N
N

N

HAL

open science

Void BAO measurements on quasars from eBOSS

Amélie Tamone, Cheng Zhao, Daniel Forero-Sanchez, Andrei Variu,

Chia-Hsun Chuang, Francisco-Shu Kitaura, Jean-Paul Kneib, Charling Tao

» To cite this version:

Amélie Tamone, Cheng Zhao, Daniel Forero-Sanchez, Andrei Variu, Chia-Hsun Chuang, et al.. Void
BAO measurements on quasars from eBOSS. Monthly Notices of the Royal Astronomical Society,

2023, 526 (2), pp.2889-2902. 10.1093/mnras/stad2898 . hal-03764461

HAL Id: hal-03764461
https://hal.science/hal-03764461
Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03764461
https://hal.archives-ouvertes.fr

of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 526, 2889-2902 (2023)
Advance Access publication 2023 September 22

https://doi.org/10.1093/mnras/stad2898

Void BAO measurements on quasars from eBOSS

Amélie Tamone,'>* Cheng Zhao ’,!* Daniel Forero-Sanchez *',' Andrei Variu “,! Chia-Hsun Chuang *,*

Francisco-Shu Kitaura,>® Jean-Paul Kneib'” and Charling Tao®’

Unstitute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
2Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

3Department of Astronomy, Tsinghua University, Beijing 100084, China

4Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA

S Instituto de Astrofisica de Canarias, s/n, E-38205 La Laguna, Tenerife, Spain

SDepartamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain

TAix Marseille Université, CNRS, CNES, LAM, F-13388 Marseille, France

8CPPM, Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, F-13288 Marseille, France

OTsinghua Center for Astrophysics, Department of Astronomy, Tsinghua University, Beijing 100084, PR. China

Accepted 2023 September 20. Received 2023 September 20; in original form 2022 August 12

ABSTRACT

We present the clustering of voids based on the quasar (QSO) sample of the extended Baryon Oscillation Spectroscopic
Survey Data Release 16 in configuration space. We define voids as overlapping empty circumspheres computed by Delaunay
tetrahedra spanned by quartets of quasars, allowing for an estimate of the depth of underdense regions. To maximize the baryon
acoustic oscillation (BAO) signal-to-noise ratio, we consider only voids with radii larger than 362~'Mpc. Our analysis shows
a negative BAO peak in the cross-correlation of QSOs and voids. The joint BAO measurement of the QSO autocorrelation
and the corresponding cross-correlation with voids shows an improvement in 70 per cent of the QSO mocks with an average
improvement of ~ 5 per cent. However, on the SDSS data, we find no improvement compatible with cosmic variance. For
both mocks and data, adding voids does not introduce any bias. We find under the flat ACDM assumption, a distance joint
measurement on data at the effective redshift z.g = 1.51 of Dy(zer) = 26.558 £ 0.553. A forecast of a DESI-like survey with
1000 boxes with a similar effective volume recovers the same results as for light-cone mocks with an average of 4.8 per cent

improvement in 68 per cent of the boxes.

Key words: dark energy —distance scale —large-scale structure of Universe.

1 INTRODUCTION

The accelerated expansion of the Universe is one of the greatest
mysteries of current cosmology. It was observationally discovered
by Riess et al. (1998) and Perlmutter et al. (1999) a bit more than 20 yr
ago, but still its nature, referred to as dark energy, remains unknown.
In the context of precision cosmology, an accurate determination of
the expansion history of the Universe is required to constrain the
nature of dark energy and thus to test the ACDM model.

To this goal, baryon acoustic oscillations (BAOs) provide a
characteristic length that enables measurement of the expansion rate
(Weinberg et al. 2013). BAO arises in the early Universe due to the
counteracting plasma pressure and gravitation that produced sound
waves. At photon decoupling, those waves stopped propagating,
leaving an imprint detectable in the clustering of the galaxies and in
the cosmic microwave background (CMB). The distance the waves
travelled before they stopped, known as the sound horizon, can be
used as a standard ruler (Blake & Glazebrook 2003).

The first BAO detections in the clustering of galaxies were
made by Eisenstein et al. (2005) with Sloan Digital Sky Survey
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(SDSS) data and Cole et al. (2005) with Two Degree Field Galaxy
Redshift Survey (2dFGRS). Since then, the era of spectroscopic
surveys has risen with BAO as a key measurement. The largest
survey to date is SDSS with Baryon Oscillation Spectroscopic
Survey (BOSS; Dawson et al. 2013) and at higher redshift with the
extended BOSS (eBOSS; Dawson et al. 2016). BAO was therefore
measured at different redshifts in the clustering of various tracers
such as luminous red galaxies (LRGs; Ross et al. 2016; Gil-
Marin et al. 2020; Bautista et al. 2021), emission-line galaxies
(ELGs; Raichoor et al. 2021), quasars (QSOs; Ata et al. 2018), and
Lyman-o forests (Busca et al. 2013; du Mas des Bourboux et al.
2020).

Kitaura et al. (2016) measured for the first time a BAO signal in
the clustering of underdense regions, defined as voids. More recently,
Zhao et al. (2022) performed a multitracer with voids based on the
analysis of ELG and LRG samples of BOSS and eBOSS. They
showed that adding voids improved the BAO constraints of 5 per cent
to 15 percent for their samples (see also Zhao et al. 2020). Their
studies relied on a Delaunay Triangulation (DT; Delaunay 1934)
definition of voids (DT-voids), which detects a void as the largest
empty sphere defined by four tracers (Zhao et al. 2016). The voids are
allowed to overlap, resulting in an increase of tracer number, which
permits BAO detection, demarcating itself to other voids’ definitions
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used for redshift space clustering analysis (Nadathur et al. 2020;
Aubert et al. 2022).

At the precision level of current and future surveys like the Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration 2016a,
b), the 4-metre Multi-Object Spectroscopic Telescope (4MOST; de
Jong et al. 2019) or Euclid (Laureijs et al. 2011), any reduction of
measurement uncertainties will be crucial.

In this paper, we extend the work of Zhao et al. (2022) by analysing
the QSO sample of eBOSS using DT-voids. We provide a distance
measurement from the joint BAO analysis of QSO autocorrelation
and QSO-void cross-correlation. The analysis pipeline and the errors
are assessed using fast approximated mocks and N-body simulations.
We also forecast error improvement from voids with a DESI-like
survey for QSOs.

We summarize the QSO sample and the void catalogue used
in Section 2. Fast mock catalogues and N-body simulations are
introduced in Section 3. Method for void selection and correlation
computation are described in Section 4. The BAO model and the
template used for void fitting are outlined in Section 5. Error
assessments are estimated in Section 6 and results in Section 7 with
our conclusions in Section 8.

2 DATA

We present in this section the eBOSS QSO sample used for the BAO
analysis of this paper. We use the same QSO data catalogue as in the
eBOSS DRI16 analysis (Neveux et al. 2020; Hou et al. 2021), which
was fully described in Ross et al. (2020).

The eBOSS (Dawson et al. 2016) program was part of the fourth
generation of the SDSS (SDSS-1V; Blanton et al. 2017) as an
extension of the BOSS (Dawson et al. 2013). It aimed at observing
the large-scale structure at higher redshifts. Started in 2014 until
2019, eBOSS used the double-armed spectrographs of BOSS (Smee
et al. 2013) at the 2.5-m aperture Sloan Telescope at Apache Point
Observatory (Gunn et al. 2006).

The eBOSS final release gathered reliable spectroscopic redshifts
of over 340 000 QSOs in total, both in the South Galactic Cap (SGC)
and North Galactic Cap (NGC), in a redshift range between 0.8
and 2.2. The QSOs were selected following the photometric target
selection described in (Myers et al. 2015). The footprints of both cap
samples are presented in Fig. 1. Different statistics as the weighted
areas, the number of QSOs and the number densities are gathered in
Table 1.

We apply weights to each individual QSO to account for obser-
vational and targeting systematics. We summarize here the different
weights and refer to Ross et al. (2020) for a complete description. The
angular systematics due to the imaging quality is mitigated through
the weight wyy,. The weights w, and wy,, are respectively the
close-pair and redshift failure corrections. To minimize the clustering
variance, we follow Feldman, Kaiser & Peacock (1994) and apply
the FKP weight wegp = (1 + n(z) - Py)~! where n(z) is the weighted
radial comoving number densities of QSO and Py = 6000k >Mpc>.
The total weight applied to each QSO is then defined as their
combination:

Wiot = Wsys * Wep * Whoz * WEKP- (€Y
Following the eBOSS analyses, the QSO effective redshift z.s

is defined as the weighted mean of spectroscopic redshift over all
galaxy pairs (z;, z;) in the separation range between 50 and 150 /™!
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Figure 1. Footprint of eBOSS DR16 QSO samples in the North (top) and
South (bottom) Galactic Caps.

Table 1. Effective areas, effective redshift, and number of reliable redshifts
per Galactic cap and in the combined QSO sample in the redshift range 0.8
<z<22.

NGC SGC Total
Effective area [degz] 2860 1839 4699
Ngsoin 0.8 <z <22 218209 125499 343708
ngso [(h~'Mpc) 3] 143 x 1075 1.60 x 1075 153 x 1072
Effective redshift - - 1.48
Mpc:

Z~ F Weot,iWhot,j(2i +2;)/2

Zeff = — ) 2)

Z,-,j Wot,i Wrot, j

It gives for eBOSS QSO sample z.i; = 1.48, as presented in Table 1.

A QSO random catalogue is built with about 50 times the QSO
density. To account for the angular and radial distribution of the
survey selection function, angular positions of random objects are
uniformly drawn within the footprint, and their redshifts are ran-
domly assigned from the data redshifts (Ross et al. 2020). This radial
selection introduces a radial integral constraint (RIC; de Mattia &
Ruhlmann-Kleider 2019; Tamone et al. 2020) which can affect the
multipoles. It was shown in Hou et al. (2021) and Neveux et al.
(2020) that this effect was relatively small for QSO.

2.1 Void catalogue

The void data catalogue is constructed using the Delaunay Triangu-
lation Void finder (Zhao et al. 2016, DIVE'). It identifies the largest
empty spheres formed by four distinct objects relying on the DT
(Delaunay 1934) algorithm in comoving space. It provides the radii
and centres of the empty spheres that we define as voids and take

Thttps://github.com/cheng-zhao/DIVE
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them as tracers. This definition allows the spheres to overlap, which
permits a large number of objects and thus to detect a BAO peak
allowing BAO measurements (Kitaura et al. 2016).

DIVE is run over the whole NGC and SGC data samples. The
resulting voids are kept if their centre lies within the redshift range
and footprints and outside the veto masks of the survey. The total
number of voids is more than five times larger than the number
of QSOs; see Table 2. The radius range of the voids displayed in
Fig. 2 spreads up to 80 2~ 'Mpc with a mean radius around 35
h~'"Mpc. This is about twice the typical values obtained for LRG
and ELG analysis with the same void definition (Zhao et al. 2020,
2022). It can be easily explained due to the lower density of the
QSO sample and the relationship between the number density and
the size of the voids (Forero-Sdnchez et al. 2022). Fig. 3 shows
QSOs and big (small) void densities of a slice of NGC sample in
comoving space. From them, one can see that the size of the voids is
important: large voids track underdensities, while small voids lie in
overdensity regions. These two populations of voids are respectively
voids-in-voids and void-in-clouds (Sheth & van de Weygaert 2004).
A careful choice of the radius of voids has to be made in order to
avoid small void contamination and therefore reduce the uncertainty
of BAO measured from underdensities.

We note that we do not apply weight neither during the void
finding process nor to the individual void. Indeed previous analysis
with DT voids found robust results without using weights. The
main systematics that can change the set of voids come from the
incompleteness of the QSO sample, which is below 3 per cent for
eBOSS QSOs (Ross et al. 2020). Moreover, Forero-Sanchez et al.
(2022) show that voids are less sensitive to observational systematics
than galaxies, in particular that void clustering is not sensitive to the
incompleteness of galaxies, even though there are no weights during
void finding, nor for the clustering measurements, provided that the
incompleteness are relatively small (< 20 per cent).

When the cross-correlation of QSOs and voids is computed, we
thus apply no weight to the void of the pair and all the corresponding
weights to the QSOs, even the FKP weight. Indeed as FKP weights
are supposed to minimize variances due to the inhomogeneity of
redshift distributions, it is reasonable to apply them to the QSOs. We
leave any detailed study on the cross-correlation with FKP weights,
and FKP weights on voids, to a future work.

The random catalogues for voids are generated according to the
procedure described in Liang et al. (2016). Here are summarized the
different steps:

(i) We stack voids positions of 100 mock realizations.

(ii) Within redshifts and radius bins of respectively redshift 0.1
and 2 h~'Mpc, we shuffle the angular positions and (redshift, radius)
pairs.

(iii) We then randomly subsample down to 50 times the number
of voids.

3 MOCKS

We will introduce here different sets of mock catalogues used for
this study. We work with approximate mocks to calibrate the data
analysis pipeline and estimate the covariance matrices. We use N-
body simulations to validate the QSO-only BAO model.

3.1 EZmocks

EZmocks are fast approximated mocks relying on the Zel’dovich
approximation (ZA; Zel’dovich 1970). The displacement field of
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the ZA is generated from a Gaussian random field in a 5 7~'Gpc
box using a grid size of 1024° with a given initial linear power
spectrum. The dark matter density at the wanted redshift is then
obtained by moving the dark matter particles directly to their final
positions. Thereafter the simulation box is populated with QSOs
using an effective galaxy bias model calibrated to the eBOSS DR16
QSO clustering measurements (Chuang et al. 2015; Zhao et al. 2021).
It describes the relationship between the dark matter density field pp,
and the tracer density field p,. This bias model (Chuang et al. 2015;
Baumgarten & Chuang 2018; Zhao et al. 2021) requires a critical
density p. to form dark matter haloes (Percival 2005), an exponential
cut-off pey, (Neyrinck et al. 2014), and a density saturation pg for
the stochastic generation of haloes. The mocks are then populated
following a probability distribution function (PDF) P(n,) = Ab™, n;
being the number of tracers per grid cell, b is a free parameter, and the
parameter A is constrained with the number density of QSOs in the
box. Moreover, the random motions are accounted for using a vector
X, generated from a 3D Gaussian distribution A/(0, v), the peculiar
velocity becomes: u; = uza + X,, where uza is the linear peculiar
velocity in the ZA (Bernardeau et al. 2002). In total we have four
free parameters, namely p., pexp, b, and v, which were calibrated to
the data for the QSO eBOSS sample in Zhao et al. (2021).

The Flat- ACDM cosmology used for EZmocks is summarized in
Table 3.

For each different EZmocks set, we obtain a void catalogue by
applying the same procedure than for the data.

3.1.1 Cubic mocks

We take directly 1000 EZmocks boxes that were used for the light-
cone generation of the QSO eBOSS EZmocks (Zhao et al. 2021).
They are cubic boxes of 5 h~!Gpc referred to as the EZbox all over
this paper. They have an effective redshift of z = 1.48 and a number
density of n = 2.4 x 107 (h~'Mpc)~>. We used them to determine
the best radius cut of the QSO voids for this analysis. To this end
we also produce a set of 200 EZbox without BAO at the effective
redshift of the QSO sample using the same parameters than adopted
in QSO eBOSS analysis.?

The 1000 mocks with BAO included were given as input a linear
matter power spectrum generated with the software cAMB? (Lewis,
Challinor & Lasenby 2000), while for the mocks without BAO, we
use a linear power spectrum without wiggles generated following the
model of Eisenstein & Hu (1998). Both linear power spectra, with
and without wiggles, are produced with the same set of cosmological
parameters gathered as the EZmocks cosmology of Table 3.

3.1.2 Light-cones

We use the same sets of light-cone EZmocks as the eBOSS DR16
analysis described in Zhao et al. (2021) to evaluate the covariance
matrices and to test the data analysis pipeline. They are constituted
of 1000 realizations with systematics included for each cap, NGC
and SGC.

To recreate the clustering evolution, each light-cone mock is built
by combining seven snapshots at different redshifts sharing the same

2For the creation of the EZbox, we adopt parameters corresponding to z =
1.48, the effective redshift of our sample, and with a number density of n =
2.4 x 1073 (h~"Mpc)73: (pc, pexp, b, v) = (0.4,0.95,0.003, 450).
3https://camb.info/
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Table 2. Void number density and number of reliable redshifts per Galactic
cap and in the combined QSO voids sample in the redshift range 0.8 < z <
2.2.

NGC SGC Total
N© in08<z<22 1304614 718966 2023580
Nyoids With 36 < R <80 589549 373362 962911
ot gs [(h~"Mpe) ] 818 x 105 955x 105 9.01 x 109

1.0
T
1 1
1
1
1 1
0.81 1 1
1 |
1 1
1 1
1 1
1 1
0.6- 1 !
1 |
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I
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Riygias[h ™" Mpc]

Figure 2. Radius of void number density for the eBOSS QSO void sample
and the EZmocks. Vertical line indicates the radius of 36 2~ 'Mpc.

initial conditions. The survey footprint and veto masks are then
applied to match the data geometry.

Observational systematics effects from QSO data such as fibre
collisions, redshift failure, and photometric systematics are encoded
into the EZmocks. Those effects are thereafter corrected by using
some weights in the same way as for data (see equation 1). A random

800 —_—
Voids, R>36 35
700
30
600
25
500
& 20 s
- 400 =
; r15 c
300
— 10
100 0.5
0 . 0.0
0 300 400 500 600 700 800

x [k~ Mpc]

Table 3. Different Flat-ACDM cosmologies used throughout the paper.
Fiducial cosmology (Planck Collaboration 2016) is used for the template
power spectrum and distance measurements for EZmocks and data. EZmock
cosmology is the cosmology for EZmock creation. OuterRim cosmology is
the simulation cosmology and used for the fits to the N-body mocks.

Fiducial EZmocks OuterRim
h 0.676 0.6777 0.71
Qi 0.31 0.307115 0.26479
Qph? 0.022 0.02214 0.02258
og 0.8 0.8225 0.8
ng 0.97 0.9611 0.963
> m, [eV] 0.06 0 0

catalogue is produced for each EZmock with redshifts of the QSO
catalogue assigned randomly.

3.2 N-body simulations

To assess the bias and tune the BAO model, we work with the N-
body simulations built for the DR16 eBOSS analysis and described
in Smith et al. (2020). They are produced from the OUTERRIM
simulations (Heitmann et al. 2019) at a single redshift snapshot of
7z =1.433.

The OUTERRIM simulations are produced in a cubic box of 3
h~'Gpc length with 102403 dark matter particles each with a mass
of m, = 1.82 - 10° Moh~" using the WMAP7 cosmology (Komatsu
et al. 2011) given in Table 3. A Friends-of-Friends algorithm is used
to detect dark matter haloes. The mocks are then populated with
QSOs with 20 different halo occupation distribution (HOD) models
and three different redshift smearing prescriptions described in Smith
et al. (2020). Each different set is constituted of 100 realizations. In
this paper, we will measure clustering, and BAO parameters on the
100 realizations of the 20 HOD mocks without smearing.

4 METHOD

This section presents details of the correlation function computation
and the void selection.

800
700 5
600
Lg
500
= =
= b3 1=
= 400 ol
iy =]
300 =
200
1

100 §

0 100 200 300 400 500 600 700 800
x [h ! Mpel

Figure 3. Number density of spherical voids for a slice of NGC data sample of size 800 x 800 x 50 h~>Mpc>. QSOs are represented as red points. On the left:
large voids, with radii larger than 36 h~'Mpc, centres of voids are represented as cyan points. On the right: small voids, with radii smaller than 36 ~~'Mpc,

centres of voids are represented as orange points.

MNRAS 526, 2889-2902 (2023)

20z Areniged 20 uo isenb Aq 02082 ./6882/2/9ZS/0I10Ne/SeIuL/W0d"dNo-oIePED.//:SARY WO} PAPEOUMOQ



4.1 Two-point correlation functions

To quantify the clustering of tracers in configuration space, we
compute the two-point correlation function (2PCF) & expressing
the surplus of pairs separated by a vector distance s compared to
a random uniform distribution.

The observed redshifts are first converted into comoving distances
using the same flat- ACDM fiducial cosmology as in eBOSS DR16
analysis, summarized in Table 3. We then evaluate the pair counts
of the different catalogues using the Fast Correlation Function
Calculator (FCFC*; Zhao 2023). We compute for QSOs and voids the
unbiased Landy—Szalay estimator of the isotropic 2PCF (Landy &
Szalay 1993, LS) for a pair separation of s:

DD(s) —2DR(s, ) + RR(s)

£(s) = RRG) ; 3

where DD, DR, and RR are the normalized pair counts with D
denoting the tracer and R the random catalogue.

For the cross-correlation (XCF) between QSOs, subscript g,
and voids, subscript v, we use the following generalized estimator
(Szapudi & Szalay 1997):

DyD, — RyDy — D4R, + RyR,
Ryry ’

&(s) = (C))

The two caps are combined into a single data sample for all the
analysis by combining the pair counts (Zhao et al. 2022):

2 2
n5ge D Dsce + nxge P Drae

DD = - ,
(nsGe + nnee)
DR — nscehr,sae D Rsge + wanlingente NGe D Ruge
(nsce + nnge)(esoe + Wallenge)
2 2,2
n RR + win RR
RR = 1,SGC SGC a''r,NGC NGC (5)

(r,s6C + Waltr,NGe)?

The weight w,, corrects for the different ratio data random between
the two sample, i.e. w, = %, and n;, n, ; stand for the number
of pairs in the data, random catalogues of the cap i, respectively.

In the case of EZbox we use the natural estimator instead of the

LS estimator which does not require a random catalogue:
DD(s)

£(s) = RRG),

1, 6)
where RR, = %n (53ax — Smin) AL/ Loy is the analytical pair count
for uniform randoms in a periodic box, with Ly, the box length and
Smax»> Smin, A are the separation bin boundaries.

Fig.4 shows the autocorrelation of eBOSS QSO sample, that we
label &, and its cross-correlation with QSOs large voids, labelled
&, with a minimum void radius of 3642~ Mpc.

4.2 Covariances

A covariance matrix C is computed for each sample, i.e. QSOs
autocorrelation and cross-correlation with voids, from the monopoles
of 1000 EZmocks:

1 & 1 &
Cij = N—1 Z <€0(s,-) N Z&(&'))
n=1 1 N n=1
x (so(s,) - Z&(s,)) : @)

n=1

“https://github.com/cheng-zhao/FCFC
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Figure 4. Top panel: autocorrelation of QSOs for the eBOSS QSOs sample
with the standard deviation of EZmocks correlations as error bars. Mean of
1000 EZmocks is in dashed line and their dispersion is in orange shaded area.
Green shaded area indicates the mean of the 20x100 N-body simulations
without smearing, rescaled to match EZmock cosmology (we rescaled with a
factor (rEZhEZ) / (rg)RhOR) = 0.944,0R’ indicates the OuterRim cosmology,
and’EZ’ EZmocks). Bottom panel: same for the cross-correlation of QSOs
with QSOs voids larger than 364~ Mpc.

where N is the total number of mocks and the subscripts i, j
run over the separation bins within the range considered. Those
matrices are used to assess the errors of data and EZmocks. When
the mean of the mocks is fitted, the covariance matrix is divided
by N. For the multitracer covariance of 2PCF and XCF fitted
jointly, the sum also runs over the cross-correlations of the two
monopoles.

To obtain an unbiased estimator of the inverse covariance matrix
C~', we multiply by the correction factor (Hartlap, Simon &
Schneider 2007), where N, is the number of separation bins used
in the fit:

c*1=<1—N"+1)c*‘. 8)

Rather than directly using a more principled approach (such
as Sellentin & Heavens 2016; Percival et al. 2022), we chose
to keep the same formalism as was used in previous stud-
ies with DT voids. We note moreover that in this paper we
are mostly interested in the relative precision using QSOs
to the QSO combined with voids, and not the uncertainties
themselves.

MNRAS 526, 2889-2902 (2023)
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FigureS. Cross-correlation of QSOs and voids of the mean of 200 EZmocks.
Voids selected for the different correlations have their radius in bins of
Zh*IMpc, i.. Rmax = Rmin + 2. For visibility we do not plot the error-
bars. Due to the small number of objects, especially for small radius bins
(see Fig. 2), the curves are not smooth. We note that the flat pattern on small
separation s is due because of the lack of QSO-void pairs below the minimum
radius resulting in a correlation of -1.

Analytical Gaussian covariance matrices are computed following
Grieb et al. (2016) when fitting the QSO N-body mocks.

4.3 Voids

4.3.1 Void populations

As mentioned previously, they are the two main populations of voids.
The voids-in-clouds are tracers of overdensity regions, and voids-in-
voids are tracers of underdense regions. These two types of voids can
be set apart by their radius (Zhao et al. 2016). Forero-Sanchez et al.
(2022) showed that a constant radius cut gives a near-optimal signal-
to-noise-ratio (SNR) and that voids are less sensitive to observational
systematics and therefore incompleteness.

To highlight the difference in behaviour of the two population
of voids mentioned previously, Fig. 5 shows the cross-correlation
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of QSOs and voids within radius bins of 22~ 'Mpc. As QSOs
track overdensities, it means that in order to track underdensities
with voids, we should observe a cross-correlation with a negative
BAO peak that describes an anticorrelation between over- and
underdensities. In Fig. 5, the pattern is clear. Voids smaller than
approximately 264~ 'Mpc follow overdensities, while voids larger
follow underdensities. As already specified, these two populations
can thus be distinguished by their radius and for a given density,
we know that the threshold separating those two kinds of voids is
equivalent to maximizing the signal-to-noise of BAO.

We note that by taking a too low minimum radius, we will also
track the overdensities instead of having a cleaner sample. This could
be an issue as merging overdensity and underdensity voids smears out
the BAO signal. This concern could be overtaken by adding weights
to small spheres and combining them with large voids. However
overdensities are expected to encode less additional information than
galaxies compared to under densities. We thus leave it to a future
work.

Except mentioned otherwise, we chose to fix the maximum cut at
Riax = 80h~'Mpc in the whole paper, to avoid contamination due to
geometrical exclusion effects of very large voids. Below we investi-
gate the best minimum radius cut Ry, that will be used in the analysis.

4.3.2 Correlation function

Correlation functions for different radius cuts are shown in Fig. 6
for QSO eBOSS EZmocks. The autocorrelation of voids (left panel
of Fig. 6) presents a very strong exclusion pattern, similar to what
is observed for haloes due to their finite size (Sheth & Lemson
1999; Baldauf et al. 2013). Indeed even though the DT voids are not
distinct from each other and can overlap, there is still an exclusion
effect due to finite void size geometry (Chan, Hamaus & Desjacques
2014; Zhao et al. 2016). As the minimum radius cut required to have
large enough voids is about twice the value for LRG, see Zhao et al.
(2020) and Zhao et al. (2022), the exclusion effect due to the spherical
definition of the voids is therefore also shifted to the right. It implies
that the exclusion pattern interferes with the BAO scale. Around 100
h~'"Mpc, the correlation is noisy, and the BAO excess density is not
detectable due to the strong signal of the void exclusion. This is why
we chose in this paper to leave aside the autocorrelation of voids in
the analysis and concentrate on their cross-correlation with QSOs.

800
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Figure 6. Correlation functions for different radius cuts of the mean of 1000 EZmocks with standard deviation errors. Radius range is from Rpin = R to
Rmax = 80 -~'Mpc. On the left: autocorrelation of QSOs voids. On the right: cross-correlation of QSOs and voids.
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Figure 7. On the left, top panel: autocorrelation of QSO voids of the mean of 200 EZbox for a radius range from Ry = R t0 Rpax = 804~ 1 Mpc, with standard
deviation errors. Solid lines are for EZbox with BAO, dashed lines are for EZbox without BAO. On the right, top panel: same but for the cross-correlation of
QSOs and voids. Bottom left panel: mean difference of the autocorrelation of EZbox without BAO and EZbox with BAO, for different radius cut. Bottom right
panel: mean difference of the autocorrelation of EZbox with BAO and EZbox without BAO, for different radius cut (inverse difference compared to the void
2PCF, in order to have a positive peak and thus visually compare both correlations).

In the right panel of Fig. 6 is the cross-correlation of QSOs
with voids cut at different minimum radius R,;, for EZmocks. The
exclusion effect is still present, but it mainly affects scales up to twice
the minimum radius R,,;,. Therefore it has fewer effects on the BAO
scale even though this is not obvious to understand its real effect. We
refer to the next section for analysis of non-wiggles boxes to quantify
this effect.

4.3.3 Selection of optimal radius

To understand the exclusion effect on the cross-correlation of voids
and QSOs at the BAO scale and to find a quantifiable way to select
the optimal radius, we rely on the EZbox produced with and without
BAO.

The top left (right) panel of Fig. 7 displays the void auto (cross)-
correlation of EZbox with and without BAO. In the cross-correlation,
a net negative peak around 1004~'Mpc can be seen from the BAO
mocks compared to the ones without BAO wiggles. The bottom
panels of Fig. 7 show the difference between the two kinds of mocks,
i.e. £7°BAO _ £BAO another way to see the BAO excess that manifests
itself as a clear bump. While we understand from the plots that a
BAO peak is detectable from the void autocorrelation as well, we
still chose not to include it in the analysis to avoid contamination
from the exclusion effect in the model. Indeed if the broad-band
shape is not correctly modelled, the BAO fitting results might be
biased. In the case of the voids autocorrelation the broad-band shape
is strongly affected by the exclusion effect, leaving its modelization
very difficult.

To select the optimal radius threshold, we determine an SNR
different to what was used in previous studies with DT voids (Liang
et al. 2016). We rely on the EZbox for the SNR computation and
compute the area A between the two EZbox curves over a selected
separation range S around the BAO peak:

A= E°P0s) — £78s)). ©)

s;€S

SNR

—— 82.5t0122.5 h~'Mpc

87.5 to 117.5 h~*Mpc
14 —— 92.5t0112.5 h~*Mpc
—— 97.5t0 107.5 h~*Mpc

0 T T T T T T
30 35 40 45 50 55
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Figure 8. SNR as defined with equation (9) as a function of the minimum
radius Rp;n. Different curves are for different separation range S for which
the minimum and maximum separation is indicated in the legend in /=" Mpc.

For a radius cut Ry, the signal S4 is then defined as the mean of A
and the noise N, as the standard deviation of A over the 200 EZbox.
The SNR is SA/NA.

The BAO signal and noise both increase with the minimum radius,
as the underdense regions are better selected, but the total number of
retained voids decreases. We observe a slight shift of the BAO peak
to the larger scale that we understand as remaining exclusion effects
that spread on the BAO scale.

We compute the SNR for different radius cuts over different
separation ranges S, as shown in Fig. 8. The optimal ratio featuring
the higher SNR for all S definitions is 314~'Mpc. It corresponds to
the quantile of the void radius distribution of about 0.55. Reporting
this quantile from EZbox to data and EZmocks gives:

RePImal — 365~ Mpc. (10)
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We chose, therefore, this value as the optimal minimum radius cut
for our analysis of EZmocks and data. The number of voids with this
radius cut is presented in Table 2. There are a bit less than three times
more voids than QSOs.

We note that the effective redshift for the void sample is therefore
dependent on this radius cut. Using equation (2) where we sum
over all data pairs used in this analysis, i.e. QSO-QSO pairs with a
separation range within 50-1502~"Mpc and QSO-void pairs within
80-170h~'"Mpc with voids having a radius larger than ROPimal ¢
gives:

Zeff = 1.51. (11)

We chose to use this single redshift for the cosmological measure-
ments. Indeed the difference in the volume-averaged distance Dy
between the two redshifts (i.e. 1.48 and 1.51) is below 0.5 per cent,
which is much smaller than the statistical error on « that we measure
in Section 7.

5 MODEL

Here we present the models for the two-point statistics to extract the
BAO signature for the voids and QSOs.

5.1 Isotropic BAO

The BAO peak in the clustering of the tracers, positive for big voids
and QSOs autocorrelations and negative for their cross-correlation, is
shifted if a wrong cosmology is assumed when transforming redshifts
to distances. This effect is known as the Alcock-Paczynski (AP) effect
(Alcock & Paczynski 1979). We account for the AP effect with the
isotropic AP dilation parameter «:

o = Dvraie. (12)

Dy fiara
Subscript ‘fid’ stands for fiducial values used in the analysis.
Parameter ry is the comoving sound horizon at the baryon drag
epoch when the baryon optical depth is one (Hu & Sugiyama 1996),
and Dy is a volume-averaged distance defined as:

Dy = ( Du(z)—— j, (13)
H(z)

with Dy, the comoving angular diameter distance, H(z) the Hubble
parameter at redshift z, and ¢ the speed of light (Eisenstein et al.
2005).

The theoretical BAO model &, for the correlation that we use is:

Em(s) = Bemp(as) + Ao + A1 /s + As/s?, (14)

where B is the tracer bias, controlling the amplitude, and the A; with
i =0, 1, 2 are broad-band parameters treated as nuisance parameters.
The model relies on a 2PCF template &, which is the Fourier
transform of the power spectrum Piemp:

1 2
) = 5.3 / Pemp(®) o(ks)e K2k (15)

The function j, is the Bessel function at order O of the first
kind. Here, the a parameter is damping the high k oscillations
and is fixed at 2 A~'Mpc following Variu et al. (2023). Indeed
they demonstrate that BAO measurements are unbiased and more
robust against template noise with @ = 2 h~'Mpc compared to
smaller values. The template power spectrum Piepp is (Xu et al.
2012):

Premp(®) = (Pin(k) = Prinnw(K)) €™ Z0/2 4 Py k), (16)
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Figure 9. Left panel: De-wiggle template for the cross-correlation of QSOs
and voids for the eBOSS QSO sample, generated with COSMOGAME. Right
panel: Power spectrum divided by the linear power spectrum Pji, (k). Blue
crosses are for the mean QSOs auto-power spectrum of 100 EZmocks. Orange
points are the QSOs and voids cross-power spectrum of 100 EZmocks. Solid
green line is the cross-correlation template rescaled roughly to match the
cross-correlation.

where X, is the BAO damping parameter of the tracer, Py, and
Pjin, nw are the linear matter power spectrum and its analogue without
BAO wiggles, respectively, produced in the same way as for EZbox
using the fiducial cosmology of Table 3.

5.2 De-wiggled BAO model

The de-wiggled template BAO model is not accurate for voids
correlation functions (Zhao et al. 2020) because of oscillatory
patterns inserted in power spectra due to void exclusion (Chan et al.
2014). The template power spectrum inserted in equation (15) is then
modified to try to correct for this effect. Starting from equation (16),
we have:

P, lracer,nw(k)
Plin.nw(k) '

The term Pyacer nw(k) is the non-wiggle power spectrum of the
tracer encoding broad-band and geometric effects. Those effects
for DT voids are difficult to model. In a previous analysis
study with voids, a parabolic parametrization was introduced
with an additional free parameter (Zhao et al. 2020, 2022) to
model the non-wiggle ratio. However, this approach does not
work well for QSOs voids correlation as the exclusion effect is
much stronger. This is why in this study, we rely on the second
method, which is template-based (Zhao et al. 2022; Variu et al.
2023).

Developed by Variu et al. (2023) with the Cosmological GAussian
Mock gEnerator (COSMOGAME?), the de-wiggles tracer template is
constructed with mocks without BAO wiggles. Those are Lagrangian
mocks built on a Gaussian random field generated from Py, nw(k),
with a simple galaxy bias selection tuned to match eBOSS QSO
EZmocks. Survey geometry and radial selection are then applied to
the mock catalogues.

The template for the cross-correlation of QSOs and voids is
obtained by averaging and stacking 2000, 1000, 100 mocks generated
with CosmoGAME over a k-range, k up to 0.3, 1, 2 AMpc~!,
respectively. Their power spectra are computed with POWSPEC.® The
resulting concatenated template is shown in Fig. 9, and its comparison

Pl(k) = Ptemp(k) (]7)

Shttps://github.com/cheng-zhao/CosmoGAME
Ohttps://github.com/cheng- zhao/powspec
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Table 4. Prior ranges of the BAO Bayesian analysis for the three parameters
a, B, Xy. Top row is for free parameters. Other rows are our fiducial
choices when fitting the 2PCF (&4) or in the multitracer case (§m). Value
in parentheses for Xy, 4 is the value used when fitting EZmocks.

o By 21, q [Mpc/h] By Y1, x [Mpc/h]
Flat 0.8-1.2 0-100 0-100 0-100 0-100
&q 0.8-1.2 1.27-1.40 5.2(6.7) - -
Eme  0.8-1.2 1.27-1.40 5.2(6.7) 8.22-9.68 12.9

with the power spectrum from 100 EZmocks is on the right panel of
Fig. 9.

5.3 Parameter estimation

To obtain BAO constrain, we use the algorithm MULTINEST (Feroz,
Hobson & Bridges 2009) and its python version PYMULTINEST®
(Buchner et al. 2014), an efficient Monte Carlo method that computes
Bayesian evidence and produce posteriors. We use the following
likelihood assuming the Gaussianity of the distribution for a given
set of parameters p:

L ocexp (—x*(p)/2), (18)

where the chi-squared function x?(p) is computed from the data &4
and the model prediction depending on the parameter set p, £,(p):

X2(p) = (Ea — En(p)" C' (&4 — En(p)). 19)

The resulting parameter covariances are rescaled to correct for the
covariance matrix uncertainty propagation by Percival et al. (2014):
_ ]+(Nd_Npar)'B

1+A+(+Np)- B’

m (20)

where Ny the total number data bins used in the fit with N, free
parameters, and A and B are (N, is the number of mocks used to
estimate the covariance):
2
A= . ,
(Nm — Ng — I)(Nm — Ng — 4)

_ Np — Ng—2

(Nm_Nd_ l)'(Nm_Nd_4).

@n

B (22)

Distribution variance of multiples best-fitting values from mocks
used for the covariance has to be rescaled by

Ng+1
My = (1— N:,—l)ml' (23)

The parameter set for the multitracer analysis of the autocorre-
lation of QSOs and their cross-correlation with voids is: p = («,
By, By, X, q» 2L, x)- In the single tracer analysis, only one B and
¥, are used. Fits are performed with the BAO Fitter for muLtI-
Tracers (BAOFLIT® code from Zhao et al. 2022). When let free, we
chose very wide priors for each parameter, it corresponds to the
first row of Table 4. Broad-band parameters A; of the polynomial
term in equation (14) are determined by linear regression with the
least-squares method.

7https://github.com/farhanferoz/MultiNest
8https://github.com/JohannesBuchner/PyMultiNest
“https://github.com/cheng-zhao/BAOAlit
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Figure 10. Bias dameq of the median of the fits from the fiducial value on the
left column and evaluated 1-sigma error o, from the posterior distribution
on the right, for fits with different fitting ranges. On the top results for the
QSOs 2PCF of the mean of the EZmocks and on the right results for the XCF
of QSOs and voids for the mean of the EZmocks. Black crosses indicate the
chosen range.

6 TESTS ON MOCKS

We use eBOSS EZmocks to test the pipeline, calibrate the different
settings for the analysis of data and assess systematics. N-body
mocks are also used when dealing with QSOs only. We fit the
autocorrelations of QSOs &, and the cross-correlations with voids
& first separately, and then we perform a multitracer fit where both
correlations are fitted simultaneously. The multitracer (mt) fit is noted
Eme = {€q, £x }. Voids that we used are selected by the criterion in
equation (11).

We recall that the model used for the autocorrelation of QSOs is
equation (14) where the 2PCF template (equation 15) is computed
from the template power spectrum of equation (16). While the cross-
correlation model is equation (14) where the 2PCF template (equa-
tion 15) is computed from the modified template power spectrum of
equation (17).

6.1 Fitting ranges

To choose our fiducial separation fit ranges, we fit the mean of the
1000 EZmocks for the QSO autocorrelation and cross-correlation,
varying the fitting range. We aim to extract the maximum information
and reduce the errors. Covariance matrices are divided by the number
of mocks N,, used to construct it, i.e. rescaled by 0.001. All the
parameters are let free, i.e. with broad enough priors of Table 4.
Results are shown in Fig. 10. Minimum separation sy, of the
fit varies from 40 to 90 h~'Mpc every 5h~'Mpc and maximum
separation sp,,, from 140 to 180 h~'Mpc. Following Zhao et al.
(2022), we define the bias to the fiducial value a4 of the fit for the
AP parameter « as a function of the median oyeq and the rescaled!?

10The 1o error of the posterior is rescaled by the root of the number of
realizations used for the mean, i.e. 4/1000.
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Table 5. Fitting results of the AP parameter « on the mean of EZmocks for
Rmin = 36 h’lMpC the fiducial separation range: [50,150] h’lMpc, [80,170]
h_'Mpc for 2PCF & 450 and XCF &, respectively. The multitracer results is
noted &p. From left to right: the three first columns are the median of
the posterior with 1o errors rescaled by +/1000, the bias of the median
of the fit to the fiducial value, the 1o error of the distribution. The last
column indicates the maximum bias max|Ao@med|, Where the bias Agaped =
Omed — Omed, +5h—IMpe 18 the difference between the reference value ormed
(first column of this table) and the « measured when varying the minimum
or maximum separation range, i.e. Smin OI Smax, bY Sh’lMpC.

Omed Omed — Xfid Oq max| Ao med|
0.0365
£q 1.006670-936> 0.0056 0.0011 0.0003
+0.0594
Ex 1.00617 90504 0.0051 0.0019 0.0049
Emt 1.0063 100348 0.0053 0.0011 0.0011

1-sigma o, values of the fit posterior:

Omed — Ofid
V10000,

Fits for the QSO 2PCF are stable for a wide range of possibilities.
We chose for consistency to adopt the range used in previous
DR16 eBOSS analysis of Hou et al. (2021), a fitting range for
autocorrelation of QSOs within [50,150] A~ !'Mpc. Offset from the
fiducial value will be added to the systematic budget (see below,
Section 6.3).

For the cross-correlation of voids and QSOs, the possible fitting
ranges are more limited. Indeed usual minimum range Spi, and
lower are strongly affected by the exclusion effects. So to avoid
contamination, we chose a conservative range of [80,170] 2~ 'Mpc
for the XCF, where the bias and errors are reasonable when varying
the minimum and maximum fitting limits by 54~'Mpc.

For our fiducial range, results for the mean of the EZmocks are in
Table 5. We also quote the maximum bias from the fitted o¢ypeq When
varying Smin OF Smax DY Sh_lMpc. Results are not too sensitive to a
small change in the fitted range.

aamed = (24)

6.2 Prior choice

We now investigate different priors on B and X, by fitting the
EZmocks individually with the fiducial fitting range. Indeed without
tighter priors, the dispersion of the errors on « is quite large, and
there is a significant bias on average. Moreover, their dispersion is
not consistent with a normal distribution as in Vargas-Magafia et al.
(2013).

We then test different prior sets to find the optimal choice on our
respective fiducial fitting ranges. AP parameter « is kept with wide
flat priors (see Table 4). For the bias parameters B, we leave flat
priors, but we narrow down the boundaries to N times o around the
median value given by the fit on the mean of the EZmocks for 2PCF
and XCF separately, where o is the 1o dispersion of the posterior on
this parameter for the mean of the EZmocks.!' We also test the same
kind of narrower priors on X, parameters. Moreover, similarly to
what is done in other BAO studies (Xu et al. 2012; Alam et al. 2017),
we fix ¥ to the median posterior value from the EZmocks mean
when fitting individual EZmocks (2, = 6.7 for 2PCF and X, =
12.9 for XCF). When fitting data 2PCF, we will use the median

U Fit on the mean of the EZmocks on the fiducial fitting range gives: (Bgso =
1.336 £ 0.013, Xy, gso = 6.666 = 0.252) for a fit on QSOs 2PCF, and By =
8.949 £+ 0.242, X1,y = 12.870 £ 0.588) for a fit on XCF.
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posterior value from N-body mocks (X, = 5.2) as the BAO peak of
approximated mocks as EZmocks is overdamped. It thus results in
an overestimated value of X, in the EZmocks.

Different @ measurements with various priors ranges are presented
in Table 6 for 2PCF and XCF. As the errors for the voids are quite
large, we go down to N = 3 for XCF on the B parameter.

‘We then chose the optimal priors from the average goodness of fit
rescaled by the degree of freedom, {x2)/d.o.f., and the pull quantity
(Bautista et al. 2021; Zhao et al. 2022):
glap = S0, 25)

a‘ou,i
where «; is the median value from the posterior distribution of « for
the ith EZmock realization and o ; is its error, («;) is the average
o value over all EZmocks. This quantity allows us to test for the
Gaussianity of the results. We want to have a distribution of the o on
the individual mocks similar to a standard distribution, i.e. a mean
of 0 and a deviation of 1.

The selected priors are in bold in the table: we chose to fix the X
and have narrow constraints on By, with N =5 and N = 3 for B,.
While the Gaussianity of the pull quantity prefers slightly flat priors
for X, in the 2PCF case, the reduced chi-square favours a fixed
value. So for consistency with the previous analysis and with the
XCF, we take fixed ;. We note that, except in the completely free
case, all results are consistent with each other. The &« measurements
are not very sensitive to the priors choices.

For the multitracer case, we use results from fits from separated
correlations to fix ¥, and we test only a few relevant cases.

6.3 Systematic error budget

We refer to mocks to make a systematic error budget summarized
in Table 7. A systematic bias arises from the BAO model itself.
For this, we take the deviation to AP parameter true value from the
EZmocks mean of our fiducial separation range of Table 5. Indeed
mean best-fitting values from QSOs autocorrelation of all individual
N-body mocks give'?: ay.poay = 1.0011 = 0.0193. The bias error is,
therefore, smaller than the one from EZmocks for 2PCF. This is why
we chose to quote the deviation from EZmocks for the autocorrelation
alone to be conservative and consistent with the rest of the analysis
with voids.

We quote a systematic bias for the maximum variation of &/yeq
when varying the fitting range of 5 h~'Mpc. We take the value in
Table 5 for the mean of the EZmocks.

The last systematic taken into account in the final budget is the
maximum variation of the mean of the individual value of the fit on
the 1000 EZmock realizations when changing the priors on B and
> .. We take a conservative choice and take as a reference for the
systematic largest flat priors indicated in italic in Table 6.

The three contributions are added in quadrature to obtain the final
systematic error o gys.

6.4 Change in radius cut

We test the template used for the BAO model and analysis robustness
by observing the changes induced by a small variation of the

12For the reported value of N-body mocks, we fitted the different realizations
individually using flat priors as in Table 4 for « and B, and fixing X, to 5.2
(value found by averaging the median posterior of the fit on each 20 types of
N-body mocks (where we used the mean of the 100 realizations)).
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Table 6. Fits on correlation functions of the 1000 individual EZmocks with different parameter priors. Results are rescaled according to equations (20) and
(23). Columns from left to right: B priors, Xy priors, the median of the individual «; values, the 1o interval from the distribution of the individual «; fit values,
the median of the individual lo errors on «;, the relative difference to the mean of the individual errors o ;, mean of the individual g(c;) of equation (25),
the standard deviation of the individual g(«;), mean reduced chi-squared of the individual fits. Bold rows: are the fiducial choices, i.e. the ones chosen for the
baseline fits. Italic rows: are the ones chosen to evaluate the systematic biases induced by the choice of priors, compared to our fiducial choices. When priors

are indicated as Flat, it means large flat priors as explicit in Table 4.

B Priors 1 Priors (@) Oa, (Ca.t) ";7“’) (g(ard)) o (g@i) (x2)/d.of.
£q Flat Flat 1.023 0.034 0.111 —2241 0.037 0.400 0.984
+£500 +100 1.007 0.038 0.044 ~0.068 ~0.002 0.960 1.015
+100 +100 1.007 0.037 0.039 0.086 ~0.012 1.031 1.038
£100 +50 1.007 0.037 0.039 0.098 ~0.019 1.043 1.052
+50 +50 1.007 0.038 0.039 0.101 ~0.013 1.042 1.066
Flat 6.7 1.006 0.037 0.052 ~ 0352 0.001 0.874 0.975
+500 6.7 1.007 0.038 0.045 ~0.072 ~0.011 0.970 0.975
£100 6.7 1.007 0.038 0.039 0.097 ~0.022 1.053 0.999
+50 6.7 1.007 0.038 0.039 0.102 ~0.026 1.058 1.014
Flat 52 1.006 0.038 0.051 ~0.323 ~0.017 0.894 0.974
+100 5.2 1.008 0.038 0.036 0.165 ~0.026 1.137 0.994
£y Flat Flat 1.020 0.032 0.100 ~ 1516 0.055 0.950 0.871
+500 +100 1.008 0.048 0.073 —0.554 0.003 0.859 1.016
+100 +100 1.008 0.050 0.062 ~0.253 0.006 0.925 1.026
+100 +50 1.007 0.051 0.061 ~ 0202 0.003 0.940 1.045
+50 +50 1.008 0.050 0.060 ~0.178 ~0.004 0.939 1.057
Flat 12.9 1.007 0.048 0.072 ~0.581 ~0.003 0.858 0.980
+£500 12.9 1.006 0.049 0.072 ~0.571 0.003 0.868 0.980
+100 12.9 1.007 0.053 0.061 ~0.200 ~0.007 0.953 0.986
+50 12.9 1.007 0.052 0.060 ~0.181 ~0.011 0.950 1.005
130 12.9 1.007 0.051 0.060 ~0.176 ~0.006 0.948 1.019
Eme +500 +100 1.007 0.040 0.043 —0.014 ~0.020 1.043 0.896
+50 +50 1.009 0.037 0.037 0.083 ~0.072 1.036 0.937
+100 67,129 1.008 0.036 0.037 0.070 ~0.036 1013 0.882
+50 6.7,12.9 1.008 0.036 0.037 0.067 ~0.048 1.002 0.897
+50, 430 6.7,12.9 1.009 0.036 0.037 0.066 —0.057 1.000 0.903

Table 7. Systematic error budget. Different columns are the different
contributions to the total error oy for QSO 2PCF, cross-correlation and
the multitracer analysis.

Ufit — Afid max|As@med| Max| Aprior (oi)] O syst
&q 0.0056 0.0003 0.0001 0.0056
Ex 0.0051 0.0049 0.0034 0.0079
Emt 0.0053 0.0011 0.0009 0.0055

Table 8. Fitting results of the AP parameter « on the mean of EZmocks for
the fiducial separation range with two different minimum voids radius cut for
the XCF. From left to right, the columns are the median of the posterior with
lo errors rescaled by +/1000, the bias of the median of the fit to the fiducial
value, the 1o error of the distribution, the bias of the median of the fit to the
value for the fiducial cut of 36 A~ Mpc.

O med Oqy Omed — ®36
Ex, Ry > 34 1.01647 0038 0.0018 0.0103
Ex, Ry > 38 0.996070 0833 0.0020 —0.0101
Emi Ry > 34 1.0083 100359 0.0011 0.0020
Emes Ry > 38 1.005270:0353 0.0011 —0.0011

minimum radius cut of the voids. For this, we use the same template
model as for the fiducial analysis with Ry, = 36 A~'Mpc and vary
Ruin of the EZmocks XCF by 2 7~ 'Mpc.

Table 8 gives the results for the mean of the EZmocks for Ry, =

34 h~'Mpc and R, = 38~ 'Mpc. As mentioned, the template is
not adapted for those radius cuts, so it inserts an expected mild bias
compared to the fiducial measurements of Table 5 for the XCF. For
the multitracer approach with XCF and 2PCF, the bias is small:
a small change in the radius cut inserts, therefore a reasonable
bias.

6.5 Results on EZmocks

Let us now compare the BAO results of the QSOs autocorrelation
and the multitracer joint fit of the 2PCF and the XCF. We consider the
individual 1000 EZmocks realizations in the fiducial case (minimum
radius cut, separation range and priors), i.e. the bold lines in
Table 6.

We define the relative difference in errors between the two
analyses:

8[ — Ua,i,q - Ua,i,ml (26)
Oq,i .q

where 0,; q is the 1o distribution error on «; for the 2PCF case, and

0. mt in the multitracer case. This statistic is presented in Table 9

for the individual EZmocks. Fig. 11 compares the errors from fits of

QSO 2PCF only and those from the multitracer version.

There is an average of about 5 percent improvement with
the contribution of voids in the analysis. A smaller error for the
multitracer case is observed for around 70 per cent of the EZmocks
realizations. Taking only the improved mocks gives, on average better
errors of 11.22 per cent. Fitting QSO voids jointly with QSOs allows,
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Table 9. Mean relative difference §; of equation (26) for the individual
realizations of EZmocks, mean relative difference when §; is positive, and
proportion of realizations for which §; is positive.

(8i) ((88; > 0)) #(3;16; > 0)
Emt 541 % (11.22 %) 71.6 %
0.10
0.09 -
0.08 - . .
+
0.07 - ++ + FyH o
E + .+ +F Tt
3 0.06 B M
© e
0.05 A :ﬁ;
L t-#_ ++
2
0.04 R
++ + + +
0.03 -
0.02 . .
0.02 0.06 0.08 0.10
on,i,q

Figure 11. Errors on « from the fits on the 1000 individual EZmocks. It
shows the error oy, q from the 2PCF fits against the multitracer results oy, i, mt
where we jointly fit the 2PCF and XCF.

Table 10. Results on the eBOSS QSO data sample for the standard 2PCF
analysis and with the void contribution multitracer with XCF. Median of the
posterior of the fitted « parameter and the 16th and 84th percentiles. Total
systematic error. The goodness of fit is rescaled by the degree of freedom.
The volume-averaged distance at the effective redshift.

i O syst x2/d.o.f. Dy(z = 1.51)/rg
£q 1.017270:0207 0.0056 1.49 26.559 + 0.553
Emt 1.0171+3:0212 0.0055 1.16 26.558 + 0.553

therefore, a small improvement for most of the EZmocks on the same
sample of data.

In the previous study of Zhao et al. (2022) for eBOSS ELG and
LRG samples, the best results on EZmocks were reported to give a
larger average improvement (~ 8 per cent). However, we note that
in this case, the void autocorrelation was also jointly fitted and helped
reduce the uncertainties. Closer statistics are found when comparing
the joint fit with the cross-correlation only. Moreover, with QSOs,
some exclusion effects might still play an important role, and this
makes the extraction of the BAO information more difficult.

7 RESULTS

In this Section, we present the results of the e BOSS DR16 QSO data
sample. Table 10 displays the o measurement and its derived value
for our input cosmology, the volume-averaged distance of equation
(13). Fits are made on the fiducial fitting range with the selected
priors for B and 2. For QSO 2PCF data fit, we fix Xy to the value
given by N-body mocks. Voids are selected according to their radius
with a hard minimum cut range; see equation (11).

MNRAS 526, 2889-2902 (2023)

80
L\\\ fmt
60 - ’.\ + --- &
"\ ® eBOSS QSOs
a0{  *%¢ 7
o ‘# ,,~t+
o 20 -
rl\J‘\U)J‘ $\*J'l+ \ 4 Il 1
0 1 N\ l"—‘Tr’
_20 .
_40 T T T T T T T
25 50 75 100 125 150 175
80T 3
i \ Emt
601 | ‘* --- &
l \ ® eBOSS QSOs
40 : \’
2 LN, bt
BN
e A
S R M
0- i %, ++,+ ++ +
1
—20 - #‘
| )
_40 T l T T

25 50 75 100 125 150 175
s [h~Mpc]

Figure 12. Best-fitting models as fitted for the 2PCF or XCF alone or jointly.

7.1 eBOSS DR16 QSO sample

For data, we observe very similar results from QSOs only or adding
voids. The reduced chi-squared is slightly better for the multitracer
case. However, errors are not improved by the 2PCF joint fit with
XCF compared to 2PCF alone. We note, moreover, that X, » was
estimated from EZmocks that tend to overestimate it. A better
determination of X « could lead to better results. The best-fitting
BAO models are shown in Fig. 12. The data are well fitted on the
fitting range in all cases. Results are consistent with the isotropic
measurement in power spectrum of Neveux et al. (2020) on the same
QSO eBOSS sample, in particular we recover similar statistical and
systematic errors (see also Hou et al. 2021 in configuration space for
a non-Bayesian approach).

EZmocks results suggest that data measurement lies in the 30
per cent hazard without improvement observed with a joint fit with
the cross-correlation of voids. To recreate the randomness of the
sampling of data, we create 25 subsamples of the eBOSS QSOs by
removing 1/25 of the area with equal numbers of QSOs different for
each of the samples. We then fit them in the same way as for the total
sample.

Table 11 gathers the measurements for the 25 data subsamples.
The average value is consistent with the data alone. Moreover, we
have an average improvement of about 2 percent for almost 70
per cent of the realizations. This result is in total agreement with the
EZmocks. It implies that voids could still bring a small improvement
for future QSOs surveys. Indeed an improvement is expected, but for
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Table 11. Mean « measurement and lo dispersion for the 25 subsampled
data, relative difference §; of equation (26) and proportion of realizations for
which §; is positive.

(o) (8:)
Emt 1.016 £ 0.021

#(5,’ |5,‘ > 0)

2.09 % 68.0 %

Table 12. Multitracer fitting results for the 1000 individual realizations of
EZbox with BAO. Columns from left to right: median of the individual AP
parameter «; fitting values, the standard deviation of the individual «; fit
values, the median of the individual 1o errors on «;, mean relative difference
§; of equation (26) and proportion of realizations for which §; is positive. Xy
of the fits are fixed from the EZbox mean fits, and we use a =100 priors on
B.

(i) O, (0q,i) (i)

Eme 1.003 0.008 0.008

#(516; > 0)

4.90 % 68.2 %

a specific data sample, the improvement is not necessarily seen due
to cosmic variance.

7.2 DESI-like volume survey forecasts

We further provide a forecast for a QSO survey with a similar
effective volume to that of DESI for BAO constraints from QSOs.
We repeat the same BAO analysis on 1000 EZbox with BAO.

The effective volume of EZbox is very close to the Year 5 DESI
effective volume for an area of 14000 deg? (DESI Collaboration
2016a) of QSOs. Therefore we directly use the covariance made
from the 1000 EZbox without rescaling.

We perform BAO measurements on the 1000 individual realiza-
tions for the QSOs 2PCF alone and jointly fitted with their cross-
correlation. Following the results of the SNR test of Section 4.3.3 for
the EZbox, the void radius cut is chosen to be 31 2~'Mpc. For the
BAO model, we recreate an appropriate template. The clustering of
the boxes is consistent with that of the light-cone mocks and the data.
In this case, it is appropriate to use the Lagrangian mocks generated
for the light-cone mocks, but without radial selection and survey
geometry cut, i.e. in their boxes format. The cross-power spectra are
then computed for the optimal minimum radius cut of 31 2~'Mpc.
Measurements are gathered in Table 12.

We recover the same results as for the EZmocks. About 68 per cent
of the EZbox realizations have an error reduction when fitting the
2PCF and XCF simultaneously. This improvement is 4.9 percent
on average. This means that increasing the volume, i.e. decreasing
the statistical errors, does not help to have a general improvement of
the BAO error by adding voids. This might be due to the low density
of the QSOs samples. Therefore we expect the results from actual
DESI data to be better, as the density of the QSO boxes is still lower
than the expected QSO density of DESI.

8 CONCLUSIONS

In this paper, we proposed a void analysis of the QSO eBOSS DR16
sample with voids. Due to the low density of the sample, the minimum
size of the void required to mitigate the contamination by voids-in-
clouds is about twice the size for the previous analysis (Zhao et al.
2021, 2022) with the same void definition.

To understand the BAO signal from the void correlations, we
produced EZmocks with and without BAO signature. This allowed
us to choose the optimal radius cut to increase the BAO signal
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and minimize the noise. We are able to observe a negative BAO
peak in the cross-correlation of QSOs and voids. However, we did
not detect any signal in the autocorrelation of voids as geometric
exclusion effects affect the BAO scale, since we are considering very
large voids. We note that we explored other ways of extending the
void catalogue including voids with smaller radii based on QSO
local density arguments to increase the number density and alleviate
the void exclusion effects. However, some biases appeared in this
process, which make such attempts still unreliable. We leave a further
investigation on this for future work.

We presented a multitracer fit of the 2PCF and XCF jointly. For
EZmocks, the errors decreased for 70 percent of the realizations
when voids were jointly fit with QSOs. We report an average of
around 5 percent error improvement for the EZmocks. While we
found less improvement than for the other tracers as LRGs and
ELGs by adding the contribution of voids (Zhao et al. 2022), we
argued that it might be caused by the difficulty of extracting the
BAO information due to remaining void exclusion effects. Moreover,
the autocorrelation of voids that have a non-negligible constraining
power was not included.

For eBOSS QSOs sample data, no improvement was measured
including voids. Our analysis showed the same behaviour as for
EZmocks when we downsample the data into 25 subsamples. This
confirmed that the result for the data is caused by cosmic variance.

We finally presented a forecast for the next batch of surveys
like DESI, which will release a large sample of QSOs (DESI
Collaboration 20164, b). Our results demonstrate that voids can still
improve the isotropic BAO AP parameter for those data by almost
5 percent, a result which remains stable even if the volume is
increased. Better improvement is expected for future QSO surveys
with a higher number density such as J-PAS (Benitez et al. 2014) or
WEAVE (Dalton et al. 2016; Pieri et al. 2016). Hence, we conclude,
that voids can be potentially useful to further increase the BAO
detection from forthcoming QSO catalogues.
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