of maximum likelihood (Stone, 1974; Zhang, 1993; Smyth, 2000) and

in Bayesian inference (Geisser, 1975; Geisser & Eddy, 1979; Gelfand, 1996). Given its operational

definition, cross-validation thus directly estimates the predictive fit of a model. However, this

apparent focus on the predictive performance should not be taken too literally. It does not imply

that cross validation will be useful only in a context where prediction is indeed contemplated in

practice. Perhaps a more fundamental justification is the following: since good prediction of future

data can be achieved only by capturing, through the fine-tuning of the parameters of the model,

the structural features of the data-generating process, the predictive fit should be good indicator of

estimation accuracy. By a similar argument, it can also be seen that cross-validation automatically

accounts for overfitting. Indeed, by definition, overfitting is what happens when a model captures

random, non-reproducible patterns in the data. Owing to this non-reproducibility, a model that

overfits will therefore show a poor fit on new data obtained from the same population. This idea can

be quantitatively formalized in terms of the generalization gap of a model (Thomas et al., 2020),

or optimism (Efron, 1986), which is defined as the average drop in the apparent log-likelihood

score, when going from the training set to the validation set. Altogether, more complex models
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will thus have more expressiveness for capturing structural features of the data-generating process,

but they will also tend to have a wider generalization gap. Cross-validation automatically captures

the balance between these two opposing components of the overall fit.

In the details, cross-validation can be implemented in many different ways, depending on what

proportion of the data to set aside for validation, or how many replicates to consider (see Zhang,

1993, for an overview). The simplest and original approach is leave-one-out cross-validation (LOO-

CV), whereby each observation is successively taken out of the sample and reserved for subsequent

validation of the model, while training is done on the remaining data (Stone, 1974). Alternatively,

in k-fold cross validation (k-fold CV), the dataset is split into k equal sized subsets, then each

subset is set aside for validation and the remaining k − 1 subsets are used for training (Breiman

et al., 1984; Zhang, 1993). A variant of k-fold CV is based on repeated random sub-sampling of a

fixed fraction f = 1/k of the data that are set aside for validation.

In all cases, direct implementation of cross-validation is expensive, owing to the total number

of replicates to consider. Brute-force k-fold cross-validation and its random subsampling version

have previously been used in a phylogenetic context (Lartillot et al., 2007; Lartillot & Philippe,

2008), sometimes in combination with strict subsampling, i.e. using training and validation sets

that together represent a subset of the data (Pisani et al., 2015). Strict subsampling was motivated

by the need to reduce the computational cost. A downside, however, is that the models are then

under a regime of data size that does not correspond to the effective regime in which subsequent

inference is conducted. Yet the relative fit of alternative models with differing dimensions depends

on data size, since higher-dimensional models typically require more data to learn their parameters.

For all these reasons, indirect approaches to cross-validation, which would avoid the explicit

resampling and fitting procedure, would be particularly useful. In this direction, and in the specific

case of leave-one-out, it is in fact possible to get an estimate of the cross-validation score based only

on a standard MCMC run conditioned on the full dataset (Gelfand et al., 1992; Chen et al., 2012;

Lewis et al., 2014). This clever importance sampling approach, called cross-predictive ordinates

(CPO), makes leave-one-out cross-validation particularly attractive, practically and computation-

ally.

In a more theoretical spirit, and starting with Akaike (1974), a long series of information criteria

have been proposed, based on information-theoretic considerations. The fundamental idea behind

these information criteria is to identify the model which, once trained on the dataset of interest,

induces a distribution over the data that is closest to the true distribution of the population.
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Mathematically, the distance between model and truth is measured by the information loss (i.e. the

Kullback-Leibler divergence). Importantly, this distance is measured under the effective conditions

of use of the model, that is, under the current data size. As a result, it accounts for the two different

reasons why the model might not be so close to the true distribution in practice: because of model

mis-specification, but also, because of stochastic error in parameter estimation due to finite sample

size. This last point will critically depend on both the size of the dataset and the model dimension.

The original criterion proposed by Akaike, the AIC, has a particularly simple expression. How-

ever, its derivation relies on the assumption that the models being considered are not far from the

true distribution. It is thus not valid under strong model violation, a situation often encountered

in practice. The AIC was revisited by Takeuchi (in an original contribution in Japanese, as re-

ported in Konishi & Kitagawa, 1996), who proposed a criterion, the TIC, which is valid even in

the presence of strong model violation. The TIC reduces to the AIC when the data are indeed

under the model for some true parameter value. Compared to the AIC, the TIC is slightly more

involved computationally, since it requires an estimate of the first and second derivatives of the log

likelihood at the estimated parameter value. In practice, the difference between TIC and AIC can

be substantial (Konishi & Kitagawa, 1996).

The TIC was then generalized, first in a maximum penalized likelihood framework, with the

regularized information criterion (RIC, Shibata, 1989) or the generalized information criterion

(GIC, Konishi & Kitagawa, 1996) and in Bayesian inference, with the widely applicable information

criterion (wAIC Watanabe, 2009). In addition to accommodating model violation like the TIC,

the RIC and the GIC, the wAIC is also valid under a broader class of models, such as mixture

models or Bayesian networks, which are typically not regular, in the sense that they entail some

redundancy (i.e. non-identifiability) in the mapping from parameters to probability distributions

over the data (Watanabe, 2007). Because of their non-identifiability, such singular models typically

have complex asymptotic properties that are not correctly handled by current information criteria.

Addressing these complications is what led to the development of singular statistical learning theory

(Watanabe, 2001, 2009), of which the wAIC is one of the specific contributions.

Several other information criteria have been proposed, in addition to those mentioned above.

Two of them were explicitly meant for Bayesian inference: the deviance information criterion, or

DIC (Spiegelhalter et al., 2002) and the Bayesian analogue of AIC, or AICM (Raftery et al., 2007;

Gelman et al., 2014). The DIC has been somewhat controversial (Plummer, 2008; Spiegelhalter

et al., 2014; Celeux et al., 2006; Gelman et al., 2014). One problem is that it relies on the posterior
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mean point estimate, which is not invariant by re-parameterization of the model and is not easily

defined for mixture models (Celeux et al., 2006) or in a phylogenetic context. Another problem is

that, like the AIC, the DIC assumes that the model is correctly specified (Spiegelhalter et al., 2002).

As for the AICM, it was derived based on an analogy with the AIC, by relying on a definition of the

effective number of parameters of a model based on the Monte Carlo variance of the log likelihood.

There are two problems with this derivation, however. First, the analogy with the AIC, which is

a maximum likelihood criterion, fails to capture the contribution of the prior to the fit of a model

in the Bayesian case. Second, just like the AIC and the DIC, the AICM does not account for the

impact of model violation. Finally, the Bayesian information criterion, or BIC (Schwarz, 2006)

represents one last criterion, which does not proceed from the same rationale as the other criteria

mentioned above, as it is not based on an information loss argument. Instead, it is meant as an

asymptotic expression for the log of the marginal likelihood. As such it is more appropriate for

true model identification than for best model approximation purposes (Aho et al., 2014). Of note,

the BIC can be strongly conservative even in a true model identification task (Vrieze, 2012).

There is a direct connection between information criteria based on the information loss (AIC,

TIC, RIC, GIC, wAIC) and cross-validation. By definition, the expected information loss is, up to

an additive constant that depends only on the true distribution, proportional to the expected log

likelihood of new data points sampled from the population, under the parameter value estimated

on a data set of the original size. Cross-validation, on the other hand, measures the average log-

likelihood of the validation data points, under the parameter value estimated on the training set.

Thus, cross-validation can be seen as an operational estimate of the information loss, with the slight

nuance that the model is trained on a subset of the data, rather than on the complete dataset. For

large datasets, this difference is relatively minor, however, and particularly so for LOO-CV. As a

result, LOO-CV is asymptotically equivalent to information criteria of the Akaike family (Stone,

1977; Watanabe, 2010), or equivalently, information criteria of the AIC family are just asymptotic

expressions for the leave-one-out cross-validation score, each being valid in a different context and

under different specific assumptions. This result is important, as it emphasizes the operational

meaning of information criteria. Practically, it suggests simple experiments on empirical data, to

check the regime, in terms of data size, under which this asymptotic equivalence is effective (Vehtari

et al., 2016) – and thus more fundamentally, the regime under which asymptotic information criteria

provide a valid approximation of the frequentist risk that they are intended to measure.

Altogether, there is thus by now a broad theoretical background on model selection. Several
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alternative methods have been proposed, with subtle differences concerning their aim or their exact

regime of applicability. These issues have already been discussed in the applied statistical literature

(Burnham & Anderson, 2002; Aho et al., 2014; Vrieze, 2012; Konishi & Kitagawa, 2007), yet this has

not yet been fully incorporated into current phylogenetic practice. This is particularly apparent in

Bayesian phylogenetics. Thus, although it has long been noted that Bayes factors are conservative

in model selection when used in combination with vague priors on the model specific parameters

(the so-called Jeffreys-Lindley paradox, Jeffreys, 1967; Lindley, 1957), and that cross-validation

approaches may be more adequate for best-approximating model selection (Gelfand et al., 1992;

Bernardo & Smith, 1994; Konishi & Kitagawa, 2007), Bayes factors or marginal likelihoods are

often presented as the method of choice (Kass & Raftery, 1995; Lartillot & Philippe, 2006; Xie

et al., 2011; Oaks et al., 2019) and are widely used (Suchard et al., 2001; Baele et al., 2012b,

2013; Baele & Lemey, 2013; Brown & Thomson, 2017; Ronquist et al., 2021). The computational

challenges raised by the numerical evaluation of marginal likelihoods (Lartillot & Philippe, 2006;

Xie et al., 2011; Baele et al., 2012a) also represent a clear limitation, preventing a broader and

more systematic application of this paradigm to current empirical problems based on large datasets.

Cross-validation was used in Bayesian phylogenetics primarily for computational reasons (Lartillot

et al., 2007; Lartillot & Philippe, 2008), although without any correct evaluation of its numerical

accuracy and its theoretical validity in that context. The implementation of LOO-CV offered by

CPO appears to be attractive, and has already been introduced specifically in phylogenetics (Lewis

et al., 2014), but has thus far not been broadly used in this context. Finally, the wAIC has never

been applied to phylogenetic model selection.

In this work, the theoretical and methodological background just presented is utilized to revisit

the question of Bayesian model selection in phylogenetics, with an emphasis on identifying the best

approximating model, irrespective of any question about hypothesis testing. The statistical and

numerical issues are both examined. On the numerical side, the work presented here starts from

the realization that k-fold cross-validation, such as implemented in PhyloBayes (Lartillot et al.,

2013), turns out to be numerically inaccurate. This point is examined, and an alternative method

is proposed, based on sequential importance sampling (sIS), which is similar to sequential Monte

Carlo (Wang et al., 2016) and gives an estimate of the marginal likelihood and, simultaneously,

the k-fold cross validation scores for any k. This sIS approach is computationally intensive but

can be used on datasets of relatively small size to validate and compare marginal likelihood and

cross-validation for their ability to select the model that is most accurate in parameter estimation.
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Finally, the CPO approach to leave-one-out cross-validation is re-implemented, its statistical and

numerical properties are characterized, and its connection with the wAIC is explored on an empirical

phylogenomic dataset.

Results

The alternative measures of model fit that are considered in this work are marginal likelihoods,

or equivalently Bayes factors, leave-one-out CV (LOO-CV) and k-fold CV (with k = 5 and based

on independent randomizations of the dataset), the latter in two versions: joint and site-wise. In

joint k-fold CV, the joint likelihood of all data points of the validation set is averaged over the

posterior distribution under the training set, while in site-wise k-fold CV, the likelihood of each

data point of the validation set is averaged over the posterior distribution separately, and then the

resulting marginal likelihoods for all data points of the validation set are combined multiplicatively.

In order to be measured on the same scale, all scores are log-transformed and normalized so as to

be expressed on a per-site basis (see methods for details).

Comparing alternative measures of fit on a simple analytical example

Since they differ in their mathematical definition, these alternative measures of model fit have no

reason to agree quantitatively, or even qualitatively, on specific real cases. To examine this point,

and before getting into phylogenetic examples, the conceptual and numerical issues are illustrated

using simulations under a simple multivariate normal model for which analytical results are avail-

able. In this subsection, only the conceptual issues (i.e. the differences in the exact mathematical

measures of model fit) are considered, the numerical issues being examined in the next subsection.

The normal model considered here is a variant of the model originally due to Bartlett (1957).

The simulated data consist of a series of n real vectors of dimension p, noted (Xi)i=1..n, which are

iid from a multivariate normal distribution of mean θ∗ (also a p-vector) and of covariance matrix

Σ = σ2Ip, where Ip is the identity matrix. The true mean θ∗ used for simulation is chosen to be

close to, but not equal to 0. Inference on these simulated data is conducted under two models. In

both models, the variance parameter σ is assumed known. Under model M1, the vector of means θ

is fixed a priori to θ0 = 0. Under model M2, on the other hand, θ is estimated, assuming a normal

prior of mean 0 and of covariance Σ0 = σ20Ip. The hyper-parameter σ0 is chosen to be large, so

as to implement a vague prior on θ. Of note, when σ0 → ∞, the prior becomes improper but the
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posterior reaches a well-defined limit. We wish to evaluate the relative fit of model M2 against M1

on a dataset of size n.

Importantly, the simulation experiment is designed so as to represent a situation where model

comparison is recruited for selecting the best approximating model, not the true model. Thus,

what we want to formalize is a situation where the fixed parameter value θ0 = 0 defined by model

M1 is never exactly true. Instead, θ0 may be viewed as a reasonably good proxy for the unknown

true value θ∗, and the question is just whether we can hope to get closer to θ∗ by re-estimating θ

on the dataset of interest, thus by using M2 rather than using M1.

Data were more specifically simulated under the following settings: p = 300, σ2 = 10, θ∗ = 0.1,

and n varying from 100 to 10000. For model M2, two values were considered for the prior width,

σ20 = 10 and σ20 = 1000. Then, the alternative measures of model fit were computed: marginal

likelihood (Bayes factor), 5-fold cross-validation, both joint and site-wise, and leave-one-out cross

validation. In all cases, the exact analytical values for the expected score of M2 relative to M1

were computed. The fit curves are displayed on Figure 1A, as a function of data size. Finally, an

analytical formula is also available for the expected root mean squared error under the two models.

This expected error, which is thus a frequentist risk, is displayed for the two models on Figure 1B,

also as a function of data size.

Several observations can be made from these experiments. First, for small data size, model M1

is more accurate than model M2. Model M1 is technically wrong (it assumes that θ = 0 whereas

in fact θ∗ > 0), however, for small data size, the estimation error under model M2 is much larger

than the deviation between θ∗ and 0, and thus it is indeed more reasonable to use M1 in that case.

When n > 1000, on the other hand, M2 is more accurate than M1.

Second, by comparing the two panels of Figure 1, one can see that Bayes factors are clearly

conservative. For instance, when σ20 = 10, it takes a dataset of at least 8000 observations for Bayes

factors to show a preference for M2. Thus, between n = 1000 and n = 8000, Bayes factors are

choosing a simple model that can be up to 5 times less accurate than the more complex alternative.

This conservativeness is more pronounced under a broader prior (i.e. for larger σ0). For σ20 = 1000,

the cutoff at which Bayes factors switch to a preference for model M2 is slightly above n = 10000.

Importantly, the posterior distribution is virtually the same for these two values of σ20, which shows

that the differences in Bayes factors induced by the choice of the value of σ0 do not reflect any

real-world difference, in terms of estimation. The conservative behavior of Bayes factors under

vague priors, such as observed here, is known as Jeffreys-Lindley’s paradox (Jeffreys, 1967; Lindley,
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Figure 1: Theoretical fit of M2 relative to M1 (top) and mean squared estimation error (bottom) as

a function of data size, under the normal model, and for two alternative priors (σ20 = 10 and 1000);

the fit curves under the two alternative priors are indistinguishable for LOO-CV, k-fold joint and

site CV.
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1957).

In contrast, the model chosen by CV approaches appears to be more directly in proportion to

estimation accuracy, with a cutoff very close to the tipping point (n = 1000) at which M2 starts

to be more accurate than M1. In the details, k-fold CV appears a bit more conservative than

LOO-CV, and site-wise k-fold CV is more conservative than both joint k-fold CV and LOO-CV.

Although these differences are minor, they illustrate one potential problem with k-fold CV, namely,

that it is not measuring the fit under the practically relevant data size. This limitation is inherent

to cross-validation, but it is minimized in the case of leave-one-out, for which the training size is

virtually indistinguishable from the practically relevant data size for even moderate values of n.

The asymptotic behavior of the alternative measures of fit explored here confirms these points.

Up to an order 1/n, the logarithm of the Bayes factor (ln bf) and the joint k-fold (∆cvj), site-wise

k-fold (∆cvs) and leave-one-out (∆cvl) cv scores of model M2 relative to M1 have the following

expressions:

ln bf ' p

2

θ2∗
σ2
− p

2

lnn

n
+

p

2n

(
1− θ2∗

σ2
− 2 ln

(
σ20
σ2

))
(1)

∆cvs '
p

2

θ2∗
σ2
− p

2(1− f)n
(2)

∆cvj '
p

2

θ2∗
σ2
− p

2n

| ln(1− f)|
f

(3)

∆cvl '
p

2

θ2∗
σ2
− p

2n
(4)

Of note, when the set-aside fraction f is small, then 1
1−f ' 1 + f , and | ln(1− f)| ' f + 1

2f
2, such

that:

∆cvs '
p

2

θ2∗
σ2
− p

2n
(1 + f) (5)

∆cvj '
p

2

θ2∗
σ2
− p

2n

(
1 +

f

2

)
(6)

As for the asymptotic relative risk (i.e. difference in quadratic error between model M1 and M2,

normalized here by 2σ2), it is, up to terms in 1/n:

∆R =
p

2

θ2∗
σ2
− p

2n
(7)

From these equations, several observations can be made. On one hand, for sufficiently large n, all

terms except the first vanish. Since this first term is positive, all measures will eventually agree and

will all choose M2. This asymptotic agreement is visible on Figure 1A. Also visible on the figure is
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the slower convergence, in lnn/n, for the log Bayes factor, whereas it is in 1/n for cross-validation

under all settings. Of note, this mirrors the penalties of the BIC and the AIC, respectively.

Conversely, however, for fixed n, and considering increasingly vague priors by letting σ0 go to

infinity, the log Bayes factor is ill-behaved, since its last term goes to −∞. In other words, for a

given data size, and for arbitrary large θ∗, then, provided that the prior is sufficiently broad, BF

will nevertheless prefer M1 – and this, in spite of the arbitrary large risk that this might entail. In

contrast, CV measures are all well-behaved and are insensitive to σ0. When the set-aside fraction

f is small, the two versions of k-fold CV are slightly more conservative than LOO-CV (that is, they

have a slightly stronger penalty), the joint version being intermediate between LOO-CV and the

site-wise version, as seen on Figure 1A. Finally, LOO-CV is asymptotically equal to the difference

in quadratic estimation error between the two models. In other words, asymptotically, LOO-CV is

exactly selecting the model that gives the most accurate estimate. However, this last point not a

general result. Instead, it is a consequence of the fact that a spherical covariance matrix was used

in the model. For general covariance structures, the loo-score is asymptotically equal to another

relative quadratic risk, computed under the metric defined by the covariance matrix. This metric

essentially gives less weight to the errors made on those components of θ for which the likelihood

is less informative.

A final point not quantitatively explored here but worth noting: when θ∗ = 0, that is, when

M1 is the true model, all CV methods considered here are asymptotically inconsistent, in the sense

that the probability of choosing M1 does not converge to 1 for large n (Shao, 1993). However,

whenever CV chooses M2, it will then estimate a value for θ very close to its true value 0 (up to

a quadratic error in 1/n), such that the error in model selection will have a negligible impact on

estimation accuracy. In other words, CV is not formally consistent, but it is effectively consistent,

in the sense that the selected model is asymptotically equivalent to the true model in the Kullback-

Leibler metric. Conversely, since LOO-CV is asymptotically optimal in estimation accuracy in

the present case, any method trying to be asymptotically formally consistent will have to be more

strongly penalizing than LOO-CV and will thus be suboptimal for selecting the best approximating

model. The two goals of model selection, best approximation or true model identification, are thus

mutually incompatible (Shibata, 1986).
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Numerical approaches: accuracy and computational complexity

In this section, the question of the numerical evaluation of the alternative measures of model fit

considered above is explored, again in the normal case, for which the numerical estimates can

be directly assessed against the analytically available value. The Monte Carlo approaches that

are used here are all variations on importance sampling: naive importance sampling (nIS) for

both joint and site-wise k-fold CV, sequential importance sampling (sIS) for joint k-fold CV and

marginal likelihoods, and the cross-predictive ordinate (CPO) approach for LOO-CV (see methods

for details).

Naive importance sampling simply consists of averaging the likelihood of the data points of

the validation set (either jointly or separately, for joint or site-wise k-fold CV respectively) over a

sample of parameter configurations drawn from the posterior distribution under the training set.

When applied to joint k-fold CV, nIS works well for low dimension (p = 10, 30 or 100) but its

performance progressively degrades as the dimension of the model increases. For large dimension

p > 300, a substantial downward bias is observed. In the case of p = 1000, the bias is sufficiently

strong to change the qualitative outcome of model selection, leading to an apparent CV score

in favor of model M1, whereas model M2 has mathematically a higher CV score. As expected,

increasing the size of the Monte Carlo sample can improve the situation, although very moderately.

Under the highest dimensions considered here, it seems that it would take samples of very large

size, well above 106, in order to reduce the bias down to reasonable values.

A key statistic that is able to issue a warning about the reliability of the estimation in the present

case is the effective sample size (ESS). The ESS is a function of the variance of the importance

weights, such that the ESS is close to 1 when a single point of the sample has an overwhelming

contribution to the Monte Carlo average (essentially, the point of the sample that happens to have

the highest likelihood). In the present case, for high dimensions, the ESS is indeed close to 1,

indicating that the estimator is fundamentally unreliable.

In contrast to what is observed for joint k-fold CV, nIS works well on site-wise k-fold CV (Table

1). This is due to the fact that the single-observation likelihood is much less peaked than the joint

likelihood of multiple observations. As a result, the variance of the log-likelihood score under the

posterior distribution is small. Of note, for small MCMC sample size (10 samples per site), the

total bias of the estimator in log scale can be non-negligible. On the other hand, because this bias

is a sum of many small contributions (one for each data point), each of which has a large ESS
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sample size model fit bias error

method dim nominal ESS true est.1 deb.2 true est. raw3 deb.4

k-CV (nIS)

100 104 6.49 0.02 0.017 0.018 -0.006 -0.001 0.009 0.009

100 106 24.20 0.02 0.021 0.021 -0.002 -0.000 0.004 0.004

300 104 2.26 0.08 0.010 0.011 -0.065 -0.001 0.067 0.066

300 106 2.95 0.08 0.033 0.035 -0.042 -0.001 0.043 0.042

1000 104 1.52 0.24 -0.159 -0.157 -0.394 -0.002 0.395 0.393

1000 106 1.74 0.24 -0.091 -0.090 -0.327 -0.002 0.328 0.326

k-site-CV (nIS)

100 10 9.01 0.02 0.008 0.015 -0.007 -0.006 0.012 0.010

100 103 883.02 0.02 0.015 0.015 -0.000 -0.000 0.001 0.001

300 10 7.55 0.06 0.035 0.055 -0.020 -0.020 0.026 0.017

300 103 689.11 0.06 0.055 0.056 -0.000 -0.000 0.002 0.002

1000 10 5.15 0.16 0.063 0.127 -0.101 -0.064 0.106 0.050

1000 103 302.75 0.16 0.162 0.163 -0.002 -0.001 0.004 0.004

k-CV (sIS)

100 10 9.09 0.02 0.018 0.023 -0.006 -0.006 0.008 0.006

100 103 894.89 0.02 0.023 0.023 -0.000 -0.000 0.001 0.001

300 10 7.74 0.08 0.057 0.077 -0.018 -0.020 0.020 0.010

300 103 716.99 0.08 0.075 0.075 -0.000 -0.000 0.001 0.001

1000 10 5.39 0.24 0.153 0.236 -0.082 -0.083 0.084 0.023

1000 103 341.29 0.24 0.234 0.235 -0.001 -0.001 0.003 0.002

BF (sIS)

100 10 8.91 -0.33 -0.339 -0.331 -0.008 -0.007 0.008 0.003

100 103 871.21 -0.33 -0.331 -0.331 -0.000 -0.000 0.000 0.000

300 10 7.39 -1.00 -1.020 -0.995 -0.024 -0.025 0.024 0.005

300 103 663.74 -1.00 -0.996 -0.996 -0.000 -0.000 0.001 0.001

1000 10 4.98 -3.30 -3.420 -3.310 -0.116 -0.110 0.117 0.013

1000 103 277.90 -3.30 -3.306 -3.304 -0.002 -0.002 0.002 0.001

LOO-CV (CPO)

100 10 9.18 0.03 0.035 0.030 0.005 0.005 0.006 0.003

100 103 904.89 0.03 0.030 0.030 0.000 0.000 0.000 0.000

300 10 7.93 0.09 0.103 0.086 0.018 0.017 0.019 0.006

300 103 741.22 0.09 0.085 0.085 0.000 0.000 0.001 0.001

1000 10 5.60 0.30 0.374 0.302 0.073 0.072 0.074 0.012

1000 103 376.91 0.30 0.302 0.301 0.001 0.001 0.001 0.001

1: estimated; 2: debiased; 3: true error of raw estimator; 4: true error of debiased estimator

Table 1: Numerical estimates of the fit of M2 (relative to M1) under various criteria and numerical

approaches for the normal model example. See text for details.
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and therefore a small variance, it can be estimated based on a linear approximation relating it to

the variance observed across two independent runs (see methods). As a result, it can be worth

de-biasing the estimator; although not perfect, doing this does increase the overall accuracy, quite

substantially (Table 1).

A sequential importance sampling approach for k-fold CV and BF

As a way to overcome the limitations of naive IS, an alternative approach was implemented, based

on sequential importance sampling (sIS). Briefly, the idea of sIS is to run a quasi-static MCMC

in which data points are introduced one by one, each time running the MCMC for a few cycles

for equilibration, followed by another series of cycles for averaging the likelihood of the next data

point under the posterior induced by all current data points. This can be seen as a variation on

stepping-stone or on thermodynamic integration (Lartillot & Philippe, 2006; Fan et al., 2011; Xie

et al., 2011), in which the power posteriors have been replaced by partial posteriors (i.e. based on

increasingly large subsets of the data). As such, it is also close in spirit (although slightly different

from) sequential Monte Carlo (Wang et al., 2016).

When applied to the multivariate normal problem, sIS gives a more reliable estimate of the

joint k-fold CV score over the whole range of model dimensionalities considered here (Table 1).

The estimate of the log marginal likelihood returned by sIS is also reliable, for both small and large

dimensions. Here again, as in the site-wise case, the total bias of the estimators can be substantial

for small Monte Carlo sample size, but is itself well-estimated. This sIS approach, however, is

expensive – even more expensive for CV than for marginal likelihood, since CV requires to run sIS

ideally over a large number of randomized replicates of the original dataset, whereas only two runs

on the original non-randomized alignment are needed for the marginal likelihood.

Leave-one-out cross validation using cross-predictive ordinates

An estimate of the LOO-CV score can be obtained very efficiently, based on a standard MCMC

run under the posterior distribution, using the CPO approach (Gelfand et al., 1992; Chen et al.,

2012; Lewis et al., 2014). The CPO method gives accurate estimates of the LOO-CV score (Table

1). Here again, the bias can be substantial for small sample size but is well estimated.

Altogether, naive IS works well for site-wise k-fold CV, but does not work well for joint k-

fold CV. Both joint k-fold CV and Bayes factors require computationally more intensive MCMC

approaches, such as the sequential IS approach used here. Finally, the CPO approach represents a
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5-fold CV BF LOO-CV

nIS (103) nIS (104) sIS sIS CPO

model fit (ESS) fit (ESS) fit (ESS) fit (ESS) fit (ESS)

Poisson -30.89 ( 3.3) -30.88 ( 6.7) -30.87 (28.4) -31.49 (28.3) -31.35 (856.5)

WAG -28.18 ( 5.7) -28.17 ( 8.3) -28.16 (28.3) -28.82 (28.2) -28.68 (864.2)

LG -27.96 ( 5.1) -27.95 ( 6.2) -27.94 (28.3) -28.61 (28.3) -28.47 (864.5)

GTR -27.92 ( 1.8) -27.89 ( 2.3) -27.79 (31.6) -28.65 (31.8) -28.31 (675.2)

CAT-fix-hyper -27.54 ( 1.8) -27.51 ( 2.5) -27.34 (33.6) -28.10 (36.8) -27.80 (658.1)

CAT-free-hyper -27.66 ( 1.3) -27.59 ( 1.5) -27.18 (37.1) -28.04 (36.0) -27.67 (552.0)

Table 2: Numerical estimates of the fit of alternative substitution models for the elongation factor

alignment. All measures of fit are on a logarithmic scale and on a per-site basis.

reliable and computationally efficient method for estimating the LOO-CV score.

An empirical example using a single-gene alignment

The various scores and numerical methods for computing them, such as explored above on the

normal case, were then implemented in PhyloBayes (Lartillot et al., 2009, 2013). In a phyloge-

netic context, it is natural to use the individual columns of the multiple sequence alignment as the

individual data points. For the rest, the implementation of all of the methods is relatively straight-

forward, based on the already existing MCMC routines. All of these estimators were then jointly

examined, in the context of a global comparison between alternative site-homogeneous and site-

heterogeneous models on an empirical alignment. The models under comparisons are the Poisson

model (exchangeabilities between amino-acids all equal to 1), the empirical matrices WAG (Whelan

& Goldman, 2001) and LG (Le & Gascuel, 2008), and finally, the CAT-Poisson model (Lartillot &

Philippe, 2004), in two alternative versions that differ in the base distribution used for the Dirichlet

process over the amino-acid frequency vectors: either a uniform (fix-hyper) or a general (free-hyper)

Dirichlet distribution whose hyperparameters are then also estimated. The latter is the version of

the CAT model proposed by default by PhyloBayes. The results are presented in Table 2.

First, concerning k-fold CV, nIS and sIS (which are two alternative estimators of the same

mathematical quantity) agree with each other on simple models such as Poisson or WAG, but not

for more complex models such as CAT-Poisson. The ESS clearly suggests that, here also, as in

the normal case, nIS is being unreliable. In one case, this leads to a different qualitative answer as

to which model is best fitting. Thus, nIS gives an apparently higher joint k-fold CV score for the
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version of the CAT model that uses a uniform base distribution (fix-hyper), whereas sIS says that

the version with a general Dirichlet distribution (free-hyper) has a higher fit. Of note, fix-hyper is a

constrained version of the free-hyper model, assuming a uniform base distribution (as opposed to a

hyper-parameterized Dirichlet distribution). The posterior estimate of the base distribution under

the unconstrained model, however, is very far from uniform, which gives an additional argument,

independent from the ESS, suggesting that nIS is giving a wrong answer in the present case.

Second, concerning the alternative measures of model fit: k-fold CV and LOO-CV qualitatively

agree with each other. On the other hand, they differ somewhat from the Bayes factor, which tends

to be more conservative. In one case, BF and CV give a qualitatively different outcome, concerning

the choice between GTR and empirical matrices: whereas all CV methods choose GTR, BF gives

a higher score to the LG model on this EF2 dataset.

LOO-CV, BF and estimation accuracy in a phylogenetic context

The experiment above on EF2 suggests that BF can sometimes disagree with cross-validation on real

cases. To further investigate this point, another experiment was conducted, consisting of comparing

LG and GTR on increasingly large subsets of an empirical supermatrix of 35 metazoan species

(Philippe et al., 2005), using either BF or LOO-CV. The k-fold CV approach was not considered,

owing to its computational cost. Of note, here as above (Table 2), the prior on the renormalized

exchangeabilities (constrained to sum to 1) of the GTR model is uniform, thus uninformative.

The results of this experiment are summarized in Figure 2. For sufficiently large datasets, BF

and LOO-CV both favor the GTR model over LG, while for smaller datasets, the LG model tends

to be favored. This point is expected, and confirms that, for sufficiently large data size, there is

an opportunity for getting better estimates of the relative exchangeabilities than those proposed

by LG. However, if both methods agree on this dichotomy between small versus large datasets,

they substantially differ concerning the exact cutoff, in terms of data size, at which they switch

from LG to GTR. Here again, as seen above in the case of the normal model, BF is generally

more conservative than LOO-CV. As a consequence, there is an intermediate regime for which

BF and CV qualitatively differ in their selection. In practice, this intermediate regime covers a

non-negligible interval: whereas BF favors GTR over LG only starting from alignments made of

more than 600 sites, LOO-CV does so for datasets as small as 200 sites.

The analytical results presented above under the normal model suggested that cross-validation is

more in phase with estimation accuracy than Bayes factors. To investigate whether this conclusion
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Figure 2: Fit of GTR, relative to LG, as a function of data size (number of aligned positions), on

empirical data (10 random jackknife subsamples of the metazoan dataset), using BF and LOO-CV.

Error bars: standard deviation across jackknife replicates.

is also valid in the present case, the following simulation experiment was conducted. First, data were

simulated under LG and under empirically calibrated branch lengths and parameter values, using

the posterior predictive formalism and with the metazoan alignment as a template (see methods).

Then, model selection was implemented, between JTT and GTR. Importantly, the true model

(LG) was not included in the set of models being compared. This omission is meant to represent

the fact that, in reality, the true exchange rates (or, more accurately, the asymptotic exchange

rates, i.e. the ones that would be eventually estimated on a sufficiently large alignment obtained

from this empirical source) are not equal to any of the empirical models that are available. The

difference between JTT and LG is thus meant as a representation, in our simulation experiment,

of the difference between LG and the true exchange rates in the empirical experiment.

The Bayes factors and cross-validation scores obtained on these simulated data (Figure 3a)

reproduce the pattern observed on the empirical data (Figure 2) as a function of data size, with

GTR being ultimately favored by both BF and LOO-CV, although for a larger cutoff data size

for BF (700) than for LOO-CV (200). Of note, both the cutoffs and the absolute fit values are

very similar to those obtained on the original empirical experiment (Figure 2), suggesting that the

simulation experiment is mimicking the true empirical situation relatively well.

Along with model fit, the error (RMSD) in the estimation of the relative exchange rates was
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Figure 3: Fit of GTR, relative to JTT, as a function of data size under BF and LOO-CV (top),

and mean quadratic error on relative exchangeability estimates (bottom) on data simulated under

the LG model (using the metazoan dataset as a template). Error bars: standard deviation across

4 simulation replicates.
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also quantified (Figure 3b). In the case of the JTT model, this error is trivially constant (quadratic

deviation between JTT and LG). For the GTR model, this error decreases with data size. On

sufficiently small alignments, on the other hand (smaller than 200), the estimation error under

GTR can be larger than the difference between JTT and the true exchange rates (LG). Thus, for

small alignments, we are in a case where the most accurate model is in fact JTT, and this, in spite

of the fact that JTT is not the true model.

Finally, comparing RMSD with both BF and LOO-CV shows that LOO-CV provides a good

predictor of which model is more accurate for parameter estimation, with a cutoff at around 200

aligned positions. BF in contrast, imposes a stronger penalty and still chooses JTT for datasets up

to 600 sites, thus well within the regime of alignment size where GTR is in fact already returning a

substantially more accurate estimation. Transposing these observations to the empirical case, this

suggests that LG is in fact not so good and GTR is better, even for small alignments of about 200

sites and 50 taxa. It also confirms the point already demonstrated on the normal case, namely that

LOO-CV gives a more reliable predictor of estimation accuracy than BF.

Asymptotics of LOO-CV and the widely applicable information criterion (wAIC)

Bayesian LOO-CV is asymptotically equivalent to the wAIC, which is an adaptation of the AIC

and, more fundamentally, the TIC, to the Bayesian case (Watanabe, 2007). The wAIC (per site)

takes the following form :

wAIC =
1

n

∑
i

lnEpost[p(Xi | θ)] −
1

n

∑
i

Vpost[ln p(Xi | θ)] (8)

where Epost is the expectation, and Vpost the variance, over the posterior distribution under the

complete dataset X. In practice, these theoretical expectation and variance terms are replaced by

their Monte Carlo counterparts (empirical mean and variance over the MCMC sample).

In terms of interpretation, the first term of wAIC can be seen as the self-fit, that is, the fit of

the training set under the parameter value estimated on that training set. Because it uses the data

twice, this measure of the fit is optimistic. The second term represents an estimate of this optimism

bias. As such, it plays the same role as the dimensional penalty in AIC. Of note, in spite of their

similar form, the two terms in equation 8 are not of the same order of magnitude. Owing to the

asymptotic concentration of the posterior, the variance of the log likelihood at a typical site (the

second term) decreases as a function of data size, whereas the mean log likelihood (the first term)

remains asymptotically macroscopic. The same situation holds for the AIC and other classical
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Figure 4: LOO-CV and wAIC for the GTR, CAT-Poisson and CAT-GTR models (relative to LG),

as a function of data size (number of aligned positions), on empirical data(metazoan dataset). Error

bars: standard deviation across 4 jackknife replicates.

information criteria, for which the dimensional penalty becomes negligibly small compared to the

log likelihood term for sufficiently large datasets.

The numerical stability and the asymptotic equivalence between the wAIC and LOO-CV (Watan-

abe, 2010) were empirically assessed by conducting a scaling experiment, consisting of randomly

subsampling a large phylogenomic dataset and plotting the fit (LOO-CV and wAIC) of the GTR,

CAT-Poisson and CAT-GTR models (relative to LG), as a function of data size (Figure 4). Overall,

LOO-CV and the wAIC give very similar results. The discrepancy between them decreases as the

data size becomes larger, giving nearly indistinguishable numerical estimates for the largest data

sizes considered here. Even for smaller data size, the difference between LOO-CV and the wAIC

is visible but small compared to the difference in fit between the models.

In terms of numerical stability, both estimators, of LOO-CV and of wAIC, tend to be numerically

more stable for larger data size. In addition, the wAIC tends to be more accurate and less sensitive

to variation in Monte Carlo sample size than LOO-CV (Supplementary Information, section 2). In

the end, for large datasets (more than 4000 positions), for which the asymptotic approximation of

the wAIC is very accurate, it is possible to get numerically satisfactory estimates of the wAIC based
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on a thinned sample of 100 points regularly spaced over a well-converged MCMC run. This thinning

approach represents a particularly attractive option in the case of mixture models, for which the

numerical evaluation of the likelihood, as a sum over mixture components, is computationally

intensive and turns out to be the limiting factor for estimating the fit.

A final note concerning the learning curves of the three models: for the GTR model, the learning

curve reaches a plateau at around 5000 aligned positions. This suggests that, with 5 000 sites, the

GTR model has essentially learned all of what it could learn from the data. For the CAT-Poisson

and CAT-GTR models, on the other hand, the learning curves do not appear to stabilize, even

for the largest alignments (16 000 positions). Thus, although CAT-Poisson and CAT-GTR have

a substantially higher fit than GTR over the whole range of data size considered here, they could

apparently do much better still with more data or, in other words, there is still much to learn about

the details of the distribution of amino-acid preferences across sites.

Discussion

In many respects, model comparison and model selection in Bayesian inference is still an open

problem. Conceptually, in spite of a large literature on the question, a general agreement on

the guiding principles has not yet been achieved. Computationally, numerical inaccuracies are

surfacing regularly. The present work attempts to bring a few points of clarification, along with a

correction concerning the numerical accuracy of a previously introduced importance sampling k-

fold CV approach. In the end, some recommendations are suggested for improving both reliability

in model selection and computational accuracy and efficiency.

The main conclusions are as follows. As suggested previously (Gelfand et al., 1992; Bernardo

& Smith, 1994; Konishi & Kitagawa, 2007), Bayes factors are inadequate for selecting the best-

approximating model, and cross-validation appears to be more adequate for this purpose. Among

CV methods, LOO-CV stands out as the best choice, both statistically and computationally. It

also has a clear asymptotic connection with information criteria, and more specifically with the

widely applicable (or Wanatabe-Akaike) information criterion (wAIC Watanabe, 2009). For large

datasets, wAIC is easily implemented and offers a good complement to LOO-CV.
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Problems with marginal likelihoods under vague priors

One first fundamental reason for the conservative behavior of marginal likelihoods in the present

case is the use of a vague prior over the model-specific parameters. From the experiments presented

here, and more generally on conceptual grounds, marginal likelihoods do not represent a meaningful

measure of model fit under a prior that is meant to be uninformative. This is particularly apparent

in the case of the normal model. Under this model, when the prior over the unknown mean θ is

uniform over the entire real line, and thus improper, the posterior distribution is well-defined, but

the marginal likelihood is infinite. This problem has been known for a long time (Gelfand et al.,

1992; Jeffreys, 1967; Lindley, 1957), and it has already been noted in the context of phylogenetic

inference that marginal likelihoods and Bayes factors should not be used with improper priors (Baele

et al., 2012b). However, making the prior technically proper but still effectively uninformative does

not solve the problem. This is again clear in the case of the normal model, for which model selection

based on the marginal likelihood can be made arbitrarily stringent against the more complex model

by playing on its width parameter σ0 – and this, in spite of the fact that the posterior distribution is

virtually unaffected (Figure 1b, compare red and green dots). This problem is also well illustrated

by the comparison between JTT and GTR. In that case, the prior over the relative exchangeabilities

of the GTR model is proper, but non informative, and the marginal likelihood is unduly biased in

favor of JTT.

A reasonable operational consistency requirement in the context of best-approximating model

selection would be that the criterion used for selecting models should give essentially identical scores

to models that give essentially identical posterior distributions. Obviously, marginal likelihoods do

not fulfill this consistency requirement. They are are notoriously sensitive to the prior – and more

so than the posterior distribution itself. In contrast, cross-validation, and its asymptotic equivalent

given by information criteria such as the wAIC, are by construction dependent on the prior only

through the posterior distribution. Thus, they are guaranteed to be operationally consistent.

Importantly, all this does not imply that using uninformative priors is in itself problematic.

Uninformative priors do have a good theoretical justification, as a bet-hedging strategy, whose aim

is to minimize the worst case error over all possible values the unknown parameter might have

(Berger, 1985). As such, they are generally proposed as default priors, meant to guarantee some

robustness in the context of automatic application of the inference method to an arbitrary series of

practical cases (Berger, 2006). They are thus particularly useful as routine priors, in particular for
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the global parameters of the model, which are at the top of the hierarchy. However, model selection

methods should then be compatible with these priors.

Cost of learning versus accuracy, and the two aims of model selection

Intuitively, another fundamental problem of marginal likelihoods in the present context is that

they penalize models in proportion to how much information has been extracted from the data

(essentially, the relative width of the posterior, compared to the prior), and not in proportion to

how accurately this information has been learned. Yet, for selecting the best-approximating model,

only the second point is relevant. The penalty induced by cross-validation, on the other hand,

is directly and exclusively related to how well the fitted model predicts new data. As a result,

it is more directly related to the accuracy of the end result of the estimation, leaving out any

consideration about the total cost of parameter fitting.

The sequential importance sampling formalism gives another intuition of the same idea. With

sIS, the logarithm of the marginal likelihood is obtained by starting from the prior, adding sites

incrementally and summing up their individual contributions. Thus, the overall score is a sum over

the total learning curve, and as a result, it penalizes models in proportion to the total learning

work done upon going from the prior to the posterior. In contrast, leave-one-out cross validation

considers only the last step of the procedure and therefore penalizes in proportion to the marginal

surprise of the last data point (taken as a proxy for the average future observation). Thus, again,

cross-validation is more directly related to the operational quality of the final outcome, not to the

entire process of model fitting.

This difference between the two approaches is reflected in the scaling of the asymptotic penalties

that were derived in the case of the normal model (equations 1 to 4) but that are more generally

valid: on a per-site basis, the penalty is in lnn/n for the marginal likelihood (or the BIC), and

in 1/n for cross-validation (or the AIC and its relatives). In turn, lnn is an asymptotic for the

cumulative sum of 1/k:

n∑
k=1

1

k
∼ lnn

which thus reveals that the penalty of BF and BIC is indeed capturing the total cost of fitting (as if

sites had been added one by one), as opposed to the marginal cost of fitting of the last observation

for CV and AIC.

On the other hand, the total cost of fitting and, more generally, the sensitivity of the marginal
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likelihood to the prior, is potentially relevant for hypothesis testing. For instance, an alternative

hypothesis may explain the data better than does the null, but only under an effect size that is very

small compared to the typical effect sizes that would be a priori expected if the alternative were true.

This a priori unlikely event will represent a cost that marginal likelihoods will incorporate in their

evaluation of the fit, making them more inclined to select the null hypothesis in that case. Marginal

likelihoods will thus be useful in a hypothesis testing context, although this requires careful design

of the priors over effect sizes and over alternative hypotheses, so as to ensure a correct calibration

of the test. This point, and more generally the question of Bayesian hypothesis testing and its

application to phylogenetic problems, certainly deserve further investigation.

In contrast, cross-validation, being insensitive to the cost mediated by the prior on the effect

size, will often incorrectly choose the alternative in this hypothesis testing example. More generally,

cross-validation will often fail at suppressing minor but irrelevant fluctuations and redundancies

from the output and, as a result, will not be asymptotically consistent in true model identification

(Shao, 1993). However, this may be the price to pay, in order to obtain a model selection criterion

that is sufficiently flexible in other contexts and for other purposes, such as fitting a sufficiently

fine-grained mixture to a complex distribution of random effects. The different aims of model selec-

tion, testing hypotheses or finding the best-approximating model, just entail different compromises

(Shibata, 1986).

Implications for Bayesian model averaging

Model averaging is a powerful feature of Bayesian inference, making it possible to consider large

combinatorial spaces of model configurations, while integrating uncertainty over models, effect sizes

and nuisances (Fragoso et al., 2017; Hoeting et al., 2000). However, Bayesian model averaging im-

plicitly relies on marginal likelihoods. Therefore, when used in combination with uninformative

priors, it will also be biased in favor of the simpler models, just like marginal likelihoods and

Bayes factors in the context of explicit model selection. This potentially concerns several previ-

ously introduced approaches, implementing model averaging over nucleotide substitution models

(Huelsenbeck et al., 2004), over the number of components of a mixture (Evans & Sullivan, 2012),

or over the number of change points of a non-homogeneous substitution model along the phylogeny

(Blanquart & Lartillot, 2006). In the cases just cited, an uninformative prior is used, not just

for the global parameters of the model, but also for the replicated items (the exchange rates, the

mixture components or the effect sizes associated with each change point). As a result, there is a
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tendency to over-penalize the more complex model configurations, in spite of the fact that those

might be empirically more adequate.

Over-penalization in the context of Bayesian model averaging can be mitigated by the use of

a hierarchical prior over the replicated items. For instance, in the case of mixture models, using

a hyper-parameterized prior over component-specific parameters will make the model averaging

approach less conservative and thus empirically better fitting – as can be seen when comparing

the hierarchical (free-hyper) version of the CAT model with its non-hierarchical (fix-hyper) version

(Table 2). Similarly, under the change-point model, hyperparameterizing the distribution of the

effect sizes upon each transition will result in a more flexible and empirically more adequate model.

All of these points certainly need further exploration and formalization. They also raise a

more fundamental question. As mentioned above, marginal likelihoods incorporate a component

corresponding to the total cost of fitting, or equivalently, to the total learning work done upon

going from the prior to the posterior. The use of hierarchical priors in Bayesian model averaging,

by borrowing strength across replicated items, essentially reduces the distance between the prior

and the posterior at the level of the replicated items, and thus reduces the cost of fitting. However,

it is not clear whether it suppresses this cost entirely. If not, then this suggests that Bayesian

model averaging might have a general tendency to be over-penalizing, compared to what could be

achieved using more aggressive non-Bayesian model fitting approaches.

Cross-validation and wAIC: numerical considerations

In contrast to the marginal likelihood, cross-validation appears to be relatively well-behaved, if the

aim is to select the most accurate model. However, it requires some care, both for defining the

specific details of the CV procedure and for implementing a reliable numerical approach. In this

respect, k-fold CV gives reasonable results, but it is impractical. There are numerical issues with

the naive importance sampling approach, which can lead to a serious underestimation of the CV

score, in particular for higher-dimensional models.

The k-fold CV approach implemented by naive IS has been used previously for comparing site-

heterogeneous and site-homogeneous models (e.g. Philippe et al., 2011; Pisani et al., 2015; Simion

et al., 2017). In most cases, site-heterogeneous models have been found as the best fitting models.

Importantly, the effective bias of nIS is in favor of less parameter-rich models, which suggests that

the fit of the site-heterogeneous models has been underestimated thus far.

The alternative numerical approach used here for computing the k-fold CV score, based on
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sequential importance sampling, is much more accurate than nIS. However it is computationally

prohibitive. Of note, there are more sophisticated approaches than the one recruited here for

implementing sIS, based on particle filters (Wang et al., 2016), which have better Monte Carlo

properties than the naive version explored here. However, the single-site importance sampling

variance observed here suggests that such particle filters will require many particles and will thus

be computationally expensive on data sets of realistic size.

Leave-one-out cross-validation stands out as the computationally most efficient and most easily

implemented cross-validation approach. LOO-CV also has a clear asymptotic connection with in-

formation criteria, and more specifically with wAIC in the Bayesian case. For large datasets, wAIC

is easily implemented. It has a broad range of applicability, at least among i.i.d. models, and the

control of its numerical error is easier than for LOO-CV. In the end, based on the results presented

here, the practical recommendations for finding the best approximating model are relatively simple.

LOO-CV and the wAIC represent the most practical and reliable approaches. Both can be obtained

from a single pass over the MCMC sample, but LOO-CV may require larger MCMC sample sizes

(or less thinning) than wAIC to pass the quality checks. Thus, if the dataset is sufficiently large

(> 5000 aligned positions), the wAIC can be used by default. If, on the other hand, the dataset is

small, then LOO-CV should be preferred.

Practical consequences and perspectives

The arguments exposed here in favor of LOO-CV and wAIC over Bayes factors for model approx-

imation purposes are at odds with the general perception in the applied Bayesian community that

Bayes factors represent a general gold standard for model selection (Kass & Raftery, 1995; Lartillot

& Philippe, 2006; Xie et al., 2011; Oaks et al., 2019). This raises the question of the practical

consequences of the use of Bayes factors thus far, in situations where cross-validation might have

represented a logically more adequate criterion. As illustrated by the analysis of the normal case

(Figure 1), for large datasets and for models that don’t differ too much in their dimensionality,

all model selection approaches agree in their selection. Thus, in practice, previous results based

on the application of Bayes factors on large datasets, such as multi-gene phylogenetic analyses,

are unlikely to be qualitatively incorrect, although the case is less clear for smaller-scale analyses.

In any case, perhaps a more fundamental contribution of the present analysis is just to facilitate

Bayesian model selection, by providing simple guidelines, but also, by making the computational

problem of accurately estimating marginal likelihoods practically less relevant.
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Still, one main limitation of the methods explored here is that they are valid only in the context

of i.i.d. models. For more complex model design, in particular with gene-specific effects in a

multi-gene analysis (Suchard et al., 2003; Fan et al., 2011), or when combining sequence data,

fossil information and phenotypic or life-history traits (Lartillot & Poujol, 2011; Zhang et al., 2016;

Gavryushkina et al., 2016), it is less obvious how to define a correct model selection approach and

a meaningful asymptotic analysis.

Of note, this limitation also concerns information criteria classically used in a maximum likeli-

hood framework. There have been many illegitimate applications of criteria such as AIC (or BIC)

in non i.i.d. settings. Modified versions of these two criteria have been proposed for the specific

case of partition models (Seo & Thorne, 2018; Susko & Roger, 2020). It would be useful to develop

a wAIC equivalent of the modified AIC that was proposed in this context and, more generally, in

the context of other non-iid settings.

Finally, and apart from the practical considerations, the asymptotic theory behind the develop-

ment of information criteria such as wAIC also suggests an interesting frequentist perspective on

Bayesian inference, opening to more general questions, such as efficiently estimating the sampling

bias, variance, error, and more general measures of the frequentist risk of the Bayesian estimators,

all of which are worth further exploration.

Materials & Methods

Definitions and relations between alternative Bayesian measures of model fit

In this subsection, the alternative Bayesian measures of model fit are formally defined. A homoge-

neous mathematical notation is introduced, so as to emphasize the connections and the differences

between them, leaving aside in a first step the numerical and algorithmic problems.

Suppose we have a dataset made of n observations, X = (Xi)i=1..n. In the context of phyloge-

netic inference, these observations would typically be the columns of a multiple sequence alignment.

In the following, we will adopt a frequentist perspective and assume that these observations are iid

from an infinite population of unknown distribution.

We then consider a model M parameterized by θ. In a Bayesian framework, this model is

endowed with a prior p(θ) and then conditioned on data X, giving the posterior distribution
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p(θ | X):

p(θ | X) =
p(X | θ)p(θ)

p(X)
(9)

where

p(X) =

∫
p(X | θ)p(θ)dθ (10)

is the marginal likelihood.

We wish to evaluate the fit of the model. A first approach is to use the marginal likelihood as

the measure of the fit. In the following, when multiple models are compared, the dependence of

the marginal likelihood on the specific model will be more explicitly noted p(X | M), for model

M . Otherwise, the simpler notation p(X) is used. Often, the fit of a given model M2 is computed

relatively to another model M1, by computing the Bayes factor, defined as the ratio of the marginal

likelihoods of the two models (Jeffreys, 1935):

BF =
p(X |M2)

p(X |M1)
. (11)

A Bayes factor greater than 1 thus means that model M2 has a higher fit, compared to M1. As a

way to ensure a scaling consistency across all alternative measures of fit considered here, it is useful

to define the per-site log marginal likelihood:

m =
1

n
ln p(X) (12)

or, when comparing two models, the per-site log Bayes factor:

∆m =
1

n
(ln p(X |M2)− ln p(X |M1)) (13)

An alternative to marginal likelihoods and Bayes factors is cross-validation. As mentioned in

the introduction, the general idea is to split the dataset into two subsets, using one subset (noted

Xt) for training the model and then evaluating the fit of the model over the remaining subset

(noted Xv, for validation). In the context of Bayesian inference, a natural procedure to implement

cross-validation is to average the likelihood under the validation set over the posterior distribution

under the training set, i.e. computing:

p(Xv|Xt) =

∫
p(Xv|θ) p(θ|Xt) dθ. (14)

The resulting cross-validation score is then log-transformed and averaged over multiple random

splits of the original dataset into a training and a validation sets. Of note, alternative approaches
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have been proposed, such as computing the cross-validated likelihood on a plug-in estimate, typi-

cally, the posterior mean (Konishi & Kitagawa, 1996) . However, this approach is not invariant by

reparameterization. It is also not applicable for singular and redundant models, such as mixture

models (Plummer, 2008).

Based on this general idea, multiple settings can be contemplated for implementing cross-

validation. These alternative settings differ in how the dataset is split, how the replication proce-

dure is defined, or whether the likelihood is averaged over the posterior distribution jointly for all

observations of the validation set, or independently for each of them.

In k-fold cross-validation, the dataset is split into k subsets of equal size. Then, each subset

is considered in turn as the validation set, while the other k − 1 subsets are pooled together to

make the training set. There are thus k replicates in total. In a variant of this approach, used

in phylogenetics (Lartillot & Philippe, 2008), each replicate is obtained independently of other

replicates, by randomly splitting the dataset into a fraction f of the observations, which is set

aside for validation, while the remaining fraction 1 − f used for training. It is thus close to the

original version of k-fold cross-validation, with f = 1/k, except that the replicates are not obtained

by systematic rotation of the subsets. As a result, the number of replicates can be arbitrary. In

practice, for computational reasons, a small number of replicates is used, typically m = 10. The

fraction f is typically set to 0.1 or 0.2, or equivalently, k = 10 or 5. In the following, this approach

will also be called k-fold cross-validation, even if it does not exactly correspond to the original

version.

To more formally describe cross-validation, assume that l = 1..L replicates are considered, each

based on a random split of the dataset into X = (Xt
l , X

v
l ), and that the training and validation

sets are of size q and r, respectively. Thus, in k-fold CV, q = (1− f)n and r = fn, with f = 1/k,

but the definitions introduced below are valid for more general settings. Using these notations, the

final cross-validation score can be defined as:

cvj =
1

r

1

L

∑
l

ln p(Xv
l |Xt

l ) (15)

Note that, in this definition, the logarithmic score is divided by the size of the validation set: it

is thus a measure of the predictive score per future observation. This definition will be useful for

comparing the alternative settings introduced below, which differ in the value of r.

The definition just given, which corresponds to how cross-validation was implemented previously

in a phylogenetic context (Lartillot et al., 2007; Lartillot & Philippe, 2008), averages the joint
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likelihood of all observations of the validation set on the posterior distribution under the training

set. Alternatively, the posterior averaging can be done independently for each observation of the

validation set. Noting Ivl the subset of 1..n corresponding to the indices of the observations assigned

to the validation set in replicate l, the sitewise cross-validation score is thus defined as:

cvs =
1

r

1

L

∑
l

∑
i∈Ivl

ln p(Xi|Xt
l ) (16)

Again, the score is per future observation. The sitewise approach has apparently not been used

previously in the context of phylogenetics. However, it can be useful to consider it in the general

comparative evaluation conducted below.

Finally, in leave-one-out cross-validation, each observation is taken in turn and set aside for

validation, using the n− 1 remaining observations to train the model. Noting X(i) the training set

(of size n− 1) obtained by removing observation i, the score is defined as:

cvl =
1

n

∑
n

ln p(Xi|X(i)) (17)

Whichever setting is used, from a frequentist perspective, the primary quantity of interest,

implicitly targeted by cross-validation, is the expected log-likelihood cross-validation score, the ex-

pectation being taken over multiple independent draws of the entire dataset X from the population.

Again assuming that the training set Xt is of size q and the validation set Xv is of size r under the

chosen setting, this expected score only depends on q and r and is noted:

C(q, r) =
1

r
E
[
ln p(Xt | Xv)

]
(18)

Thus, by this definition, k-fold joint cross-validation can be seen as an estimator of C((1−f)n, fn),

with f = 1/k, k-fold site-wise cross-validation as an estimator of C((1 − f)n, 1), and leave-one-

out cross-validation as an estimator of C(n − 1, 1). Since C(0, n) = 1
nE[ln p(X)], the per-site log

marginal likelihood can also be seen as a special case of this formula.

If the model is regular, then for large n, the posterior distribution becomes increasingly con-

centrated around an asymptotic parameter value θ0. In the specific case where the data have been

produced under the model, then θ0 will be the true parameter value. In the general case where

the data are from an unknown distribution, there is no true parameter value, in which case θ0 is

the best approximation (in the Kullback-Leibler metric) that the model can give for the distribu-

tion induced by this empirical source. In both cases, for large n, all expected scores introduced

above, k-fold, leave-one-out or marginal, converge asymptotically to the expected log likelihood of
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an observation sampled from the population under θ0:

C(0, n) ∼ C((1− f)n, fn) ∼ C((1− f)n, 1) ∼ C(n− 1, 1) ∼ E[ln p(X1 | θ0)] (19)

This justifies the rescaling conventions introduced above.

Monte Carlo methods

To ease notation, in the following, it is assumed that, for cross validation, the first q data points

were used for training, and the last r for validation, with q and r depending on the exact cross-

validation approach. Estimation of the marginal likelihood can be seen as a special case obtained by

setting q = 0. In what follows, Xa:b denotes the set of observations (Xi)a≤i≤b. Thus, in particular,

X1:q represents the first q observations (i.e. the training set). When q = 0, X1:q is the empty set.

The index i = 1..n runs over data points, and k = 1..K over the parameter configurations sampled

by MCMC.

Naive importance sampling (nIS) for k-fold CV

The naive importance sampling (nIS) approach is used for joint and sitewise k-fold CV. In both

cases, we assume that an MCMC chain has been run under the training set, yielding a sample

(θk)k=1..K approximately under the posterior distribution θk ∼ p(θ|X1:q), for k = 1..K.

First considering joint k-fold cross-validation, equation 14, being an expectation over the pos-

terior distribution under the training set, can be approximated by the corresponding Monte Carlo

average:

p(Xq+1:n|X1:q) '
1

K

K∑
k=1

p(Xq+1:n | θk). (20)

Thus, nIS for joint k-fold CV runs as follows: for k = 1..K, compute the likelihood of the validation

data, Lk = p(Xq+1:n | θk), compute the arithmetic mean of the Lk’s over theK Monte Carlo samples

and log-transform.

A similar approach can be used for the site-wise version of k-fold CV, since, for any single

observation Xi of the validation set:

p(Xi|X1:q) '
1

K

K∑
k=1

p(Xi | θk). (21)

The site-wise posterior averages can be computed in parallel for each observation and then combined

according to equation 16. That is, for k = 1..K, compute the likelihood separately for each data
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point of the validation data, Lik = p(Xi | θk), for i = q+ 1..n. In a second step, for all i = q+ 1..n,

compute the arithmetic mean of the Lik’s over the K Monte Carlo samples, log-transform, and

finally, sum all individual contributions across the r data points of the validation set.

The cross-predictive ordinate (CPO) approach for LOO-CV

The cross-predictive-ordinate (CPO) approach (Chen et al., 2012; Lewis et al., 2014) gives an

estimate of the leave-one-out cross validation score. It relies on the following harmonic-mean

identity:

1

p(Xi | X(i))
=

∫
1

p(Xi | θ)
p(θ | X) dθ (22)

This identity suggests to obtain a sample of parameter configurations from the posterior distribution

under the entire dataset, θk ∼ p(θ|X1:n), for k = 1..K, and then approximate the expectation given

by equation 22 by a Monte Carlo average:

1

p(Xi | X(i))
' 1

K

K∑
k=1

1

p(Xi|θk)
(23)

Here also, like for site-wise k-fold CV, the Monte Carlo averages across all sites can be computed

in parallel, over a single scan of the MCMC chain. Thus, for each k = 1..K; for each i = 1..n,

compute the likelihood of each data point separately, Lik = p(Xi | θk) for site i. Then, in a second

step, for each site, compute the harmonic mean L̄i of the Lik’s over the K Monte Carlo samples,

log-transform and sum all individual contributions across the r data points of the validation set.

Sequential Importance Sampling (sIS) for k-fold CV and BF

Sequential Importance sampling is a step-by-step version of IS, which is based on the observation

that the joint probability of the validation set can be expressed in terms of a sequential product of

the marginal likelihoods of each of individual observations:

p(Xv | Xt) =
n∏

i=q+1

p(Xi | X1:i−1) (24)

or, on a logarithmic scale and on a per-site basis:

1

r
ln p(Xv | Xt) =

1

r

n∑
i=q+1

ln p(Xi | X1:i−1) (25)

Of note, in the case where q = 0 and r = n, i.e. when the training set is empty and the validation

set is the complete original dataset, then equation 25 gives the logarithm of the marginal likelihood
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(per site). In turn, if, for k = 1..K, θik is sampled from the partial posterior based on the first

i − 1 data points, i.e. θik ∼ p(θ | X1:i−1), then an importance sampling estimate of p(Xi | X1:i−1)

is given by:

p(Xi | X1:i−1) '
1

K

K∑
k=1

p(Xi | θik) (26)

This suggests to run a quasi-static MCMC in which data points are added sequentially, each time

running the MCMC for a few cycles and averaging the likelihood of the next data point under

parameter configurations sampled from the posterior induced by all current data points (equation

26). These individual IS estimates can then be log-transformed and combined additively (equation

25).

To formalize this, in the following, a cycle is defined as a coordinated series of multiple MCMC

moves that are applied successively on all parameter components of the models. A parameter

configuration is saved after each cycle. A cycle can be arbitrary, although in practice, for sIS to

give accurate estimates, a cycle should be sufficiently long to give a reasonably good de-correlation

of the MCMC between successive saved samples. The algorithm then proceeds as follows. Starting

from a parameter configuration sampled from the prior θ0 ∼ p(θ), at step i = 1..n:

• the MCMC is run for a short burn-in period of B cycles, so as to equilibrate the MCMC, and

then for another series of K cycles, giving K new parameter configurations θik approximately

under the partial posterior distribution p(θ | X1:i−1);

• the likelihood of the next data point is calculated under each of these sampled parameter

values, i.e. Lik = p(Xi | θik)

• the arithmetic mean of the K likelihood factors Lik, k = 1..K, is calculated:

Li =
1

K

K∑
k=1

Lik (27)

• finally, the Li’s for i = 1..n are log-transformed and combined such as specified by equations

25 and 26.

The quality of the estimate of p(Xi | X1:i−1) given by equation 27 depends on K, the number

of samples, but also on the variance of the log-likelihood ln p(Xi | θ) under the partial posterior

p(θ | X1:i−1). In the following, this variance is noted vi. When this variance is large, a larger value

of K should be used. In practice, many data points (e.g. constant sites in a phylogenetic context)
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are characterized by a small variance, while a minority of data points induce a large variance.

This suggests that the number of Monte Carlo samples K can be tuned on a per-site basis, by

first running a small number of cycles at step i to estimate the variance of the log-likelihood and

then proceed with a number of cycles Ki determined based on this variance estimate. A heuristic

argument for deciding how Ki should scale as a function of vi is as follows. If the Lik’s were normally

distributed, of variance vi, then the variance of lnLi, i.e. the log-transformed Monte Carlo estimate

given by equation 27 would scale as V ∼ evi
Ki

. Inverting this equation, this suggests that, in order

to target a given fixed variance for all data points, Ki should scale as evi . Taken together, these

observations lead to a second version of the algorithm, which runs a follows. Starting from a

parameter configuration sampled from the prior θ0 ∼ p(θ), at step i = 1..n:

• the MCMC is run for B cycles, giving B new parameter configurations θik approximately under

the partial posterior distribution p(θ | X1:i−1). For each of these K parameter configurations,

the likelihood of the next data point is calculated under this sampled parameter value, i.e.

Lik = p(Xi | θik), for k = 1..B.

• the sample variance v̂i of the lnLik’s is computed and used to determine Ki, using the

following rule: Ki = min(K0e
v̂i−v0 ,Kmax), which thus implements an exponential scaling of

Ki as a function of vi, targeting a sample size of K0 for sites for which have a variance equal

to v0, and truncated at Kmax.

• the MCMC is run for another series of Ki cycles, yielding a new sample of parameter con-

figurations θ′ik, for k = 1..Ki; the likelihood factors for the next data point are computed,

L′ik = p(Xi | θ′ik), for k = 1..Ki.

• this second series of likelihoods is used to compute the arithmetic average Li

Of note, the preliminary run of B cycles at the beginning of each step also contributes to equili-

brating the MCMC just after the addition of the last data point. In some cases, there is still a

small minority of data points for which vi may be too large, such that Ki = Kmax and the Monte

Carlo error may not be well controlled. On the other hand, if they represent a small fraction of the

data, their contribution to the total error should be small. This point is checked in a second step,

based on the effective sample size (Supplementation Information, section 1).
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Implementation of nIS, sIS and CPO under the normal model

In the case of the normal model, it is possible to sample the parameter θ directly from the posterior

distribution, p(θ | X1:i) for any i (see Appendix). The Monte Carlo implemented for the normal

model takes advantage of this property, by sampling θk, k = 1..K (for nIS and CPO) or θik, for

i = 1..n and k = 1..K (for sIS) independently from the relevant posterior distribution.

Implementation of nIS, sIS and CPO under the phylogenetic models

In the case of phylogenetic models, the implementation of PhyloBayesMPI was taken as a starting

point. The basic routines of MCMC sampling defining a cycle were left unchanged. Naive impor-

tance sampling was already implemented for joint k-fold CV, as a simple post-analysis routine that

scans the MCMC chain (after burnin) and averages the likelihood scores over the run. This routine

was augmented to also output the sitewise k-fold CV, according to the method described above.

Similarly, LOO-CV and the wAIC are jointly computed based on another post-analysis routine,

by scanning the MCMC sample, burn-in excluded, computing and storing the site-wise likelihood

scores, and finally computing the harmonic mean separately for each site (for LOO-CV), and the

arithmetic mean and variance for each site (for wAIC).

The sIS method requires more specific additions to the current implementation: essentially,

defining and implementing the family of reference distributions that are necessary for the variance

reduction approach, and implementing the routines for adding / removing sites during the MCMC,

computing the log-likelihood of a single site, as well as its sample variance, on the fly in order to

determine the number of cycles to use (see supplementary information).

General settings across all experiments

For the experiments shown in Table 1, under the normal model, 100 datasets of size n = 1000

observations were simulated under the following parameter values: dimension p = 100, 300, 1000,

true mean θ∗ = 0.04, and variance parameter σ2 = 1. For each replicate, the analytical values of the

log Bayes factor and the relative cross-validation score between the two models were computed (see

Appendix). In the case of cross-validation, since the results are ultimately averaged over the 100

independent simulation replicates, only one choice for the splitting of the dataset into a validation

and a training set is considered for each replicate, taking the first 800 data points for training and

the last 200 for validation. For sIS, the first approach (fixed K for all data points) was used, with
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K such as indicated in Table 1.

For the phylogenetic analyses, two previously published empirical datasets were considered:

• EF2: a multiple sequence alignment of elongation factor 2 in 30 eukaryotic species (627 aligned

positions), taken from Lartillot & Philippe (2006);

• Metazoa: and a concatenation of genes (35371 aligned positions) across 132 metazoans, along

with 2 choanoflagellates and 12 fungi for the outgroup (Philippe et al., 2005).

In the case of EF2 (Table 2), for k-fold CV (both joint and site-wise), 10 random reshufflings

of the sites of the original dataset were created. Each of these reshuffled version of the dataset was

further split into a training and a validation set, on which nIS was applied, running the MCMC for

1100 points (saving every cycle for JTT, LG, GTR and every 3 cycles for CAT) on the traning set

and then computing the CV score of the validation set based on the 1000 last points of the MCMC.

For sIS, a preliminary run on the original dataset and under each model was conducted for 1100

points (saving every 3 cycles for CAT). Empirical posterior means and variances for defining the

reference priors for sIS were obtained based on the last 1000 points of this preliminary run. The

self-tuned version of the sIS method was then used, with the following parameter values: B = 10,

K0 = 30, Kmax = 1000 and v0 = 0.1, with L = 2 independent runs for each data replicate (using

the original dataset for computing the marginal likelihood and the 10 random reshufflings of the

sites for k-fold CV). For LOO-CV, L = 2 independent runs were conducted on the complete dataset

and under each model, again for 1100 points and saving every 3 cycles for CAT, discarding the first

100 points of burn-in and applying the CPO method on the 1000 remaining points.

For the experiments shown in Figure 2, the Metazoan dataset was first filtered to remove sites

with more than 20% of missing data, leaving a total of 9804 sites. Then, 4 jackknife replicates

of sizes n = 200 to 800 were randomly sampled. For figure 3, a standard MCMC was run under

the complete dataset (9804 sites) and under the LG model, for a total of 1100 points. Then, 10

posterior predictive replicates were simulated, based on 10 samples regularly spaced across this

MCMC chain, discarding the first 100 points and taking one every 100 points. Each of these

simulated datasets was then jackknifed, yielding replicates of sizes n = 200 to n = 800. Both the

empirical and the simulated jackknife replicates were then used for assessing the fit of the model

by marginal likelihood or LOO-CV, using the same settings as for EF2.

For Figure 4, the complete dataset was used, and 4 jackknife replicates of size ranging from

n = 200 to n = 16000 were randomly sampled. The LOO-CV scores and the two versions of the
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wAIC were computed by running L = 2 independent chains of 1100 points (saving every 3 cycles

for CAT) on each jackknife replicate, using the last 1000 points, with or without a 10-fold thinning

(in which case the Monte Carlo estimates of the posterior averages are based on 100 points).

Data and software availability

All methods for phylogenetic models were implemented in PhyloBayes (Lartillot et al., 2013),

version 1.9, available at https://github.com/bayesiancook/pbmpi. The empirical data used here

are also available trough this repo, along with example scripts. The methods for the analytical and

Monte Carlo results under the normal model are available at https://github.com/bayesiancook/

normcv.
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