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Abstract. Given a finite alphabet A and a binary relation τ ⊆ A∗×A∗,
a set X is τ -independent if τ(X) ∩X = ∅. Given a quasi-metric d over
A∗ (in the meaning of [27]) and k ≥ 1, we associate the relation τd,k
defined by (x, y) ∈ τd,k if, and only if, d(x, y) ≤ k [3]. In the spirit of
[10, 20], the error detection-correction capability of variable-length codes
can be expressed in term of conditions over τd,k. With respect to the
prefix metric, the factor one, and every quasi-metric associated to (anti-
)automorphisms of the free monoid, we examine whether those conditions
are decidable for a given regular code.
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1 Introduction

In Computer Science, the transmission of finite sequences of symbols (the so-
called words) via some channel constitutes one of the most challenging research
fields. With the notation of the free monoid theory, some classical models may
be informally described as indicated in the following:

Two finite alphabets, say A and B, are required, every information being
modeled by a unique word, say u, in B∗ (the free monoid generated by B).
Usually, in order to facilitate the transmission, beforehand u is transformed in
w ∈ A∗, the so-called input word: this is done by applying some fixed one-to-one
coding mapping φ : B∗ −→ A∗. In numerous cases, φ is a monoid homomorphism,
whence X = φ(B) is a variable-length code (for short, a code): equivalently
every equation among the words of X is necessarily trivial. Such a translation is
particularly illustrated by the well-known examples of the Morse and Huffman
codes. Next, w is transmitted via a fixed channel into w′ ∈ A∗, the so-called
output word: should w′ be altered by some noise and then the resulting word
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φ−1(w′) ∈ B∗ could be different from the initial word u. In the most general
model of transmission, the channel is represented by some probabilistic transducer.
However, in the framework of error detection, most of the models only require
that highly likely errors need to be taken into account: in the present paper, we
assume the transmission channel modeled by some binary word relation, namely
τ ⊆ A∗ × A∗. In order to retrieve u, the homomorphism φ, and thus the code
X, must satisfy specific constraints, which of course depend of the channel τ : in
view of some formalization, we denote by τ̂ the reflexive closure of τ , and by τ
its antireflexive restriction that is, τ \ {(w,w)|w ∈ A∗}.

About the channel itself, the so-called synchronization constraint appears
mandatory: it states that, for each input word factorized w = x1 · · ·xn, where
x1, · · · , xn are codewords in X, every output word has to be factorized w′ =
x′1 · · ·x′n, with (x1, x

′
1), · · · , (xn, x′n) ∈ τ̂ . In order to ensure such a constraint, as

for the Morse code, some pause symbol could be inserted after each codeword xi.
With regard to the code X, in order to minimize the number of errors, in

most cases some close neighbourhood constraint over τ̂(X) is applied. In the
most frequent use, such a constraint consists of some minimal distance condition:
the smaller the distance between the input codeword x ∈ X and any of its
corresponding output words x′ ∈ τ̂(X), the more optimal is error detection.
In view of that, we fix over A∗ a quasi-metric d, in the meaning of [27] (the
difference with a metric is that d needs not to satisfy the symmetry axiom).
As outlined in [3], given an error tolerance level k ≥ 0, a corresponding binary
word relation, that we denote by τd,k, can be associated in such a way that
(w,w′) ∈ τd,k is equivalent to d(w,w′) ≤ k. Below, in the spirit of [10, 20], we
draw some specification regarding error detection-correction capability. Recall
that a subset X of A∗ is independent with respect to τ ⊆ A∗ × A∗ (for short,
τ -independent) whenever τ(X) ∩X = ∅: this notion, which appears dual with
the one of closed code [20], relies to the famous dependence systems [4, 10]. Given
a family of codes, say F , a code X ∈ F is maximal in F whenever X ⊆ Y , with
Y ∈ F , implies Y = X. We introduce the four following conditions:

(c1) Error detection: X is τd,k-independent.

(c2) Error correction: x, y ∈ X and τd,k(x) ∩ τd,k(y) 6= ∅ implies x = y.

(c3) X is maximal in the family of τd,k-independent codes.

(c4) τ̂d,k(X) is a code.

A few comments on Conds. (c1)–(c4):
– By definition, Cond. (c1) is satisfied if, and only if, the distance between

different elements of X is greater than k that is, the code X can detect at most
k errors in the transmission of every codeword x ∈ X.

– Cond. (c2) states a classical definition: equivalently, for every codeword x
we have τ−1d,k (τd,k(x)) ∩X = {x} whenever τd,k(x) is non-empty [20].

– With Cond. (c3), in the family of τd,k-independent codes, X cannot be
improved. From this point of view, fruitful investigations have been done in
several classes determined by code properties [9, 11, 14, 16]. On the other hand,
according to the famous Kraft inequality, given a positive Bernoulli measure over
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A∗, say µ, for every code X we have µ(X) ≤ 1. According to a famous result
due to Schützenberger, given a regular code X, the condition µ(X) = 1 itself
corresponds to X being maximal in the whole family of codes, or equivalently X
being complete that is, every word in A∗ is a factor of some word in X∗. From
this last point of view, no part of X∗ appears spoiled.

– At last, Cond. (c4) expresses that the factorization of every output message
over the set τ̂d,k(X) is done in a unique way. Since d is a quasimetric, the
corresponding relation τd,k is reflexive, therefore Cond. (c4) is equivalent to
τd,k(X) being a code.

As shown in [10, 20], there are regular codes satisfying (c1) that cannot satisfy
(c2). Actually, in most of the cases it could be very difficult, even impossible,
to satisfy all together Conds. (c1)–(c4): necessarily some compromise has to be
adopted. In view of this, given a regular code X, a natural question consists in
examining whether each of those conditions is satisfied in the framework of some
special quasi-metric. From this point of view, in [20], we considered the so-called
edit relations, some peculiar compositions of one-character deletion, insertion,
and substitution: such relations involve the famous Levenshtein and Hamming
metrics [8, 13, 17], which are prioritary related to subsequences in words. In the
present paper, we focuse on quasimetrics rather involving factors:

– The prefix metric is defined by dP(w,w′) = |w| + |w′| − 2|w ∧ w′|, where
w ∧ w′ stands for the longest common prefix of w and w′: we set Pk = τdP,k.

– The factor metric itself is defined by dF(w,w′) = |w|+ |w′| − 2|f |, where f
is a maximum length common factor of w, w′: we set Fk = τdF,k.

– A third type of topology can be introduced in connection with monoid
automorphisms or anti-automorphisms (for short, we write (anti-)automorphism):
such a topology particularly concerns the domain of DNA sequence comparison.
By anti-automorphism of the free monoid, we mean a one-to-one mapping onto
A∗, say θ, such that the equation θ(uv) = θ(v)θ(u) holds for every u, v ∈ A∗ (for
involvements of such mappings in the dual notion of closed code, see [21]). With
every (anti-)automorphism θ we associate the quasi-metric dθ, defined as follows:

(1) dθ(w,w
′) = 0 is equivalent to w = w′;

(2) we have dθ(w,w
′) = 1 whenever w′ = θ(w) holds, with w 6= w′;

(3) in all other cases we set dθ(w,w
′) = 2.

By definition we have τdθ,1 = θ̂ and τ
θ,1 = θ. In addition, a code X is θ-

independent if, and only, for every pair of different words x, y ∈ X, we have
dθ(x, y) = 2 that is, X is capable to detect at most one error.

We will establish the following result:

Theorem. With the preceding notation, given a regular code X ⊆ A∗, it can be
decided whether X satisfies each of the following conditions:

(i) Conds. (c1)–(c4) with respect to Pk or θ̂, for any automorphism θ of A∗.

(ii) Conds. (c3), (c4) wrt. Fk or θ̂, for any anti-automorphism θ of A∗.

(iii) For X finite, Conds. (c1)–(c4) wrt. Fk or θ̂, for any (anti-)automorphism
θ of A∗.
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Some comments regarding the proof:
– For proving that X satisfies Cond. (c1) wrt. Pk, the main argument consists

in establishing that Pk is a regular relation [24, Ch. IV] that is, Pk can be
simulated by a finite transducer.

– Once more wrt. Pk, we actually prove that Cond. (c2) is equivalent to
(X ×X) ∩P2k = ∅. Since X ×X is a recognizable relation [24, Ch. IV], it can be
decided whether that equation holds.

– Regarding Cond. (c3), the critical step is reached by proving that, wrt. each
of the quasi-metrics raised in the paper, for a regular code X, being maximal
in the family of τd,k-independent codes is equivalent to being complete that is,

µ(X) = 1. This is done by proving that every non-complete τd,k-independent
code, say X, can be embedded into some complete τd,k-independent one: in other
words, X cannot be maximal in such a family of codes. In order to establish such
a property, in the spirit of [2, 16, 18, 19, 21, 28], we provide specific regularity-
preserving embedding formulas, whose schemes are based upon the method from
[5]. Notice that, in [9, 12, 14, 15, 26], wrt. peculiar families of sets, algorithmic
methods for embedding a set into some maximal one were also provided.

– With regard to Cond. (c4), for each of the preceding relations, the set
τ̂d,k(X) = τd,k(X) is regular therefore, in any case, by applying the famous
Sardinas and Patterson algorithm [25], one can decide whether that condition is
satisfied.

We now shorty describe the contents of the paper:
– Section 2 is devoted to the preliminaries: we recall fundamental notions

over codes, regular (resp., recognizable) relations, and automata.
– The aim of Sect. 3 is to study Pk. We prove that, in any case, the corre-

sponding relation Pk is itself regular. Furthermore, given a regular code X, one
can decide whether X satisfies any of Conds. (c1)–(c4). Some remarks are also
formulated regarding the so-called suffix metric.

– Sect. 4 is concerned with the factor metric. We prove that, given a finite
code, one can decide whether it satisfies any of Conds. (c1)–(c4). For a non-finite
regular codes, we prove that one can decide whether it satisfies Conds. (c3), (c4),
however, the question of the decidability of Conds. (c1), (c2) remains open.

– Sect. 5 is devoted to (anti-)automorphisms. In the case of automorphisms, we
obtain results similar to those involving the relation Pk. For anti-automorphisms,
the results are similar to the ones obtained in the framework of Fk.

– In Sect. 6, the paper concludes with some possible directions for further
research.

2 Preliminaries

Several definitions and notation has already been stated in the introduction. In
the whole paper, we fix a finite alphabet A, with |A| ≥ 2, and we denote by ε the
word of length 0. Given two words v, w ∈ A∗, v is a prefix (resp., suffix, factor) of
w if words u, u′ exist such that w = vu (resp., w = u′v, w = u′vu). We denote by
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P(w) (resp., S(w), F(w)) the set of the words that are prefix (resp., suffix, factors)
of w. More generally, given a set X ⊆ A∗, we set P(X) =

⋃
w∈X P(w); the sets

S(X) and F(X) are defined in a similar way. A word w ∈ A∗, is overlapping-free
if wv ∈ A∗w, with |v| ≤ |w| − 1, implies v = ε.

Variable-length codes
We assume that the reader has a fundamental understanding with the main

concepts of the theory of variable-length codes: we suggest, if necessary, that
he (she) refers to [1]. Given a subset X of A, and w ∈ X∗, let x1, · · · , xn ∈ X
such that w is the result of the concatenation of the words x1, x2, · · · , xn, in this
order. In view of specifying the factorization of w over X, we use the notation
w = (x1)(x2) · · · (xn), or equivalently: w = x1 · x2 · · ·xn. For instance, over the
set X = {a, ab, ba}, the word bab ∈ X∗ can be factorized as (ba)(b) or (b)(ab)
(equivalently denoted by ba · b or b · ab).

A set X is a variable-length code (a code for short) if for any pair of finite
sequences of words in X, say (xi)1≤i≤n, (yj)1≤j≤p, the equation x1 · · ·xn =
y1 · · · yp implies n = p, and xi = yi for each integer i ∈ [1, n] (equivalently,
the submonoid X∗ is free). In other words, every element of X∗ has a unique
factorization over X. A set X 6= {ε} is a prefix (resp., suffix) code if x ∈ P(y)
(resp., x ∈ S(y)) implies x = y, for every pair of words x, y ∈ X; X is a bifix
code if it is both a prefix code and a suffix one. A set X ⊆ A∗ is uniform if all
its elements have a common length. In the case where we have X 6= {ε}, the
uniform code X is bifix.

Given a regular set X, the Sardinas and Patterson algorithm allows to decide
whether or not X is a code. Since it will be used several times through the paper,
it is convenient to shortly recall it. Actually, some ultimately periodic sequence
of sets, namely (Un)n≥0, is computed, as indicated in the following:

U0 = X−1X \ {ε} and : (∀n ≥ 0) Un+1 = U−1n X ∪X−1Un. (1)

The algorithm necessarily stops: this corresponds to either ε ∈ Un or Un = Up,
for some pair of different integers p < n: X is a code if, and only if, the second
condition holds.

A positive Bernoulli distribution consists in some total mapping µ from the
alphabet A into R+ = {x ∈ R : x ≥ 0} (the set of the non-negative real numbers)
such that

∑
a∈A µ(a) = 1; that mapping is extended into a unique monoid

homomorphism from A∗ into (R+,×), which is itself extended into a unique
positive measure µ : 2A

∗ −→ R+. In order to do this, for each word w ∈ A∗,
we set µ ({w}) = µ(w); in addition given two disjoint subsets X,Y of A∗, we
set µ(X ∪ Y ) = µ(X) + µ(Y ). In the whole paper, we take for µ the so-called
uniform Bernoulli measure: it is determined by µ(a) = 1/|A|, for each a ∈ A.

The following results are classical: the first one is due to Schützenberger and
the second provides some answer to a question actually stated in [23].

Theorem 1. [1, Theorem 2.5.16] Given a regular code X ⊆ A∗, the following
properties are equivalent:

(i) X is complete;
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(ii) X is a maximal code;

(iii) we have µ(X) = 1.

Theorem 2. [5]. Let X ⊆ A∗ be non-complete code, z /∈ F(X∗) overlapping-free,
U = A∗ \ (X∗ ∪A∗zA∗), and Y = (zU)∗z. Then Z = X ∪ Y is a complete code.

Clearly, if X is a regular set then the same holds for the resulting set Z.

Regular relations, recognizable relations

We also assume the reader to be familiar with the theory of regular relations
and automata: if necessary, we suggest that he (she) refers to [6] or [24, Ch. IV].

Given two monoids, say M,N , a binary relation from M into N consists
in any subset τ ⊆ M × N . For (w,w′) ∈ τ , we also set w′ ∈ τ(w), and we set
τ(X) = {τ(x) : x ∈ X}. The composition in this order of τ by τ ′ is defined by
τ · τ ′(x) = τ ′ (τ(x)) (the notation τk refers to that operation); τ−1, the inverse
of τ , is defined by (w,w′) ∈ τ−1 whenever (w′, w) ∈ τ . We denote by τ the
complement of τ , i.e. (M ×N) \ τ .

A family of subsets of M , say F ⊆ 2M , is regularly closed if, and only if, the
sets X ∪ Y , XY , and X∗ belong to F , whenever we have X,Y ∈ F . Given a
family F ⊆ 2M , its regular closure is the smallest (wrt. the inclusion) subset of
2M that contains M and which is regularly closed. A binary relation τ ⊆M ×N
is regular (or equivalently, rational) if, and only if, it belongs to the regular closure
of the finite subsets of M×N . Equivalently there is some finite M×N -automaton
(or equivalently, transducer), say R, with behavior |R| = τ [7, 24]. The family of
regular relations is closed under inverse and composition.

The so-called recognizable relations constitute a noticeable subfamily in regular
relations: a subset R ⊆M×N is recognizable if, and only if, we have R = R·φ·φ−1,
for some monoid homomorphism φ : M ×N −→ P , with P finite. Equivalently,
finite families of recognizable subsets of M and N , namely (Ti)∈I and (Ui)i∈I ,
exist such that R =

⋃
i∈I Ti × Ui [24, Corollary II.2.20].

In the paper, we focus on M = N = A∗. With this condition, recognizable rela-
tions are closed under composition, complement and intersection, their intersection
with a regular relation being itself regular. According to [24, Theorem IV.1.3],
given a regular relation τ ⊆ A∗×A∗, and a regular (equivalently, recognizable) set
X ⊆ A∗, the sets τ(X) and τ−1(X) are regular. If X, Y are recognizable subsets
of A∗, the same holds for X × Y . At last the relation idA∗ = {(w,w)|w ∈ A∗}
and its complement idA∗ , are regular but non-recognizable.

3 Error detection and the prefix metric

Given w,w′ ∈ A∗, a unique pair of words u, u′ exists such that w = (w ∧ w′)u
and w′ = (w ∧ w′)u′: by definition, we have dP(w,w′) = |u|+ |u′| (see Figure 1).
In addition Pk is reflexive and symmetric that is, the equality P−1k = Pk holds,
and we have Pk ⊆ Pk+1. Below, we provide some example:
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Fig. 1. We have (w,w′) ∈ Pk iff. |u|+ |u′| ≤ k; similarly, (w,w′) ∈ Pk is equivalent to
1 ≤ |u|+ |u′| ≤ k.

Example 1. Let A = {a, b}. (1) The finite prefix code X = {a, ba, b2} satisfies
Cond. (c1) wrt. P1 (in other words X is 1-error-detecting). Indeed, it follows
from dP(a, ba) = dP(a, bb) = 3 and dP(ba, bb) = 2 that we have (x, y) /∈ P1, for
each pair of different words x, y ∈ X, that is P1(X) ∩X = ∅. Cond. (c2) is not
satisfied by X. Indeed, we have:
P−11 P1 (ba) ∩ X = {ba, b, ba2, bab, ε, b2, ba3, ba2b, baba, bab2} ∩ X = {ba, b2}.

Classically, X is a maximal code, therefore, since it is P1-independent, X is
maximal in the family of P1-independent codes that is, X satisfies Cond. (c3).
Consequently, since we have X ( P1(X), the code X cannot satisfy Cond. (c4)
(we verify that we have ε ∈ P1(X)).

(2) For n ≥ k+1, the complete uniform code Y = An satisfies Conds. (c1), (c3).
Since Y is a maximal code, it cannot satisfies Cond. (c4) (we have Y ( P1(Y )).
Cond. (c2) is no more satisfied by Y : indeed, given two different characters a, b, we
have Pk(an) 6= ∅ and an−1b ∈ P−1k (Pk (an))∩ Y thus P−1k (Pk (an))∩ Y 6= {an}.

(3) The regular bifix code Z = {abna : n ≥ 0} ∪ {banb : n ≥ 0} satisfies Cond.
(c1) wrt. P1. Indeed, we have:
P1(Z) =

⋃
n≥0{abn, abna2, abnab, ban, banba, banb2}, thus P1(Z) ∩ Z = ∅.

For n 6= 0 we have P−11 P1 (abna) = {abn, abn−1, abna, abn+1, abna2, abna3, abnab,
abna2b, abnaba, abnab2}, moreover we have P−11 P1

(
a2
)

= P1

(
{a, a3, a2b}

)
, thus

P−11 P1

(
a2
)

= {a, ε, a2, ab, a3, a4, a3b, a2b, a2ba, a2b2}: in any case we obtain Z ∩
P−11 P1 (abna) = {abna}. Similarly, we have Z ∩ P−11 P1 (banb) = {banb}, hence
Z satisfies Cond. (c2). At last, we have µ(X) = 2 · 1/4

∑
n≥0(1/2)n = 1 therefore,

according to Theorem 1, Z is a maximal code, whence it is maximal in the family
of P1-independent codes (Cond. (c3)). Since we have Z ( P1(Z), Z cannot

satisfies Cond. (c4) (we verify that have a, a2 ∈ P1(Z) ⊆ P̂1(Z)).

In the sequel, we will prove that, given a regular code X, one can decide whether
any of Conds. (c1)-(c4) holds. Beforehand we establish the following property
which, regarding Cond. (c1), plays a prominent part:
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Proposition 1. For every k ≥ 1, both the relations Pk and Pk are regular.

Proof. In what follows we indicate the construction of a finite automaton with
behavior Pk (see Figure 2). This construction is based on the different underlying
configurations in Figure 1. Firstly, we denote by E the finite set of all the
pairs of non-empty words (u, u′), with different initial characters, and such
that |u|+ |u′| ≤ k. In addition, F (resp., G) stands for the set of all the pairs
(u, ε) (resp., (ε, u)), with 1 ≤ |u| ≤ k. Secondly, we construct a finite tree-like
A∗×A∗-automaton with behavior E ∪F ∪G. Let 0 be the initial state, the other
states being terminal. We complete the construction by adding the transitions
(0, (a, a), 0), for all a ∈ A. Let RP,k be the resulting automaton.
By construction we have |RP,k| = idA∗ (E ∪ F ∪G). More precisely, |RP,k| is the
set of all the pairs (w,w′) such that there are v, u, u′ ∈ A∗ satisfying each of the
three following conditions:

(1) w = pu, w′ = pu′;
(2) if both the words u, u′ are non-empty, their initial characters are different;
(3) 1 ≤ |u|+ |u′| ≤ k.

In other words, |RP,k| is the sets of all the pairs (w,w′) such that 1 ≤ dP(w,w′) =
|u|+|u′| ≤ k, therefore we have Pk = |RP,k|. Consequently Pk and Pk = Pk∪idA∗
are regular relations. �

Fig. 2. The case where we have k = 2: in the automaton RP,k, the arrows are muti-
labelled (a, b stand for all pairs of characters in A) and terminal states are represented
with double circles.

Remark 1. In [22] the author introduces a peculiar (A∗ × A∗)× N-automaton:
in view of this, for every (w,w′) ∈ A∗ × A∗, the distance dP(w,w′) is the least
d ∈ N for which ((w,w′), d) is the label of some successful path. Furthermore,
some alternative proof of the regularity of Pk can be obtained. However, we note
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that such a construction cannot involve the relation Pk itself that is, it does not
affect Cond. (c1).

The following property is also used in the proof of Proposition 2:

Lemma 1. Given a positive integer k we have P2k = P2
k .

Proof. In order to prove that P2
k ⊆ P2k, we consider a pair of words (w,w′) ∈ P2

k .
By definition, some word w′′ ∈ A∗ exists such that we have (w,w′′), (w′′, w′) ∈ Pk
that is, dP(w,w′′) ≤ k, dP(w′′, w′) ≤ k. This implies dP(w,w′) ≤ dP(w,w′′) +
dP(w′′, w′) ≤ 2k that is, (w,w′) ∈ P2k.
Conversely, let (w,w′) ∈ P2k, and let p = w∧w′. Regarding the integers |w|− |p|,
|w′| − |p| , exactly one of the two following conditions occurs:

(a) Firstly, at least one of the integers |w| − |p|, |w′| − |p| belongs to [k +
1, 2k]. Since P2k is a symmetric relation, without loss of generality, we assume
k + 1 ≤ |w| − |p| ≤ 2k. With this condition a non-empty word v exists such that
w = pvAk that is, pv ∈ P(w)k. On the other hand, we have p = pv ∧ w′, thus
dP(pv, w′) = (|w|−k)+ |w′|−2|p| = dP(w,w′)−k. It follows from dP(w,w′) ≤ 2k
that dP(pv, w′) ≤ k, thus w′ ∈ Pk(pv): this implies w′ ∈ Pk (Pk(w)), thus
(w,w′) ∈ P2.

(b) Secondly, in the case where we have |w| − |p| ≤ k and |w′| − |p| ≤ k, by
definition we have p ∈ Pk(w), w′ ∈ Pk(w) thus (w,w′) ∈ P2

k . �

We are now ready to establish the following result:

Proposition 2. Given a regular code X ⊆ A∗, wrt. Pk, it can be decided whether
X satisfies any of Conds. (c1), (c2), and (c4).

Proof. Let X be a regular code. We consider one by one our Conds. (c1), (c2),
and (c4):

– Cond. (c1) According to Proposition 1, Pk(X) is a regular set, hence
Pk(X) ∩X itself is regular, therefore one can decide whether Cond. (c1) holds.

– Cond. (c2) Since Pk is a symmetric binary relation, and according to Lemma
1, we have: P−1k (Pk (X)) ∩X = P2

k(X) ∩X = P2k(X) ∩X. In addition x ∈ X
implies Pk(x) 6= ∅, therefore Cond. (c2) is equivalent to (X×X)∩P2k ⊆ idA∗ . This
last condition is equivalent to (X×X)∩

(
P2k ∩ idA∗

)
= ∅, thus (X×X)∩P2k = ∅.

According to Proposition 1 and since X ×X is a recognizable relation, the set
(X ×X)∩P2k is regular, therefore one can decide whether X satisfies Cond. (c2).

– Cond. (c4) According to Proposition 1, the set Pk(X) itself is regular.
Consequently, by applying Sardinas and Patterson algorithm, it can be decided
whether X satisfies Cond. (c4). �

It remains to study the bahaviour of X wrt. Cond. (c3). In order to do this, we
proceed by establishing the two following results:

Proposition 3. Let X ⊆ A∗ be a non-complete regular Pk-independent code.
Then a complete regular Pk-independent code containing X exists.
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Proof. Beforehand, in view of Theorem 2, we indicate the construction of a
convenient word z ∈ A∗ \ F(X∗). Since X is a non-complete set, by definition
some word z0 exists in A∗ \F(X∗): without loss of generality, we assume |z0| ≥ k
(otherwise, we substitute to z0 any word in z0A

k−|z0|). Let a be the initial
character of z0, b be a character different of a, and z = z0ab

|z0|. Classically, z
is overlapping-free (see e.g. [1, Proposition 1.3.6]): set U = A∗ \ (X∗ ∪A∗zA∗),
Y = z(Uz)∗, and Z = X ∪ Y .

According to Theorem 2, the set Z is a (regular) complete code. For proving
that Z is Pk-independent, we argue by contradiction. By assuming that Pk(Z) ∩
Z 6= ∅, according to the construction of Z, exactly one of the two following cases
occurs:

(a) Firstly, x ∈ X, y ∈ Y exist such that (x, y) ∈ Pk. With this condition
we have dP(x, y) = dP(y, x) =

∣∣(x ∧ y)−1x
∣∣ +

∣∣(x ∧ y)−1y
∣∣ ≤ k. According to

the construction of Y , the word z = z0ab
|z0| is a suffix of y. It follows from∣∣(x ∧ y)−1y

∣∣ ≤ k ≤ |z0| that z0ab
|z0|−1 ∈ S(x∧y), thus z0 ∈ F(x): a contradiction

with z0 /∈ F(X∗).

(b) Secondly, y, y′ ∈ Y exist such that (y, y′) ∈ Pk. Let p = y ∧ y′, u = p−1y,
and u′ = p−1y′.

(b1) At first, assume p ∈ {y, y′} that is, without loss of generality, y′ = p.
With such a condition, y′ is a prefix of y. Since we have y, y′ ∈ z(Uz)∗, and
since z is an overlapping-free word, necessarily a word v ∈ (Uz)∗ exists such that
y = y′v. It follows from |v| = dP(y, y′) ≤ k ≤ |z| − 1 that v = ε, thus y = y′: a
contradiction with Pk being antireflexive.

(b2) Consequently we have p /∈ {y, y′} that is, 1 ≤ |u| ≤ k and 1 ≤ |u′| ≤ k
(see Figure 3). By construction, we have b|z0| ∈ S(z) ⊆ S(y) ∩ S(y′): it follows
from 1 ≤ |u| ≤ k ≤ |z0| and 1 ≤ |u′| ≤ k ≤ |z0| that u, u′ ∈ S(b|z0|) \ {ε}, thus
u, u′ ∈ bb∗: a contradiction with p = y ∧ y′.
In any case we obtain a contradiction, therefore Z is Pk-independent. �

Proposition 4. Let X ⊆ A∗ be a regular code. Then X is maximal in the family
of Pk-independent codes if, and only if, we have µ(X) = 1.

Proof. According to Theorem 1, µ(X) = 1 implies X being a maximal code, thus
X being maximal as a Pk-independent code. For the converse, we argue by contra-
positive. Once more according to Theorem 1, µ(X) 6= 1 implies X non-complete.
According to Proposition 3, some Pk-independent code strictly containing X
exists, hence X is not maximal as a Pk-independent code. �

If X is a regular set, µ(X) can be computed by making use of some rational
series. As a consequence, we obtain the following result:

Proposition 5. One can decide whether a given regular code X satisfies Cond.
(c3) wrt. Pk.
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Fig. 3. Proof of Proposition 3: the case where we have y, y′ ∈ Y and (y, y′) ∈ Pk, with
p /∈ {y, y′}.

Remark 2. Given a pair of words w,w′, their suffix distance is dS = |w| +
|w′| − 2|s|, where s denotes the longest word in S(w) ∩ S(w′). Let Sk be the
binary relation defined by (w,w′) ∈ Sk if, and only if, dS(w,w′) ≤ k. Given a
word w ∈ A∗, denote by wR its reversal that is, for a1, · · · , an ∈ A, we have
wR = an · · · a1 if, and only if, w = a1 · · · an holds. For every pair w,w′ ∈ A∗, we
have dS(w,w′) = dP(wR, w′R), hence (w,w′) ∈ Sk is equivalent to (wR, w′R) ∈ Pk.
As a consequence, given a regular code, one can decide whether it satisfies any of
Conds. (c1)–(c4) wrt. Sk.

4 Error detection and the factor metric

By definition, given a pair of words w,w′ ∈ A∗, at least one tuple of words, say
(u, v, u′, v′), exists such that dF(w,w′) = |u|+ |v|+ |u′|+ |v′|. More precisely, we
have w = ufv, w′ = u′fv′, with f being of maximum length. Such a configuration
is illustrated by Figure 4, which can also provide some support in view of the
proof of Proposition 8.

Actually the word f , thus the tuple (u, v, u′, v′), needs not to be unique
(see Example 2(1)). Due to this condition, the construction in the proof of the
preceding proposition 1 unfortunately cannot be extended in order to obtain a
finite automaton with behaviour Fk.

For every positive integer k, the relation Fk is reflexive and symmetric that
is, the equality F−1k = Fk holds. In addition, with the preceding notation, we
have Pk ∪ Sk ⊆ Fk ⊆ Fk+1.

Example 2. (1) Let w = babababbab and w′ = bbabbaababaa. There are two words
of maximum length in F (w) ∩ F (w′), namely f1 = ababa and f2 = babba. We
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Fig. 4. We have (w,w′) ∈ Fk iff. |u| + |v| + |u′| + |v′| ≤ k, and (w,w′) ∈ Fk iff.
|u|+ |v|+ |u′|+ |v′|.

have dF(w,w′) = |u1|+ |v1|+ |u′1|+ |v′1| = |u2|+ |v2|+ |u′2|+ |v′2| = 12, where
the tuples (u1, v1, u

′
1, v
′
1) and (u2, v2, u

′
2, v
′
2) satisfy the following equations:

w = u1f1v1, w
′ = u′1f1v

′
1, with u1 = b, v1 = bbab, u′1 = bbabba, v′1 = a,

w = u2f2v2, w
′ = u′2f2v

′
2, with u2 = baba, v2 = b, u′2 = b, v′2 = ababaa.

(2) Over the alphabet {a, b}, the code X = {a, ba, bb} from Example 1 does
not satisfy Cond. (c1) wrt. F1. Indeed, we have ba ∈ F1(a) ∩X. Since we have

F−11 F1 (a)∩X = {a, ba}, X cannot satisfy Cond. (c2). Althought X is complete,
since it does not belong to the family of F1-independent codes, X cannot satisfy
Cond. (c3) wrt. F1. It follow from ε ∈ P1(X) ⊆ F1(X) that X can no more
satisfy Cond. (c4).

(3) Take A = {a, b} and consider the context-free bifix code Y = {anbn :
n ≥ 1}. We have F1(Y ) =

⋃
n≥1{an−1bn, an+1bn, banbn, anbn−1, anbna, anbn+1}.

This implies F1(Y )∩ Y = ∅, thus Y being 1-error-detecting wrt. F1 (Cond. (c1)).
Regarding error correction, we have an+1bn+1 ∈ F2

1 (anbn), therefore X cannot
satisfy Cond. (c2) wrt. F1. We have µ(X) =

∑
n≥1

(
1
4

)n
< 1, whence Y cannot

satisfy Cond. (c3). Finally, since we have (anbn−1)(banbn) = (anbn)(anbn), the

set F̂1(Y ) = F1(Y ) cannot satisfy Cond. (c4).

The following property allows some noticeable connection between the frameworks
of prefix, suffix, and factor metrics:

Lemma 2. Given a positive integer k we have Fk = Fk1 = (P1 ∪ S1)k.

Proof. – We start by proving that we have Fk1 = (P1∪S1)k. A indicated above, we
have P1∪S1 ⊆ F1. Conversely, given (w,w′) ∈ F1, some tuple of words (u, v, u′, v′)
exists such that w = ufv, w′ = u′fv′, with 0 ≤ |u|+ |v|+ |u′|+ |v′| ≤ 1, thus
|u| + |v| + |u′| + |v′| ∈ {0, 1}. More precisely, at most one element of the set
{|u|, |v|, |u′|, |v′|} is a non-zero integer: this implies (w,w′) ∈ P1∪S1. Consequently
we have F1 = P1 ∪ S1, thus Fk1 = (P1 ∪ S1)k.
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– Now, we prove we have Fk1 ⊆ Fk. Given a pair of words (w,w′) ∈ Fk1 , there is
some sequence of words (wi)0≤i≤k such that w = w0, w′ = wk, and dF(wi, wi+1) ≤
1, for each i ∈ [0, k − 1]. We have dF(w,w′) ≤

∑
0≤i≤k−1 dF(wi, wi+1) ≤ k, thus

(w,w′) ∈ Fk.
– For proving that the inclusion Fk ⊆ Fk1 holds, we argue by induction over

k ≥ 1. The property trivially holds for k = 1. Assume that we have Fk ⊆ Fk1 ,
for some k ≥ 1. Let (w,w′) ∈ Fk+1 and let f ∈ F(w) ∩ F(w′) be a word with
maximum length; set w = ufv, w′ = u′fv′.

(a) Firstly, assume that at least one of the integers |w|− |f |, |w′|− |f | belongs
to [2, k + 1] that is, without loss of generality 2 ≤ |w| − |f | = |u|+ |v| ≤ k + 1.
With this condition, there are words s ∈ S(u), p ∈ P(v) such that w ∈ AhsfpAh′ ,
with sp 6= ε and h + h′ = 1. On a first hand, it follows from sfp ∈ F(w)
that dF(w, sfp) = |w| − |sfp| = h + h′ = 1, thus (w, sfp) ∈ F1. On the
other hand, f remains a word of maximum length in F(sfp) ∩ F(w′), whence
we have dF(sfp, w′) = |sfp| + |w′| − 2|f |. Since we have |w| − |sfp| = 1, we
obtain dF(sfp, w′) = (|w| − 1) + |w′| − 2|f | = dF(w,w′)− 1 ≤ (k + 1)− 1, thus
(sfp, w′) ∈ Fk that is, by induction, (sfp, w′) ∈ Fk1 . Since we have (w, sfp) ∈ F1,
this implies (w,w′) ∈ Fk+1

1 .

(b) In the case where we have |w| − |f | ≤ 1 and |w′| − |f | ≤ 1 that is,
(w, f) ∈ F1 and (f, w′) ∈ Fk, by induction we obtain (f, w′) ∈ Fk1 , therefore we
have (w,w′) ∈ Fk+1

1 .

In any case the condition (w,w′) ∈ Fk+1 implies (w,w′) ∈ Fk+1
1 , hence we have

Fk+1 ⊆ Fk+1
1 . As a consequence, for every k ≥ 1 the inclusion Fk ⊆ Fk1 holds:

this completes the proof. �

As a direct consequence of Lemma 2, we obtain the following result:

Proposition 6. Each of the following properties holds:
(i) The relation Fk is regular.
(ii) Given a regular code X, it can be decided whether X satisfies Cond. (c4)

wrt. Fk.
(iii) Given a finite code X, one can decide whether X satisfies any of Conds.

(c1)–(c4) wrt. Fk.

Proof. In view of Sect. 3, the relations P1 and S1 are regular, therefore Property
(i) comes from Lemma 2. The proof of Property (ii) is done by merely substituting
Fk to Pk in the proof of the preceding proposition 2. In the case where X is
finite, the same holds for Fk(X) and Fk(X), furthermore Property (iii) holds. �

For non-finite regular sets, the question of the decidability of Conds. (c1), (c2)
remains open. Indeed, presently no finite automaton with behavior Fk = Fk∩idA∗
is known. Actually, the following property holds:

Proposition 7. For every k ≥ 1, Fk is a non-recognizable binary relation.

Proof. By contradiction, assume Fk recognizable. As indicated in the preliminar-
ies, with this condition a finite set I exists such that Fk =

⋃
i∈I(Ti × Ui). For
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every n ≥ 0, we have (anb, an) ∈ Fk therefore, since I is finite, there are i ∈ I
and m,n ≥ 1, with m − n ≥ k, such that (anb, an), (amb, am) ∈ Ti × Ui. This
implies (anb, am) ∈ Ti × Ui ⊆ Fk, thus dF(anb, am) ≤ k: a contradiction with
dF(anb, am) = m−n+ 1 ≥ k+ 1. �

Regarding Cond. (c3), the following result holds:

Proposition 8. Every non-complete regular Fk-independent code can be embed-
ded into some complete one.

Proof. In the family of Fk-independent codes, we consider a non-complete regular
set X. In view of Theorem 2, we will construct a convenient word z ∈ A∗ \F (X∗).
Take a word z0 /∈ F(X∗), with |z0| ≥ k; let a be its initial character, and b be a
character different of a. Consider the word z that was constructed in the proof
of Proposition 3, that is z = z0ab

|z0|. Set z1 = a|z|bz = a2|z0|+1bz0ab
|z0|: since by

construction, zR1 , the reversal of z1, is overlapping-free, the same holds for z1.
Set U1 = A∗ \ (X∗ ∪A∗z1A∗), Y1 = z1 (U1z1)

∗
, and Z1 = X ∪ Y1.

According to Theorem 2, the set Z1 is a regular complete code. In order to
prove that it is Fk-independent that is, Fk(Z)∩Z = ∅, we argue by contradiction.
Actually, exactly one of the following conditions occurs:

(a) The first condition sets that x ∈ X, y ∈ Y1 exist such that (x, y) ∈ Fk.
Let f be a word with maximum length in F(x) ∩ F(y): we have y = ufv, with
|u|+ |v| ≤ dF(x, y) ≤ k. It follows from y ∈ z1 (U1z1)

∗
and |z1| ≥ k + 1 that we

have u ∈ P(z1) and v ∈ S(z1). More precisely, according to the construction of
y, we have u ∈ P

(
a|z0|

)
, v ∈ S

(
b|z0|

)
, and u−1y ∈ a|z0|+1A∗, thus f ∈ A∗z0A∗.

Since we have f ∈ F(x), we obtain z0 ∈ F(x), a contradiction with z0 /∈ F(X∗).

(b) With the second condition, a pair of different words y, y′ ∈ Y1 exist such
that (y, y′) ∈ Fk. Let f be a word with maximum length in F(y) ∩ F(y′). As
indicated above, words u, u′, v, v′ exist such that w = ufv, w′ = u′fv′, with
|u|+ |u′|+ |v|+ |v′| = dF(w,w′) ≤ k.

(b1) At first, assume that both the words v, v′ are different of ε. According
to the construction of Y1, since we have v, v′ ∈ S(Y1) with |v|+ |v′| ≤ k, a pair of
positive integers i, j exist such that v = bi, v′ = bj . This implies fb ∈ F(y)∩F(y′),
which contradicts the maximality of |f |.

(b2) As a consequence, at least one of the conditions v = ε, or v′ = ε
holds. Without loss of generality, we assume v′ = ε, thus f ∈ S(y′). On a first
hand, it follows from z1 ∈ F(y)∩F(y′) that |f | ≥ |z1|: since we have f, z1 ∈ S(y′),
this implies f ∈ A∗z1. On the other hand, since we have z1 ∈ S(y), fv ∈ S(y),
and |f | ≥ |z1|, we obtain z1 ∈ S(fv). This implies fv ∈ A∗z1v ∩ A∗z1, thus
z1v ∈ A∗z1. It follows from |v| ≤ |z1|−1 and z1 being overlapping-free that v = ε.
Similar arguments applied to the prefixes of y, y′ lead to u = u′ = ε: we obtain
y = y′, a contradiction with (y, y′) ∈ Fk.

In any case we obtain a contradiction, therefore Z1 is Fk-independent. �

As a consequence, by merely substituting Fk to Pk in the proof of the propositions
4 and 5, we obtain the following statement:
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Proposition 9. Given a regular code X, each of the following properties holds:
(i) X is maximal as a Fk-independent code if, and only if, we have µ(X) = 1.
(ii) One can decide whether X satisfies Cond. (c3) wrt. Fk.

5 Error detection in the topologies associated to
(anti-)automorphisms

Given an (anti-)automorphism θ, we will examine Conds. (c1)–(c4) wrt. the

quasi-metric dθ that is, wrt. the relation τdθ,1 = θ̂. Regarding error correction,
the following noticeable property holds:

Proposition 10. With respect to θ̂, a regular code X ⊆ A∗ satisfies Cond. (c1)
if, and only if, it satisfies Cond. (c2).

Proof. – Firstly, assume that X is θ-independent, and let x, y ∈ X such that
τdθ,1(x)∩τdθ,1(y) = θ(x)∩θ(y) 6= ∅. It follows from θ(x)∩θ(y) = ({θ(x)} \ {x})∩
({θ(y)} \ {y}) that θ(x) 6= x, θ(y) 6= y, and θ(x) = θ(y): since θ is one-to-one,
this implies x = y, therefore X satisfies Cond. (c2).

– Secondly, assume that Cond. (c1) does not hold wrt. θ̂ that is, X ∩ (θ̂)(X) =
X ∩ θ(X) 6= ∅. Necessarily, a pair of different words x, y ∈ X exist such that

y = θ(x). It follows from θ̂(x) = {x} ∪ {θ(x)} = {x, y} and θ̂(y) = {y} ∪ {θ(y)}
that θ̂(x) ∩ θ̂(y) 6= ∅, hence Cond. (c2) cannot hold. �

Example 3. (1) Let A = {a, b} and θ be the automorphism defined by θ(a) = b,
and θ(b) = a. The regular prefix code X = {anb : n ≥ 0} satisfies Conds. (c1).
Indeed, we have θ(X) = {bna : n ≥ 0}, thus θ(X) ∩ X = ∅. According to
Proposition 10, it also satisfies Cond. (c2). We have µ(X) = 1

2

∑
n≥0

(
1
2

)n
= 1,

whence X is a maximal prefix code. Consequently X is maximal in the family
of θ-independent codes (Cond. (c3)). Finally, we have X ( θ̂(X) = {anb : n ≥
0} ∪ {bna : n ≥ 0}, hence θ̂(X) cannot be a code (we verify that a, b, ab ∈ θ̂(X)).

(2) Over the alphabet A = {a, b}, take for θ the anti-automorphism defined
by θ(a) = b, and θ(b) = a. The regular prefix code X = {anb : n ≥ 0} cannot
satisfy any of Conds. (c1), (c2): indeed, we have θ(X) = {abn : n ≥ 0}, thus
θ(X)∩X = {ab}. As indicated above, X is a maximal prefix code, thus it satisfies

Cond.(c3). At last, it follows from X ( θ̂(X) that X cannot satisfies Cond. (c4).

(3) With the condition above, consider Y = X \ {b, ab} = {anb : n ≥ 2}.
By construction, we have θ(Y ) ∩ Y = ∅, hence Y satisfies Conds. (c1), (c2).

However, by construction, Y cannot satisfy Cond. (c3). Finally, we have θ̂(Y ) =⋃
n≥2{anb, abn}, which remains a prefix codes that is, Y satisfy Cond. (c4).

(4) Over the alphabet {A,C,G, T}, let θ denotes the Watson Crick anti-
automorphism (see eg. [13, 11]), which is defined by θ(A) = T , θ(T ) = A, θ(C) =
G, and θ(G) = C.
Consider the prefix code Z = {A,C,GA,G2, GT,GCA,GC2, GCG,GCT}. We
have θ(Z) = {T,G, TC,C2, AC, TGC,G2C,CGC,AGC}, hence Z satisfies Conds.
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(c1), (c2). By making use of the uniform distribution, we have µ(Z) = 1/2 +
3/16 + 1/16 = 3/4 hence Z cannot satisfy Cond. (c3). At last, it follows from

G,G2 ∈ θ̂(Z) = Z ∪ θ(Z) that Cond. (c4) is not satisfied.

(5) Notice that, in each of the preceding examples, since the (anti-)automorphism
θ satisfies θ2 = idA∗ , the quasimetric dθ is actually a metric.
Of course, (anti-)automorphisms exist in such a way that dθ is only a quasi-metric.
For instance over A = {a, b, c}, taking for θ the automorphism generated by the
cycle (a, b, c), we obtain dθ(a, b) = 1 and dθ(b, a) = 2 (we have b = θ(a) and
a 6= θ(b)).

Fig. 5. An automaton with behavior τdθ,1 = θ̂, in the case where θ is an automorphism:
a represents every character in A and we set B = {a ∈ A : θ(a) 6= a}.

Regarding regulary and recognizability of relations we state:

Proposition 11. With the preceding notation, the following result holds:
(i) If θ is an automorphism, then τdθ,1 = θ̂ and τdθ,1 = θ are non-recognizable

regular relations.
(ii) If θ is an (anti-)automorphism, then it cannot be a regular relation.
(iii) Given an (anti-)automorphism θ, if X is a regular subset of A∗, then

the same holds for θ̂(X).

Proof. Let θ be an (anti-)automorphism onto A∗.

(i) In the case where θ is an automorphism of A∗, it is regular: indeed, trivially
θ is the behavior of a one-state automaton with transitions (0, (a, θ(a)) , 0), for all
a ∈ A. Starting with this automaton we obtain a finite automaton with behaviour
θ̂ by merely adding the transitions (0, (a, a) , 0), for all a ∈ A (see Figure 6):

consequently the relation θ̂ is regular.
By contradiction, assume θ recognizable. As in the proof of Proposition 7,

a finite set I exists such that θ̂ =
⋃
i∈I(Ti × Ui). Since I is finite, there are

i ∈ I, a ∈ A, and m,n ≥ 1 such that
(
an,
(
θ̂(a)

)n)
,
(
am,

(
θ̂(a)

)m)
∈ Ti × Ui,

with m 6= n. This implies
(
an,
(
θ̂(a)

)m)
∈ Ti × Ui that is, θ̂(an) = (θ̂(a))m. If

we have θ̂(a) = a, we obtain an = am. Otherwise, we have θ̂(a) = θ(a), thus
θ(an) = (θ(a))m. In each case, this contradicts m 6= n.

Finally, the binary relation (θ̂) = θ is the set of all the pairs (uvs, uv′s′) that
satisfy both the three following conditions:
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(1) u ∈ A∗;
(2) v′ = θ(v), with v ∈ A∗ \ {ε};
(3) s′ = θ(s), with s ∈ A∗.
Consequently, θ is the behaviour of the automaton in Figure 7, hence it is

a regular relation. In addition, by merely substituting the relation θ to θ̂ in
the argument above, it can be easily prove that θ recognizable implies θ(an) =
(θ(a))m, for some a ∈ A and m 6= n: a contradiction with θ being a free monoid
automorphism.

(ii) For every anti-automorphism θ, the relation θ̂ is the result of the compo-
sition of the so-called transposition, namely t : w → wR, by some automorphism
of A∗, say h. As shown in [24, Example IV.1.10], the transposition is not a
regular relation. Actually, the same argument can be applied for proving that
the resulting relation θ̂ is non-regular.

(iii) Let X be a regular subset of A∗. If θ is an automorphism, the relation

θ̂ = θ ∪ idA∗ is a regular relation, hence θ̂(X) is regular. In the case where θ is
an anti-automorphism, with the preceding notation, although the transposition
is not a regular relation, the set t(X) itself is regular (see eg. [24, Proposition

I.1.1]). Consequently θ̂(X) = h (t(X)) is also regular. �

Fig. 6. With the notation in Example 6, an automaton with behavior θ, in the case
where θ is an automorphism.

As a consequence of Proposition 11, we obtain the following result:

Proposition 12. Given an (anti-)automorphism θ onto A∗ and a regular code
X ⊆ A∗, each of the following properties holds:

(i) It can be decided whether X satisfies Cond. (c4).
(ii) In the case where θ is an automorphism, or if X is finite, one can decide

whether X satisfies Cond. (c1), or equivalently Cond. (c2).

Proof. (i) According to Proposition 11, the set θ(X) is regular: by applying
Sardinas and Patterson algorithm, one can decide whether X satisfies Cond. (c4).

(ii) Recall that, in the framework of (anti-)automorphisms, according to
Proposition 10, Conds. (c1) and (c2) are equivalent. As indicated above, if θ is an
automorphism of A∗, θ is regular, thence θ(X) is regular. Consequently, one can
decide whether X satisfies Cond. (c1). Similarly, if X is finite, the set θ(X) is
finite, whence one can decide whether it satisfies (c1). �
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It remains to study the behavior of regular codes with regard to Cond. (c3):

Proposition 13. Every non-complete regular θ-independent code can be embed-
ded into some complete one.

Proof. According to Theorem 2, the result holds if θ is an automorphism: indeed
the action of such a transformation merely consists of rewriting words by applying
some permutation of A.

Now, we assume that θ is an anti-automorphism. Classically, some positive
integer n, the order of the permutation θ, exists such θn = idA∗ . As in the
propositions 3 and 8, in view of Theorem 2, we construct some convenient word
in A∗ \ F(X∗).

Let z0 /∈ F(X∗), a be its initial character, and b be a character different
of a. Without loss of generality, we assume |z0| ≥ 2 and z0 /∈ aa∗, for every
a ∈ A (otherwise, substitute z0b to z0). By definition, for every integer i, we have∣∣θi(z0)

∣∣ = |θ(z0)|, therefore it follows from z0θ(z0) · · · θn−1(z0) ∈ A∗ \F (X∗) that

z2 = z0θ(z0) · · · θn−1(z0)abn|z0| is an overlapping-free word in A∗ \ F(X∗). Set
U2 = A∗ \ (X∗ ∪A∗z2A∗), Y2 = (z2U2)∗z2, and Z2 = X ∪ Y2.

According to Theorem 2, the set Z2 = X ∪ Y2 is a complete regular code.
In order to prove that it is θ-independent, we argue by contradiction. Actually,
assuming that θ(Z) ∩ Z 6= ∅, exactly one of the three following cases occurs:

(a) The first condition sets that x ∈ X such that θ(x) ∈ Y2. By construction,
the sets X and Y2 are disjoint (we have z2 6∈ F (X∗)), therefore we have θ(x) 6= x:
this implies θ(x) = θ(x). According to the definition of Y2, we have z2 ∈ F (θ(x)),
thus θ(z0) ∈ F (θ(x)). It follows from x = θn−1 (θ(x)), that the word z0 =
θn−1 (θ(z0)) is a factor of x, a contradiction with z0 /∈ F(X∗).

(b) With the second condition some pair of words x ∈ X, y ∈ Y2 exist such
that x = θ(y). It follows from θn−1(z0) ∈ F(z2) ⊆ F(y) that z0 = θ

(
θn−1(z0)

)
∈

F (θ(y)) = F (x): once more this contradicts z0 /∈ F(X∗).

(c) The third condition sets that there are different words y, y′ ∈ Y2 such that
y′ = θ(y). Since θ is an anti-automorphism, abn|z0| ∈ S(y) implies θ

(
bn|z0|

)
∈

P(y′). Since we have z0 ∈ P(Y2), this implies (θ (b))
|z0| = z0. But we have |z0| ≥ 2,

and θ(b) ∈ A: this is incompatible with the construction of z0.

In any case we obtain a contradiction, therefore Z1 is θ-independent. �

As a consequence, given a regular code X ⊆ A∗, X is maximal in the family of
θ-independent codes of A∗ if, and only if, the equation µ(X) = 1 holds. In other
words, one can decide whether X satisfies Cond. (c3).

Finally, the following statement synthesizes the results of the whole study we
relate in our paper:

Theorem 3. With the preceding notation, given a regular code X one can decide
whether it satisfies each of the following conditions:

(i) Conds. (c1)–(c4) wrt. Pk, Sk, or θ̂, for any automorphism θ of A∗.

(ii) Conds. (c3), (c4) wrt. Fk or θ̂, for any anti-automorphism θ of A∗.

(iii) In the case where X is finite, Conds. (c1)–(c4) wrt. Pk, Sk, Fk, or θ̂,
for any (anti-)automorphism θ of A∗.
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6 Concluding remark

With each pair of words (w,w′), the so-called subsequence metric associates the
integer δ(w,w′) = |w|+ |w′| − 2s(w,w′), where s(w,w′) stands for a maximum
length common subsequence of w and w′. Equivalently, δ is the minimum number
of one character insertion and deletion that allow to compute w′ by starting
from w. We observe that, wrt. relation τδ,k, results very similar to the ones of
the propositions 6 and 9 hold [20]. Moreover, in that framework, we still do not
know whether Conds. (c1), (c2) can be decided, given a regular code X.

It is noticeable that, although the inclusion Fk ⊆ τδ,k holds (indeed factors
are very special subsequences of words), we do not know any more whether the
relation Fk is regular or not. In the case where the answer is no, can after all
Conds. (c1), (c2) be decidable? Recall that this last question also remains open
in the framework the quasi-metric associated to anti-automorphisms.

From another point of view, wrt. each of the relations we mentionned, present-
ing families of codes satisfying all the best Conds. (c1)–(c2) would be desirable.
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