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ABSTRACT

In this paper, we are concerned by the elaboration of generic devel-
opment steps for the code generation for synchronous languages.  
Our aim is to provide a correct by construction solution. For that  
purpose, we adopt a refinement-based approach where proof obli-
gations for each step guarantee properties preservation. We use  
the Event-B formal method. We start with a big step semantics  
specified by an Event-B machine. Through a sequence of refine-
ments, expressed as Event-B refinement machines, we end up with  
a code generation step which implements a small step semantics  
preserving the properties of the big step semantics.

KEYWORDS

synchronous languages, refinement, code generation, semantics,  
verification

1  INTRODUCTION

Our study concerns system development. We are interested by the  
development of reactive systems. For such systems, for instance,  
avionic systems and interactive systems, synchronous languages  
have revealed well suited. From the beginning, synchronous lan-

guages have put forward a strong mathematical framework under-

lying their basic principles: synchrony and deterministic concur-
rency [5]. Thanks to that, synchronous languages have received a  
significant audience, especially within the critical embedded sys-
tems community where high levels of certification are required.  
However, one must acknowledge that although significant efforts  
have been devoted to explain the software architecture for imple-

menting frameworks for the development of such languages and

https://doi.org/10.1145/3127041.3127056

C0 C1
extends

M0 M1
refines

sees sees

Figure 1: Event-B development step

even to mechanize them [6, 10, 19], the production of a certified

compiler remains a challenge.

In this paper, we are concerned by the elaboration of generic

development steps for the code generation for synchronous lan-

guages. Our aim is to provide a correct by construction solution. For

that purpose, we adopt a refinement-based approach where proof

obligations for each step guarantee the preservation of some classes

of properties [7]. We use the Event-B formal method. We start with

a big step semantics specified by an Event-B machine. Through

a sequence of refinements, expressed as Event-B refinement ma-

chines, we end up with a code generator and an interpreter which

implements a small step semantics preserving the properties of the

initial big step semantics, i.e. the sequences of reactions observed

when executing the concrete machine were allowed by the big step

semantics.

The rest of the paper is organized as follows: in the next section,

we give an overview of the Event-B language. In Section 3, we

present the development of a generic compiler for synchronous

languages. Finally, in Sections 4 and 5, we discuss related and future

work.

2 EVENT-B

The Event-B method allows the development of correct by construc-

tion systems and software [1]. To achieve this, it supports natively

a formal development process based on a refinement mechanism

with mathematical proofs. Figure 1 illustrates a refinement step

where a machine M0 using a context C0 (the sees edge) is refined

(the refines edge) by a machine M1 using an extension C1 of C0

(the extends edge). Contexts define abstract data types through

sets, constants and axioms while machines define symbolic labelled

transition systems. The state of a transition system is defined as

the value of machine variables. Labelled transitions are defined by

events specifying the new value of variables while preserving invari-

ant properties. Proof obligations for wellformedness and invariant

preservation are automatically generated by the Rodin tool [18].



They can be discharged thanks to the available automatic proof

engines (CVC4, Z3, . . . ) or through human-assisted proofs.

2.1 Notations

For the most part, Event B uses standard set theory and its usual

set notation. As a matter a fact, in Event-B, an array and a function

are both considered as set of couples. Some notations are specific

to Event B :

• pair construction: pairs are constructed using the maplet

operator �→. A pair is thus denoted a �→ b instead of (a,b).

The set of pairs a �→ b where a ∈ A and b ∈ B is denoted

A × B.

• A subset of A × B is a relation. A relation r has a domain :

dom(r ) and a codomain : ran(r ). When a relation r relates

an element of dom(r ) with at most one element, it is called a

function. The set of partial functions from A to B is denoted

A �→B, the set of total functions is denotedA→ B. The image

of a set A by a relation r is denoted r [A]. Last, the relational

composition is denoted by the ; infix operator. Suppose f ∈

A→ B and д ∈ B �→C , then f ;д ∈ A �→C is the following set

of pairs:{x �→ z | ∃y. y ∈ B ∧ x �→ y ∈ f ∧ y �→ z ∈ д}.

• domain restriction:D�r = {x �→ y | (x �→ y) ∈ r∧x ∈ D}

• overwrite: f �−д = ((dom( f )\dom(д)) � f ) ∪ д.

For instance, such a notation is used to denote a new array

obtained by changing the element of an array A at index i:

A�−{i �→ e ′}.

• lambda expressions: the usual expression for a lambda

expression is: λx . x ∈ T | bdy, where T is a set denoting the

“type” of x : here the definition domain and bdy is the body

of the lambda expression.

As already said, Event-B machines specify symbolic transitions

through events. An event has three optional parts: parameters (any

p1 . . . pn), guards (where . . . ) specifying constraints to be satisfied

by parameters and state variables, and actions (then . . . ) specifying

state variables updates. Guards are defined in set-based predicate

logic. Concurrent updates of distinct variables may be deterministic

(x := e), non deterministic (x :∈ E or x :| P (x ,x ′)). In x :∈ E, x

takes any value belonging to the set E. In x :| P (x ,x ′), the new

value x ′ of x is specified by the predicate P .

2.2 Preliminary example

As a preliminary example for section 3.1, Figure 2 illustrates basic

labelled transitions systems [4]. The static description of transition

systems is given through the context cLTS. cLTS introduces State

and Label as abstract sets. Then, the set of initial states is given

through the constant I, and the transition relation through the

constant Trans. The description of the dynamics of a transition

system is given through the machine mLTS. First, we represent the

state space by the variable st ∈ State. The dynamics is specified

through two events: the INITIALISATION event which chooses

non-deterministically a state among elements of the set I and the

next event which also chooses non-deterministically a label and a

transition having such a label.

Figure 3 illustrates an Event-B refinement of the preceding ma-

chine mLTS. Intuitively, we model the introduction of an internal

event that will take control for some time after which the next event

context cLTS
sets
State
Label

constants
I

Trans
axioms
@I I ∈ P1(State) // non empty subset
@T Trans ⊆ State × Label × State
end

machine mLTS
sees cLTS
variables
st

invariants
@st st ∈ State

events
event INITIALISATION
then
@I st :∈ I

end

event next
any l
where
@l l ∈ Label
@enabled st �→l ∈ dom(Trans)
then
@ns st :| ( st �→ l �→ st ') ∈ Trans
end

end

Figure 2: Event-B LTS semantics

becomes enabled again. For such a purpose, the machine mLTS_r

refines mLTS and introduces a new variable cpt : a counter that

will be initialized non deterministically. When the counter reaches

the zero value, next is enabled. The refined machine refines the

events INITIALIZATION and next and introduces the new event

silent which is similar to τ events of CCS [12]. We notice that in

the new (refining) next event, the enabled guard is strengthened

by the conjunct cpt = 0. Moreover, this new next event provides

a witness of the parameter of the old (refined) next event: the pa-

rameter lr is said to be the witness of the parameter l. When the

new next event has been executed, cpt is again assigned a positive

value. In Event-B, the proof obligations enforce a weak refinement

semantics [12]. The purpose of the variant clause is to enforce

that introduced events will not take control forever. Usually, the

variant belongs to a well ordered domain and is decreased by newly

introduced (internal) events declared to be convergent.

3 A GENERIC COMPILER DEVELOPMENT
FOR SYNCHRONOUS LANGUAGES

In this section, we elaborate a generic refinement-based approach

for the compilation of synchronous languages. Starting from the

so-called labelled synchronous transition systems, we propose a

sequence of refinement steps, illustrated by Figure 4, leading to

code generation. Thanks to the refinement-based approach, the

generated code is known to preserve by construction the initial

semantics provided all the proof obligations have been discharged.

3.1 Labelled synchronous transition systems

In the synchronous context, executions are seen as sequences of

reactions [17]. A reaction r assigns values to the subset of variables

said to be present: undefinedness of r on a variablev means absence

of v in r . We suppose a fixed domain D for the values and define

a reaction over the set of variables V as a partial function from V

to the domain D, i.e., Reaction(V ) = V �→D. We remark that the

usual definition of a reaction is a total function toD∪ {⊥} where ⊥



machine mLTS_r refines mLTS sees cLTS
variables st cpt
invariants
@cpt_ty cpt ∈ N

variant cpt
events
event INITIALISATION
then
@I st :∈ I
@cpt_i cpt := 0

end
event next refines next
any lr // parameter is renamed
where
@lr lr ∈ Label
@enabled cpt = 0 ∧ st �→ lr ∈ dom(Trans)

with
@l l = lr // link with abstract paramater; l witness relation ·

then
@ns st :| ( st �→ lr �→ st ') ∈ Trans
@restart cpt :∈ N

end
convergent event silent
where
@g cpt > 0

then
@cpt_d cpt := cpt − 1

end
end

Figure 3: Event-B refinement

is a special symbol denoting absence. The use of a partial function

is better suited to Event-B.

We introduce now labelled synchronous transition systemswhich

generate synchronous executions.

Definition 3.1 (LSTS). A Labelled Synchronous Transition System

is a quadruple 〈V,S,I,→〉 whereV is a set of variables, S a set

of states, I ∈ S is an initial state and→⊆ S × Reaction(V ) × S is

the set of transitions labelled by reactions.

3.1.1 Signal and its LSTS semantics. In order to illustrate the

definition of an LSTS, we present the syntax of a kernel of the

Signal language [8] and its semantics defined as an LSTS [17]. A

Signal program over a set of variables V is a set of equations of the

following form which define each variable at most once:

• x1 = x2 when x3 undersampling

• x1 = x2 default x3 deterministic merge

• x1 = f (x2,x3) instantaneous function

• x1 = x2$ init v delay

With respect to the Signal language, we essentially do not consider

local variables. This aspect is not relevant for our presentation.

The semantics of Signal can be defined as an LSTS where a state

is a mapping from memorized (or persistent) variables to values.

A variable is memorized if it is introduced by a delay equation. In

order to define the denotational semantics of Signal, we introduce

the function Rm wherem is a memory state. It takes as parameter

a Signal equation and returns the set of allowed reactions. We also

suppose the existence of a constant  ∈ D representing true.

• Rm[x1 = x2 when x3] =

{r ∈ V �→D | ∀v · x1 �→ v ∈ r ⇔

(x2 �→ v ∈ r ∧ x3 �→  ∈ r )

}

• Rm[x1 = x2 default x3] =

{r ∈ V �→D | ∀v · x1 �→ v ∈ r ⇔

(x2 �→ v ∈ r ∨

x2 � dom(r ) ∧ x3 �→ v ∈ r ) }

• Rm[x1 = f (x2,x3)] =

{r ∈ V �→D |

∀v1,v2,v3·

x1 ∈ dom(r ) ⇔ x2 ∈ dom(r ) ⇔ x3 ∈ dom(r )

∧(x1 �→ v1 ∈ r ∧ x2 �→ v2 ∈ r ∧ x3 �→ v3 ∈ r

⇒ v1 = f (v2,v3) }

• Rm[x1 = x2$ init v] =

{r ∈ V �→D |

x1 ∈ dom(r ) ⇒ r (x1) =m(x1)

∧ x1 ∈ dom(r ) ⇔ x2 ∈ dom(r ) }

We are now ready to introduce the semantics of a Signal program

P over variables of V as an LSTS. We define the setM ⊆ V of

memory variables as those introduced by $ init equations. Then,

the LSTS associated to P is the quadruple 〈 V, M → D, {v �→

c | v = w$ init c ∈ P }, {m
r
→ m′ | r ∈

⋂
p∈P Rm[p] ∧m′ =

m�−{v �→ r (w ) | w ∈ dom(r ) ∧v = w$ init c ∈ P }〉.

In the following, we will use an abstraction of the set of reactions
⋂
p∈P Rm[p] as a parameterized constraint problem. The parame-

ters are here the variables which are not defined through a Signal

program equation.

3.1.2 The refined LSTS. We intend to produce LSTS from syn-

chronous languages as Lustre or Signal. The corresponding LSTS

are specialized as follows:

• The reaction is computed from the synchronous program

and the current state. For instance, in the Signal setting, the

program can be read as a set of constraints of which solutions

are the set of allowed reactions.

• The state contains the value of variables defined by a delay

construct. The state space is thus a mapping from a (memory)

subsetM of the set of variablesV to the domain D.

• The state is updated by storing for each memory variable x

its next value defined to be the value of some variable N (x )

when x is present. Otherwise, the memorized value remains

unchanged, thus allowing persistence of information over

cycles.

Thus, we introduce what we call a refined LSTS (rLSTS) by the

following definition:

Definition 3.2 (rLSTS). A rLSTS is a quintuple 〈V,M ⊆ V,I ∈

M → D,N ∈ M → V,C ∈ (M → D) → P(V �→D)〉 where:

• V is a set of variables,

• M is the subset of memory variables,

• I is the initialization of these variables,

• N associates to each memory variable the variable, the value

of which is stored,

• C returns the set of allowed reactions from a given memory

state.

The LSTS corresponding to the rLSTS is defined as follows by

the quadruple 〈V = V, S = M → D, I = I, m
r
−→ m′ ≡ r ∈

C (m) ∧m′ =m�−N ; r 〉 where C associates to a memory state a set

of reactions.
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Figure 5: Signal LSTS partial run

3.1.3 Example. Consider the Signal program which increments

x and restarts it from the signal r each time it occurs:

process INCR = (?integer r; !integer x;)

(|

(|

| px := x$ init 0

| nx := px + 1

| x := r default nx

|)/px,nx

|)

If we keep local variables visible, the associated rLSTS is defined

as follows:

V = {r ,x ,px ,nx },

M = {px },

I = {px �→ 0},

N = {px �→ x },

C (m) = Rm[px = x$ init 0]

∩ Rm[nx = px + 1] ∩ Rm[x = r default nx]

Figure 5 is a partial run of this example. A run is an alternating

sequence of states (ovals) and transitions labelled by reactions (vec-

tors). In the first reaction, r is absent and x is one more than the

memorized value. The second transition is labelled by a reaction

where r is present. Thus x takes the value of r. In the third transi-

tion, r is chosen to be absent and x is incremented. The reaction

could also be empty (all variables being absent). However, this will

be forbidden in the remaining of the paper to avoid Zeno behaviors.

3.1.4 Event-B representation. First of all, we define the context

cMeta (Fig. 6) containing the various fields of the rLSTS we will

consider. With respect to definition (3.2), we have added one pa-

rameter of type P(V ) to the function C denoting the constraint

problem of which reactions should be solutions. It contains the set

of variables that are constrained and is now the full set V . This

parameter will be modified to specify the incremental computation

of the reaction in the next refinement.

Second, we define the semantics of the given rLSTS through an

Event-B machine which specifies the Labelled transition system

associated to the rLSTS through the state variable m initialized using

I. The state evolves through the bigStep event parameterized by a

context cMeta
sets V D
constantsM I N C
axioms
@fVat finite (V)
@I_ty I ∈ M → D
@N _ty N ∈ M → V
@C_ty C ∈ (M→ D)→ (P(V)→ P(V �→ D))

end

Figure 6: The Event-B context cMeta

reaction r. The reaction is accepted if it is a solution of the constraint

system.

This bigStep event is intended to be split into small steps that

compute reactions incrementally.

machine mBigStep sees cMeta
variables m // memory
invariants
@m_ty m ∈ M → D

events
event INITIALISATION
then
@m_init m := I

end
event bigStep
any r where
@r_ty r ∈ V �→ D // r is a reaction
@g r ∈ C(m)(V) // r is a solution of the constraint system
@ne r � ∅ // to avoid Zeno behaviors

then
@m m := m �− (N ;r) // memory update

end
end

3.2 Solved form (context cMeta_SF) and small
step semantics (machine mSmallStep)

This refinement aims at splitting the big step which specifies what

are valid reactions. The small steps should compute one variable at

a time. To make it possible, the constraint system should be put in

solved form.

3.2.1 Solved form. We define the constraint problem as a set

of equations supposed to be in triangular form: a left hand side

variable is said to depend on right hand side variables and this

dependency relation should be acyclic. In fact, two informations

must be computed: the presence of a variable, and if present, its

value. The value of a present variable is either defined by a formula,

or read from input (indeterminate), or read from memory. Thus, we

first introduce the constant isPresent together with the depen-

dency relation pdep. The function isPresent takes as parameters

a variable and a partially computed reaction and returns a set of



booleans which indicate if the variable is allowed to be present or

absent, or both. isPresent returns either {TRUE}, either {FALSE}, or

{TRUE,FALSE} to encode indeterminacy, as it is the case for master

clocks of Signal programs [8]. Concerning pdep, it maps each vari-

able to the set of variables on which its presence depends. Moreover,

a variable which does not depend on other variables can be chosen

to be present or absent.

constants isPresent pdep
axioms
@isPresent_ty isPresent ∈ V × (V �→ D) −→ P1(B)
@pdep_ty pdep ∈ V −→ P(V)
@check_empty ∀ v · pdep(v) = ∅ ⇒ isPresent (v �→∅) = B

Figure 7: cMeta_SF (part I)

Now, we introduce the eqns function for value computation,

together with the dependency relation dep. Contrary to presence,

values are specified in a functional way. Indeterminacy of values

is inferred from the absence of equations for some variables. The

function eqns takes as parameters the considered variable and

returns its value for the currently computed reaction. This function

is partial at several orders: it is defined for a subset of non memory

variables. Accepted reactions (which are partial functions) should at

most give a value to variables on which the first argument depends.

These reactions are those that allow the presence of the variable.

constants eqns dep
axioms
@eqns_ty eqns ∈ V �→ ((V �→ D) �→ D)
@mem_eqnsM ∩ dom(eqns) = ∅
@dep_ty dep ∈ V −→ P(V)
@dep_def ∀v· v ∈ dom(eqns)⇒ dom(eqns(v)) ⊆ (dep(v) �→ D)

Figure 8: cMeta_SF (part II)

Figure 9 introduces the link between Presence and the existence

of a value for a variable: a partial solution ps allows the presence

of a variable v if and only if the partial solution ps is in the domain

of eqns(v).

axioms
@isp_dom ∀v,ps· v∈dom(eqns) ∧ ps ∈ dep(v) �→ D

⇒ (TRUE ∈ isPresent(v �→pdep(v) � ps) ⇔ ps ∈ dom(eqns(v)))

Figure 9: cMeta_SF (part III)

We suppose that for any variable v, pdep(v) is a subset of

dep(v): the value of v (depending on variables of dep(v) can be

computed once we know its presence (depending on variables of

pdep(v). Then, we add properties stating that dep is transitively

closed and irreflexive, thus a strict partial order.

Now, we define the constraint problem Cm,S for a memory state

m and a subset S ⊆ V of seen variables. A solution r is a partial

function on S , undefinedness meaning absence. It is constrained by

three properties (Fig. 11):

@pdep_dep ∀v· pdep(v) ⊆ dep(v)
@pdep_trans ∀v1, v2· v1 ∈ pdep(v2) ⇒ pdep(v1) ⊆ pdep(v2)
@dep_trans ∀v1, v2· v1 ∈ dep(v2) ⇒ dep(v1) ⊆ dep(v2)
@dep_irrefl ∀v· v � dep(v)

Figure 10: cMeta_SF (part IV)

• The presence or the absence of a variablev within a reaction

r should be allowed by the set returned by the function

isPresent where r is restricted to variables on which v

depends.

• The restriction of r to memory variables is given by the

memory state.

• The value of a present variablev associated to an equation is

given by this equation taking as parameterv and a restriction

of r to variables it depends on.

axioms
@C_def C =

(λm· m ∈ M −→ D | λS· S ⊆ V |
{ r | r ∈ S �→ D
∧ (∀v· v∈S⇒ bool(v ∈ dom(r)) ∈ isPresent (v �→ pdep(v) � r ))
∧ ((M ∩ S) � r ⊆ m)
∧ ∀v· v ∈ dom(r) ∩ dom(eqns)⇒ r (v) = eqns(v )( dep(v) � r )

})

Figure 11: The constraint problem

3.2.2 Memory access. We introduce dedicated variables, from

the set NextMem, used as markers for memory updates. The injective

function write associates to each memory variable v , its memory

write event. This event should be fired after all reads of v and after

the computation of the next value of v given by the variable N (v ).

The presence of the write event depends on the presence of the

next value. It is actually present if the next value is present.

constants NextMem write
axioms
@write write ∈ M �� NextMem
@wdep ∀v·v∈M ⇒ {w | v ∈ dep(w)} ∪ {v, N (v)} ⊆ dep(write(v ))
@wpdep ∀v·v∈M ⇒ pdep(write(v)) = {N (v)} ∪ pdep(N (v))
@wpres ∀ps,v· ps∈V �→D ∧ v∈M ⇒

isPresent (write (v) �→pdep(write(v )) �ps) = {bool(N (v)∈dom(ps))}

3.2.3 Small step semantics. Given a constraint system in trian-

gular form, it is possible to compute reaction variables one by one

through so-called small steps. In the same way, the memory can

be updated incrementally once the current value of a variable be-

comes useless in the current cycle: it will not be read anymore. For

this purpose, we introduce a refinement machine with three new

variables: the partially updated memory pm, the partial solution ps

and the set of processed variables done.

machine mSmallStep refines mBigStep sees cMeta_SF
variables pm // partially updated memory

ps // partial solution
done // processed signals

invariants
@pm pm ∈ M −→ D
@ps_ty ps ∈ V �→ D

@done_ty done ⊆ V



These variables satisfy the following invariant properties:

• The restrictions of pm and m to unprocessed memorized vari-

ables are identical functions.

• ps is a partial solution restricted to variables of done.

• If a variable is present, variables of which depends its value

(given by dep) have been processed.

• If a variable has been processed, variables on which depends

its presence (given by pdep) have also been processed.

• The partial solution is not empty as soon as one variable has

been processed, i.e. the first processed variable should be

marked as present.

• The memory is partially updated by the next value of mem-

ory variables of which the write event has been processed.

invariants
@pmu ∀v·v∈M\done⇒ pm(v) = m(v) // pm equals m on unprocessed variables
@ps_ok ps ∈ C(m)(done) // ps is the restriction to done of a reaction
@seen_val ∀v·v ∈ dom(ps)⇒ dep(v) ⊆ done
@seen_pres ∀v·v∈done⇒ pdep(v) ⊆ done
@done_ne done � ∅ ⇒ ps � ∅ // forces non empty reactions

@pm_m pm = m �− (write−1[done]�N ; ps) // pm is a partial update of m

Initially, the partial solution and the set of processed variables

are empty. Memory gets the rLSTS initial value.

event INITIALISATION
then
@init_ps ps := ∅
@init_done done := ∅
@init_pm pm := I

end

Small steps determine the presence and compute the value of

individual variables. These steps must be transparent from the point

of view of the abstract machine: they do not modify previously in-

troduced variables and should apply a finite number of times. This

is why they are declared convergent, which means that they must

decrease the variant. Several convergent events are defined. They re-

spectively process absent variables, present variables defined by an

equation, memory accesses or undetermined variables (considered

as inputs or parameters). Due to space restrictions, two cases are

presented: equational variables and absent variables. Other events

are related to memory read and write variables, parameters (non

memory and non equational variables).

The following listing manages variables defined by an equation.

The event selects such a variable v which has not been processed

before. Variables on which it depends should have been processed

and v is allowed to be present. Then, its binding to the value given

by the equation is inserted into the partial solution and v is added

to done. It follows that the variant decreases.

variant V \ done
events
convergent event smallStep_P // processing of a present variable
any v where
@v v ∈ dom(eqns) \ done
@d dep(v) ⊆ done // thus pdep(v) ⊆ done
@p TRUE ∈ isPresent(v �→pdep(v) � ps) // v is allowed to be present

then
@ps ps(v) := eqns(v )( dep(v) � ps)
@done done := done ∪ {v}

end
end

The following listing manages absent variables. Contrary to

present ones, they are processed by blocks. This will allow opti-

misations in the generated code. So, we consider a non empty set
of variables V such as variables on which they depend are either

already processed or in V . Absence should be allowed for all these

variables. Note that this permission is checked by supposing vari-
ables of V are absent as unprocessed variables are seen as absent.

Lastly, the partial solution should not be empty to ensure that the

computed reaction will not be the empty one.

convergent event smallStep_mA // processing of absent variables
any V where
@v V ⊆ V \ done
@vnv V � ∅ // ensures that the variant decreases
@d ∀v· v ∈ V⇒ pdep(v) ⊆ done ∪ V
// variables of V are allowed to be absent
@abs ∀v· v ∈ V⇒ FALSE ∈ isPresent (v �→pdep(v) � ps)
@ps ps � ∅

then
@done done := done ∪ V

end

When all the variables have been processed by the small steps,

we can refine the big step of the abstract machine and prepare the

next round by resetting the variable done.

event bigStep refines bigStep
where
@g done = V

with
@r r = ps // r witness relation

then
@ps ps := ∅
@d done := ∅

end

3.2.4 Example. Given the Signal example previously introduced

in Paragraph 3.1.3, we add the write event marker pxw for the

memory variable px . Figure 12 shows how the declared constants

introduced in the solved form can be instantiated. The graph repre-

sents the functions pdep and dep. All the antecedents with plain

arrows of a node x form its dependency for pdep. dep is obtained

by adding the dashed arrows.

Concerning the isPresent function, written isP in the figure,

it allows presence and absence for r. If r is actually present, px

must be present; otherwise px presence does not care. Then the

authorization of presence of variables nx, x and pxw is determined

by the actual presence of px and x.

Concerning eqns, it associates a value to nx and x by accessing

to the value of variables they depend on.

r

px

nx x

pxw

isP (r, ps ) = {T , F }

isP (nx, ps ) = {px ∈ dom(ps ) }

isP (x, ps ) = {px ∈ dom(ps ) }

isP (pxw , ps ) = {x ∈ dom(ps ) }

isP (px, ps ) = {T } if r ∈ dom(ps )

else {T , F }

eqns (nx ) (ps ) = ps (px ) + 1

eqns (x ) (ps ) = ps (r ) if r ∈ dom(ps )

else ps (nx )

Figure 12: Solved Form level (example)



3.3 Introduction of clocks (machine
mSmallStep_CC)

We now associate clocks to variables. The role of a clock is to

manage presence. Thus, a variable will be present if and only if its

clock is present. For this purpose, the set Clock is declared as a

subset of variables supposed to be neither memory variables nor

defined by an equation: they are not valued. Each variable has a

clock (defined by the function cP). The clock of a clock is itself.

context cMeta_CC extends cMeta_SF
constants Clock cP
axioms
@Clock_ty Clock ⊆ V \ (M ∪ NextMem ∪ dom(eqns))
@isP_ty cP ∈ V → Clock
@isP_clk ∀s· s ∈ Clock ⇒ cP(s) = s
@Clk_def ∀s·cP(s)=s ⇒ s∈Clock
@isP_dep ∀s· s∈V\Clock⇒ cP(s) ∈ pdep(s)
@clk_dep ∀v· v∈Clock ∧ dep(v) = ∅ ⇒ v ∈ IO
@chk_clk ∀v,ps· ps∈V �→D
⇒ isPresent (v �→pdep(v)�ps) = isPresent (cP(v) �→pdep(cP(v))�ps)

@pdep_clk ∀v· v∈Clock⇒ pdep(v) = dep(v)
end

Anew refinement can now be defined. It differs from the previous

machine by the fact that presence of clocks are tested through the

isPresent function while presence of valued variables comes to

the presence of their clocks. One invariant is added. It states that

for a processed variable, its presence and the presence of its clock

are equivalent. The following listing illustrates the transformation

of the two events. For equational variables: cP(v) presence is now

checked. For absence, constraints on V are strengthen to ensure

clocks are also selected and that they are absent. The big step is

unchanged.

machine mSmallStep_CC refines mSmallStep sees cMeta_CC
variables pm ps done
invariants
@pres ∀v· v ∈ done⇒ (cP(v) ∈ dom(ps)⇔ v ∈ dom(ps))

events
event smallStep_P refines smallStep_P
any v where
@v v ∈ dom(eqns) \ done
@d dep(v) ⊆ done
@p cP(v) ∈ dom(ps)

then
@ps ps(v) := eqns(v )( dep(v) � ps)
@done done := done ∪ {v}

end
event smallStep_mA extends smallStep_mA
where

@clk_done cP[V] ⊆ done ∪ V
@clk_abs cP[V] ∩ dom(ps) = ∅

end
event bigStep extends bigStep end // unchanged

end

3.3.1 Example. Given our working example, we introduce the

clocks r̂ , p̂x , x̂ , n̂x , p̂xw , thus defining the cP function by cP (v ) = v̂ .

We have chosen to take the same clock for x and nx . This is allowed

by the axioms since their respective presence are defined in the

same way. The dependencies between the variables are now given

by the following graph:

r̂ r p̂x px x̂ = n̂x

xnx p̂xw pxw

3.4 Clock hierarchy (machine mSmallStep_SUB)

The goal of this refinement is to introduce the clock inclusion

relation: if a clock is absent, sub-clocks are also absent and it is not

useful to check them at runtime. For this purpose, we introduce

the relation sub represented by a function associating to a clock

the set of clocks it subsumes (or contains). This relation should

be compatible with the pdep relation: a clock depends on clocks

containing it. Subsumption declarations should be consistent with

presence semantics as given by the isPresent function.

context cMeta_SUB extends cMeta_CC
constants sub
axioms
@sub_ty sub ∈ Clock→ P(Clock) // gives the set of subsumed clocks
@sub_dep ∀v,w· w ∈ Clock ∧ v ∈ sub(w)⇒ w ∈ pdep(v)
@sub_present ∀v1,v2· v1∈Clock ∧ v2 ∈ sub(v1) ⇒
(∀m,D,ps· m∈M→D ∧ pdep(v1) ⊆ D ∧

pdep(v2) ⊆ D ∪ {v1} ∪ sub(v1) ∪ cP−1[{v1} ∪ sub(v1)] ∧
v1 � D ∧ sub(v1) ∩ D = ∅ ∧ ps ∈ C(m)(D) ∧
FALSE ∈ isPresent (v1 �→ pdep(v1) � ps) ⇒
FALSE ∈ isPresent (v2 �→ pdep(v2) � ps ))

end

The refined machine declares one new invariant stating that if a

clock has not been processed, the clocks it subsumes have not been

dealt with either. The only modified event is the one managing

absence: clocks declared to be absent are clocks subsumed by a

clock v or variables of which clock is subsumed by v . Thus only

one absence test is performed to discard V .

machine mSmallStep_SUB refines mSmallStep_CC sees cMeta_SUB
variables pm ps done
invariants
@sub_done ∀c· c∈Clock\done⇒ sub(c) ∩ done = ∅

events
event smallStep_mA refines smallStep_mA
any v V where
@v v ∈ Clock \ done
@d pdep(v) ⊆ done
@abs FALSE ∈ isPresent(v �→pdep(v) � ps)
@ps ps � ∅

@V V ⊆ {v} ∪ sub(v) ∪ cP−1[{v} ∪ sub(v )]
@Vv v ∈ V
@Vd V ∩ done = ∅
@Vp ∀w· w ∈ V⇒ pdep(w) ⊆ done ∪ V

then
@done done := done ∪ V

end
end

3.4.1 Example. Considering our example, we add the subsum-

tion relation as bended arrows to the dependency graph restricted

to clocks.

r̂ p̂x x̂ = n̂x p̂xw

These new arrows define a subgraph of the dependency graph and

should satisfy the axiom sub_present. For instance, let us consider

the bended arrow between p̂x and x̂ . Given a partial solution ps

defined at least on pdep (px ) and not on px we must check the im-

plication between each presence property. This property is satisfied

since the right side of the implication is True becausepx � dom(ps ).



3.5 Sequential code generation (machine
mSmallStep_Seq)

This refinement step is the key point of the verified compiler gen-

eration. It consists in separating actions that can be performed at

compile time (statically) from actions performed at run time, the

link between them being the generated code. The principle is the

following:

• At the abstract level, an event is fired if its parameters satisfy

static properties (linked to the dependency relations) and

dynamic properties (linked to presence / value) of variables

in the partial reaction already built.

• To each such event is associated a convergent event that

will select its parameter depending only on static proper-

ties and store it in the sequence of instructions built by the

compilation phase. These events constitute the code of the

compiler.

• The abstract event itself is refined by an event which sim-

ulates the created instruction by testing and updating the

dynamic state.

• The correction of this separation relies on the fact that static

properties should be sufficient to select event parameters. It

is ensured if we suppose that, given parameters satisfying

the static properties, there exists an event of which dynamic

properties are also satisfied.

These principles are applied to small step events. Such an event

may be fired on a variable if previous variables (for dep or pdep par-

tial orders) have been processed and if some conditions depending

on the partial reaction (presence of the clock for example) are satis-

fied. Building the reaction is left for the dynamic phase. However,

variable selection, i.e., topological sort, can be performed at compile

time. As a result, we get a sequence of statements specifying the

event to fire and the variable to be selected. Statements are declared

in the cMeta_Seq context:

context cMeta_Seq extends cMeta_SUB
sets Stmt
constants
GetPresence // check clock presence
GetP // read parameter statement
ReadM // read memory statement
WriteM // write memory statement
Assign // assignment statement

axioms
@gst partition(Stmt ,{GetPresence },{ GetP},{ReadM},{WriteM },{Assign })

end

3.5.1 The compilation events. The compiler encodes machine

instructions numbered from 0 to N − 1 through two variables: stmt

for the name of the statement and arg for the concerned variable.

In order to take into account the clock hierarchy, we add a jump

pointer (iff read if false) to each presence test. It indicates the

continuation in case the test fails. So, we introduce the following

variables:

machine mSmallStep_Seq refines mSmallStep_SUB sees cMeta_Seq
variables pm // memory (dynamic, inherited )

ps // partial reaction (dynamic, inherited )
N // size of code ( static )
pc // program counter (dynamic)
stmt // statements ( static )
arg // argument of statement ( static )
iff // forward pointer to follow in case of absence ( static )

invariants
@sta_N N ∈ N
@dyn_pc pc ∈ 0. .N
@stmt_ty stmt ∈ dom(arg)→ Stmt
@sta_arg arg ∈ 0. .(N−1)� V

@iff iff ∈ stmt−1[{GetPresence}]→ 0. .N

The invariant specifies the link between old and new dynamic

variables (done and pc) and between generated instructions and

expected properties of the variable selected by the old small step

events:

• processed variables (the set done) are arguments of previous

statements in the code sequence,

• dependencies are arguments of previous statements

• arguments of GetPresence are clocks

• arguments of GetParam are parameters

• arguments of ReadMem are memorized variables

• arguments of WriteMem are memory write events

• arguments of Assign are equational variables

• iff pointers are forward pointers

• iff pointers skip subsumed clocks

invariants
@dyn_done done = arg[0. .pc−1]
@sta_dep ∀i· i ∈ dom(arg)⇒ dep(arg( i )) ⊆ arg[0. .(i−1)]

@GetPresence_cstr arg[stmt−1[{GetPresence}]] ⊆ P ∩ Clock

@GetP_ctr arg[stmt−1[{GetP}]] ⊆ P \ Clock

@ReadM_ctr arg[stmt−1[{ReadM}]] ⊆ M

@WriteM_ctr arg[stmt−1[{WriteM}]] ⊆ ran(write)

@Assign_ctr arg[stmt−1[{Assign}]] ⊆ dom(eqns)

@iff_gt ∀i · i ∈ stmt−1[{GetPresence}]⇒ iff ( i ) > i

@iff_spec ∀i · i ∈ stmt−1[{GetPresence}]

⇒ arg[ i+1. .iff( i )−1] ⊆ sub(arg( i )) ∪ cP−1[sub(arg(i ))] ∪ cP−1[{arg(i )}]

We now consider the event smallStep_P of paragraph 3.3. The

management of other events is similar. According to the splitting

method, we introduce a convergent event acting as the compilation

step. It non-deterministically selects an equational variable provided

that the variables it depends on have already been processed. Then

it adds a new instruction, here a conditional assignment and updates

the iff pointers to allow the new instruction to be skipped if the

required conditions are satisfied.

convergent event sta_smallStep_P
any v where
@v v ∈ dom(eqns) \ ran(arg)
@d dep(v) ⊆ ran(arg)

then
@N N := N + 1
@arg arg(N) := v
@argss stmt(N) := Assign
@iff iff := iff �−

{ i | i ∈stmt−1[{GetPresence}] ∧ iff ( i )=N ∧ cP(v) ∈ sub(arg( i )) ∪ {arg( i )}
× {N+1}

end

3.5.2 The interpretation of generated events. The second event

recognizes the generated instruction and performs the dynamic part

of the refined event: the presence of the argument of the instruction

is checked and the reaction is updated. Note that presence check

could be removed: within the bloc of code skipped by the iff

pointer, the presence condition is known to be satisfied. Due to lack

of space, this optimization is not detailed here.

event smallStep_P refines smallStep_P
where
@pc pc < N // end of generated code ¬reached



@arg stmt(pc) = Assign // current statement is an Assign
@p cP(arg(pc)) ∈ dom(ps) // the clock of the assigned variable is present

with
@v v = arg(pc) // the processed variable is the argument of the statement

then
@ps ps(arg(pc )) := eqns(arg(pc ))( dep(arg(pc )) � ps)
@npc pc := pc + 1

end

Absence being managed through the update of the iff pointers

during the generation of all small step statement related to presence,

only remains the dynamic part which consists in skipping a block

of instructions in case a presence test fails. The new event declares

the values of the parameters of the refined event.

event smallStep_mA refines smallStep_mA
when
@pcN pc < N // end of generated code ¬reached
@pc stmt(pc) = GetPresence
@pcnz pc > 0 // it is ¬the first statement
@abs FALSE ∈ isPresent(arg(pc) �→pdep(arg(pc)) � ps) // absence allowed

with
@v v = arg(pc) // the processed variable
@V V = arg[pc. .iff(pc)−1] // the set of variables to be skipped

then
@npc pc := iff (pc) // jump to next block

end

At last, the big step event is modified to take into account the

new state variables: the compilation should have been performed

before, the small steps should have been executed. It has to be

noted that, except for this last event, compilation and execution of

generated instructions can be interleaved during the computation

of the first reaction of the run. This property is partially lost if

presence test optimization is considered: if execution jumps to the

end of the code as a consequence of a presence test failure, the

compiler could insert an optimized statement (without presence

check) at this point.

event bigStep refines bigStep
where
@g ran(arg) = V // compilation ended
@pc pc = N // end of small steps

then
@ps ps := ∅
@d pc := 0

end

3.5.3 Example. The following table is an example of sequence

of statements that could be obtained by executing the convergent

events according to their ordering constraints. The table contains

the sequence of statements (stmt) together with their arguments

(arg). The arrows represent the iff jumps when the source condi-

tion is false. We remark that our specification of the compilation

phase is actually non deterministic, other sequences of code could

be generated.

0 : GetPresence(̂r )

1 : GetParam(r)

2 : GetPresence(p̂x )

3 : ReadMem(px )

4 : GetPresence(x̂ )

5 : Assign(nx)

6 : Assign(x)

7 : GetPresence(p̂xw )

8 : WriteMem(pxw )

3.6 Development overview

All the preceding development has been performed under the Rodin

framework for Event-B. For all the development (contexts and ma-

chines), the tool generated 17 proof obligations for contexts and 239

proof obligations for machines. Most of the proof obligations could

be discharged automatically thanks to the SMT solvers (CVC3-4,

Z3,veriT). Some proof obligations needed manual quantification

instantiation and case analysis.

We remark that unlike usual assistant theorem provers [9, 14, 15],

elementary proof obligations are generated automatically, e.g., the

preservation of each conjunct of the invariant by each action of

each event. However, concerning Rodin, strategy languages are still

missing.

4 RELATEDWORK

In this section we review some related works. In the following, we

position our work with respect to them.

4.1 Clock calculus

Here, we have adopted an axiomatic approach: in the context

cMeta_SUB, we have specified a subsumption relation compatible

with data dependency. The work of [3] can be seen as a concretiza-

tion of this specification. As a future work, we intend to validate

some of these constructions by taking into account the language to

which they apply.

4.2 Translation validation

Translation validation has been pioneered by A. Pnueli et al. [16].

Recently, [13] have pushed forward this approach for the Signal

language. The basic idea is that each individual translation is fol-

lowed by a validation phase which verifies that the produced code

implements the source code. Unlike this approach, here we are in-

terested in the compilation approach: which verifies the compiler

once for all. It follows that any produced code is guaranteed to be

correct.

4.3 Compcert

The CompCert project [11] aims at the development of a formally

verified C compiler. This work is far more complex than our one

and could be used as a back end of a synchronous language to C

compiler. However, one point is interesting to be discussed and is

put forward in the CompCert project. It is related to what means



for a compiler to be correct? It should preserve the semantics of

the source code, i.e., preserve some observable behaviors, which
is ultimately expressed as proving a forward simulation for safe

programs property. In this paper, a safe program is a program that

can be put in solved form. Forward simulation is a consequence of

refinement. Observable behaviors are sequences of reactions. Thus,

Event-B brings us a methodology to incrementally build a similar

proof (for a much less complex language).

4.4 Constructive semantics

A so called constructive semantics has been proposed for various

synchronous languages [21]. This semantics aims at specifying how

to compute output variables from inputs for each reaction. As in

our case, small steps are proposed to solve constraints upon pres-

ence and values of the variables of the program. Specific rules are

provided for various synchronous languages. The main difficulty

of this approach, which is linked to the considered languages, is

to find a trigger, i.e. a signal of which presence can be enforced

in order to determine the presence and value of all other signals

without failing to find a global solution when solving incremen-

tally the constraint system. The authors define several classes of

processes (reactive, deterministic, isochronous, ...) ensuring con-

vergence properties. In this paper, we do not address these aspects

and suppose that constraints have been put in solved form, which

guarantees the ability to incrementally build a solution and has

the same consequences as isochrony[21], i.e., the ability to non

deterministically select a non empty subset of triggers to be present.

Then, we mainly focus on refinement-based methodology to extract

an optimizing compiler and the interpretor of the compiled code

from the small step semantics which is itself shown to conformwith

the big step semantics. Furthermore, our framework is independent

from a specific synchronous language.

5 CONCLUSION

In this paper, we have presented the development of a generic

compiler for synchronous languages. Our main contribution was

to structure such a development as successive refinement steps.

Through these steps, we have introduced progressively the main in-

gredients of such a compilation process: presence of variables, clock

calculus, optimization and code generation. Properties preservation

was ensured thanks to the semantics of refinement supported by

the Event-B formal method. With respect to the expression of the

properties, set theory has revealed well suited to express: as well

atomicity in high level specifications thanks to the composition

of relations, as well the progressive approach thanks to partial

functions. The proof obligations have been generated by the Rodin

platform. All the proofs have been done. These proofs were made

easier by the automatic SMT provers.

We envision to carry on this work with respect to two direc-

tions: first we would like to instantiate this generic compiler by

well known synchronous languages as [5, 20]. Second, also, we

would like to adapt code generation for targeting concurrent archi-

tectures [2].
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