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Abstract. 

In waste water treatment, biological processes for denitrification and nitrification are 

performed using oxidation ditches. In these reactors, the mixing and the aeration functions are 

dissociated: a bubble cloud is generated from flexible membrane spargers and is subjected to 

a horizontal liquid flow. The objective of this paper is to study the effects of the liquid cross-

flow on the bubble formation at a single flexible orifice in water. The several forces acting on 

the forming bubble have been modelled in order to understand the dynamics of the bubble 

growth and detachment. The bubble detachment is controlled by the drag force due to the 

liquid motion and not by the buoyancy force. The experimental analysis of the bubble growth 

has shown that, under liquid cross-flow conditions, the bubbles move downstream and are 

flattened during their growth (position of the bubble centre of gravity, bubble inclination 

angle). The bubbles spread over the orifice surface, and the advancing and the receding 

bubble angles were measured. The detached bubbles have significantly smaller sizes and 

higher frequencies when compared to bubble formation under quiescent liquid conditions.  

 

1. INTRODUCTION 

For waste water treatment, biological processes for denitrification and nitrification are based 

on dissolved pollution consumption by micro-organisms. The oxygen necessary to the micro-

organism metabolism is distributed in the tank by aeration systems. Whilst in chemical 
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industries the aeration is mainly performed with rigid nozzles (perforated plates or porous 

disk diffusers), a gas sparger based on a flexible membrane was developed for waste water 

treatment. A very uniform size distribution of small bubbles is achieved with this rubber 

punctured sheet: the gas hold-up and mass transfer area are significantly increased [1]. 

Moreover, it is found to be self-cleaning and does not suffer the usual clogging problems 

during the anaerobic period. 

The aeration tanks used are mainly oxidation ditch type: their configuration is based on the 

dissociation between the mixing and the aeration functions, which enables the nitrogen 

removal to be increased. For this purpose, in addition to gas spargers, a horizontal liquid flow 

is generated inside the oxidation ditch by mixing systems (impellers localised at the surface or 

in the liquid medium). This horizontal liquid velocity modifies the global hydrodynamics of 

the ditch (elimination of spiral flows) and leads to an increase in the interfacial area and the 

mass transfer coefficient [2]. To understand these global results better, the present work 

intends to study the impact of the liquid cross-flow on the bubble generation at the gas sparger 

orifices. As the field offered by this topic is wide, our research is limited to the bubble 

formation at a single orifice submerged in water and under atmospheric conditions; only the 

dynamic bubbling regime is considered. 

In many industrial gas-liquid operations, the continuous phase is caused to flow normally 

across the path of the emerging gas at the orifices. Thus, the bubble formation phenomenon 

under such conditions has been the subject of many experimental and theoretical studies [3-4]. 

The presence of a liquid cross-flow offers two major advantages [5]: 

- Smaller bubbles are produced when compared to bubble formation under quiescent 

liquid conditions; 

- The detached bubbles tend to be swept away from the region of the orifice, thereby 

reducing the likelihood of coalescence. 
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These studies are always based on the bubble generation at a rigid orifice, and there is a lack 

of research related to a flexible orifice (membrane sparger). 

To fill this gap, the aim of this paper is to study the bubble formation at a flexible orifice 

under liquid cross-flow conditions. The several forces acting on the forming bubble will be 

modelled in order to understand the dynamics of the bubble growth and detachment under 

these operating conditions. Moreover, an experimental approach based on image analysis will 

be performed: it will allow the dynamics of the bubble formation and the detached bubbles to 

be characterised. 

 

2. THEORETICAL APPROACH 

Under quiescent liquid conditions, analytical models have been proposed to describe the 

bubble growth and detachment at a rigid orifice [3-4] and at a flexible orifice [6]; they lead to 

satisfactory and successful predictions, provided that the operating conditions agree with the 

model hypothesis. Under liquid cross-flow conditions, the dynamics of the bubble formation 

is more complex (velocity gradient, bubble inclination and distortion). Thus, the non-spherical 

models of bubble formation, which are the most currently used, become very difficult to 

adapt: doubtful assumptions have to be made and numerical instabilities are generated [5,7]. 

The aim of the present theoretical study is not to develop a complete model, but to understand 

the dynamics of the bubble growth and detachment at a flexible orifice under liquid cross-

flow conditions. For this purpose, the horizontal and vertical components of the several forces 

acting on the forming bubble have to be calculated: the associated expressions are reported in 

Table 1. 

The buoyancy and gas momentum forces have only vertical components, which are expressed 

in the same way as for quiescent liquid conditions [6,8]. The two components of the viscous 

drag force are deduced from [9]. Neglecting wall effects, the viscous drag coefficient CD is 
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deduced from the following equation [10]: 
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The velocity UL in Eqs. (3) and (7) is equal to the mean velocity of the liquid flow: no 

velocity gradient is assumed in the vicinity of the forming bubble. 

Table 1. Several forces acting on the bubble under liquid-cross flow conditions 
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The surface tension force is expressed as two components [11] and is a function of the liquid 

surface tension σL, the surface/bubble contact diameter dW and the bubble contact angles θA 

and θR. The use of dW instead of dOR is essential in order to take into account the bubble 

spread over the orifice surface [6]. 

The two components of the inertial force [9] include the added mass coefficient CI which is 

taken as 11/16 [12,13]. The choice of 11/16 is certainly not ideal for a non-spherical growing 

bubble in contact with a wall and subjected to a liquid cross-flow, but no precise information 

concerning this particular case is available in the literature, so it was taken by default. The lift 

and the Basset forces are neglected in the present study. 

 

3. MATERIAL AND METHODS 

3.1 EXPERIMENTAL SET-UP 

The 1 m3 oxidation ditch of Simon et al. [14] is used for the experimental set-up. Figure 1 

shows a schematic diagram of this pilot plant with its geometrical characteristics: it has an 

oblong geometry with outer and inner flow guides. The liquid phase circulation is performed 

with an axial impeller, type A310 marine propeller, 0.144 m in diameter, located at half liquid 

height. To minimise the liquid disturbances at the orifice, a high density polystyrene sheet is 

placed at the bottom of the ditch (2 m before the gas sparger) flush with the membrane 

sparger. The air flow rate is regulated by a pressure gauge and by a gas flow meter. The 

membrane sparger (60 mm diameter) is assembled on a circular clamping ring composed of 

two jaws; this fixing system coupled with the use of a dynamometric spanner (0 - 5 Nm) 

enables the same initial tension to be applied. The pressure drop created by the membrane is 

determined using an electronic manometer type Bioblock 915PM247. The bubbles are 

generated by a single puncture located at the membrane centre. The average gas flow rate QG 

is measured using a soap film meter, through a funnel put on the clamp. 
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Figure 1. Schematic diagram of the experimental set-up 

 

Water is used as the liquid phase, its physical properties are measured and are the following at 

the ambient temperature (around 20°C): ρL = 997 kg/m3, µL = 8.74×10-4 Pa.s, σL = 71.8 

mN/m. All the measurements are performed at decreasing values of pressure (hysteresis 

phenomenon) [6].  

Table 2. Operating conditions 

Flexible orifice HL (m) dOR (mm) QG (ml/s) UOR (m/s) UL (m/s) 

M1 0.36 0.28 - 0.42 0.007 - 0.8 0.12 - 5.80 0.20 - 0.53 

M2 0.36 0.25 - 0.26 0.08 - 0.3 1.62 - 5.65 0.20 - 0.53 

 

The operating conditions are reported in Table 2. Two rubber membranes are used as flexible 

orifices: an “housing” membrane called M1, and an industrial membrane called M2. They 

were characterised in terms of orifice diameter, wettability, elasticity and pressure drop. This 

characterisation showed that [6,15]: 

- the M1 membrane is more elastic than the M2 membrane, 

- for a given gas flow rate, the M1 orifice is larger than the M2 orifice and the M1 

membrane creates larger pressure drop than the M2 membrane. 
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M1 

 
∆P=30 mbars 

 
∆P=100 mbars 

 
∆P=202 mbars 

 
∆P=258 mbars 

 
∆P=315 mbars 

M2 

 
∆P=28 mbars 

 
∆P=60 mbars 

 
∆P=99 mbars 

 
∆P=145 mbars 

 
∆P=190 mbars 

Figure 2. Hole photographs (Calibration : glass particles 300 µm in diameter) 

It is important to bear in mind that when an increasing pressure is applied, owing to its elastic 

nature, the membrane bulges (shape of a spherical cap), the hole diameter expands and also 

varies in shape (Figure 2). Whatever the membranes, the hole appears as a slit: the 

eccentricity of the M1 and M2 holes varies between 9 and 4 for pressure drops below 200 

mbars [15]. 

 

3.2 METHODS 

Image acquisition and treatment systems 

During their formation, bubbles are photographed with a Leutron LV95 camera (360 

images/s). Images are visualised on the acquisition computer through the Leutron vision 

software. The Visilog 5.4 software performs the image treatment. The following parameters 

are determined: equivalent bubble diameter (dB), centre of gravity co-ordinates (x,y), bubble 

contact angles (θA, θR) and surface/bubble contact diameter (dW). The bubble frequency is 

deduced from photographic analysis.  

Liquid velocity measurements 

The liquid flow is measured using two methods: the micro-impeller technique and the 

ultrasound Doppler technique (Dop2000 probe) [15]. In both cases, the liquid flow around the 

generated bubbles is assumed to be uniform and thus a mean liquid velocity is considered. 
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The reality is somewhat more complex, as the liquid flow is affected by the ditch bottom and 

the membrane bulging; unfortunately, certain technical limitations prevent the liquid flow 

gradient in the vicinity of the forming bubbles being measured locally. The range of the mean 

liquid velocities studied is reported in Table 2. 

 

4. RESULTS AND DISCUSSION 

Only the results related to the M1 membrane will be detailed and introduced as follows: 

− Firstly, the variations in the different parameters during the bubble growth will be 

presented, allowing the dynamics of the bubble growth to be described; 

− Then, the detached bubbles will be characterised in terms of inclination angle, diameter 

and frequency; 

− Lastly, the results related to the forces acting on the bubbles will be presented. 

 

4.1 DYNAMICS OF THE BUBBLE GROWTH 

Visual observation 

Figure 3. Bubble formation at the flexible orifice under liquid cross-flow conditions 

(dOR=0.32 mm, UOR=0.50 m/s, UL=0.20 m/s, dB détachement=1.65 mm) 

t (ms) :             0                           5.6                        11.1                      16.7                       22.2 

t (ms) :             27.8                       33.3                       38.9                      44.4                       50 

t (ms) :             55.6                       58.3                       63.9                      69.4                       77.8 
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Thanks to image analysis, the bubble generation process can be split up into different stages 

and so described experimentally. Figure 3 shows typical photographs of bubble generation 

from the flexible orifice under liquid cross-flow conditions. The bubble generation is 

composed of three stages: bubble growth (0 < t < 58.3 ms), bubble detachment (t = 58.3 ms) 

and bubble ascension (t > 58.3 ms). 

 

Bubble centre of gravity and bubble radius during growth 

Figure 4 illustrates a typical variation in the bubble centre of gravity co-ordinates and in the 

bubble radius with the growth time. 

Unlike bubble formation under quiescent liquid conditions [6], the bubble centre of gravity 

abscissa x is not nil during the bubble growth, but increases linearly. Thus, the bubble growth 

is not symmetric about the vertical orifice axis; such a behaviour is characteristic of the 

horizontal bubble displacement under the influence of the liquid cross-flow. 

0.0

0.4

0.8

1.2

0 30 60t (ms)

R
B
, x

, y
 (m

m
)

RB x yRB

 

Figure 4. Bubble radius and bubble centre of gravity co-ordinates versus growth time 

(dOR=0.32 mm, UOR=0.50 m/s, UL=0.20 m/s, dB détachement=1.65 mm) 

Whatever the growth time, the bubble centre of gravity ordinate y is less than the bubble 

x

y

detachment
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radius RB. The bubble is not spherical but distorted, that is to say, flattened under the liquid 

velocity effect. 

The experiments have shown that an increasing liquid velocity tends to intensify the 

downstream bubble motion and the bubble flattening. 

 

Bubble inclination during growth 
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Figure 5. Bubble inclination angle versus growth time (UL=0.28 m/s, UOR=0.12 m/s) 

The downstream bubble motion and its flattening have been highlighted previously (Figure 

4). In order to characterise explicitly this phenomenon, some measurements of the bubble 

inclination angle θI were taken using image treatment. A typical variation in the bubble 

inclination angle with the growth time is plotted in Figure 5. 

At the beginning of the bubble formation, the bubble inclination angle is near to 90°: the 

bubble is not yet subjected to the liquid velocity. Afterwards, the bubble inclination angle 

decreases continuously until levelling off: a minimum angle value is reached, remaining 

constant until the bubble detaches. Whatever the orifice gas velocities and the liquid 

velocities, the same tendency was observed. 

 

θIU L

± 10 ° 
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Bubble volume and gas flow rate supplying the bubble during growth 
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Figure 6. Bubble volume versus growth time (UL=0.20 m/s) 

Figure 6 presents some typical curves relating the bubble volume to the growth time. The 

bubble volume varies linearly with the growth time: this result remains valid whatever the 

orifice gas velocities and the liquid velocities. An increasing orifice gas velocity tends to 

increase the bubble volume and to decrease the bubble formation time. 

The gas flow rate supplying the bubble q can be calculated by using the bubble volume 

values, as expressed: 
dt

dVq B=  (11) 

As the bubble volume varies linearly, the gas flow rate q remains constant during the bubble 

growth, and is equal to the mean gas flow rate QG, whatever the orifice gas velocities and the 

liquid velocities.  

Such behaviours of VB and q have already been observed under quiescent liquid conditions: 

they are specific to bubble formation at a flexible orifice [8]. 

 

Continuity of the bubble formation 

The visualisation of the bubble formation (Figure 3) under liquid cross-flow conditions shows 
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that at the moment when a bubble detaches, a new bubble is growing, pushing off the 

previous one; no time-out exists between two bubbles formed successively at the flexible 

orifice. Unlike the bubble formation at a rigid orifice [8], the process is continuous: the 

bubble formation time is equal to the bubble growth time. 

 

Bubble adhesion to the orifice surface 

UL θR

x

y

θA

dW  

Figure 7. Contact angles and surface/bubble contact diameter 

In order to shed light on the phenomenon of bubble adhesion to the orifice surface, the 

surface/bubble contact diameter dW and the bubble contact angles θA and θR were measured 

experimentally (Figure 7). Figure 8 presents typical variations in the ratio dW/dOR with the 

growth time for different orifice gas velocities and liquid velocities. The orifice diameter 

used, dOR, is an equivalent diameter, which corresponds to the diameter of the circular hole 

with the same area: they are measured by using a camera coupled to a microscope [6]. 

As shown in Figure 8, dW/dOR remains mainly above 1: the bubble also spreads over the 

orifice surface. This can be explained by the hydrophobic nature of the orifice surface: its 

critical wettability surface tension γC is equal to 23 mN/m [6]. Moreover, the variation in 

dW/dOR with growth time is composed of two stages: 

- the radial expansion stage, which is characterised by an increasing bubble spread, 

- the elongation stage, which is characterised by a decreasing bubble spread. 

The same tendency has already been observed under quiescent liquid flow [6,8]. 
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Figure 8. Ratio of the surface/bubble contact diameter to the orifice diameter versus time 
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Figure 9. Bubble contact angles versus growth time (UL=0.20 m/s; UOR=0.14 m/s) 

Figure 9 presents typical variations in the bubble contact angles θA and θR with the growth 

time. Whatever the orifice gas velocities and the liquid velocities, it can be observed that 

during the bubble growth: 

- the advancing bubble contact angle θA is larger than the receding bubble contact angle 

θR. The inequality between these two angles confirms that the bubble growth is not 

symmetric about the vertical orifice axis under such conditions; 

θA 

θR 
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- the advancing bubble contact angle θA decreases continuously as under quiescent liquid 

conditions [6,8]; 

- The receding bubble contact angle θR decreases linearly. 

 

4.2 ANALYSIS OF THE DETACHED BUBBLES 

The objectives of the present paragraph are to characterise the detached bubbles (inclination 

angle, diameter, frequency) as a function of the orifice gas velocities and the liquid velocities 

and to compare the results with the quiescent liquid conditions. It is essential to state that the 

orifice velocity UOR used in the figures is calculated as follows:  
4d

Q
U 2

OR

G
OR

π
=  (12) 

 

Inclination angle of the detached bubbles 

The previous paragraphs have shown that under liquid cross-flow conditions, the bubble 

moves downstream and is flattened during its growth. To make clear this phenomenon, the 

bubble inclination angle was measured during bubble growth (Figure 5): except for the first 

moments, it remains constant until the bubble detaches. In addition, the effects of the orifice 

gas velocity and of the liquid velocity on this inclination angle will be evaluated in this part. 

Figure 10 presents the variation in the bubble inclination angle with the orifice gas velocity 

for different liquid velocities. An increasing liquid velocity tends to decrease the bubble 

inclination angle. Also, the bubble inclination angle decreases continuously with increasing 

orifice gas velocity until levelling off; above 2 m/s, the bubble inclination angle no longer 

depends on the orifice gas velocity. The variation in the bubble inclination angle above UOR=2 

m/s with the liquid velocity is plotted in Figure 11. In this figure, the results related to the M2 

flexible orifice are also reported. 
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Figure 10. Bubble inclination angle versus orifice gas velocity for different liquid velocities  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Bubble inclination angle versus liquid velocity  
 

Figure 11 raises three comments: 

− No significant difference exists between the inclination angles of the two orifices. 

Thus, for UOR>2 m/s, the bubble inclination angle does not depend on the flexible 

orifice, but only on the liquid velocity. 

− The global hydrodynamics and the mass transfer in our pilot plant (1 m3 oxidation 

ditch) were studied by Simon (2000) [2]. In these studies, the average inclination 

angles of the bubble cloud generated from a multi-orifice membrane sparger were 

measured. Simon (2000) observed that these inclination angles of the bubble cloud 

don’t depend on the gas flow rate, but only on the liquid velocity; their values are 

reported in Figure 11. They agree perfectly with the bubble inclination angle formed at 
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 UB

θ I UL
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a single flexible orifice. Thus, whether the bubbles are generated from either a single 

flexible orifice or from a full membrane sparger, the bubble inclination angle remains 

roughly the same for a given mean liquid velocity. Due to the interactions between the 

bubble cloud and the liquid flow, the local hydrodynamic conditions above the sparger 

are different in both cases, but they have no significant consequences on the average 

bubble inclination angle. The bubble inclination angle is controlled only by the mean 

horizontal liquid velocity. 

− Lastly, the bubble inclination angle can be roughly calculated by taking into account 

the bubble velocity UB, its terminal rising velocity Ut and the liquid velocity UL 

(Figure 12). The following equations are written: 

2
L

2
tB )U()U(U +≈  (13) 

B

L
I U

U)cos( ≈θ  (14) 

The bubble rising terminal velocity Ut is around 0.25 m/s for bubble sizes between 1 and 2 

mm [16]. For each liquid velocity, the bubble velocity UB is deduced from Eq.(13) and the 

bubble inclination angle θI from Eq.(14). Due to the experimental errors on UL and Ut, the 

calculated inclination angles are evaluated at ± 20%. These values are reported in Figure 

11: a good agreement with the experimental bubble inclination angles is observed. 

 
 
 
 
 

Figure 12. Diagram allowing the bubble inclination angle to be calculated 

 

Detached bubble diameter 

Figure 13 presents the curves relating the detached bubble diameter to the orifice gas velocity 

under quiescent liquid and liquid cross-flow conditions. 
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Figure 13. Detached bubble diameter versus orifice gas velocity under quiescent liquid and 

liquid cross-flow conditions. 

Unlike the case of the rigid orifice [8], whatever the operating conditions, the bubble diameter 

increases logarithmically with the orifice gas velocity. Such a behaviour is specific to 

membrane spargers [6, 17]; this profile correlates to the orifice opening as increasing gas flow 

rate is applied. 

Smaller bubbles are produced under liquid cross-flow conditions. For UL=0.20, 0.28, 0.40 and 

0.53 m/s, the bubble diameters are reduced to 10-15%, 20-40 %, 30-50% and 50-150 % 

respectively when compared to bubble formation under quiescent liquid conditions. 

 

Bubble frequency 

Figure 14 shows the variation in the bubble formation time with the orifice gas velocity under 

quiescent liquid and liquid cross-flow conditions. 

Whatever the liquid velocity, the bubble formation time behaviour is the same as under 

quiescent liquid conditions. The bubble formation time decreases continuously with 

increasing orifice gas velocity until levelling off: above 2 m/s, TB remains roughly constant. 

An increasing liquid velocity tends to decrease noticeably the bubble formation time. Under 
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the influence of the liquid velocity, the bubble frequencies are multiplied by a factor varying 

between 1.4 and 4.7 when compared to bubble formation under quiescent liquid conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Bubble formation time versus orifice gas velocity under quiescent liquid and liquid 

cross-flow conditions. 

 

4.3 FORCES ACTING ON THE BUBBLE DURING ITS GROWTH 

The experimental data acquired are used to calculate the forces acting on the forming bubble 

(Table 1). Figure 15 (a) and (b) show typical variations in the horizontal and the vertical 

components of the forces with the growth time respectively. 
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Figure 15. Forces acting on the forming bubble versus growth time (UL=0.28 m/s, UOR=0.12 

m/s). (a) Horizontal components  (b) Vertical components. 

In the horizontal direction (x-axis), the drag force tends to detach the bubble whereas the 

surface tension force keeps the bubble attached to the orifice. The inertial force is not 

dominant. 

In the vertical direction (y-axis), the bubble growth is governed by the buoyancy and the 

surface tension forces. The drag, inertial and gas momentum forces are negligible. The same 

tendency was observed under quiescent liquid conditions [6]. It is important to note that the 

vertical component of the surface tension force is significantly overestimated, which implies a 

force imbalance. The large experimental errors on dW (± 20 %) and on θA and θR (± 20°) can 

explain this result: the insufficient image definition in the vicinity of the orifice/bubble 

contact area prevents these parameters being determined precisely. 

Comparison of the horizontal and vertical force components show that the horizontal 

component of the drag force is larger than the buoyancy force. Thus, it is the drag force due to 

the liquid cross-flow which is responsible for the bubble detachment and not the buoyancy 

force. This result is valid insofar as in our operating conditions, the liquid velocities are large 
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and the gas flow rates are small. The importance of the drag force is responsible for the 

previous results related to the dependence of the bubble inclination angle to the mean liquid 

velocity. 

 

5. CONCLUSIONS 

The objective of this research was to study the impact of the liquid cross-flow on the bubble 

generation at the gas sparger (rubber membrane) in oxidation ditches (waste water treatment). 

Because of the complexity of the phenomenon, only the bubble formation at a single orifice 

and the dynamic bubbling regime were studied. While most studies relate to bubbles 

generated at a rigid orifice (perforated plates or porous disk diffusers), the originality of this 

work was to consider a flexible orifice. 

Under liquid cross-flow conditions, the dynamics of the bubble growth has been analysed and 

has shown that: 

− during its growth, the bubble moves downstream and is flattened due to effect of the 

liquid motion; 

− except for the first moments, the bubble inclination angle remains roughly constant 

during the bubble growth; it depends only on the liquid velocity and can be calculated; 

− as under quiescent liquid conditions [6], the bubble volume varies linearly with the 

growth time; 

− the bubble formation at a flexible orifice remains a continuous phenomenon; 

− as under quiescent liquid conditions [6], the bubble spreads over the orifice surface 

during its growth; the bubble advancing contact angle is larger than the receding one; 

− the force which is responsible for the bubble detachment is the drag force due to the 

liquid cross-flow and not the buoyancy force.  

This study has clearly proved that the liquid velocity has a strong impact on the bubble 
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generation at the gas sparger orifices: the bubbles formed have significantly smaller sizes and 

higher formation frequencies, when compared to bubble formation under quiescent liquid 

conditions. Such results will have important consequences on gas hold-up, interfacial area and 

mass transfer in the reactor. In addition to the impact on the bubble generation, it is evident 

that the liquid velocity will modify the bubble coalescence and the likelihood of breakage 

during their ascent in the reactor, and the liquid mass transfer coefficient kL. These points 

have to be analysed in detail in the future. 

 

NOTATION 

Roman symbols 

dOR Equivalent orifice diameter [m] 
dW Surface/bubble contact diameter [m] 
g Acceleration due to gravity [m/s2] 
HL Liquid height in the oxidation ditch [m] 
∆P Pressure drop created by the membrane sparger [Pa] 
QG Mean gas flow rate (measured with the soap film meter) [m3/s] 
UL Mean liquid velocity [m/s] 
TB Bubble formation time [s] 
VB Bubble volume [m3] 
x Bubble centre of gravity abscissa [m] 
y Bubble centre of gravity ordinate [m] 
 
Greek symbols 

Cγ  Wetting critical surface tension of the orifice surface [N/m] 
θ A Advancing contact angle between the bubble and the orifice surface [°] 
θ I Bubble inclination angle [°] 
θ R Receding contact angle between the bubble and the orifice surface [°] 

Lµ  Liquid viscosity [Pa.s] 

Gρ  Gas density [kg/m3] 

Lρ  Liquid density [kg/m3] 

Lσ  Liquid surface tension [N/m] 
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