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Abstract

Agent-Based Models (ABM) are being increasingly used to evaluate urban
systems, urban policies and environmental impacts. One prerequisite for using
the ABM framework consists of generating a synthetic population representa-
tive of the actual population, featuring the appropriate attributes with respect
to model objectives. A precise spatial positioning of the synthetic population
agents is often key to ensuring ABM modeling quality. This paper considers the
problem of allocating synthetic population agents to a finer spatial scale. Such
an allocation process is performed from a higher-level statistical area where a
synthetic population can be generated, i.e. a container statistical area (CSA), to
several nested non-overlapping elementary statistical areas (ESA), where only
marginals are available. This allocation step relies not only on common at-
tributes between CSA and ESA, but also on additional discriminatory attributes,
i.e. attributes of interest, estimated from external data sources.
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The case study examined herein is based on French census and fiscal data.
Common attributes include 8 socio-demographic variables, totaling 17 modal-
ities. An additional attribute of interest, i.e. income, has also been added. The
allocation problem at hand is modeled as an integer quadratic programming
problem. An exact algorithm is first applied to solve the problem; the applica-
bility of this algorithm proves to be limited to small-size synthetic populations.
A heuristic is proposed to handle the allocation of larger-size synthetic popu-
lations. Tests carried out on the case study show that this heuristic yields near
optimal solutions; it is also computationally efficient and may fulfill the needs
of a majority of users.

Keywords

spatialization, finer scale allocation, statistical areas, synthetic population
agents, agent-based models, integer quadratic programming problem

1 Introduction

Agent-Based Models (ABM) are now widely used across a range of sectors,
including urban planning, economic policy evaluation, environmental evalu-
ation and transportation simulation. These models generally require detailed
attributes of individuals and households in terms of socioeconomic character-
istics. In order to perform an agent-based simulation, a necessary interme-
diate step therefore entails generating a simplified microscopic representation
of the actual population, i.e. a ’synthetic population’ derived from available
data (Chapuis and Taillandier, 2019). Nevertheless, due to data limitation and
for privacy reasons, no comprehensive dataset containing these detailed socio-
demographic characteristics exists at a fine geographic scale.

In many ABM simulations, the behavior of synthetic agents is determined to
a great extent by their attributes, as well as by their location. Hence, the spa-
tial heterogeneity of agents’ characteristics must be taken into account with a
granularity that depends on both model objectives and available spatial data
(Zhu and Ferreira Jr, 2014; Chapuis et al., 2018). In many studies, the lack of ge-
ographic specificity has been identified as a major problem (Ji and Wan, 2021;
Long and Shen, 2015; Anderson et al., 2014; Su et al., 2010; Nejad et al., 2021;
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Zhou et al., 2022). Simulated populations are often only allocated in census enu-
meration areas. These large area units do not provide sufficient spatial defini-
tion and, therefore, do not always allow for satisfactory analyses of transporta-
tion and urban planning (Thomson et al., 2018). More precise spatial informa-
tion can dramatically improve the relevance and quality of analyses. For the
purpose of obtaining a synthetic population at a finer spatial scale, two main
approaches can be distinguished.

In the first approach, the synthetic population is directly generated at the
lower level of elementary statistical areas. Three configurations of generation
methods at lower level statistical areas can be distinguished: 1) Generation can
be performed using a sample and marginals given at the lower level. However,
due to privacy considerations, rarely a sample is given at such low level. More-
over, even if given, the sample is very limited which renders the generation of
a representative population very complicated. Furthermore, difficult technical
problems may arise for some generation methods when some attribute com-
binations are missing in the sample (Sun and Erath, 2015), notably the ’zero-
cell problem’ (Guo and Bhat, 2007) ; 2) Generation is performed using a sample
given at a higher level statistical area combined with the marginals of lower level
statistical area (Durán-Heras et al., 2018). However, as this sample is not spe-
cific to the elementary lower level area, there is no guarantee it is representative
of its population (Nejad et al., 2021). Therefore, the representativeness of the
generated synthetic population is affected; 3) Generation is performed with a
sample-free method (Gargiulo et al., 2010; Barthelemy and Toint, 2013) using
only marginals of lower level statistical area. Usually, marginal data are more
readily available than sample data for small statistical areas, as they do not dis-
close personal information. The shortcoming of this approach is that important
information for the generation process found in the sample, notably the joint
relation between attributes, is lost. The representativeness of the generated syn-
thetic population is severely diminished.

In the second approach, synthetic population agents are allocated to a finer
spatial scale after the synthetic population is generated at a higher level. Two
configurations of allocating to a finer spatial scale after the generation at a higher
level can be distinguished: 1) Allocation of households to a finer scale is per-
formed randomly. In many studies, the localization of synthetic population is
limited to randomly assigning locations to synthetic households by selecting
places among all available locations (e.g. assignment of home locations in Sal-
lard et al. (2021)). Other studies try to control random assignment using count-
ing information. Using land-use pre-processed satellite imagery and building
geometries data, Chapuis et al. (2018) applied an areal interpolation method to
disaggregate French census data and generate gridded prediction of population
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density at a finer scale (i.e. 30 m2 raster cell). The synthetic individuals are then
randomly assigned to cells with computed density constraints. However, this
allocation process only controls for number of individuals or households; 2) Ag-
gregate data (i.e. marginals) given for smaller areas contained in the larger areas,
where the sample is given and the synthetic population is generated, are used to
improve the precision of synthetic agents spatial positions. To our knowledge,
few studies have applied this approach. Harada and Murata (2017) proposed
a method that relies on marginals provided at finer scale units by Japanese ad-
ministration. They generate a synthetic population on a city scale using a sim-
ulated annealing method and then assign each household to a district of the
city. In a first step, they randomly assign each synthetic household according to
the number of households by family type and the number of family members in
each district. In a second step, they randomly select two households (same fam-
ily type and same number of members) of two distinct districts and exchange
them. Using district population statistics by sex and age, they evaluate this new
solution and repeat this procedure as long as necessary. However, this approach
only considers two variables for refining synthetic population allocation. More-
over, it can have a very high computational complexity, and can be applied to
problems with limited size.

This paper proposes a method that aims to allocate synthetic population of
households to a finer spatial scale after the synthetic population is generated at
a higher level.

For this purpose, we rely on aggregate data (i.e. marginals) given for smaller
areas contained in the larger area. We believe this approach of allocating syn-
thetic agents spatial positions to a fine scale to be the most appropriate for two
main reasons: 1) on one hand, the synthetic population can be generated at
the level where the sample is given. This is the most appropriate option to ob-
tain a representative synthetic population at the corresponding level. Note that
sample data with detailed individual characteristics are usually available with a
low spatial precision and are attached to relatively large areas; 2) on the other
hand, aggregate data (i.e. marginals) given for smaller areas contained in the
larger area, where the synthetic population is generated, can be used in order
to perform data-driven allocation of agents to these smaller areas. This data-
driven assignment of synthetic population households is expected to noticeably
improve results compared to random assignments. Furthermore, the data con-
figuration where sample data are attached to relatively large areas but aggregate
data are available at lower nested areas, is very common.

Our method that aims to allocate a synthetic population from a higher level
statistical area to finer scale areas, i.e. several nested non-overlapping elemen-
tary statistical areas, is generic. In order to allocate synthetic agents from a
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higher level statistical area, i.e. container statistical area (CSA), to finer level
elementary statistical areas (ESA), two types of attributes are used: common at-
tributes and additional attributes of interest computed from external data sources.
The common attributes are available at both the CSA and ESA levels, whereas
the attributes of interest are indeed available at one of the two levels, but ap-
proximate values of these attributes can still be computed at the other level.
In considering a case study based on French census and fiscal data, this allo-
cation problem is modeled as an integer quadratic programming problem. An
exact algorithm is first applied to solve the problem; however, the applicability
of this algorithm is limited to small-size synthetic populations (e.g. in order to
allocate 120 households to 6 lower level areas, the resolution time exceeds five
hours). Hence, a heuristic is proposed to handle the allocation of large synthetic
populations; this heuristic is computationally efficient and yields near optimal
solutions.

The remainder of this paper is organized as follows. The first section de-
scribes the problem and our case study. The second section then lays out the
mathematical problem and introduces both the decision variables and param-
eters. The third section is devoted to presenting our solution approaches and
their corresponding results. The fourth section discusses the results of our anal-
yses and is followed by a conclusion offering perspectives on this paper.

2 Description of the problem and case study

2.1 General formulation of the household allocation problem

This paper tackles the problem of allocating households from a container
statistical area (CSA) to several nested non-overlapping elementary statistical
areas (ESA). Two distinct geographic levels have thus been considered.

At the higher level, i.e. the container statistical area level, adequate infor-
mation is available to generate a synthetic population representative of the real
population. Typically, a disaggregated dataset, representing a sample of the pop-
ulation is available. Such a sample is commonly referred to as a International
Public Use Micro Sample (IPUMS) and provides numerous socio-demographic
attributes of individuals or households such as age, gender, family composition
and household income1. From this sample, a synthetic population can be gener-
ated using adequate methods (Hermes and Poulsen, 2012; Yaméogo et al., 2021).

At the lower level, i.e. elementary statistical areas level, only aggregate data
on a number of household attributes (that may or may not be available at the

1https://www.ipums.org, consulted on January 24, 2022.
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higher level) are provided. The number of attributes accessible at the ESA level
tends to be smaller than that at the CSA level. Three attribute configurations
between the two levels can be distinguished:

1. Attributes common to both CSA and ESA;

2. Attributes only present in CSA;

3. Attributes only present in ESA.

In order to obtain a more accurate location of the population’s households,
the synthetic households may be allocated from the CSA level to the ESA level.
Each CSA household needs to be assigned to one and only one ESA. For this
purpose, the common attributes at both CSA and ESA levels are used, i.e. house-
holds are assigned to ESA while satisfying the aggregate values of the common
ESA-level attributes.

Since all these attributes are considered to be well aligned, such a prob-
lem can be solved using the constraint programming paradigm (Rossi et al.,
2008), whereby constraints are defined so as to ensure that the marginals of
each ESA are satisfied during the household assignment step. A solution to this
constraint satisfaction problem (CSP) consists of an assignment that satisfies all
constraints (Freuder and Mackworth, 2006). The quality of this solution then
depends on both the number and discriminatory nature (i.e. ability to differen-
tiate households) of the common attributes. More specifically, if the number of
common attributes is small and these attributes remain insufficiently discrim-
inatory, constraint satisfaction can indeed yield multiple solutions. Moreover,
the number of possible solutions can be significant.

Figure 1 illustrates an example of dispatching 13 synthetic households at the
CSA level into four ESA. Five attributes are available at both levels: three com-
mon ones and two solely present at one of the two levels. The attributes com-
mon to both levels are:

• Dwelling ownership status (owner, tenant in CSA) and dwelling ownership
status marginals (number of owners, number of tenants in each ESA);

• Type of dwelling (apartment, house in CSA) and type of dwelling marginals
(number of apartments, number of houses in each ESA);

• Dwelling status (social, private in CSA) and dwelling status marginals (num-
ber of social dwellings, number of private dwellings in each ESA).

6



The two remaining attributes, i.e. car ownership and household composition,
are only present in the CSA and the ESA, respectively. This assignment proce-
dure can be carried out while relying on just the common attributes: a solution
consists of assignments capable of satisfying the marginals of each ESA.

As shown in Figure 1, by relying on the three common attributes, multiple
solutions of this assignment problem are indeed possible. This example yields
two solutions with a distinct distribution of households between ESA units (the
dashed and dotted arrows indicate that households hh7 and hh9 can be allo-
cated to either ESA 1 or ESA 2). In configurations with a high number of house-
holds, the number of possible solutions can be much greater and it may of-
ten become necessary to enrich either the synthetic population attributes (CSA
level) or the marginal data attributes (ESA level) with those estimated from other
data sources. These additional attributes would need to be more discrimina-
tory than the already available ones and are called attributes of interest given
that allocation algorithms use them to achieve a more refined classification of
households. In our example, household composition is a specific attribute only
present at the ESA level. However, the number of individuals can also be es-
timated for each synthetic household by means of external data sources (e.g.
additional statistics on household composition). Adding this information to the
synthetic population can lead to a unique solution for household assignment,
as illustrated in Figure 2.

From a modeling perspective, since these attributes of interest are being es-
timated, they are probably not well aligned between the two levels. Hence, ap-
plying constraints to these attribute values, as is the case for the original com-
mon attributes, might be inappropriate. Instead, implementing one or several
objective functions to use these attributes in assigning households to the ESA
units would be suitable. These objective functions are used to minimize the gap
of these attributes with respect to ESA marginals. Therefore, household assign-
ment can be solved as a single or multi-objective optimization problem formu-
lated on estimated attributes, along with constraints formulated on common
variables.

This paper assigns households from a synthetic population within a con-
tainer statistical area to several nested elementary statistical areas using both
common and additional estimated attributes. The following section provides a
detailed description of our case study.

2.2 Case study of allocation to a finer scale using French data

To illustrate the proposed method, we have used French data disseminated
at two distinct geographic levels: IRIS (container statistical area) and grids (el-
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Figure 1: illustration of the household allocation problem(1/2).

ementary statistical areas). We specifically worked with data from the city of
Nantes, with these data being freely made available by the French National In-
stitute of Statistics and Economic Studies (INSEE).

Container statistical areas: IRIS units
IRIS (French acronym for ’aggregated units for statistical information’) is a

statistical zoning system for disseminating of intra-municipal data in the French
population census. IRIS zones have clear boundaries that remain stable over
the long term. Municipalities or cities with at least 5,000 inhabitants are divided
into several IRIS units; all municipalities not divided into IRIS units constitute
an IRIS unit on their own2.

INSEE disseminates a representative sample of individuals and households
at the IRIS scale. Each observation in the sample represents a unique individual,
combined with the characteristics defining his or her person, household and

2https://www.insee.fr/fr/metadonnees/definition/c1523, consulted on January 24,
2022.
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Figure 2: illustration of the household allocation problem(2/2).

main residence. This layout makes it possible to synthesize at the IRIS scale
a realistic synthetic population of individuals associated with their households
(also called a two-layered synthetic population) with multiple attributes. We
thus began by generating a synthetic population of individuals and households
from this sample.

Elementary statistical areas: Grid data
INSEE disseminates grid data corresponding to squares with sides ranging

from 200 meters to several kilometers. Grid units are smaller than IRIS units, and
an IRIS can contain many non-overlapping grids. Grid decomposition respects
the European directive INSPIRE enacted in 2007 (Bartha and Kocsis, 2011) and
intended to harmonize spatial data across European countries in the aim of im-
proved dissemination and interpretation of these data. Through a standard and
compatible pattern, French grid data can be compared with German or Italian
grid data (Darriau, 2020). French grid data mainly provide marginal information
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Figure 3: Study area: city of Nantes (France)

on the characteristics of households and their economic conditions. Similarly to
IRIS-level data, grid data were collected during 2015.

Generation of a synthetic population
The city of Nantes sample (30% of the whole population) includes approx-

imately 111,000 individuals residing in 62,000 households distributed over 97
IRIS. Sample data were collected from 2013 to 2017 and adjusted to the refer-
ence year of 2015. In the sample data, each observation represents an individ-
ual with personal characteristics (gender, age, profession,etc), household char-
acteristics (household size, family composition,etc) and some characteristics of
the dwelling (type of residence, size of the dwelling, etc).

In addition to the sample data, aggregated data for the city of Nantes (at the
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IRIS level) are also available. These aggregated data contain the totals of certain
socio-demographic attributes of the population (number of men and women
in each IRIS, number of households by family composition, etc). Based on the
available data (large sample size, aggregated data) and according to the syn-
thetic generation process described in Yaméogo et al. (2021), we selected the Hi-
erarchical Iterative Proportional Fitting (HIPF) method proposed by Müller and
Axhausen (2011) for generating a two-layered (or multi-level) synthetic popu-
lation3. Since the weights obtained with this method are not integer, we then
applied the Truncate, Replicate Sample (TRS) approach (Lovelace and Ballas,
2013) to convert these decimal weights into integer weights in order to replicate
individuals and households4. For the synthetic population generation process,
we considered 9 control variables (i.e. variables for which aggregate data are
available): 5 variables at the individual level and 4 variables at the household
level (see Table A, Appendix A).

At the end of this process, we had derived a synthetic population corre-
sponding to the actual population of Nantes: approximately 295,000 individuals
residing in 157,000 households and 97 IRIS. Each household features a number
of attributes (household size, family composition, date of dwelling completion,
number of cars, etc.) as well as the socio-demographic attributes of household
members (gender, age, profession, work status...).

However, one important attribute that cannot be generated in the synthetic
population at the IRIS level is Income. For privacy reasons, household income
is not available in the sample data, thus making it impossible to include it in the
synthetic generation process. Nevertheless, it is possible to estimate, once the
synthetic population has been generated, an income for each household at the
IRIS level. Income constitutes an essential attribute when taking many social
and economic aspects into account; it is also a highly discriminating attribute
for households and, therefore, a key attribute of interest in the synthetic house-
hold allocation process. The income assignment process used will be described
in the following subsection.

Household income estimation
The process of assigning income to synthetic households is performed us-

ing the FiLoSoFi (’localized disposable income system’) database provided by
tax authorities. The income available in FiLoSoFi is actually an annual income

3A two-layered synthetic population must: 1) maintain the hierarchical structure of the data
by associating individual and household variables, 2) reflect the heterogeneity of their distribu-
tion between geographical areas, 3) reproduce the interdependencies among agents in the same
household, and 4) demonstrate the ability to fit with marginals (Yaméogo et al., 2021).

4The whole process is detailed in Yaméogo et al. (2021).
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per consumption unit (CU), i.e. annual income divided by a weighting system
that assigns a coefficient to each member of the household according to both
household size and age of its members5. By convention, all members of the
same household are assigned the same income. For the city of Nantes, FiLoSoFi
contains the deciles of the annual income distribution for the entire population
along with certain specific variables, namely: number of persons, family com-
position, ownership status and age of the reference person in the household.

In Yaméogo et al. (2021), a heuristic was proposed to assign an additional
variable to a synthetic population when the aggregate data distribution is given
in deciles. This heuristic combined Bayes theorem with the cross-entropy min-
imization algorithm and was successfully used herein to allocate an income to
each of the 157,000 synthetic households living in the city of Nantes. The results
were easy to compute and wound up being consistent with most of the deciles.

Summary of data present in both IRIS and grids
As previously explained, a synthetic population with both household and in-

dividual attributes is allocated from the IRIS level (container statistical areas) to
the grid unit level (elementary statistical areas). These units are associated with
household marginal attributes. Each IRIS unit contains many non-overlapping
grids. The allocation process employed herein has been performed using two
types of attributes:

• household attributes (not estimated) common to both IRIS and grids. These
attributes are primarily related to household and dwelling characteristics;

• an attribute of interest, namely household income. In our original database,
this attribute is only given at the grid level, i.e. ’total household income’,
and moreover represents the aggregate income of all households living
within the grid. From additional data sources (i.e. FiLoSoFi database),
a corresponding attribute, i.e. ’household income’, can be estimated for
each synthetic household at the IRIS level.

Table 1 summarizes both the common attributes and the estimated attribute
of interest.

Common attributes include: household size, household ownership status,
household composition, household economic status, household income, type
of dwelling, date of construction of dwelling and dwelling status. These attributes
are encoded as categorical variables of synthetic population agents at the IRIS

5https://www.insee.fr/en/metadonnees/definition/c1890, consulted on January 24,
2022.
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level. The number of occurrence of modalities of these attributes is given at
grid level. However, the modalities at IRIS and grid levels are not aligned per-
fectly. This can be seen in columns "Synthetic Population Initial attributes" and
"Grid marginals" of Table 1. In order to align these attributes, modalities of the
synthetic population at IRIS level are transformed as shown in column "Harmo-
nization of synthetic population attributes with grid marginals" of Table 1. The
attribute of interest, i.e. is encoded as a real number at both the IRIS and grid
levels. At the IRIS level, it represents the income of the corresponding household
of the synthetic population, while at grid level, it represents the sum of house-
holds incomes of corresponding grid.
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Table 1: Attributes for synthetic population allocation at both the IRIS and grid
levels.

Harmonization of
synthetic population

Synthetic population attributes with
Categories Initial attributes grid marginals Grid marginals

Household size Single member Single member Number of single member households
2 persons
3 persons 2-4 members Number of households between 2 and 4

members
4 persons
5 persons and more 5 persons and more Number of households with 5 or more mem-

bers

Household owner-
ship

Owner Owner Number of owner households

status Tenant Tenant Number of tenant households

Household Single-parent Single-Parent Number of single-parent households
composition Single woman

Single man
Couple without chil-
dren

Non single-parent Number of non single-parent households

Couple with children
Complex household

Household eco-
nomic

Household in poverty Household in poverty Number of households in income poverty

status Non-poor household Non-poor household Number of non-poor households

Household income Simulated attribute (eu-
ros)

Simulated attribute (eu-
ros)

Total household income (euros)

Type of dwelling House House Number of households living in a house
Apartment Apartment Number of households living in an apart-

ment

Date of construc-
tion

Before 1919 Before 1945 Number of dwellings built before 1945

of the dwelling Between 1919-1944
Between 1945-1970 Between 1945-1989 Number of dwellings built between 1945-

1989
Between 1971-1989
Between 1990-2005
Between 2006-2012 Since 1990 Number of dwellings built since 1990
Since 2013

Dwelling status Social dwelling Social dwelling Number of social dwellings
Non-social dwelling Non-social dwelling Number of non-social dwellings

Household Household to assign Household to assign Number of households

14



The next section provides a detailed description of our proposed allocation
method.

3 Mathematical formulation of the household allocation
problem

3.1 Decision variables and parameters

In order to model the synthetic population allocation, we first introduced,
using the attribute information from Table 1, the following sets, indices, decision
variables and parameters.

Sets and indices
Let J be the set of synthetic households: J = 1,2, ...,NJ;
Let I be the set of grids: I = 1,2, ...,NI;
Each household j ∈ J is to be assigned to exactly one grid i ∈ I.
Decision variables
We define NJ ×NI decision variables, whereby:

xi j =
{

1 if household j is allocated to grid i
0 otherwise

, i ∈ I, j ∈ J

Parameters
In order to be incorporated into the decision problem, attribute values shown

in Table 1 are defined as parameters. Synthetic population households common
attributes at IRIS level are transformed and encoded as binary parameters, each
parameter representing a modality (e.g. single-parent household), and take the
value 1 if household j exhibits the characteristic or 0 otherwise. The encoding of
number of occurrence of modalities at grid level as well as the income attribute
at both levels remain unchanged, values are simply assigned to corresponding
parameters.

Hereafter, grid parameters are indicated in capital letters and household pa-
rameters in lower case.

NHi : Number of households in grid i ;
TINCi : Total household income in grid i ;
i nc j : Income of household j .
The other problem parameters are listed in Table 2.
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Table 2: List of the other problem parameters

IRIS Grid
Description household parameters marginal parameters

Household size/composition
Households between 2 and 4 members s2 j TS2i
Households size > 4 s5 j TS5i
Single-parent households sp j TSPi

Ownership
Owner o j TOi
House h j THi

Dwelling type
Dwelling built before 1945 d45 j TD45i
Dwelling built since 1990 d90 j TD90i

Economic status
Social dwelling so j TSOi
Income poverty p j TPi

All household parameters in Table 2 are binary and take the value 1 if house-
hold j exhibits the characteristic or 0 otherwise. For example:

s2 j =
{

1 if household j size is between 2 and 4 members
0 otherwise

3.2 Objective function and constraints

As mentioned above, the parameter i nc j (income of household j ) was esti-
mated once the synthetic population had been generated. Therefore, the follow-
ing equality

∑J
j=1 i nc j xi j = TINCi is not necessarily respected. However, we are

seeking an assignment of household j to a grid i such that the sum of incomes
for the chosen assignments (i.e., xi , j = 1) lies as close as possible to the total
household income of the grid. This gap minimization can be modeled as an ob-
jective function. Moreover, the grid marginals of the other attributes (i.e. com-
mon attributes) can still be respected. For this purpose, a constraint modeling
approach is appropriate. Given these considerations, the synthetic population
allocation problem can be modeled as a single-objective optimization problem,
yielding the following formulation:

min
∑
i∈I

(∑
j∈J

i nc j xi j −TINCi

)2

(1)

subject to the following constraints:
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∑
i∈I

xi j = 1, j ∈ J (2)

∑
j∈J

xi j = NHi , i ∈ I (3)

∑
j∈J

xi j s2 j = TS2i , i ∈ I (4)

∑
j∈J

xi j s5 j = TS5i , i ∈ I (5)

∑
j∈J

xi j sp j = TSPi , i ∈ I (6)

∑
j∈J

xi j o j = T0i , i ∈ I (7)

∑
j∈J

xi j h j = THi , i ∈ I (8)

∑
j∈J

xi j d45 j = TD45i , i ∈ I (9)

∑
j∈J

xi j d90 j = TD90i , i ∈ I (10)

∑
j∈J

xi j so j = TSOi , i ∈ I (11)

∑
j∈J

xi j p j = TPi , i ∈ I (12)

xi j ∈ {0,1}, i ∈ I, j ∈ J (13)

Equation 1 constitutes the objective function, while the other equations pro-
vide the constraints which can be classified into two types:

• Validity constraints (Equations 2 and 13) that apply to for every household
j ∈ J. These constraints express the fact that each household is assigned to
exactly one grid.
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• Marginal-control constraints (Equations 3 to 12) that ensure that specific
marginals (associated with common attributes) of each grid are being re-
spected.

In the model formulation, the decision variables xi j are binary; moreover,
the objective function is quadratic and all constraints are linear. The model as-
sumes the form of an integer quadratic programming problem which is char-
acterized by a quadratic objective function to be minimized over a set of linear
constraints and a share of binary bounded variables.

3.3 Integer quadratic programming problem

An integer quadratic programming problem (Billionnet and Elloumi, 2007;
Del Pia et al., 2017) is a discrete optimization problem, a particular set of math-
ematical programming problems (Bierlaire, 2015). Discrete optimization prob-
lems are characterized by an objective function and a set of constraints where
some or all of the decision variables are discrete and take integer values. Such
problems arise in contexts where decisions are to be taken concerning entities
that are indivisible. A particular case of discrete optimization problems is when
variables are binary, taking only the values 0 or 1. A value 1 may refer to an action
to be taken while the value 0 corresponds to an action not taken.

A discrete optimization problem is an integer linear programming problem
if the objective function and the constraints are linear functions of the decision
variables, and if all of its variables are restricted to take integer values. integer
linear programming problems where all the variables are restricted to take the
values 0 or 1 are also called binary linear programming problems. Many classical
optimization problems can be formulated as integer linear programming prob-
lems including the generalized assignment problem (Öncan, 2007), the knap-
sack problem (Salkin and De Kluyver, 1975), the set covering problem (Balas
and Padberg, 1972) and the traveling salesman problem (Jünger et al., 1995). A
harder to solve discrete optimization problem than linear integer problems is
when the objective function and/or constraints are quadratic. A problem where
the objective function is quadratic but constraints are linear is termed an integer
quadratic programming problem. If the problem has any constraints containing
a quadratic term, regardless of the objective function, the problem is termed an
integer quadratically constrained programming problem.

Discrete optimization problems can be solved using exact methods or heuris-
tics. The exact methods guarantee that an optimal solution is found if the al-
gorithm terminates in a reasonable time. These methods include enumera-
tion techniques, including the branch-and-bound procedure (Lawler and Wood,
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1966) and cutting-plane techniques (Kelley, 1960). Due to the combinatorial na-
ture of discrete optimization problems, exact methods may fail to identify the
optimal solution in a reasonable amount of time. In this case, for practical pur-
poses, a heuristic algorithm is used to identify quickly a good feasible solution,
that is an approximation of the exact one. This heuristic can be problem-specific
in order to solve the latter in a numerically efficient and robust manner.

Mathematical modeling of the synthetic population allocation problem yields
an optimization problem with binary decision variables. The value of a given de-
cision variable indicates whether corresponding household is assigned to corre-
sponding grid or not. On this aspect, our problem is comparable to the well
known assignment problems (Burkard et al., 2012). These problems deal with
the allocation of a number of agents to a number of tasks on one to one basis.
The objective is to find the best assignment of agents to tasks, where the profit is
maximum. They are commonly formulated as integer programming problems
with binary decision variables.

Integer programming problems with a quadratic objective function have arisen
in numerous scientific fields. Some recent applications where the problem is
modeled this way include: topological state estimation in water distribution
systems (Díaz et al., 2018), embedded hybrid model predictive control (Bem-
porad and Naik, 2018), optimal freewheeling control of a heavy-duty vehicle
(Held et al., 2020), optimization of a district energy system (Blackburn et al.,
2019), generation units maintenance in combined heat and power integrated
systems (Sadeghian et al., 2020) and smart home energy management (Killian
et al., 2018).

4 Problem-solving

This section presents both the approach and results of solving this allocation
problem. For this purpose, a simulated dataset, representative of the French
data configuration has been used. This dataset allows for an enhanced evalua-
tion of computational performance and solution quality of the resolution algo-
rithms. Two solution approaches were tested. Despite application of an inte-
ger quadratic programming solver, this approach was not suitable for large-size
problems since the computational time varied exponentially with the number
of households. Consequently, a heuristic has been proposed (see second part of
this section).
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4.1 Construction of a simulated dataset

In order to test the computational performance and solution quality of res-
olution algorithms, we created datasets representative of available French data.
In the city of Nantes, the maximum number of households in an IRIS equals
roughly 4,200; therefore, our initial pool contained 6,000 synthetic households.
Each of these households possesses the attributes listed in Table 1. We then
drew a specific number of households from this pool in order to constitute a
simulated IRIS (while controlling their size) of Nantes. For the purposes of our
test, we also considered each simulated IRIS to be divided into six nested non-
overlapping grids, numbered from 1 to 6.

In order to control problem size as well as the expected results, we adopted
the following approach:

• Step 1: We first assigned each household of the pool’s 6,000 households to
a grid; this assignment was carried out so as to have heterogeneous grids
in terms of both size and composition. For example, some grids have a
high total household income, while others have a large number of social
dwellings. The six grids are thus representative of the heterogeneity of
Nantes area grids. In our simulated dataset, grids 1, 2, 3, 4, 5 and 6 contain
respectively 1,332, 540, 1,518, 1,044, 840 and 726 households.

• Step 2: Once all 6,000 households had been allocated to the grids is done,
we then randomly selected a number of households in each grid. For ex-
ample, for grid 1, we selected X1 households among the 1,332 (X1 ≤ 1,332),
X2 households among the 540 (X2 ≤ 540) for grid 2 and so on for all the
other grids. At the end of this process, we had a simulated IRIS of X house-
holds (with X = X1+X2+X3+X4+X5+X6), where each household had been
assigned to one of the six grids.

• Step 3: We computed the grid marginals (corresponding to the household
attributes) for the Xi households selected in Step 2 across the six grids.
The marginals of each grid were obtained by summing the values of the
attributes of its households. Hence, the marginals in grid 1 were obtained
by summing the values of the attributes of the X1 households, including
the income attribute. Table 3 summarizes the grid marginals of the largest
simulated IRIS, composed of all of 6,000 households in the pool ( i.e. X1 =
1,332, X2 = 540, ...,X6 = 726).

• Step 4: Once the marginals of the grids had been computed, the house-
hold affiliation with the grids could be neglected (in order to obtain the
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same configuration as the original data). The solver was subsequently
used to perform this allocation step.

Two key features of such a simulated dataset can be underscored: 1) the
problem size is controlled, therefore the computational performance and al-
gorithm resolution limits can be tested; and 2) the exact result of the objective
function minimization is known (i.e. equal to zero). This latter feature is due to
the fact that the income marginal was originally computed as the sum of individ-
ual synthetic household incomes. In actuality, this equality is not respected and
this minimization will not result in a zero solution because income is in fact an
estimated attribute. However, the advantage of relying on this simulated input
data configuration is to test result accuracy when the resolution algorithm is not
exact; this is particularly important since computationally-efficient algorithms
are not exact ones.

Using the simulated input dataset, we then proceeded to assign X house-
holds (X = X1 +X2 +X3 +X4 +X5 +X6), according to the computed grid parame-
ters. We were thus able to perfectly measure the accuracy of the results and test
the computational performance of the solver in order to determine the prob-
lem size, i.e. the ’number of households’, that can potentially be solved. Table 3
reports the initial grid parameters.

4.2 Integer quadratic programming solver

Matrix form of the integer quadratic programming problem
In order to use an integer quadratic programming solver efficiently, our inte-

ger quadratic programming problem, as formulated in Equations 1 to 13, must
be written in the following matrix form (Bonami et al., 2018):

min
1

2
xTQx + cTx (14)

Ax = b (15)

xi j ∈ {0,1} i ∈ I, j ∈ J (16)

• Equation 14, with c ∈ Rn and Q (n ×n real symmetric matrix), represents
the matrix form of the quadratic objective function in Equation 1;

• Equation 15, with matrix A ∈Rm×n and the right-hand side vector b ∈Rm ,
represents the set of linear constraints given in Equations 2 to 12;
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Table 3: Grid marginals of the largest simulated IRIS composed of all 6,000
households

Parameters Grids (i)

Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Grid 6

N 1 332 540 1 518 1 044 840 726

TINC 61 083 330 33 507 367 66 008 163 50 128 765 46 573 815 24 869 918

TINC_by_N a 45 858.35 62 050.68 43 483.64 48 016.06 55 445.02 34 256.085

TP 333 67 269 247 107 134

TS2 573 277 668 553 487 249

TS5 174 54 58 107 43 6

TO 53 341 474 40 461 143

TSP 275 33 189 226 79 58

TH 23 282 174 47 448 75

TD45 20 226 14 29 50 59

TD90 258 103 628 155 129 154

TSO 1233 28 769 986 241 332

a TINC/N

• Equation 16 specifies that decision variables are indeed binary.

After modeling our problem in this matrix form by specifying the four com-
ponents Q,c, A,b, the implementation proved to be relatively simple in a ded-
icated solver. In this paper, we used IBM ILOG CPLEX Optimization Studio
solver, a commercial software to model and solve optimization problems (La-
borie et al., 2018)6. CPLEX is a conventional and powerful tool for solving lin-
ear or integer optimization problems. The present allocation procedure was
run with R (version 4.0.3) and IBM ILOG CPLEX Optimization Studio version
20.1.0.0. We specifically chose the R package ’Rcplex’, which is an R interface
to CPLEX solvers for linear, quadratic and (linear and quadratic) integer pro-
grams7. This package requires IBM ILOG CPLEX libraries and headers. To test
the integer quadratic programming problem resolution, a simulated dataset was

6IBM ILOG CPLEX Optimization Studio is provided at no charge to students, teachers and re-
searchers.

7https://CRAN.R-project.org/package=Rcplex, consulted on January 24, 2022.
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used.

Performance of the IQP problem resolution
We started with a simulated IRIS containing a small number of households

and then gradually increased the size gradually. For each simulated IRIS with
a given number of households, we ran the solver 15 times. The resolution was
carried out on a Windows 10 Professional machine, Intel(R) Core (TM) i7-8665U
CPU @ 1.90 GHz, 2.11 GHz and 16 GB of RAM. The solver was able to compute
the optimal solution (minimization yields zero using simulated data) for the fol-
lowing simulated IRIS sizes:

• For a size of X = 30 households (X1 = 7,X2 = 4,X3 = 6,X4 = 3,X5 = 6,X6 = 4),
the solver was able to solve the integer quadratic programming problem
in less than a second;

• For X = 60 households (X1 = 17,X2 = 8,X3 = 14,X4 = 5,X5 = 12,X6 = 4), the
resolution time varied between 1.4 minutes and 2 hours;

• For X = 120 households (X1 = 32,X2 = 17,X3 = 21,X4 = 15,X5 = 25,X6 = 10),
the resolution time exceeded five hours.

A large number of households cannot be assigned within reasonable time
period with an integer quadratic programming solver. The heuristic yielding a
practical and faster solution is proposed below.

4.3 Heuristic for a large-scale problem

Relaxation of the integer quadratic programming problem and selection of
synthetic population from the computed probability

The two main limitations associated with the algorithm used for solving IQP
problem are

1. the complexity of finding optimal solution as integer-valued decision vari-
ables are required;

2. the large number of decision variables that leads to memory problem when
constructing the objective matrix Q in Equation 14.

We propose a heuristic that removes these limitations.

1. The decision variables become real numbers between 0 and 1. These vari-
ables, pi j , are interpreted as probabilities for household j to belong to Grid
i.
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2. We replace the households that have the same common attributes and
close incomes by an average household whose income is the average in-
come of the replaced households (the other common attributes remain
the same). A new attribute, N j , whose value is equal to the number of
replaced households is added. The set of average households is denoted
J’.

The new objective function is rewritten as follows:

min
∑
i∈I

(∑
j∈J′

i nc j pi j N j −TINCi

)2

(17)

subject to the following constraints:∑
i∈I

pi j = 1, j ∈ J′ (18)

∑
j∈J′

pi j N j = NHi , i ∈ I (19)

∑
j∈J′

pi j s2 j N j = TS2i , i ∈ I (20)

∑
j∈J′

pi j s5 j N j = TS5i , i ∈ I (21)

∑
j∈J′

pi j sp j N j = TSPi , i ∈ I (22)

∑
j∈J′

pi j o j N j = T0i , i ∈ I (23)

∑
j∈J′

pi j h j N j = THi , i ∈ I (24)

∑
j∈J′

xi j d45 j N j = TD45i , i ∈ I (25)

∑
j∈J′

xi j d90 j N j = TD90i , i ∈ I (26)
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∑
j∈J′

xi j so j N j = TSOi , i ∈ I (27)

∑
j∈J′

pi j p j N j = TPi , i ∈ I (28)

pi j ∈ [0,1], i ∈ I, j ∈ J′ (29)

In the same way as in the previous sections, these equations lead to the fol-
lowing compact equations:

min
1

2
pTQ′p + cT

A′p = b

pi j ∈ [0,1] i ∈ I, j ∈ J′ (30)∑
j∈J′

xi j = 1, i ∈ I (31)

The resulting problem then entails a quadratic programming (QP) problem
(Gill and Wong, 2015) and is easier to solve than an integer quadratic program-
ming problem.

Since we estimated probabilities, we then performed assignment in the grids
by drawing households according to their estimated probabilities. However,
since this approach is an heuristic and does not yield an exact solution, results
should be carefully examined. We thus proceeded with 1,000 different draws to
analyze the gap between the obtained grid parameter values when the house-
holds were drawn and actual values. However, there is only one synthetic pop-
ulation assigned to the grids. The following proposed algorithm serves to pick
out one distributed synthetic population from among the 1,000 generated.

1. The user defines a tolerance, noted tol , around the attribute of interest; in
the present case, for total income (TINC), we chose 5%. An initial selec-
tion consists of selecting the distributed synthetic population whose total
income for each grid lies in the interval [(1− tol )×TINC,(1+ tol )×TINC],
with TINC being the actual income of the grid. This step defines a first set
of synthetic populations.
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2. For each distributed synthetic population belonging to this set, a crite-
rion is calculated; this criterion measures the gap between all marginals
computed with the population (except for the income) and the actual grid
parameters. In our case study, we opted to calculate this gap by means of
an absolute value.

3. The selected synthetic population is the one able to minimize this crite-
rion.

The heuristic described in this section was also implemented with R pro-
gramming language. The QP problem is solved using CPLEX connected to R
with the ’Rcplex’ package8.

Performance of the heuristic algorithm
To assess the performance of the proposed method, we compared the aver-

age values of grid parameters for all 1,000 draws (Table 4) with the initial grid
parameters (Table 3). We also display in Table 4, the average values of grid pa-
rameters generated by the very popular Iterative Proportional Fitting (IPF) ap-
proach. Fore each Grid i, the IPF solution is computed by

1. setting an initial weight of one at each household of the initial sample;

2. letting IPF algorithm to modify this initial weight in order to fulfill the
marginals of Grid i excepted for the total income which is a continuous
variable which cannot be processed by the algorithm;

3. interpreting these updated weights as a probability and then following the
same procedure as for the heuristic, i.e. a sampling is carried out with
1,000 draws to pick up a final population.

Note that there is no assurance that a household is assigned to only one Grid.
Tables 3 and 4 are nearly identical, meaning no bias has entered into our

process. The heuristic algorithm seems to outperform the IPF algorithm when
regarding the average values of our attribute of interest, i.e. household income
(TINC_by_N). Concerning the other marginals, the heuristic and the IPF method
provide similar results. The IPF algorithm resolution time was 2 seconds for the
6,000 households of the largest simulated IRIS (Table 3). It is better than the
computing time of the heuristic (43 seconds) on this specific problem9. How-
ever, the heuristic is independent of the size of the population. A case study

8The whole workflow of the case study is described in Appendix B.
9For a small-scale synthetic population, N j = 1∀ j .
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Table 4: Average grid parameter values after 1,000 draws (Heuristic vs IPF)

Parameters Grids (i) Heuristic/IPF

Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Grid 6

N 1332/1327 540/537 1518/1525 1044/1044 840/838 726/729

TINC×103 61 095/59 642 33 482/33 405 66 019/66 048 50 110/49 203 46 586/47 993 24 876/25 877

TINC_by_N a 45 859/44 937 62 042/62 158 43 484/43 321 48 021/47 148 55 449/57 274 34 256/35 493

TP 333/330 67/66 269/270 247/247 107/109 134/135

TS2 573/561 277/283 668/679 553/543 487/485 249/256

TS5 174/167 54/54 58/61 107/105 43/49 6/6

TO 53/55 341/343 474/474 40/41 461/455 143/145

TSP 275/267 33/37 189/190 226/222 79/83 58/61

TH 23/27 282/275 174/177 47/56 448/440 75/74

TD45 20/24 226/214 14/15 29/37 50/50 59/57

TD90 258/255 103/107 628/621 155/154 129/135 154/154

TSO 1233/1225 28/29 769/766 986/984 241/247 332/337

a TINC/N

with more than 1,000,000 households has thus been simulated to demonstrate
the applicability of the method to a large scale synthetic population problem.
For this problem, the resolution by the heuristic is largely more rapid (2 seconds
to compare to 12 minutes) than the resolution by the IPF algorithm which de-
pends on the size of the population. Details of this case study and results are
given in the Appendix C.

Figure 4 displays the average values obtained after 1,000 draws for each pa-
rameter and each grid.

The dashed lines in Figure 4 represent the actual grid values for each param-
eter (reported in Table 3). The average values and actual values are nearly iden-
tical. For each grid and each parameter, the actual value always lies in the 95%
confidence interval. The length of the confidence intervals is also quite small,
implying that a large proportion of the sampled distributed synthetic popula-
tions exhibits values close to the actual values.

Our findings suggest that the relaxed optimization problem solver yields over-
all results consistent with all initial grid parameters.

Table 5 measures the absolute differences between the solution computed
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Figure 4: Error bars with confidence intervals showing the average grid parame-
ter values after 1,000 draws (Heuristic).

(a) Household size and dwelling type (b) Household composition

(c) Household economic status (d) Household ownership

by the heuristic using the minimum criteria and the true solution (initial grid
parameters) for the number of household and for each marginals. For each pa-
rameter, the second line displays explicitly the difference between the output of
the heuristic and the true value. Only very small differences were found. The
largest differences occur for: 25 households (TO, Grid 5), 19 households (TO,
grid 2), and 14 households (TO, grid 3). However, these differences must be put
into perspective because they relate to parameters with large numbers, i.e. re-
spectively 461, 341, and 1,518.

In order to evaluate the robustness and applicability of our method to real
case studies, we have carried additional tests. We relied on data provided for the
city of Nantes. We identified several cases, and performed synthetic population
agents allocation from CSA to several ESA by using the heuristic. Results show
that the heuristic is efficient in ensuring small differences between resulting ESA
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Table 5: Absolute and relative differences between the solution computed by the
heuristic with the minimum criteria and the initial grid parameters.

Parameters Grids (i) Computed / Actual marginals

Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Grid 6

N 1 335/1 332 550/540 1 504/1 518 1 047/1 044 840/840 724/726

3 (0.2%) 10 (1.8%) 14 (-0.9%) 3 (0.2%) 0 (0%) 2 (-0.2%)

TP 338/333 71/67 265/269 239/247 115/107 129/134

5 (1.5%) 4 (5.9%) 4 (-1.4%) 8 (-3.2%) 8 (7.4%) 5 (-3.7%)

TS2 571/573 277/277 668/668 556/553 490/487 245/249

2 (-0.3%) 0 (0%) 0 (0%) 3 (0.5%) 3 (0.6%) 4 (-1.6%)

TS5 188/174 54/54 55/58 99/107 44/43 2/6

14 (8%) 0 (0%) 3 (-5.1%) 8 (-7.4%) 1 (2.3%) 4 (-66.6%)

TO 56/53 360/341 476/474 35/40 436/461 149/143

3 (5.6%) 19 (5.5%) 2 (0.4%) 5 (-12.5%) 25 (-5.4%) 6 (4.1%)

TSP 272/275 35/33 188/189 219/226 86/79 60/58

3 (-1%) 2 (6%) 1 (-0.5%) 7 (-3%) 7 (8.8%) 2 (3.4%)

TH 26/23 286/282 183/174 33/47 437/448 84/75

3 (13%) 4 (1.4%) 9 (4.1%) 14 (-29.7%) 11 (-2.4%) 9 (12%)

TD45 16/20 230/226 8/14 35/29 43/50 66/59

4 (-20%) 4 (1.7%) 6 (-42.8%) 6 (20.6%) 7 (-14%) 7 (11.8%)

TD90 260/258 107/103 632/628 152/155 136/129 140/154

2 (0.7%) 4 (3.8%) 4 (0.6%) 3 (-1.9%) 7 (5.4%) 14 (-9%)

TSO 1228/1233 26/28 760/769 992/986 251/241 332/332

5 (-0.4%) 2 (-7.1%) 9 (-1.1%) 6 (0.6%) 10 (4.1%) 0 (0%)

marginals after allocation and original values of these marginals.

5 Conclusion

This paper has modelled the allocation of a synthetic population to a finer
spatial scale. This allocation process was performed originating from a con-
tainer statistical area (CSA), where adequate data for population generation is
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available, to several nested non-overlapping elementary statistical areas (ESA),
where only aggregate data is available. For this purpose, two types of attributes
were used: common attributes available at both levels and additional attributes
of interest only available at one level but able to be computed from external
data sources at the other level. This data configuration is commonly found in
datasets provided by national statistical institutes. The methodology developed
herein is thus general in scope and can be easily applied in many contexts.

In our specific application, the allocation challenge was modeled as a single-
objective, integer quadratic programming problem. The objective function was
a minimization of the gap in the attribute of interest between the observed value
obtained by allocating the population to ESA units and the actual marginal of
this attribute at each ESA. Constrains were applied to the other attributes, com-
mon to both synthetic population and ESA marginals. The attribute of inter-
est considered herein was income, and common attributes included household
size, household composition and type of dwelling.

A classical algorithm was first used to find an exact solution to the problem.
It was shown that the applicability of this algorithm is limited to small-size syn-
thetic populations. Next, a heuristic was proposed and implemented on a simu-
lated case study, i.e. allocating 6,000 households to 6 ESA units. By means of this
heuristic, an efficient resolution (i.e. quick resolution times) and near-optimal
results could be achieved.

Several improvements to the algorithm will be proposed in future studies.
The most straightforward extension of the proposed approach is to consider the
case where several attributes of interest can be computed and used for allocating
households, thus yielding a multi-objective optimization problem whose res-
olution requires further study. Another challenge to be addressed is the case
where one ESA unit straddles several CSA units, in which case such an ESA unit
would need to be split into several sub-units corresponding to the originating
CSA units. However, this process would still involve computing the marginals of
the newly defined sub-units.

Lastly, allocating households to a fine-grained spatial area is of utmost im-
portance in ABM. Any improvement to the spatial allocation process of a syn-
thetic population at a finer scale will greatly benefit transportation and urban
planning practitioners. Such advances are especially vital for the analysis and
modeling of issues like management of environmental and urban systems. Since
our methodology has been applied to a common data configuration, it is suit-
able for use in allocating synthetic populations within a wide array of case stud-
ies.
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Appendix A

Table A. Individual and Household-level control variables

Level Definition Categories

[number of categories]

Household Family composition [5] Single member; The nuclear family is a couple without chil-
dren; The nuclear family is a couple with children; The nu-
clear family is a single-parent family; Other composition

Profession of the reference
person [7]

Farmers, tradespeople; Executive; Intermediate occupations;
Clerical support workers; Lower-skilled technical occupa-
tions; Retiree; Unemployed

Household size [2] One person; Two persons or more

Number of cars [3] No car; One; Two or more

Individual Age [12] 0-2; 3-5; 6-10; 11-14; 15-17; 18-24; 25-29; 30-39; 40-54; 55-64;
65-79; 80/+

Gender [2] Female; Male

Relationship to the house-
hold reference person [2]

Household reference person; Other household member

Profession [7] Farmers, tradespeople; Executive; Intermediate occupations;
Clerical support workers; Lower-skilled technical occupa-
tions; Retiree; Unemployed

Work status [7] In fixed-term employment; Permanent employment; Self-
employed; Unpaid apprenticeships for those 15 or older; Un-
employed; Under 15 years old; Other non-active persons

Working time [3] Full-time worker; Part-time worker; Not applicable
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Appendix B

Figure B. Workflow of the case study
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Appendix C

Description
In order to demonstrate the independence of the heuristic to the number of

households, the size of the city of Nantes is artificially augmented from 157,000
to 1 million (1,103,529 exactly) households. These households have to be dis-
patched to 4 artificial ESA which are built by merging neighboring Iris (see Fig-
ure C).

Table C presents the comparison between the outputs of the heuristic the
ESA marginals for the total income, the income divided by the number of house-
holds and for each marginal. A second line displays the difference between the
outputs of the heuristic and the marginals in absolute and in percentage. As
each ESA represents a large part of the city, the social segregation is not large; the
income by household (TINC/N) varies from 40 161 to 50 561 e. The marginals
are well respected (the difference in percentage is below 1%).
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Figure C. 4 artificial ESA
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Results

Table C. Marginals from a large scale population (> 1,000,000 households) spa-
tialized by the heuristic vs ESA marginals

Parameters ESA (i) Heuristic / Actual marginals

ESA 1 ESA 2 ESA 3 ESA 4

TINC×106 e 229159/229186 105395/105590 38262/38198 120497/120339

272 (0%) 1954 (0%) 639 (0%) 1587 (0%)

TINC/Ne 45443/45443 50569/50657 41898/41921 40230/40161

0 (0%) 0 (0%) 0 (0%) 0 (0%)

N 504271/504336 208418/208439 91322/91119 299518/299635

65 (0%) 21 (0%) 203 (0%) 117 (0%)

TP 80264/80444 32337/32039 17073/17024 51402/51569

180 (0%) 298 (1%) 49 (0%) 167 (0%)

TS2 220502/220479 106976/107002 36253/36155 121481/121576

23 (0%) 26 (0%) 98 (0%) 95 (0%)

TS5 22984/22974 11067/10962 3666/3759 8672/8694

10 (0%) 105 (1%) 93 (-2%) 22 (0%)

TO 208238/207949 88122/88214 22694/22652 93589/93828

289 (0%) 92 (0%) 42 (0%) 239 (0%)

TSP 37973/37947 20721/20587 7927/7812 18863/19138

26 (0%) 134 (1%) 115 (1%) 275 (-1%)

TH 110974/110992 69677/69720 20996/20986 34666/34615

18 (0%) 43 (0%) 10 (0%) 51 (0%)

TD45 116225/116298 11221/11186 2233/2254 57081/57022

73 (0%) 35 (0%) 21 (-1%) 59 (0%)

TD90 126667/126693 81510/81641 33713/33579 96406/96383

26 (0%) 131 (0%) 134 (0%) 23 (0%)

TSO 77065/77070 62542/62461 36020/36064 46133/46165

5 (0%) 81 (0%) 44 (0%) 32 (0%)

Computing time
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The computing time is 2 seconds for the heuristic on a computer with the
following main features: Intel(R) Xeon(R) E-2236 CPU @ 3.40GHz, 32Go. By way
of comparison, on the same problem, the computing time for the IPF algorithm
is 12 minutes.
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