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Abstract

An increasing attention is paid to fault detection in manufacturing. Researches are carried out in order to improve the quality and
productivity in such systems. Machine Learning (ML) techniques are often used for fault detection tasks. Besides, ontology and
semantic web technologies have a great potential to represent, organize and reuse the expert knowledge.
In this paper, a Knowledge-based fault detection method for manufacturing processes is proposed, relying on Ontology and Ma-
chine Learning techniques. The approach is iterative in the sense that new faults can be detected by ML and added as new knowledge
into the ontology periodically. It eases fault detection in industrial contexts, where faults are generally rare. Experiments conducted
with seven fault-detection oriented UCI datasets have shown the effectiveness of our proposal. It is composed of a real-time classi-
fier with a reject option, to enable the detection of new defects based on the existing knowledge described in the ontology. When
new defect signature is discovered, it is added into the ontology as new knowledge through a semantic mapping. As a result, we
have shown the ability of the proposed architecture to detect new faults and to increase the overall accuracy as new faults are
included in the ontology. It also conducts to an evolving ontology that will be used in further research to support a generalization
process to enable the detection of known defects in new contexts.
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1. Introduction

Fault detection in manufacturing is an increasingly attracting topic in the context of Industry 4.0. Machine Learning
(ML) techniques have proved their high efficiency for fault identification [14, 9]. These techniques process raw signals
collected by sensors, extract the features, and recognise a fault using pattern recognition algorithms, such as neural
networks [3] or support vector machines [23]. Their advantage relies on the fact that they are able to deal with high-
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dimensional data inter-dependencies, which makes them ideal to deal with complex and large scale processes and
the underlying data. However, if good results are obtained with classical classifiers trained for well-known faults of
mature manufacturing processes, it is not the case for less mature process where unknown faults can appear, or when
rare faults can be simply missing in the training dataset. This is the reason why the discovery and the management of
unknown faults is an important issue in industry.

ML methods for the detection of unknown faults have been studied in the literature. Three types of approach exist.
The first one consists in training a one-class classifier with observations of correct manufacturing operations and a
rejection threshold is set according to the underlying data variability [1]. The second and the third one performs a
clustering on a training dataset that includes some faults and then compares a new observation to each fault pattern
using either a distance-based rejection [2] or probabilistic-based rejection[7]. However, some ML methods are often
considered as ”black-boxes” where the results are not interpretable and the expert knowledge difficult to include.
Moreover, many research works focus on a unique aspect, process strategy or operating conditions, which is not
sufficient for practical applications.

An ontology can explicitly define the concepts and their relations in a field of expertise [10]. It also enables knowl-
edge reasoning and querying using rules and inference engines. Thus they are promising methods for knowledge
modeling, management and advanced knowledge use. Knowledge-based fault detection focuses on fault knowledge
representation and utilization [16]. With the development of semantic web technology, ontology model for fault diag-
nosis has been studied and applied in various fields [22]. The usage of fault diagnosis ontology can be mainly divided
into three categories: sharing domain vocabulary, reasoning for fault cause identification, and retrieving information
or recognizing similarities [16]. A complete review on this subject is provided by [16]. Nevertheless, these methods
generally lack operating data which could significantly improve the performance (in term of diagnosis accuracy e.g.)
[21]. Thus, acquiring knowledge by ML is relevant. It enables the modeling of fault pattern and the population of fault
diagnosis ontology.

Recently, attempts were made to combine ML and fault diagnosis ontology. An overview on these methods is
provided by [21]. For instance, [24] propose a hybrid Ontology-ML architecture in order to identify the cause of a
fault and to derive maintenance measures by ontology reasoning on its instances. The latter was created by a semantic
mapping between the results of their ML approach and the ontology concepts. Despite their promising results, the
structure of their ontology was fixed during the whole experiment and no iterative option was proposed. Moreover,
the detection and inclusion of new defects were not supported. This is often the case with other similar works [6] and
therefore it results in difficulties for the automatic fault detection in industrial contexts.

In a previous work [7], we have introduced a first step of an architecture dedicated to iterative knowledge discovery
for fault detection, based on an unsupervised learning of a Gaussian mixture model, with an application to screwing
process monitoring.

In the present paper, a new hybrid Ontology-ML architecture is proposed for the iterative knowledge discovery
in fault detection. The performance of the approach is then evaluated on standard data-sets. The paper is organized
as follows: our architecture for iterative knowledge discovery dedicated to fault detection is presented in section 2.
Section 3 presents the experiments on UCI datasets. Finally, conclusions and perspectives are drawn in Section 4.

2. Hybrid Ontology-ML architecture for iterative knowledge discovery in fault detection

In a manufacturing company, a variety of machines, processes, process strategies or operating conditions can be
encountered. This diversity makes difficult the establishment of a unique mathematical model that can perform an
efficient monitoring for all these conditions. Indeed, the fault pattern (signatures) of sensor signal that is generated by
a manufacturing operation can differ from one context (i.e. a given machine, tool, process strategy, etc) to another,
even if they share the same state. Moreover, new faults, which were not included in the training of the monitoring
model, may occur latterly during the manufacturing production. These new faults cannot be detected by classical ML
approaches (which are often trained in supervised way) and often requires to train again the model then including
the new faults. However, due to the variety of the contexts and the complexity of the models, this approach may
rapidly overload the computational resources resulting in poor monitoring efficiency. To overcome these constraints,
an ontology-based knowledge model supported by ML techniques is proposed in section 2.1.
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Initially, this Fault Detection Ontology (FDO) can either be completely empty (in term of instances) or be initialized
with a set of the FaultyState instances depending on the domain knowledge. However, in order to perform real-time
monitoring in a given context, the FDO must be populated with instances of correct and faulty classes. Therefore, the
proposed solution is composed of two phases: one initial population described in section 2.2 and an enrichment step
described in section 2.3.

2.1. Fault Diagnosis Ontology (FDO)

Initially formalized in [10, 11], ontologies can be defined by:

• a set of concepts or classes C = {C1, . . . ,Cn} structured by means of taxonomic (is-a) and partonomic (part-of)
hierarchyH ,
• concept properties or attributes,
• semantic relations between concepts (Rc : Ci ×C j), where Ci and C j are respectively the domain, and the range

of the relation,
• a set of concept (resp. relation) instances I (i.e. occurrences of classes and semantic relations),
• a set of formal axiomsA =< cik, c jm, vn > with cik, c jm ∈ I and vn ∈ V (a set of constraint, like must, must not,

should, should not, etc).

Our goal is to propose an ontology-based method that supports the real-time monitoring and the discovery of new
fault in different manufacturing contexts. To do so, a fault diagnosis ontology (FDO) is presented. It relies on four
core concepts: C = {Context, State, Signature, Occurrence}. The hierarchy H is presented in Figure 1. The orange
squares represent the classes and the white ones an example of their instances. Detailed definitions of the classes are
presented in Table 1. The attributes of the Context and Signature classes can be adapted, extended and modified in
practical use. The numbered instances in the Figure 1 indicate that a particular concept (e.g. the Faulty state FS 1) can
be described by more than one instance eventually (FS 11, FS 12, . . . ).

Three semantic relations (which have the same domain Occurrence) are defined. ”HasSignature” and ”DescribesA”
indicate respectively that each Occurrence is linked to a specific Signature and to a specific manufacturing State.
”IsRelatedTo” links the couple <State, Signature> to its context; i.e. the FDO associates each labelled signature to its
manufacturing context. Finally, the number of occurrences of manufacturing operations that shares the same Signature
(i.e. same State of manufacturing operation) in a given context is stored in the Occurrence instance.

2.2. FDO initial population

The aims of the first phase is to populate the ontology using an initial dataset, cf. Figure 2. The dataset is a recent
history of monitoring of manufacturing operations in a certain context. The initialization phase has two objectives.
The first one consists in identifying all defects that are present in the dataset and adding them as instances of the
FaultyState class (or its sub-classes). If a new type of defect is detected, then a new sub-class of FaultyState is created.
The process of adding new sub-classes as well as the determination of the hierarchy of the FaultyState is performed
by a domain expert. The second objective aims at identifying the signatures of each detected defects (including the
CorrectState), adding their instances in the FDO, and linking them to FaultyState instances as well as with the context’s
instance in which the initialization was carried on. Finally, the number of occurrences of each signature is stored in the

Table 1. Fault Detection Ontology : definition of the classes

Concept Definition
Context Exhaustive conditions under which a manufacturing operation is performed
State Specific state of a manufacturing operation
Signature Significant features that characterize a state in a certain context
Occurrence Associative class that refers to the number of manufacturing operation classified by signature association

in a given state for a certain context.
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Fig. 1. Fault Diagnosis Ontology (FDO): taxonomic and semantic relations between concepts, and examples of instances

Fig. 2. FDO population from an initial dataset

Table 2. Fault Detection Ontology: definition of the attributes

Class Attributes Definition
Context MachineId Id of the machine used

StrategyId Id of the process strategy
ManufId Id of the manufacturing site
... ...

Signature Mean mean vector of the Gaussian component
Covariance covariance matrix of the Gaussian component
... ...

Occurrence Ni number of occurrences of the ith couple (Signature-State)
State Condition condition of the manufacturing operation (OK-NOK)

Label label of the state

Occurrence class. At the end of this phase, the State instances in a given context are linked to the Signature instances
in the FDO.

To do so, we have proposed an unsupervised machine learning techniques on the set of operating data. Then a
semantic mapping supported by a domain expert is carried on to relate ML results to FDO’s concepts.

In previous work [7], we proposed to model a signature by a Gaussian distribution in the feature space. The
dataset is treated in an unsupervised way as state labels can not be easily obtained in a context of intensive industrial
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Fig. 3. Iterative FDO enrichment with on-line monitoring of a data stream (a) and inspection mechanism of rejects (b)

production. The dataset can contain observations of several signatures of several unlabeled states, then the whole
distribution of the operating data is represented as a Gaussian Mixture Model (GMM) [17].

Consequently, as described in [7], the FDO initial population consists in the unsupervised learning of GMM models
in the feature space (after a feature extraction step) by the EM algorithm [4], where the optimal number of components
of the mixture is obtained by the usual model selection technique: the Bayesian Information Criterion (BIC) [8].

Each Gaussian component is assumed to correspond to a particular type of faulty or correct manufacturing oper-
ation. Then, the clustering results are shown to a manufacturing expert through a human-machine interface. Based
on his empirical knowledge, the expert interprets the results and determines the type of fault corresponding to each
component, i.e. labeling it. In case where some State instances have been already instantiated in the ontology, the
expert can visualize the ontology’s hierarchy (the State part) and choose the appropriate label for each component.
Finally, in case where none of the existing labels corresponds to a given fault, the expert can add a new fault label. It
is added to the ontology as a new sub-concept of the FaultyState concept and hence enriches the ontology structure.

The population of the ontology starts by generating the Context’s instance in which the GMM was trained. Then,
the labeled Gaussian components are semantically mapped into the instances of the classes of State, Signature, Oc-
currence. The fault labels are stored as instances of the State class. The Gaussian components are stored as instances
of the Signature class. The association between the Gaussian components and their labels (i.e. States) is ensured by
the Occurrence Concept. Finally, the weights of the Gaussians components are stored through their Ni Occurrence in-
stance. Each context is linked to its labeled signatures representing the GMM model that was trained on it. A complete
description of the FDO classes and their attributes is provided in Table 2.

2.3. FDO iterative enrichment

The initial population of the FDO contains the classification model which is able to detect the faults by monitor-
ing, from this initial list of defects that were discovered during this initial step. Here, we propose the core of our
architecture, dedicated to iterative knowledge discovery from new data that can be provided in streams of industrial
production data. This part, described in Figure 3, is divided into two.

The first part (Figure 3.a) uses the populated ontology to classify the incoming data in real-time using its existing
signatures and contexts instances. This classification aims to recognize the defects classes that are present in the
incoming data and to reject unknown data.

The second part is an inspection mechanism of these rejected data (Figure 3.b), which is periodically triggered by
the expert in order to discover possible new class of unknown defects, or new signatures of existing defects. These
new defects (or updated defects) enriches the initial ontology. Therefore, this process enables the integration of new
defects (or to re-enforce ones) confidently and makes the solution easier to implement in an industrial environment.

The first step is to check that the incoming observation belongs to a manufacturing context in which a GMM was
trained. Then, as proposed in [7], we apply an improved version of the distance rejection test proposed in [18] to check
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Table 3. Datasets description

Dataset nclasses n f eatures ninstances ninstances−per−class

Sensorless Drive Diagnosis 11 49 58509 5319-...-5319
Steel Faults 7 27 1941 158-190-391-72-55-402-673
Hydro Hydro 4 17 2205 599-399-399-808
Hydro Cooler 3 17 2205 741-732-732
Hydro Leakage 3 17 2205 1221-492-492
Hydro Valve 4 17 2205 1125-360-360-360
Gas Sensor Drift 6 129 13910 2565-2926-1641-1936-3009-1833

whether a new observation belongs to a known cluster or not. If so, it is assigned to the most probable cluster, and
the attribute of the Occurrence’s instance that is related to the Signature’s instance of this class is incremented in the
ontology. Otherwise, it is rejected and assigned in the exception set.

In [7], the periodical analysis of the possible emergence of unknown faults by exploring this exception set was
also proposed. At this step, the same clustering method by GMM and BIC described in section 2.2 is applied to the
exception set and a visualization of the potential new clusters is proposed to the expert. Based on these results, he
interprets the type of faults discovered. If new faults are confirmed, the ontology can be updated. The first step is
to add the new labels that were provided by the expert as new sub-concepts (and their instances) of the FaultyState,
which enrich the structure of the FaultyState in the ontology. Then, these new instances are semantically related to
their Signatures and their Occurrence instances. Lastly, these signatures are semantically related to an existing Context
instance as only observations from known contexts are treated.

3. Experimentation

3.1. Experimental protocol

For these experiments, 7 UCI datasets [5] were used. These datasets are related to fault detection tasks where the
classes describe either faults or different operating conditions. The features are derived from measurements of different
sensors depending on the application (e.g.: pressure, temperature, etc...).

A description of these datasets is given in table 3. A feature selection was performed for the first dataset according
to [12]. The maximum value in each time series was selected for each features in the hydro datasets. The last two (gas
sensor, steel faults) were left unchanged. Finally, a standard normalization was applied for all datasets.

It should be pointed out that these datasets are used in an unsupervised way by our architecture. The information
provided by the class value is only used in order to simulate the expert labeling step proposed in our architecture. This
labeling is done by associating each discovered signature with the label of the majority class in the dataset assigned
to this signature, or with an ambiguity class rejection when the difference of probabilities of the two most probable
classes is lower than one given threshold (we have set it to 0.3 based on experimentation). Therefore, the labeling is
done automatically in our experiments.

The proposed approach was implemented in Python with sklearn for model learning and reject option. Owlready2
[15] has been used for ontology implementation and interaction with Python objects.

Two series of experiments have been conducted. In section 3.2, we investigated a simple behavior where only one
new class of defects appears at each iteration of the FDO enrichment step, in order to study the ability to detect new
defects. In section 3.3, in order to study the robustness of our architecture, a more realistic experimental scheme is
proposed where points from several classes can be observed during the same iteration.

3.2. Detection and learning of new defects

The main property of the proposed architecture is related to the ability to detect new behaviors in an iterative way.
These behaviors can be associated to new defects or to the drift of existing defects.
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Table 4. Detection and learning of new defects: recognizability and recognition rate per defect (average for 20 runs with different appearance order)

Dataset defect recognizability rate recognition rate
Sensorless Drive Diagnosis 0 0.99 1.00

1 0.99 0.99
2 0.99 1.00
3 1.00 1.00
4 0.99 1.00
5 0.99 0.99
6 1.00 1.00
7 0.99 0.99
8 1.00 1.00
9 0.99 1.00
10 1.00 1.00

Steel Faults 0 0.78 0.48
1 0.88 0.57
2 0.99 0.66
3 0.97 0.72
4 0.78 0.42
5 0.81 0.65
6 0.90 0.68

Hydro Hydro 0 1.00 0.80
1 0.99 0.87
2 0.99 0.93
3 1.00 0.94

Hydro Cooler 0 1.00 0.98
1 1.00 0.98
2 1.00 0.89

Hydro Leakage 0 1.00 0.87
1 1.00 0.93
2 1.00 0.92

Hydro Valve 0 0.93 0.75
1 0.82 0.69
2 0.81 0.63
3 0.82 0.77

Gas Sensor Drift 0 1.00 0.91
1 0.99 0.83
2 1.00 0.90
3 0.82 0.93
4 1.00 0.97
5 0.99 0.97

To this end, each dataset was split into training and test set. Then, the training set was split into a number of batches
equal to the classes one. Each batch contains instances of only one class. The initial FDO population on the first batch
(labelled step 0 in the following figures) was done. Then, the iterative FDO enrichment is successively performed on
the remaining ones.

We propose to measure the ability to detect new behaviors by two metrics. First, the class recognizability rate is
the ability for a new given defect to be rejected by the real-time classification (based on the Fault Diagnosis Ontology
that was not yet including this fault). This is a first necessary condition for data of this new class, to be processed by
the inspection mechanism and potentially added to the ontology. Then, the class recognition rate is the ability to well
classify a given defect, once the corresponding signatures added in the ontology. This ability can also be measured by
the global accuracy over all the possible defects estimated with the test dataset.

In order to limit the possible bias of the order of introduction of the defects in this learning scenario, these metrics
are averaged over 20 runs with different random orderings.

Table 4 presents the class recognizability and the class recognition rate for each fault present in the 7 datasets. Here,
the unbalanced class recognition rate is used in order to compare it to other works that used the same metric. It can be
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Fig. 4. Detection and learning of new defects: global balanced accuracy of the system in the initial ontology population (step 0) and during the
iterative knowledge discovery process, averaged over 20 different settings

seen that our architecture is capable to reject new faults that have not been seen previously, independently from the
ordering of defect introduction in this scenario. The recognizability rate is very high, which means that unknown de-
fects are mainly rejected during the real-time classification, and can then be processed by next inspection mechanism.
The last column presents the class recognition rate, i.e. how well this defect is recognized once its corresponding sig-
natures added in the ontology by the inspection mechanism. This rate is more variable, depending of the complexity
of detection of a class, but the values presented here are similar to the classification rate that can be observed for such
datasets in literature [13], [19], [20]. Finally, it can be seen through the figure 4 that the global balanced accuracy
increases monotonically for all datasets, which means that the full enrichment of the ontology progressively improves
the overall accuracy despite of unbalance of some datasets.

3.3. Robustness

In the previous experiment, a first learning scenario was proposed where only one new class was observed per itera-
tion during the iterative FDO enrichment. We here propose to study a more complex learning scenario, by considering
a more realistic scheme where points from several classes are observed during an iteration.

As before, each dataset was split into training and test sets. Then, the training set was shuffled randomly so that
the instances are randomly distributed. Then, the initial FDO population on the first ninit instances was done. Finally,
the iterative FDO enrichment was performed on the remaining ones, by launching the periodic inspection mechanism
when a given number of rejected instances nre ject is reached. As before, this procedure was repeated 20 times by
shuffling the training set.

ninit and nre ject were fixed respectively at 2% and 4% of the size of the training set. All other parameters were fixed
according to our previous work [7].

We propose to measure the robustness of our architecture with the help of two metrics. First, the recognizability rate
is yet defined as the rejection ratio measured here at each step of the ontology enrichment. The metric should decrease
from 1 to 0 during our iterative FDO enrichment, since signatures corresponding to each defect are progressively
added. In the same time, the balanced recognition rate measures the ability to well classify the defects, once their
corresponding signatures have been added in the ontology. To the contrary, this metric should increase from 0 to 1
if the defects are well recognized in the dataset. As before, these metrics are averaged over 20 runs with different
random dataset shuffles.
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Fig. 5. Robustness : a) recognizability rate, b) balanced recognition rate, in the initial ontology population (step 0) and during the iterative knowledge
discovery process, averaged over 20 different settings

The results are shown in the two figures 5 (a. and b.). As expected, it can be observed, for all datasets, that the
real-time classification step rejects less and less instances as the ontology is enriched. Moreover the recognition rate
increases during these enrichment steps, meaning that the faults and signatures progressively added in the ontology
are helpful to detect the corresponding defects in the following steps.

It shows that our architecture is robust against the random distribution of defects in the training set, which makes
it robust in an industrial context where faults may occur at any time.

4. Conclusion

In this paper, we have proposed an architecture dedicated to iterative knowledge discovery for fault detection in
manufacturing systems. This architecture extends a first work presented in [7], where the unsupervised learning of
Gaussian mixture model was performed to incrementally learn a classifier, for an application of screwing process
monitoring.

In the present paper, we have proposed the next step of this architecture whose objective is to build an ontology-
based knowledge model for fault detection. The first contribution of this paper is a generic Fault Detection Ontology
(FDO).The second and third contributions correspond to the application of the unsupervised machine learning tech-
niques developed in [7] in order to firstly populate the ontology and then enrich it iteratively when new faults are
discovered in the real-time data stream.

Experiments were carried out on 7 UCI datasets related to manufacturing or industrial systems. They have demon-
strated the ability of our architecture to detect new defects iteratively (section 3.2), and to add relevant information in
the ontology enabling a better recognition of defects in the following steps, in a robust way (section 3.3).

In our architecture, the bridge between ”black box” ML techniques and knowledge engineering is established by the
ability of some expert to label the signatures discovered during the ML step. This assumption holds true in our initial
application to screwing process monitoring described in [7]. As in every eliciting process in Knowledge Engineering,
this interaction with the experts helps them to formalize their knowledge, even if this interaction is here guided by a
data-mining process.

In future work, the concept of Context described in our ontology will be considered to investigate how fault detec-
tion can be performed on real-time data from a new experimental context, by exploiting the defect signature knowl-
edge learnt in similar contexts. The generalisation of the knowledge progressively added in the ontology will be also
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studied. For instance, can we merge several signatures corresponding to one defect into a unique one? Can we gen-
eralize a signature identified for a given defect to other contexts? These questions are related to the fields of Transfer
Learning and Domain Adaptation, applied here for inducing new knowledge in our FDO ontology, and increasing the
performances of the fault detection system.
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