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Abstract

Atomic scale simulations, and in particular molecular dynamics (MD), are key assets to model the

behavior of the structure of materials under the action of external stimuli, say temperature, strain or

stress, irradiation, etc. Despite the widespread use of MD in condensed matter science, some basic

material characteristics remain difficult to determine. This is for instance the case of the long-range

strain  tensor,  and  its  root-mean-squared  fluctuations,  in  disordered  materials.  In  this  work,  we

introduce computational diffraction as a fast and reliable structural characterization tool of atomic

scale simulation cells in the case of irradiated single crystals. As compared to most direct-space

methods, computational diffraction operates in the reciprocal-space and is therefore highly sensitive

to  long-range  spatial  correlations.  With  the  example  of  irradiated  UO2 single  crystals,  it  is

demonstrated that the normal strains, shear strains and rotations, as well as their root-mean-squared

fluctuations  (microstrain)  and  the  atomic  disorder,  are  straightforwardly  and  unambiguously

determined. The methodology presented has been developed with efficiency in mind, in order to be

able to provide simple and reliable characterizations operating either in real time, in parallel with

other analysis tools, or operating on very large data sets.
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1. Introduction

An issue common to many materials science studies is the understanding of the evolution of the

nanoscale  structure of materials  under  the action of  external  stimuli,  say temperature,  stress or

strain,  laser  or ion irradiation,  etc.  In this  context,  molecular  dynamics (MD) simulations  have

emerged as the method of choice to tackle that type of issues  (Nordlund & Djurabekova, 2014;

Krasheninnikov & Nordlund, 2010). Efficient algorithms have been developed to characterize the

local structure of materials in multi-million atoms simulation cells, such as the Voronoi analysis,

bond angle analysis, common neighbor analysis, dislocation extraction algorithm, crystallography

cell  deformation  method,  or  the  Voronoi  cell  deformation  (VCD)  method  (Stukowski,  2012;

Leonardi et al., 2012) . These methods are particularly efficient to derive structural parameters such

as  the  local  strain,  the  atoms  coordination,  the  defect  densities,  etc.  Although  the  process  of

analyzing such large simulation cells can in principle be automated, thereby enabling so-called in

situ computational  microscopy  (Zepeda-Ruiz  et  al.,  2017),  it  often  remains  a  semi-automated

process requiring manual fine tuning by expert scientists. This human-centered workflow is a time-

consuming process that, de facto, constitutes a bottleneck when several hundreds, or thousands, of

simulation data sets can be generated in the course of a few hours. Besides, structural parameters of

primary importance, in particular the long-range strain tensor, are not straightforward to determine.

Over the past decades, a large number of studies have been dedicated to the determination of strain

from atomic scale simulations  (Zimmerman  et al., 2009; Mott  et al., 1992; Gullett  et al., 2008;

Stukowski  & Arsenlis,  2012;  Stukowski  et  al.,  2009;  Zhang  et  al.,  2015;  Xiong  et  al.,  2019;

Leonardi et al., 2012). In these studies the local deformation tensor is obtained from the evolution

of the coordinates of the atoms constituting a coordination shell between any two time steps of a

MD trajectory (“kinematical” approach). Most approaches become problematic, with the noticeable

exception of the VCD method (Leonardi et al., 2012), in highly disordered regions of the cell where

the coordination shells are incomplete, like in the close vicinity of surfaces, grain boundaries or

dislocation cores. This is especially true for nanostructured materials or heavily damaged crystals,

as those encountered during ion irradiation, where the level of disorder can bring materials into an

amorphous state (Boulle & Debelle, 2016). Moreover, these methods inherently neglect long-range

correlations  in  the atomic displacements,  i.e. the displacement field around an atom in a given

coordination shell is assumed to be independent from the displacement field around the next nearest

neighbor, so that the strain averaged over the whole MD cell generally differs from the result that

would have been obtained from a diffraction experiment (Xiong et al., 2019).
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A straightforward solution to this issue is to compute the “lattice strain” derived by the examination

of the peak positions in a virtual X-ray diffraction (XRD) measurement, i.e. in the reciprocal space.

A virtual XRD pattern can be easily generated using the Debye scattering equation (DSE) (Debye,

1915). Coupling the DSE with MD simulations is of common practice for the determination of the

structure of nanostructured materials  (Derlet  et al., 2005) (for a comprehensive review, see also

(Gelisio & Scardi, 2016) and references therein).  Conversely, the DSE remains only marginally

used for the determination of strain and disorder in damaged materials, like those obtained by laser

(Lin & Zhigilei,  2006) or ion  (Chartier  et  al.,  2018;  Soulié  et  al.,  2016;  Debelle  et  al.,  2014)

irradiation, for instance. 

One important characteristic of the DSE is the powder assumption, which implies the same particle

is observed with equal probability through any orientation in space. The resulting intensity profile

corresponds  to  the  spherical  integration  of  the  reciprocal  space.  All  the  structural  and

microstructural  information  about  the  system is  contained  in  a  single  XRD pattern.  The  peak

overlap inherent in that type of signals, especially for nanosized simulation cells might hinder an

accurate evaluation of the peak positions and intensities and consequently an accurate determination

of the strain. This issue is usually dealt with using whole powder-pattern fitting methods (such as

the  Rietveld  method  (Rietveld,  1969))  or  more  sophisticated  whole  powder-pattern  modeling

methods (WPPM) (Scardi & Leoni, 2002). It must be mentioned that advanced methods, such as

WPPM, allow for an in-depth characterization of the microstructure, including not only the lattice

strain,  but  also crystallite  shapes  and size  distribution,  dislocation  and stacking fault  densities,

surface-induced disorder, etc.  (Scardi  et al., 2015; Leonardi & Scardi, 2015; Rebuffi  et al., 2016;

Leonardi & Bish, 2017). However, those fitting/modeling methods are relatively time consuming

and require fine-tuning of the fitting parameters in order to avoid the occurrence of unphysical

results. In this sense they are not very well adapted to deal with large data sets. Finally, all quantities

derived from such an analysis  are orientation-averaged, which prohibits the detection of spatial

anisotropies and all information regarding rigid rotations are lost in the process.

In  the  present  work,  we  propose  to  use  single-crystal-like  XRD  patterns,  or  computational

diffraction, instead of powder XRD patterns. By doing so we are able to isolate single XRD peaks

which  greatly  facilitates  the  analysis.  Since  only  an  handful  of  peaks  are  considered,  there  is

obviously a loss of information, especially regarding the detailed defect structure of the MD cells.

However, for the sake of determining the long-range strain and disorder, we show below that this

approach is largely sufficient, especially considering the fact, that the defect structure is more easily

characterized using a direct analysis of the MD cells. Moreover, this makes the analysis more robust
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and compatible with automated analysis workflows on very large data sets. The results presented

below,  corresponding  to  the  analysis  of  several  thousands  of  MD  cells,  have  been  obtained

automatically without any manual intervention. It must be mentioned that the proposed approach

has  been  designed  with  MD  simulations  from  single  crystals  in  mind.  Blindly  applying  this

computational  diffraction  approach to  polycrystalline  materials  would  probably  yield  erroneous

results, mainly because in such cases large regions of the reciprocal space have to be investigated.

Finally, we prove that both the reciprocal-space and the real-space (that is, directly from the atomic

coordinates) long-range strain determinations yield the same results if long-range correlations are

correctly taken into account. The validity of our computational diffraction approach is tested on

UO2 MD cells in which we simulated ion-irradiation induced disorder and for which we have a

good understanding of the defect structure and evolution (Chartier et al., 2016; Jin et al., 2020).

2. Theoretical background

Reciprocal space mapping, is a widespread experimental technique to analyze strain and various

types of defects in epitaxial films or single crystals  (Holý  et al.,  1999).  Reciprocal space maps

(RSMs)  correspond  to  two-dimensional  sections  of  the  reciprocal  space.  They  are  usually

represented  in  a  two-dimensional  (Qx,  Qz)  plane,  where  Qx and  Qz are  the  components  of  the

scattering vector Q, respectively parallel and normal to the crystal surface, and they correspond to a

section of the reciprocal space along this particular plane. Any atomistic model can be transformed

into a RSM via the following equation (Channagiri et al., 2015):

(1)

where r’j, fj and N are the coordinate vector of the jth atom, the atomic scattering factor of jth atom in

the  simulation  cell,  and the  total  number  of  atoms in  the  cell,  respectively.  Qx,y,z are  the  three

components of the scattering vector Q:

(2)

where a*,b*,c* are the reciprocal space basis vectors and H, K, L are the so-called continuous Miller

indices that determine the magnitude and direction of the scattering vector. Integer values of H, K

and L correspond to maxima of the intensity distribution,  i.e. Bragg peaks (provided that the said

values obey the selection rules dictated by the symmetry of the crystal). Selecting different  HKL

values allows one to probe different directions of the simulation cell, via the scalar product Q·r’j in

Eq.  (1). Finally  ΔQy is a narrow integration range perpendicular to the (Qx,  Qz) plane aimed at

smoothing the computed RSM (see Appendix A).
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The structural  information that  can  be accessed  via the RSMs is  summarized in  the following

equation (Holý et al., 1999):

(3)

where r are the atomic coordinates in the unperturbed lattice, and u(r) are the deviations from the

perfect lattice,  i.e. the atomic displacement vectors, so that  . The displacement  u(r)

can be further separated into two components, , where ∇u(r)·r describes

the average response of the lattice to the presence of crystal defects. This term is a Taylor series

expansion of the non-random displacement u, limited to the first order, which implicitly implies that

the component of ∇u(r) are much smaller than 1 (small strain approximation). ∇u is the Jacobian

of  the  displacement  (the  displacement  gradient  tensor,  or  distortion  tensor),  with  components

eij = ∂ui/∂j.  The  diagonal  components  of  ∇u  correspond to  the  normal  strains.  The off-diagonal

elements of the distortion tensor include both shear strain and rigid rotations, both being important

parameters to derive from the MD cells1.  The second term,  δu(r),  corresponds to random local

deviations around the average displacement.

The  first  exponential  on  the  right-hand  side  of  Eq.  (3) contains  the  above-mentioned  random

displacement term and gives rise to two distinct effects. The first effect is an attenuation of the

coherent  scattering quantified by the so-called static  Debye-Waller (DW) factor  (Warren,  1969;

Krivoglaz, 1969). For a perfect crystal, δu(r) = 0, so that DW = 1 and the coherent intensity has its

maximum value. On the contrary, for highly disordered crystals, or amorphized materials, δu(r) >>

0, so that DW → 0 and the coherent intensity vanishes. The intensity subtracted from the Bragg

scattering is redistributed in the background with a reciprocal space distribution depending on the

degree of correlation of the disorder (via the  term): this second effect is referred to

as diffuse scattering.  It is  recalled in Appendix B that,  in the case of correlated displacements,

diffuse scattering manifests itself as peak broadening which can be connected to the rms distortion

tensor, i.e. the microstrain tensor.

The second exponential  contains the effect of homogeneous (long-range) strain.  The diffraction

condition implies that the argument of this exponential be an integer multiple of 2π. If, in a strain-

free crystal, diffraction occurs at Q0, the presence of homogeneous strain, via (I + ∇u), shifts the

Bragg peak from its strain-free position Q0, to a modified coordinate Q0
T·(I + ∇u)-1, which, in the

1 The usual strain tensor is obtained from the distortion tensor via (∇u + ∇uT) / 2. The off-diagonal components only

contain shear strains.
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limit  of  small  strain  reduces  to  Q0
T·(I -  ∇u).  Depending  on  the  direction  of  Q0,  different

components of ∇u can be selected. For instance, a Q0 = (0, 0, Qz)T vector is transformed into (-ezx

Qz, -ezy Qz, (1 -  ezz)Qz)T, where  eij are the components of  ∇u. Measuring the coordinates of the

Bragg peak for different  Q0 values, hence, in principle, allows to retrieve the complete distortion

tensor.

3. Computational details

3.1. Molecular dynamics

MD simulations were performed using the Frenkel pairs accumulation (FPA) methodology (Chartier

et al., 2005; Crocombette et al., 2006) in order to mimic ion-irradiation induced ballistic damages.

This methodology avoids the calculation of complete displacement cascades and their accumulation

by directly creating their final states, i.e., point defects. It has been proven very efficient to simulate

irradiation  damages  in  different  oxides  (Chartier  et  al.,  2009;  Catillon  &  Chartier,  2014) and

graphite (Chartier et al., 2018). In MD simulations, only uranium Frenkel pairs were created, which

imply to measure the introduced disorder in displacement per uranium, dpU (Jin et al., 2020). MD

calculations  were  performed  in  a  26  ×  26 ×  26  nm3 UO2 cell  (768  000 atoms,  with  periodic

boundary conditions in the 3 dimensions) using a Morelon empirical  potential  (Morelon  et al.,

2003) which  exhibits  a  relevant  responses  to  irradiations  (Devanathan  et  al.,  2010).   FPA was

performed in the NPT ensemble at 0 pressure and at 300 K using a modified version of the large-

scale  atomic/molecular  massively  parallel  simulator  (LAMMPS)  code  (Plimpton,  1995).  800

uranium Frenkel pairs  (Crocombette & Chartier, 2007) were created every 2 ps. We used variable

time steps ranging from 0.1 up to 1 fs in order to handle correctly local increase of atoms velocities

due to interstitials/vacancies abruptly created. In addition, these defects produce local increase of

temperature and pressure that are handled here by Berendsen thermostat / barostat. Hence, target

pressure  and  temperature  can  be  reached  back  before  each  new  FP introduction.  During  the

simulation, 898 snapshots of the MD cell, covering a 0 – 7.85 dpU range, were saved for further

processing. 

In  addition,  we created  cells  with  rotated  crystallites  contained 768000 atoms with  the  perfect

fluorite structure. Each cell was divided into 8 identical cubic sub-cells, half of which were rotated

by 2° along an axis defined by a vector rx,y,z, where the subscript indicate its orientation with respect

to the cell (see also Fig. 1). We considered reflections with HKL = 002 and 004, and a rotation axis

directed along the x, y and z direction of the cell.
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3.2. Computation and analysis of the reciprocal space maps

RSMs were computed using Eq. (1). For a typical RSM, as those represented in Fig. 1 for instance,

the direct evaluation of Eq. (1) using a naive implementation requires more than one hour to reach

completion which is incompatible with the large number of MD cells to be analyzed. Equation (1)

was  therefore  evaluated  on  a  graphics  processing  unit  (GPU)  using  the  Python  programming

language together with the NumPy (van der Walt et al., 2011) and the PyNX (Favre-Nicolin et al.,

2011) libraries. With the hardware used in this work (a Nvidia Quadro P5000, released in 2016,

with a theoretical 64bits peak performance of 277 GFLOPS) the computation time drops to ~20

seconds for a single RSM (a more recent hardware is expected to provide dramatically improved

performances).  Because  of  the  large  number  of  snapshots  to  be  analyzed,  the  data  processing

(including peak finding, peak fitting, etc.) is entirely automated using Python scripting as described

below.

RSMs for HKL = 002 and 004 have been computed for 6 different orientations of the MD cell, that

is  with  the  [100],  [010],  [001]  directions  successively  set  parallel  to  Q vector  and,  for  each

direction,  two  90°  spaced  azimuthal  orientations  have  been  considered  (see  figure  S1,

Supplementary Material). Doing so, for each HKL, all 6 off-diagonal components of the distortion

tensor can be determined, and the 3 diagonal components (normal strains) are determined twice.

Each computed RSM was processed as follows:

• A peak finding algorithm detects all the maxima in the RSM and the corresponding (H, L)

coordinates are saved. The peaks are indicated as circles in Fig. 2. In order to avoid the

detection  of  minor  peaks  or  interference  fringes,  a  detection  threshold  of  30%  of  the

maximum intensity has been defined. There is no scientific justification behind this value; it

has been empirically determined so as to be low enough to record all high intensity peaks,

and high enough in order to reject minor peaks. Decreasing this value does not change the

conclusions but complicates the analysis with the occurrence of several low intensity peaks.

On  the  other  hand,  increasing  this  value  too  much  may  lead  to  erroneous  conclusions

regarding the development of strains, since high intensity peaks might be missed. These

coordinates are then used to compute the diagonal and off-diagonal components of the strain

tensor, i.e.

 and (4)

where i, j = x, y, z are determined by the orientation of the MD cell. Where the subscript 0

indicates the virgin cell (0 dpU).
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• For  the  maximum  intensity  peak,  the  integrated  (coherent)  intensity  is  computed  by

integrating the intensity along the row H = Hmax, where Hmax is the H coordinate of the most

intense peak. For HKL = 002 and 004, and for weak disorder, Hmax = 0, whereas deviations

from Hmax = 0 indicate rotations, hereinafter also denoted as misorientations, or shear strain,

as  discussed  above.  The integrated intensities  are  then  used  to  compute the  DW factor,

which, correspond to the lowering of the coherently scattered amplitude relative to the virgin

crystal; that is:

(5)

It is important to note that the atomic configurations from which the RSMs are generated are

not  time-averaged,  i.e. they  contain  both  thermal  (dynamic,  d)  and  irradiation  induced

(static,  s)  disorder,   (Inagaki  et  al.,  1983).  Using the intensity of the

unirradiated cell as a normalization factor allows to solely consider the irradiation-induced

(static) disorder. Note that the thermal disorder turns out to be negligible as compared to the

damage induced by irradiation.

• The envelope of the intensity distribution was fitted with a bivariate asymmetrical Gaussian

distribution (dotted contour lines in Fig. 2):

(6)

where wH,L are the full-widths at half-maximum (FWHM) in the H and L directions and the

superscripts q and r designate the lower and upper half of the width, that is:

(7)

The FWHM in the H and L directions is then obtained from:

(8)

Notice that we here used a definition of the Gaussian distribution using FWHMs instead of

standard deviations. Both are related via a  factor (see below). The corresponding

FWHMs are used to determine the microstrains.

The  FWHMs  determined  from  the  fitting  procedure  contain  both  the  contribution  of

defects and the contribution of the finite cell size. In order to extract the sole contribution

of defects broadening, the cell size effect must be deconvoluted from the total FWHM

which, in the case of Gaussian function, is straightforwardly performed:

8



(9)

where  wsize is given by the FWHM at low disorder levels. In the situation where defects

only induce microstrain (as is the case in the present study) the diagonal and off-diagonal

components of microstrain tensor are :

(10)

(11)

The whole analysis is easily distributed over several computing units. With the CPU used in this

work (dual Intel Xeon processor with 20 cores each), the procedure requires less than 5 seconds for

the 898 RSMS.

Before proceeding to the next section, it is important to notice that, in the general case, a Gaussian

function is known to be a rather poor description of XRD peak profile shapes, which often display

heavy tails. Whereas the peak position (hence the derived strain) is robust against different peak

shapes, parameters such as the peak integrated intensity and width are heavily dependent on the

selected  peak  shape.  In  the  present  case,  it  turned  out  that  the  Gaussian  approximation  led

satisfactory results and the discrepancies are critically discussed. Therefore, when discussing the

DW factor and the microstrain tensor, we shall restrict ourselves to discuss their relative evolution

and we do not attempt to extract absolute values from the analysis.

4. Results and discussion

4.1. Rotated crystalline domains

Before  addressing  the  case  of  disordered  UO2 cells,  we shall  first  consider  a  simpler  example

consisting of UO2 cells containing crystalline domains half of which are rotated by 2° around the x,

y or z axes. This is shown in Fig. 1g-i, respectively. For simplicity, a simple cubic lattice is depicted.

We considered 002 and 004 reflections,  for which the  Q vector of the Bragg reflection can be

written (0, 0, Qz)T.  Under the action of each of the three rotations,  it  gets transformed into [0, -

Qz × sin ω, Qz × (1-cos ω)]T, [Qz × sin ω, 0, Qz × (1-cos ω)]T and (0, 0, Qz)T, respectively, ω being the

misorientation angle. The corresponding RSMs are displayed in Fig. 1a-f. The RSMs are plotted as

a function of ΔH = H – H0 and ΔL = L – L0, which are the deviations from the unperturbed crystal

indices, H0 and L0.
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Let us consider the different cases in Fig. 1:

• Figures 1a,d correspond to the case  rz (rotation about the  z axis). As indicated from the

transformed  Q vectors  above,  no  modification  is  expected  in  this  case  and both  RSMs

correspond  to  the  scattering  from  a  perfect  cubic  crystal  (a  2D  Laue  function).  The

interference fringes are related to the finite size of the MD cell and their period is given by

the inverse of the number of UO2 unit-cells in each direction, 1 / Nuc = 1 / 40 = 0.025.

• Figures 1b,e correspond to the case ry. Since ω = 2° (0.035 rad), the transformed Q vector is

close to (- Qz × ω, 0, Qz)T,  i.e. the crystallites affected by the rotation exhibit a Bragg peak

shifted along the H direction, whereas the L coordinate remains unchanged. The result is a

splitting of the Bragg peak, the magnitude of which being directly related to the rotation

angle. The split for the 002 and 004 reflections is 0.07 and 0.14, respectively, consistently

with a 2° misorientation (i.e. 0.035×2 and 0.035×4). Another visible feature is a broadening

of the peak and of the interference fringes, as compared to Fig. 1a,b. This is due to the fact

10

Fig. 1. RSMs of UO2 cells divided into 8 rigid sub-cells where half of
the sub-cells are rotated by 2°, with a rotation axis directed along the
z (a,d),  y (b,e) and  x (c,f) direction. (a,b,c) : 002 reflection. (d,e,f):
004 reflection. The intensity is plotted on a logarithmic scale using a
usual red-yellow-green-blue color scale. The axes are graduated in
reciprocal  lattice  units.  The  corresponding  schematic  atomic
structures are given in (g,h,i).



that the sub-cells diffract incoherently, each containing N/8 atoms, hence the corresponding

peak and fringes  broadening (which  is  quantified by Scherrer’s  equation in  the field of

powder diffraction (Warren, 1969)). It can further be noticed that, contrarily to microstrain

or misorientation effects, this “finite crystallite size” effect is independent on the magnitude

of  Q.  This  feature  (Q-dependent  vs. Q-independent  effect)  constitutes  the  basis  of  the

size/microstrain separation in powder XRD line profile analysis methods (e.g. Williamson-

Hall and Warren-Averbach methods (Warren, 1969)).

• Figures 1c,f correspond to the case rx. As for the previous case, the crystallites affected by

the rotation have a Q vector close to (0, -Qz × ω, Qz)T. However, contrarily to the previous

case,  because  the  RSMs  result  from  an  integration  along  the  y-direction,  they  are  not

sensitive to the change in the Qy component, therefore no splitting is observed. Nonetheless,

an indirect indication of the presence of this rotation is the fact that, as for ry, the fringes are

broader due to the smaller coherent domain size.

An alternate way of picturing the effect of crystallite misorientations on the RSMs is to observe the

crystal  structure projected in the (x,  z) planes.  Since the RSMs are computed with a (0, 0, Qz)T

vector, according to Eq. (3) we are solely sensitive to the z component of the atomic displacements: 

•  Figure 1g shows that when the rotation axis is  parallel  to  z,  no misorientation nor any

discontinuity  in  the  atomic  z coordinates  are  observed  (see  colored  regions),  hence  the

RSMs exhibiting a characteristic perfect 2D Laue intensity distribution (Fig. 1a,d).

• Figure 1h shows the effect of ry (normal to the plane of the figure). Here, both finite size and

misorientation effects are clearly observed in the projected structure and in the RSMs (fig.

1b,e).

• Finally, Fig. 1i shows that, in the case of a  rx rotation axis (i.e. parallel to  x), the atomic

coordinates along the  z axis exhibit abrupt variations both along the  x and  z axis (colored

region),  hence  the  observed  finite  size  effect  in  the  RSMs.  On  the  contrary,  no

misorientation is observed, in agreement with Fig. 1c,f.

This  simple  examples  reveals  that  a  RSM  computed  for  a  single  00L reflection  allows  to

straightforwardly  derive  the  ezx component  of  the  distortion  tensor  using  Eq.  (4).  The other  eij

components either have indirect effects (peak broadening and increased fringe spacing) or no effect

at all. Although it is not explicitly illustrated in the example above, the  ezz component is readily
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obtained by measuring the displacement of the Bragg peak along the Qz direction (as evident from

Eq. (4)).

Therefore, using 6 independent HKL reflections or, equivalently, 6 orientations of the cell allows to

retrieve the full distortion tensor. In actual MD cells, the different components of the strain tensor

occur simultaneously, with randomly oriented shear/rotations axis and with random distributions of

normal strain and shear/rotation angles. The next sections illustrates how these different effects can

be disentangled so as to determine the distortion tensor tensor (including the normal strains), the

microstrain tensor, the disorder, etc. It should also be stressed that using only 6  HKL reflections

does not allow one to get a complete picture of the defect structure in the MD cells, since defects

may affect different reflections in different ways depending on their anisotropy, orientations, etc.

We here only consider the strains and their evolution, whereas the detailed defect structure should

be determined with a real-space analysis.

4.2. Defective UO2 MD cells

It is now well documented that the disordering kinetics of UO2 exposed to ion-irradiation can be

divided in different stages corresponding to a different dominant defects in the MD cell (Chartier et

al., 2016; Jin et al., 2020), namely Frenkel pairs (stage 1, from 0 to 0.09 dpU), Frank loops (stage 2,

from 0.09 to 0.3 dpU), perfect loops (stage 3, from 0.3 to ~1.5 dpU) and dislocation lines (stage 4,

above ~1.5 dpU), respectively. In these studies, it was also demonstrated that the different types of

defects can be correlated with the evolution of both the average elongation strain and the average

disorder. In the following, we apply the computational diffraction approach to these UO2 cells and

proceed to the determination of the complete distortion and microstrain tensors.

We computed RSMs for  HKL = 200, 020, 002, 400, 040 and 004, thereby setting the  Q vector

parallel to the x,  y and z directions of the MD cell. Moreover, for each direction, two 90° spaced

orientations around  Q have been considered. RSMs of the 002 reflection at 4 selected disorder

levels (0, 0.1, 0.3 and 3 dpU) are displayed in Fig. 2, together with the corresponding MD cells. It

can  be  observed that,  whereas  it  is  difficult  to  get  clear  insights  regarding strain  and disorder

affecting the cell from a visual inspection of the MD cells, the RSMs shows features that are readily

interpreted. The undamaged cell (Fig. 2a, stage 1) corresponds to a 2D Laue function characteristic

of a perfect crystal (Fig. 2e). At 0.1 dpU (stage 2), Fig. 2b, we observe a displacement of the Bragg

peak towards lower L values (Fig. 2f) which, according to the previous section, is indicative of the

development of tensile strain. At this damage level, it can be observed that the intensity spreads out

of the specular direction characterized by H = 0, a feature that is characteristic of diffuse scattering
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associated with atomic disorder. However, the coherent peak remains perfectly visible and aligned

along the H = 0 row, which indicates that the level of disorder is low, and there is no evidence of

misorientation or shear strain. At 0.3 dpU (stage 3), the coherent peak disappears and is replaced

with a broad diffuse scattering peak, within which 3 peaks can be detected; this corresponds to the

situation where the highest levels of disorder and strain are present. Finally, at 3 dpU (stage 4), the

diffuse  scattering  coalesces  back  around  the  H =  0  coordinate,  only  one  peak  remains  and

interference fringes are reformed, which is indicative of a decrease in the level of disorder. The

vertical shift of the reflection is also reduced, which demonstrates that the level of strain decreases

as well. The Bragg peak is nonetheless broader than at 0 and 0.1 dpU and exhibits a fine structure,

which may indicate the formation of rotated or sheared unit cells. In the following, we analyze the

peak position, intensity and width in terms of strain and disorder.
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Fig.  2.  (a-d)  Snapshots of  an UO2 MD cell  at  different levels  of  induced disorder (expressed in  displacement per

uranium, dpU).  The selected dpU levels correspond to boundaries between different regions of the damage build-up

kinetic.  For visualization purposes, only U atoms are displayed and the thickness normal to the figure is 5 nm. (e-h)

RSMs of the 002 reflection of UO2 MD cells for the same disorder levels The intensity is plotted on a logarithmic scale

using a red-yellow-green-blue color scale. Axes are graduated in reciprocal lattice units. White circles indicate the

location of the peak maxima, and dotted lines are iso-contour lines of the 2D fit with asymmetric Gaussian functions.



Normal strains and disorder

The normal strains (i.e. the diagonal elements of the distortion tensor) and the DW factor for the

002 RSMs from the 6 different cell orientations are given in Fig. 3 for different dpU levels. Let us

first consider a single orientation, say, Fig. 3a. The circles represent the level of strain, deduced

from the vertical peak coordinates. The symbol color indicates the intensity ratio of the peak from

which the strain is determined relatively to the virgin crystal, using a usual red-yellow-green-blue

color scale: a high intensity (red) corresponds to a large domain with low disorder, whereas a low

intensity  (blue)  corresponds  to  disordered  regions.  The  red  line  is  the  DW factor  which,  by

definition, is the disorder-induced intensity lowering and is therefore completely correlated with the

intensity ratio given by the circles color. The background colors represent different steps of the UO2

disordering kinetics, corresponding to the different defect stage mentioned above.

Stage 1 (0 to 0.09 dpU, light blue) is characterized by a steep increase of the strain and a low level
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Fig.  3.  Evolution  of  the  strain  (filled  circles,  left  axis)  and
Debye-Waller factor (red line, right axis) with increasing dpU.
The  symbol  color  is  proportional  to  the  intensity  ratio
relatively to the virgin crystal. The different panels correspond
to different orientations of the MD cell. Left column: azimuthal
rotation of the MD cell is 0°. Rigth column: azimuthal rotation
is 90° (see Fig. S1). (a,b): the x axis is set parallel to Q. (c,d):
the y axis is set parallel to Q. (e,f): the z axis is set parallel to
Q. The intensity is integrated along z (a,d), y (b, e) and x (c, f).
The  background  colors  correspond  to  the  different  stages
discussed in the text.



of disorder. Stage 2 (0.09 to 0.3 dpU, light green) shows a continuous increase of the strain 2 and a

considerable increase in disorder, as attested by the drop of the DW factor. In stage 3 (0.3 to ~1.5

dpU,  light  orange),  the  DW factor  is  plateauing  whereas  the  strain  exhibits  a  very  perturbed

behavior: for a given disorder level, several domains (with different levels of strain) are observed,

giving rise to Bragg peaks splitted from the main peak (as illustrated in the previous section). In this

region, the strain decreases from ~2% at 0.3 dpU to ~0.5% at 1.5 dpU. However, this decrease takes

place abruptly at discrete dpU values. Although the strain drops at discrete dPU values, because of

the ongoing disorder introduction, strain accumulation is continuing after the drop. Finally, in the

last stage (above ~ 1.5 dpU), we observe a slight apparent healing of the material, as indicated by

the increase of the DW factor. In this particular case the strain increases but, as further discussed

below, its evolution depends on the orientation of the MD cell. Moreover, the exact extent of this

last region also depends on the orientation.

Fig. 3 reveals that, in the first two stages, the strain evolve in a similar manner, irrespective of the

orientation of the MD cell. However, within stage 3, the number of observed strained regions, their

level of strain as well as the disorder level required to trigger the strain drop strongly depends on the

orientation of the MD cell. This observation points to a Frank → perfect dislocation loop reaction

mechanism (Chartier et al., 2016; Jin et al., 2020), which, every time it takes places, locally lowers

(i.e. relaxes) the strain in the region surrounding the initial Frank loop, hence the abrupt character.

Moreover,  as mentioned above, even in partially relaxed  regions of the cell,  the level of strain

continues to increase (up to ~ 1.5 dpU when complete relaxation takes place) as a consequence of

the continuous disordering.

Above ~1.5 dpU, the strain exhibits an anisotropic behavior: whereas it increases along the [100]

(Fig. 3a,b) and [010] directions (Fig.  3c,d), it decreases along [001] (Fig.  3e,f). This is due to the

fact that, at high dpU, dislocations form a tangled network (Chartier et al., 2016) that act as traps for

the interstitials, and the trapping efficiency depends on the dislocation density in each direction. The

disorder also exhibits an anisotropic behavior: on average, it decreases for all orientations, but for

the [100] and [001] directions an increase is observed. It should here be reminded that during the

MD simulations, the cells are allowed to swell or shrink in all three directions, so that the observed

anisotropy is not related to dimensional constraints imposed on the cells.

2 Although this is not obvious from the figure, because of the horizontal logarithmic scale, the slope in the first

region is ~8.9%/dpU vs. ~5%/dpU. The strain build-up kinetic is reduced in region 2.

15



Misorientations and shear strains

Similarly  to  the  normal  strains,  the  misorientations  and  shear  strains  can  be  straightforwardly

determined from the position of the peaks visible in the RSMs. Figure 4 shows the evolution with

disorder level of the off-diagonal elements of the distortion tensor determined from the 002 RSMs

(together with the DW factor, for comparison purposes). Up to 0.3 dpU, all components are equal to

0, indicating the absence of shear strains or misorientations. However, as soon as the Frank loops

start  to  transform (in  the  third  stage,  above  0.3  dpU),  a  significant  disorder  is  introduced  as

evidenced by the appearance of low intensity peaks corresponding to distinct strain/misorientation

values randomly distributed in a ±1.5° range. These strained/rotated domains exactly correspond to

those already observed in the case of the normal strains, but they are more clearly distinguished

here because the difference in shear/misorientations is more pronounced than the differences in the

normal strains. As for the normal strains, the correlation with the DW factor is evident.
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Fig.  4.  Evolution  of  the  different  components  of  the  strain
tensor as a function of the disorder level. The symbol color is
proportional  to  the  intensity  ratio  relatively  to  the  virgin
crystal.  (a,  b):  the  x  and  y  directions  are  respectively  set
parallel to  Q, while the intensity is integrated along z. (c,d):
the y and z directions are respectively set parallel to Q, while
the intensity is integrated along x. (e,f): the x and z directions
are  respectively  set  parallel  to  Q,  while  the  intensity  is
integrated along y. The background colors correspond to the
different stages discussed in the text. The thin red line is the
DW factor (right axis, graduated from 0 to 1).



Although the disorder decreases in the last stage, some regions of the MD cells remain permanently

rotated or sheared with seemingly randomly distributed values (0.5, 0.6, 0.8 and up to 1.5°). These

random values are most likely due to the fact that the dislocations are randomly distributed within

the MD cell. The number of misoriented domains is in the 1-3 range depending on the orientation of

the MD cell. It can also be observed that in the (x, y) and the (y, z) planes, the disorder is mainly of

rotational type, since the largest domains (indicated by the arrows in Fig. 4) are characterized by exy

= -eyx and eyz = -ezy. On the contrary, in the (x, z) plane the domains exhibit shear strain, with exz = ezx.

These results show that the dislocation network that forms in the late stages of the disordering

process yields to the formation of distorted regions, rotated and sheared with respect to each other.

However, contrarily to the case discussed in Fig. 1, where abrupt and incoherent interfaces were

formed between the crystallites, eventually leading to finite-size broadening, there is no indication

of such boundaries here, i.e. the transition from one rotated individual to another is continuous and

there is no finite-size induced loss of coherence. This can be clearly confirmed from Fig. 5, which is

a close-up of Fig. 2d taken at the intersection of different disordered domains. The occurrence of

different peaks in the RSMs must hence not be interpreted as the presence of distinct crystallites,

but is  a consequence of distorted lattice planes. The finite size of the MD cell  and, hence,  the

limited number of misoriented regions allows one to distinguish individual peaks in the RSMs. 
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Fig.  5.  Close-up in  the center  of  an
MD  cell  at  3  dpU.  The  atomic
displacements  are  continuous  across
different regions of the cells.



Towards larger cells: microstrains

Because of the small size of the MD cells considered in this work (26 × 26 × 26 nm3), individual

peaks  can  be  detected  in  the  RSMs.  However,  due  to  the  random  distribution  of

shear/misorientation  angles  previously  evidenced,  it  can  be  expected  that  in  larger  cells,  the

different  peaks  emanating from numerous distorted domains,  will  eventually  overlap to  form a

continuous intensity distribution. This is the very definition of microstrain (see also Appendix B).

Although, in the present study, we do not have such large cells, an estimation of the corresponding

effect can be inferred by analyzing the overall envelope of the RSMs (dotted contour lines in Fig.

2). Figures 6a-b show the evolution of the FWHM of the intensity distribution, averaged over all

orientations, along the H and L directions, respectively, for both 002 and 004 reflections. The inset

in Fig. 6a shows an example of a simulation of an intensity profile along H (corresponding to the 3

dpU case  of  Fig.  2)  from which  the  FWHM is  derived.  It  can  be  noted  that,  because  of  the

discontinuous nature of the peak to be simulated (exhibiting several sub-peaks), the simulation is far

from  perfect.  Nonetheless,  it  is  sufficient  to  get  an  estimation  of  the  width  of  the  envelope.

Moreover, the reliability of the results should not be considered on the basis of a single simulation,

but rather on the ensemble of several thousands of data points (6×898 points for each curve of Fig.

6) taking into account the statistical uncertainty given in Fig. 6.

The evolution of the FWHM is strikingly similar to the evolution of the DW factor. This is not

unexpected since both parameters depend on the atomic displacement δu(r) in the MD cell. Up to

0.1 dpU, the FWHM is constant and non zero because of the finite size of the MD cells.  The

FWHM reaches a maximum at the beginning of stage 3 and then steadily decreases.  It  can be

observed that, starting from 0.3 dpU, the width obtained for the 002 and 004 reflections are within a

ratio of 2. The fact the width of the peaks scales with the length of the Q vector is a characteristic

feature of strain/misorientation disorder (Boulle et al., 2005). Below 0.3 dpU, the ratio differs from

2 because the overall FWHM results from the convolution of both the finite cell size (for which the

FWHM ratio is 1) and the contribution of the disorder (for which the FWHM ratio is 2). This effect

can be corrected by deconvolution (see section 3) and, as recalled in Appendix B, the components

of the microstrain tensor, εij, can be computed from the deconvoluted FWHM.
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The evolution of εij, averaged over all orientations, is shown in Fig. 6c,d. The values obtained for

the 002 and 004 reflections are identical,  within the numerical uncertainty.  This finding clearly

demonstrates that no finite size effect contributes to the overall broadening (apart from the MD cell

size),  i.e. no incoherent grain boundaries are formed and the atomic coordinates vary smoothly

when moving to one rotated/sheared domain to another, as inferred from Fig. 5. For the highest

dpU, the residual εij is ~0.6°, which means that, with a normal distribution of misorientations, the

maximum deviation shall be around  ±3 times the standard deviation, that is  ±1.8°, which agrees

well with values observed in Fig. 4. Similarly, the maximum strain fluctuations should be around ~

3 × 0.4 = 1.2%, which also agrees with the values observed in Fig. 3. This results demonstrates that,

although the MD cell  has a limited spatial  extension,  the rms strain fluctuations that would be

observed in a large crystal, sharing the same structural features, can be extrapolated by the analysis

of the peak envelope. This extrapolation obviously does not allow to predict features that could take

place if the MD simulations were actually performed using larger cells.
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Fig.  6. Evolution, for both the 002 and 004 reflections, of the
FWHM  along  the  H  (a)  and  L  (b)  directions,  and  the
corresponding microstrains  (c-d).  Inset:  example  fit  of  the
intensity  distribution  with  an  asymmetric  Gaussian  function
(grey  points:  data  points;  red  line:  fit).  The  horizontal  axis
extends from -0.25 to 0.25 r.l.u. The colored bands correspond
to the uncertainty given by the minimum and maximum values
observed  for  each  disorder  level.  The  background  colors
correspond to the different stages discussed in the text.



4.3. Real-space vs. reciprocal-space determinations

An important question to address is how are these reciprocal-space – based strain measurements

connect  with more direct  (i.e. real-space)  determinations  performed from the MD cells3.  As an

example, we shall consider here the results obtained for the average normal strain <eii> and the

average microstrain <εii>. The former is given by averaging the values displayed in Fig.3a-f, and the

latter is given in Fig. 6d. At this point, the mathematical details of the methodology are beyond the

scope of the paper, so we here only provide the most important results. The reader may refer to

Appendix C where all relevant details are given.

As mentioned in the Introduction,  the local  strain determined from the MD cell  is  sensitive to

displacements affecting the first neighbors, or the atoms of the first unit-cell. As a consequence,

long-range, spatially correlated atomic displacements are not captured in this measurement, even if

the local strain is averaged over the whole MD cell (Xiong et al., 2019). To circumvent this issue,

we  make use of the directional pair  distribution function (D-PDF) introduced by Leonardi  et al.

(Leonardi et al., 2013), which corresponds to the probability of finding a pair of atoms separated by

a distance comprised between z and z + Δz along a given direction. In accordance with the previous

section we here choose these directions to be [100], [010] and [001]. 

Figure 7a displays the D-PDFs for selected fluences (0, 0.1, 0.3 and 3 dpU), averaged over the three

equivalent <100> directions. The effect of strain and disordering is clearly seen from the shift, the

damping and the broadening of the peaks. The D-PDF exhibits a series of peaks, the position of

which corresponds to the  nth neighbor distance,  and the width of which corresponds to the rms

fluctuations of this distance. 

The plot of the peak position <D> vs. n (Fig. 7b, left axis), exhibits a seemingly linear behavior, the

slope of which allows to determine the state  of strain (see Appendix C).  The change in slope,

consecutive to strain, is more easily seen for large neighbor distances (see inset in Fig.  7b). The

corresponding strain  is  shown in  Fig.  7c,  together  with  the  range of  values  obtained from the

analysis  of  computational  diffraction (gray  shaded  region).  A remarkably  good  agreement  is

obtained between computational diffraction and the real-space measurement. It can also be noticed

that when the strain is determined from the first neighbor only (which corresponds to a plain spatial

average of the local strain), correct values are obtained for levels of strain lower than ~0.8%, i.e.

when the dilatation of the unit-cell is solely induced by point defects (both at low and high dpU

3 It must be noticed that these measurements differ from the “macroscopic” swelling of the MD cell, in particular as

soon as the concentration of interstitials and vacancies are no longer equal.
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levels). As soon as spatial correlations are present, the strain computed from the first neighbor is

incorrect by up to a factor 2. 

Let us now consider the plot of the width of the D-PDF peaks σz vs. z. (Fig. 7b, right axis), which is

also known as Warren’s plot  (Warren & Averbach,  1950; Leonardi  et  al.,  2013).  The works of

Leonardi  et al. (Leonardi  et al., 2013; Leonardi & Bish, 2017) have demonstrated that real-space

and reciprocal-space measurements lead to the same results if correlated and uncorrelated disorder

are correctly distinguished from each other in the analysis. In these works, uncorrelated disorder

originates from the distorted atomic structure at the grain boundaries, which do not contribute to

XRD line broadening. Removing surface atomic layers from the MD cells allowed to have perfect

agreement between XRD-derived and D-PDF-derived values of the microstrain. In the present case,

as demonstrated earlier, there are no grain boundaries, and we have to rely on a different approach,

using the following phenomenological equation to describe the Warren’s plots (Boulle et al., 2005):
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Fig. 7. (a) D-PDF along the <001> direction for increasing disorder. The first
peak is of the D-PDF is highlighted (gray area). Higher distances peaks are
shown  in  the  light  yellow  area.  (b)  left  axis:  evolution  the  D-PDF  peak
position versus the neighbor index (circles and continuous line). Right axis:
evolution of the standard deviation of the D-PDF peaks versus the neighbor
distance (Warren’s plot, dotted lines). The different disorder levels plotted use
the same color coding as in (a). (c) strain determined from the <D> vs. n plot
(blue line) compared with the values obtained from the RSMs (black line and
gray area). The  red line indicates the value obtained from the first neighbor
distance. (d) left axis: microstrain determined from the σz vs. z plot (blue line)
compared with the values obtained from the RSMs (black line and gray area).
The  red line indicates  the value obtained from the first  neighbor distance.
Right axis: evolution of the correlation length (green dotted line).



(12)

where  w defines the width of the transition region between the correlated and the uncorrelated

regimes, and Hu (the Hurst exponent) defines how σz(z) scales with z in the correlated regime; for Hu

= 1, the scaling is linear as described in Appendix C. Equipped with Eq. 12 it is possible to model

the evolution of the standard deviation of the peaks of the D-PDF as a function of the neighbor

distance, σz vs. z , and hence to retrieve the values σ∞ and ξ. From these values the microstrain, εzz, is

obtained with σ∞ / ξ (Boulle et al., 2005). The parameters Hu and w can also be obtained from the

simulation, although we do not discuss their evolution in details in this paper4.

In the non disordered sample (Fig. 7b, blue curve), the width of the peak remains constant whatever

the neighbor distance, indicating a purely uncorrelated disorder and the broadening originates from

thermal  displacements.  For 0.1 dpU (Fig.  7b,  green curve),  the disorder  is  dominated by point

defects and it can be observed that the value of  σz increases as compared to 0 dpU but remains

constant  over  the  whole  z range  (except  for  the  two first  neighbors  where  a  small  increase  is

detectable). The disorder is still essentially uncorrelated. The situation is drastically different for 0.3

and 3 dpU where a neat  increase of  σz is  observed for increasing the neighbor distance,  hence

indicating spatial correlations.

The determination of σ∞ and ξ requires a careful data analysis. In particular, at low disorder (below

0.1 dpU) the disorder is induced by point defects and is largely uncorrelated. In such a situation the

disorder is constant and equal to  σ∞ and the correlation length should be zero. However,  ξ = 0 is

numerically undefined in Eq. 12 and, for those cases, a minimum value of 1 has been set for the fit.

Subsequently,  we  set  a  threshold  value  for  ξ below  which  it  is  considered  as  0  and  the

corresponding microstrain is 0 as well. Above the threshold value, the microstrain is normally given

by  εzz =  σ∞ /  ξ.  The  threshold  value  has  been  set  to  25  Å;  this  value  is  justified  below.  The

corresponding results are shown in Fig. 7d, left axis, together with the range of values obtained by

the reciprocal space analysis (gray shaded region). Although the agreement is less perfect than for

the homogeneous strain, it is still remarkably good (this is further discussed below).

The green dotted curve shows the evolution of the correlation length ξ. It is observed that, before

the formation of dislocations loops, this value is essentially 0, whereas a sharp increase is observed

around 0.15 dpU, i.e. when the presence of dislocations loops becomes significant. The inflection

occurs for a value of  ξ ~ 25 Å, this value has therefore been chosen as threshold value for the

4 It can be noticed that, in the correlated regime, Eq. 12 reduces to Eq. 4 in (Adler & Houska, 1979) where our Hu

equals their r + 1 exponent.
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calculation of εzz . The correlation length saturates at a value of 50 Å , i.e. the atomic displacements

are correlated over ~1/4 of the MD cell as long as dislocations are present.

It can further be mentioned that the maximum disorder, σ∞ (not shown), can be used as an overall

measure  of  disorder  in  the  MD cell.  The  DW can  be  computed  from  σ∞ within  the  Gaussian

approximation,  see,  for  instance  (Trueblood  et  al.,  1996).  However,  in  the  case  of  irradiated

materials, the disorder has been proven to be largely non-Gaussian (Boulle & Debelle, 2016) so that

this determination of the DW factor may lead erroneous results.

We now focus on the result that would have been obtained by neglecting spatial correlations, i.e. by

computing the microstrain from the first neighbor only (Fig. 7d, blue curve). As can be observed,

this measurement largely overestimates the microstrain in the whole investigated range, consistently

with other studies (Stukowski et al., 2009; Xiong et al., 2019). The reason for this discrepancy is

that peak broadening is sensitive to correlated displacements, via the 

term in Eq. 3. This term yields results similar to those obtained with the real space average only if

the  covariance  of  δu is  equal  to  0  (i.e. no  correlations).  Moreover  this  measurement  does  not

provide any indication as to the presence of spatial correlations in the defect structure as evidenced

by the lack of any significant feature in the 0.1 – 0.2 dpU range.

Let us now consider the discrepancy observed between the XRD-derived and the D-PDF-derived

values in Fig. 7d. One possible reason for this discrepancy is that the real-space measurements

requires a more complex numerical analysis (including a fitting procedure with Eq. 12), which is,

hence, more prone to numerical errors than computational diffraction. A more likely reason lies in

the assumption made regarding the shape of the XRD profiles. Throughout the analysis, the peak

shapes were assumed to be Gaussian. The  comparison between the real-space and the reciprocal-

space analysis  shown in Fig.  7b,  demonstrates  that  this  assumption is  acceptable up to 1 dpU.

Above this  value,  both measurements  start  to deviate  from each other.  Interestingly this  region

corresponds to the moment where perfect dislocation lines are starting to form, and it is known that

randomly distributed dislocation lines yield non Gaussian peak profiles  (Adler & Houska, 1979).

This can be confirmed by inspecting the value of the Hurst exponent, Hu. In the range 0.3 – 1 dpU,

its average value is 0.75, whereas it drops to 0.39 above 1 dpU. The former value corresponds to an

XRD shape intermediate between a Gaussian (Hu = 1) and a Lorentzian (Hu = 0.5) function, whereas

the latter is close to the Lorentzian peak shape (Adler & Houska, 1979; Boulle et al., 2005). This

shows the limit on the utilization of the Gaussian approximation and, depending on the situation,

more flexible shapes could be considered (like Voigt or pseudo-Voigt functions).
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To conclude this part, we have demonstrated that computational diffraction allows to determine the

components of the homogeneous and heterogeneous strain tensors. The consistency of the results

have been checked by comparing the values (of the average of diagonal elements) obtained by

diffraction  with  those  obtained  from a  real-space  approach using  D-PDF.  Finally,  a  significant

advantage of  computational  diffraction,  as compared to  the real-space approach is  that  the off-

diagonal elements would be far more complicated to assess in the latter case.

5. Conclusions

We presented  a  computational  diffraction method for  a  rapid and reliable  determination  of  the

distortion and microstrain tensors, as well as the associated disorder, in atomic scale simulations of

disordered crystals. The analysis is based on a projected 3D Fourier transform followed by a 2D

peak position and shape analysis. With an adapted hardware,  and depending on the size of the

simulation  cell,  the  whole  process  takes  a  few seconds  for  a  given  cell  orientation.  The  main

advantage of the computational diffraction approach, as compared to usual real-space approaches, is

that the normal strains and distortions, microstrains and disorder (DW factor) are straightforwardly

determined from the peak positions, widths and intensities in the reciprocal space maps. Moreover,

contrarily to most real-space approaches, computational diffraction includes the effect of long-range

correlations in the atomic displacement field. Furthermore, as compared to the Debye scattering

equation, the 3D distortion tensor can be reliably determined without orientational averaging and

without necessitating advanced XRD pattern modeling. 

The  relevance  of  computational  diffraction  has  been  demonstrated  in  a  self-consistent  way by

comparing  characteristic  parameters  (such  as  the  normal  strains  and  microstrains)  with  those

obtained from real space measurements. Since the whole analysis can be completely automated, it

can easily be envisioned for on-the-fly data analysis where MD simulations snapshots are analyzed

as soon as they are produced, allowing one to extract the data in real time without the need to save

the simulation cells themselves. This  in situ computational diffraction approach (similar to the  in

situ computational microscopy introduced in  (Zepeda-Ruiz et al., 2017)) allows one to significantly

compress  the  amount  of  data  to  be  stored.  The  efficiency  of  computational  diffraction  is  also

perfectly suited to analyze very large data sets in an automated way.
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Appendix A: Effect of Qy integration

In most actual laboratory XRD experiments, x-ray beams are in general only collimated in one

plane (the plane in which the photons are detected), whereas they are divergent in the orthogonal

plane (this geometry is schematically depicted in Fig. S2, Supplementary material). This results in a

loss  of  spatial  coherence in  the direction perpendicular  to  the detection  plane  and an intensity

integration as given by Eq. (13), see also (Channagiri et al., 2015).

In the present work we take advantage of this effect to approximate a Monte-Carlo averaging in

order to wipe out interference features that are not usually observed in experiments:

(13)

where E is the usual scattered X-ray amplitude , Ny is the number of (Qx,

Qz)  sections  involved  in  the  summation,  the  appropriate  value  of  which  can  be  determined

empirically by increasing Ny to determine the the convergence of the sum (Fig. S3, Supplementary

material). All calculations presented in the current work are computed using the configuration with

50 sections.  An interesting analogy that can be made from this equation is that, in the diffraction

experiment, the crystal can be viewed as divided into unit-cell-thick (x, z) planes, parallel to the

detection plane. The intensity diffracted from each (x, z) plane is given by the squared modulus of

the amplitude scattered from each plane, and the intensities are summed to form the total scattered

intensity. This operation introduces randomness in an otherwise fixed defect configuration. 

Appendix B: Effect of microstrain

The first exponential of Eq. 3 is also referred to as the correlation function (Holý et al., 1999) , G(rj,

rk),  [or the  strain  Fourier  coefficient  (Warren,  1969) in  the  field  of  powder  diffraction]  and it

determines the intensity and the shape of the diffuse scattering distribution. The important feature to

notice is that G(rj, rk) is a function of the local displacement difference function δu(rj) – δu(rk): it

encodes the degree of correlation between local displacements, δu, from one site to another (Boulle

et al., 2005). In the case of correlated disorder, the individual displacements add up, which yields a

destruction of the long range order. In, such a case, G(rj, rk) rapidly decreases for increasing rj – rk

pair distances (Krivoglaz, 1969). The displacement difference can therefore safely be expanded into

a first order Taylor series so that the correlation function finally writes:

(14)
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∇δu(r) is the Jacobian of the local displacements.  In order to illustrate how G(rj,  rk) affects the

scattered intensity, let us consider the same two extreme cases as for the coherent scattering.

For a perfect crystal, δu(r) = 0 so that G(rj, rk) = 0, and there is no diffuse scattering, i.e. DW = 1.

On the contrary for highly disordered crystals, δu(r) >> 0, DW→ 0, the coherent intensity vanishes

and the shape of the intensity distribution is then entirely governed by the correlation function,

which is itself a function of the statistical defect distribution and the associated displacement fields;

increasing correlated disorder, for instance by increasing the defect density, yields a broadening of

the intensity peak. An exact solution for the correlation can be worked out for selected defects such

as point defects, defect clusters, dislocation loops,etc (Dederichs, 1971, 1973; Ehrhart et al., 1982;

Iida et al., 1988; Larson, 2019) but this is not the topic of the present article.

For illustration purposes, we shall assume that the statistical distribution of the local displacement

difference function obeys a multivariate Gaussian distribution. The correlation function then writes

(15)

where ΣQδu is 3×3 tensor whose components are related to the microstrain tensor. For instance, using

a  Q = (0,  0,  Qz)T vector  and assuming, that the displacements  δux,  δuy and  δuz are statistically

independent, the tensor writes:

(16)

in which case, Eq. (15) reduces to the product of three Gaussian functions with standard deviations

εzx Qz,  εzy Qz,  εzz Qz,  where  εi,j are  the  components  of  the  microstrain  tensor.  In  other  words,

measuring the width of the peak in the RSM allows to determine the heterogeneous strain, which is

the basis of all XRD line width analysis techniques related to Williamson & Hall pioneering work

(Williamson & Hall, 1953). It is also clearly established that this approach is an oversimplification

that  relies  on  strong  assumptions  (Gaussian  distribution  of  strain,  statistically  independent

displacements). It nonetheless allows to get reasonable orders of magnitude.

Appendix C: Real-space vs. reciprocal-space determinations of strain

To address this task we first suggest to rewrite the equation of the total diffracted intensity (Eq. 3),

by introducing the nth neighbor index, n = k – j. Without loss of generality we shall focus on the Qz

intensity distribution of reflection with  Q0 = (0, 0,  Q0)T. The conclusions drawn remain perfectly
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valid for any reflection or any direction, although the derivation of the corresponding real space

quantities (in particular the shear/misorientational components of the strain tensors) would not be as

straightforward. The corresponding intensity writes:

(17)

The term in the angular brackets can be reduced to

(18)

where  we  implicitly  assumed  a  Gaussian  distribution  to  perform  the  average;  more  general

distributions can be considered  (Boulle  et al., 2005; Boulle & Debelle, 2016), but this does not

change the conclusions. The strain values, ezz, and the associated microstrain, εzz, computed from the

MD data using these equations exactly correspond to those given in Fig. 4 and Fig. 7.

As detailed in section 2, we write the z coordinate of all atoms as

(19)

and we make use of the D-PDF introduced in (Leonardi et al., 2013), , which corresponds to

the probability of finding a pair of atoms separated by a distance comprised between z and z + Δz

along the [001] direction. The D-PDF can directly be evaluated from the MD cells (see below). This

function exhibits maxima at the average nth neighbor distance (Fig. 7a):

(20)

where the average is taken over all atoms j in the cell. Using Eq. (19), the nth neighbor distance can

be rewritten 

(21)

where d(1) is the first neighbor distance in a disorder-free MD cell. The lattice strain can hence be

directly deduced from the slope of the peak positions in the D-PDF vs. the neighbor index n (Fig.

S3b). Moreover, comparing Eq.  (21) with the last exponential of Eq.  (17) reveals that the strain

measured from calculated intensity should be strictly equal to the strain computed from Eq. (21).
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Similarly, the variance of the peaks of the D-PDF is:

(22)

which exactly corresponds to the term contained in Eq. (18). Depending on the state of correlation

of the displacements,  different  behavior  are  observed.  If  all  displacements  are  independent  and

uncorrelated, the width of the peaks of the D-PDF is constant and equal to . On the contrary

if all displacements add up, , then the width of peaks of the D-PDF increase as

. Intermediate behaviors require the introduction of an additional quantity, the correlation

length  ξ,  which  defines  the  length  up  to  which  the  displacement  are  correlated;  for  neighbors

separated by distances larger than ξ, correlation is lost and the disorder saturates to a constant value,

σ∞. A phenomenological equation capturing such a behavior is given by Eq. 12.

Finally, to obtain the D-PDF from the MD cell, we calculated the distribution of distances between

neighbours considering for each atom a centred square bar oriented in the direction of interest. We

chose square bars with a basal section 1 Å2 and a length of 80 Å as it turned out to be sufficient to

capture the main trends.
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