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The class imbalance issue involves many real world domains such as fraud detection, medical diagnosis, intrusion detection, etc. Most classification algorithms tend to perform poorly when the training dataset is class-imbalanced. This problem gets more challenging in the presence of other factors such class-overlapping and noise. Among many methods, undersampling is a simple and efficient approach which rebalances the imbalanced dataset by removing majority samples. In this paper, we propose a novel method named Evidential Undersampling (EVUS), which is a re-sampling approach based on the theory of evidence. To avoid removing meaningful samples, each majority object is assigned a soft evidential label to gain more information about its location, then majority samples which are considered ambiguous or noisy by our framework, are eliminated from the training set. The conducted results with CART and SVM show that our proposal outperformed other well-known undersampling methods according to the AUC metric.

Introduction

In real-world classification tasks, instances are not always evenly distributed among classes. This form of distributions is typically referred to as imbalanced or skewed. In a binary class-imbalanced dataset, the class with the higher size is called the majority class, whereas the rare class is regarded as the minority class. Imbalanced classification has been reported in many domains such as medical diagnosis [START_REF] Bridge | Introducing the gev activation function for highly unbalanced data to develop covid-19 diagnostic models[END_REF], fraudulent credit card detection [START_REF] Makki | An experimental study with imbalanced classification approaches for credit card fraud detection[END_REF], drug discovery [START_REF] Korkmaz | Deep learning-based imbalanced data classification for drug discovery[END_REF], etc. From an application perspective, misclassifying a minority example is more critical than misclassifying a majority example [START_REF] Chawla | Editorial : Special Issue on Learning from Imbalanced Data Sets[END_REF]. For instance, failing to recognize a rare disease can be crucial. Class-imbalanced distributions can be due to a lot of factors, including the domain's background (e.g. rare fraudulent transactions) or data collection (e.g. storage). This significantly deteriorates the performance of most classifier algorithms, since most of them assume an even distribution of the classes [START_REF] He | Learning from imbalanced data[END_REF].

Over the years, many methods have been proposed to deal with imbalanced classification [START_REF] Haixiang | Learning from class-imbalanced data: Review of methods and applications[END_REF]. Generally, existent solutions can be categorized into two main groups: data-level [START_REF] Feng | Imbalanced classification: an objective-oriented review[END_REF], algorithm-level [START_REF] He | Learning from imbalanced data[END_REF], as well as combinations of the two strategies. Algorithm-level methods involve modifying the classifier algorithm to adapt it for imbalanced datasets. It can also contain cost-sensitive solutions [START_REF] Alaba | Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend[END_REF] and ensemble methods [START_REF] Ribeiro | Ensemble learning by means of a multiobjective optimization design approach for dealing with imbalanced data sets[END_REF]. Data-level approaches typically change the class distribution of the training dataset by adding synthetic samples (oversampling), removing majority examples (undersampling), or both. One advantage is that data-level methods are independent of the used classifier. In other words, they are more flexible and do not require deep understanding of learning algorithms. Oversampling techniques are becoming more expensive in terms of complexity and memory as the amount of data is substantially increasing. In many classification cases, it is more effective to perform undersampling.

The most naive form of undersampling is random undersampling (RUS) [START_REF] Haixiang | Learning from class-imbalanced data: Review of methods and applications[END_REF], which randomly eliminates majority class objects to improve the class distribution of the training set. Nonetheless, it is possible that this method may remove potentially meaningful information from the dataset. To avoid this, many methods have been proposed to intelligently select unessential majority points for elimination. Some works used traditional filtering techniques, such as Edited Nearest Neighbors (ENN) [START_REF] Wilson | Asymptotic properties of nearest neighbor rules using edited data[END_REF], Nearest Neighbor Rule (CNN) [START_REF] Angiulli | Fast condensed nearest neighbor rule[END_REF], and Tomek Links (TL) [START_REF] Ivan | Two modification of cnn[END_REF]. These strategies discard majority points based on their nearest neighbors. Undersampling based on evolutionary algorithms were also proposed. In [START_REF] García | Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy[END_REF], authors implemented evolutionary prototype selection to create an improved subset of the majority class. ACOSampling [START_REF] Yu | Acosampling: An ant colony optimizationbased undersampling method for classifying imbalanced dna microarray data[END_REF] is another evolutionary-based undersampling technique, which makes use of ant colony optimization (ACO) [START_REF] Colorni | Distributed optimization by ant colonies[END_REF]. More recently, clustering-based methods were developed [START_REF] Lemaître | Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning[END_REF][START_REF] Lin | Clustering-based undersampling in class-imbalanced data[END_REF][START_REF] Ofek | Fast-CBUS: A fast clusteringbased undersampling method for addressing the class imbalance problem[END_REF][START_REF] Tsai | Under-sampling class imbalanced datasets by combining clustering analysis and instance selection[END_REF]. In [START_REF] Lin | Clustering-based undersampling in class-imbalanced data[END_REF], the authors used the k-means algorithm [START_REF] Kanungo | An efficient k-means clustering algorithm: Analysis and implementation[END_REF] to reduce the majority class size by only selecting the cluster centers for training. CBIS [START_REF] Tsai | Under-sampling class imbalanced datasets by combining clustering analysis and instance selection[END_REF] is another clustering-based undersampling approach which uses clustering analysis to divide the majority class into sub-classes, and remove the unessential points in each sub-class.

Although studies have confirmed that a fair distribution of the classes typically performs better [START_REF] Chawla | C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure[END_REF][START_REF] He | Learning from imbalanced data[END_REF], it is important to note that class imbalance is usually not a concern when the classes are easily separable. However, real-world datasets tend to have class-overlapping regions. This issue can elevate the complexity of the classification, especially when allied with class imbalance. In addition, noise can also amplify the class imbalance problem [START_REF] Sáez | SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a resampling method with filtering[END_REF], since rare instances and noise have similar characteristics. Thus, they may be treated as the same pattern.

In this paper, we propose a new undersampling method based on the evidence theory [START_REF] Shafer | A mathematical theory of evidence[END_REF], which was recently used for oversampling [START_REF] Grina | A preprocessing approach for class-imbalanced data using smote and belief function theory[END_REF]. The intuition of our proposed method is to improve the visibility of the minority class region in binary imbalanced datasets. To do that, we assign a soft evidential label to each majority class sample, in order to acquire information about their locations. Then, we eliminate the majority objects that are considered ambiguous (in overlapping regions), label noise (in the minority area), or outliers (far from both classes). This will not only improve the imbalance ratio, but also reduce the amount of overlap and noise in the training dataset. The considered evidential structure based on the theory of evidence, is suitable for our objective, since it provides membership values towards classes, in addition to a belief mass assigned to metaclasses (both classes). This flexibility helps us develop precise rules to detect the unwanted samples for undersampling, with the possibility of tuning each rule individually.

The remainder of this paper will be divided as follows. The theory of evidence will be recalled in Section 2. Section 3 presents our idea, detailing each step. Experimental evaluation and discussion are conducted in Section 4. Our paper ends with a conclusion and an outlook on future work in Section 5.

Evidence theory

The theory of evidence [START_REF] Dempster | A generalization of bayesian inference[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Smets | The Transferable Belief Model for Quantified Belief Representation[END_REF], also referred to as belief function theory or Dempster-Shafer theory (DST), is a flexible and well-founded framework for representing and combining uncertain information. The frame of discernment denotes a finite set of M exclusive possible events, e.g., possible class labels for an object in a classification problem. The frame of discernment is denoted as follows:

Ω = {w 1 , w 2 , ..., w M } (1) 
A basic belief assignment (bba) represents the amount of belief given by a source of evidence, committed to 2 Ω , that is, all subsets of the frame including the whole frame itself. Formally, a bba is represented by a mapping function m : 2 Ω → [0, 1] such that:

A∈2 Ω m(A) = 1 (2)
Each mass m(A) measures the amount of belief allocated to a proposition A of Ω. A bba is called unnormalized if the sum of its masses is not equal to 1, and should be normalized under a closed-world assumption [START_REF] Smets | The nature of the unnormalized beliefs encountered in the transferable belief model[END_REF]. A focal element is a subset A ⊆ Ω where m(A) = 0.

The Plausibility function is another representation of knowledge defined by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] as follows:

P l(A) = B∩A =∅ m(B), ∀ A ∈ 2 Ω (3) 
P l(A) represents the total possible support for A and its subsets.

Evidential undersampling approach (EVUS)

EVUS starts by assigning soft labels to each majority point using the credal classification rule (CCR) introduced in [START_REF] Liu | Credal classification rule for uncertain data based on belief functions[END_REF]. Generally, it firstly consists of determining the centers of each class and meta-class (the overlapping region), then creating a bba based on the distance between the majority sample and each class center. The computed bba is later used for undersampling. The remaining of this section will provide detailed descriptions of each step.

Determination of centers

The simple approach to calculating class centers is to compute the mean value of the training data in the corresponding class. For the overlapping region, which is represented by a meta-class, the center is defined by the barycenter of the involved class centers as follows:

C U = 1 |U | ωi∈U C i ( 4 
)
where U represents the meta-class, ω i are the classes involved in U , and C i is the corresponding center.

Computing the soft labels

The evidential membership of each majority example is represented by a bba over the frame of discernment Ω = {ω 0 , ω 1 , ω 2 } where ω 1 and ω 2 represent respectively the majority and the minority class. The element ω 0 is included in the frame explicitly to represent the outlier, i.e., the unknown class. Let x s be a sample belonging to the majority class. Each class center represents a piece of evidence to the evidential membership of the majority sample. The mass values regarding the class memberships of x s should depend on d(x s , C), i.e., the distance between x s and the corresponding center of the class. The greater the distance, the lower the mass value. Hence, if x s is more close to a specific class center, it means that x s belongs very likely to the respective class. Thus, the initial (unnormalized) masses should be represented by decreasing distance based functions. To deal with anisotropic datasets, the Mahalanobis distance [START_REF] Mahalanobis | On the generalized distance in statistics[END_REF] is used in this work as recommended by [START_REF] Liu | Credal classification rule for uncertain data based on belief functions[END_REF].

The unnormalized masses are calculated as follows:

m({ω i }) = e -d(xs,Ci) , i ∈ [1, 2] (5) 
m(U ) = e -γ λ d(xs,C U ) , U = {ω 1 , ω 2 } (6) m({ω 0 }) = e t (7) 
where λ = β 2 α . A recommended value for α = 1 can be used to obtain good results on average, and β is a parameter such that 0 < β < 1. It is used to tune the number of objects committed to the overlapping region (see Section 3.3). The value of γ is equal to the ratio between the maximum distance of x s to the centers in U and the minimum distance. It is used to measure the degree of distinguishability among the majority and minority classes. The smaller γ indicates a poor distinguishability degree between the classes of U for x s . The outlier class ω 0 is taken into account in order to deal with objects far from both classes, and its mass value is calculated according to an outlier threshold t.

Finally, the previous unnormalized masses are normalized as follows:

m(A) = m(A) B⊆Ω m(B)
, ∀A ⊆ Ω (8)

Selecting majority samples for elimination

Once basic belief assignments are created, the soft memberships are used to reject samples that are unwanted from the majority class. Rejection strategies in evidence theory are common in many applications [START_REF] Kessentini | A Dempster-Shafer theory based combination of handwriting recognition systems with multiple rejection strategies[END_REF][START_REF] Tong | ConvNet and Dempster-Shafer theory for object recognition[END_REF]. The amount of information provided by evidential functions helps us determine whether a sample should be rejected or valid for classification. As a result of bba creation, each majority object will have masses in 4 focal elements namely: m({ω 1 }) for the majority class, m({ω 2 }) for the minority class, m(U ) for the overlapping region U , and m({ω 0 }) for the outlier class.

Overlapping rejection. Ambiguous samples are usually located in regions where there is strong overlap between classes as seen in Figure 1a. Consequently, this type of objects will have a high mass value in m(U ) in our framework. Thus, majority samples whose bba has the maximum mass committed to m(U ) are considered as part of an overlapping region, and are automatically discarded. Additionally, to avoid excessive elimination and allow tuning, it is possible to tune the parameter β. The bigger value of β will result in smaller number of objects committed to the overlapping region as seen in Figure 2.

As for majority objects not in overlapping areas (i.e. the highest mass is not committed to m(U )), the object is necessarily committed to one of the singletons in Ω ({ω 1 }, {ω 2 }, or {ω 0 }). To make a decision of acceptance or rejection, the plausibility function defined in eq. ( 3) is used. Each majority object x s is assigned to the class with the maximum plausibility P l max = max ω∈Ω P l({ω}).

Label noise

In EVUS, majority objects should normally have the maximum plausibility committed towards m({ω 1 }) which represents the membership value towards the majority class. Accordingly, objects with P l max committed to m({ω 2 }) signify that they are located in the minority region, as illustrated in Figure 1c. In other words, this situation could be characterized by label noise, which is another data difficulty factor that amplifies the class imbalance issue [START_REF] Koziarski | Combined Cleaning and Resampling Algorithm for Multi-Class Imbalanced Data with Label Noise[END_REF]. In our undersampling framework, these types of majority objects are eliminated from the dataset. Outlier rejection. The final possibility occurs when P l max is committed to ω 0 . This situation describes indecisive samples that are far from both classes and could be considered outliers as shown in Figure 1b. In our framework, majority objects with the maximum plausibility committed towards ω 0 are eliminated from the training dataset. The parameter t in eq [START_REF] Colorni | Distributed optimization by ant colonies[END_REF] can be used for tuning the outlier rejection, although t = 2 is recommended for good results on average. The bigger t results in smaller number of outliers, and it is recommended to take t ∈ [START_REF] Alcala-Fdez | Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework[END_REF][START_REF] Chawla | C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure[END_REF].

Experimental study

In this section, we describe our experimental setup and present the observed results.

Setup

Datasets. Binary imbalanced datasets were selected from the KEEL repository [START_REF] Alcala-Fdez | Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework[END_REF] to conduct the experimental study. Specifically, we have chosen a total of 20 datasets which vary in imbalanced ratios (1.87 to 129.44), number of instances (173 to 4174), number of features (6 to 41). The characteristics are further detailed in Table 1. The imbalance ratios (IR) are calculated as #majority #minority . These variations allowed for comparisons in a range of different scenarios. In the case of kr-vs-k-zero vs eight and kddcup-rootkit-imap vs back datasets, categorical features were encoded as integers before applying undersampling. There was no further preprocessing done.

Baseline classifiers. CART decision tree and Support Vector Machine (SVM) were chosen as baseline classifiers to conduct the comparisons. These learning methods are considered as one of the most used classifiers in class-imbalanced problems [START_REF] Haixiang | Learning from class-imbalanced data: Review of methods and applications[END_REF]. For all experiments, the implementations provided in the scikitlearn machine learning python library [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] were used, with the default parameters unchanged (RBF kernel was used for SVM).

Compared methods. EVUS was compared against 5 other undersampling methods, in addition to baseline (BL). The approaches used are: random undersampling (RUS), Cluster Centroid undersampling (CC) [START_REF] Yen | Cluster-based under-sampling approaches for imbalanced data distributions[END_REF], Condensed Nearest Neighbour editing (CNN) [START_REF] Hart | The condensed nearest neighbor rule[END_REF], One-Sided Selection (OSS) [START_REF] Kubat | Addressing the curse of imbalanced training sets: One-sided selection[END_REF], and Near Miss undersampling (NM) [START_REF] Mani | knn approach to unbalanced data distributions: a case study involving information extraction[END_REF]. The implementations provided by the python toolbox imbalanced-learn [START_REF] Lemaître | Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning[END_REF] were used for the compared methods.

Metric and evaluation strategy. The Area Under the ROC-Curve (AUC) was used as an evaluation measure. This metric provides a score to determine how well a classifier compensates its true positive and false positive rates. It has been shown to be a reliable assessment criterion for imbalanced classification problems [START_REF] Xue | Why does rebalancing class-unbalanced data improve auc for linear discriminant analysis[END_REF]. The AUC scores were averaged through a 10-fold stratified cross validation to eliminate inconsistencies. It is worth mentioning that undersampling was performed only on the training set at each fold. Finally, statistical comparisons were carried out using the Wilcoxon's signed rank tests [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF] to further evaluate the significance of the results.

Parameters

The following parameters were considered for EVUS: α was set to 1 as recommended in [START_REF] Liu | Credal classification rule for uncertain data based on belief functions[END_REF], the outlier tuning parameter t was fixed to 2 to obtain averagely good results, and we tested three different values for β in {0.3, 0.5, 0.7} and selected the most performing value each time, since the amount of overlapping differs in each dataset. For the other reference methods, the recommended parameter in the respective papers were used. 

Results and discussion

Table 2 presents the AUC scores obtained by CART and SVM on each imbalanced dataset after performing undersampling. The best scores are marked in bold. We can initially observe that undersampling improved the classification performance on all cases. Our proposed method achieves the best AUC scores in 13 out of 20 datasets for CART, and 11 out of 20 in the case of SVM. In 7 out of 20 datasets, EVUS performed better compared to the other methods for both classifiers. This can imply that the choice of the classifier did not affect much the end results. Furthermore, EVUS performed relatively better in cases when there are many borderline points in the dataset, i.e., when the overlapping between the classes is strong. By contrast, one can say that EVUS is not much of use in the cases of small number of borderline majority points.

Table 2: AUC results for KEEL datasets using CART and SVM.

  (a) Ambiguous samples in an overlapping area. (b) An outlier far from both classes.(c) A sample that could be characterized as label noise.

Fig. 1 :

 1 Fig. 1: Illustrations describing the different data difficulty factors that could worsen class imbalance. Green and red colors respectively represent the majority class and the minority one.

Fig. 2 :

 2 Fig. 2: Undersampling made by EVUS on a synthetic imbalanced dataset with overlapping. Different tunings of the overlapping parameter β were tested.

Table 1 :

 1 Description of the imbalanced datasets selected from the KEEL repository.

	Datasets	Imbalance ratios (IR) Features	Samples
	wisconsin	1.860	9	683
	glass0	2.060	9	214
	vehicle3	2.990	18	846
	ecoli1	3.360	7	336
	yeast3	8.100	8	1484
	ecoli-0-6-7 vs 3-5	9.090	7	222
	yeast-0-3-5-9 vs 7-8	9.120	8	506
	ecoli-0-2-6-7 vs 3-5	9.180	7	224
	ecoli-0-1-4-7 vs 2-3-5-6	10.590	7	336
	glass-0-1-4-6 vs 2	11.060	9	205
	glass4	15.460	9	214
	yeast-2 vs 8	23.100	8	482
	winequality-red-4	29.170	11	1599
	winequality-red-8 vs 6	35.440	11	656
	kr-vs-k-zero vs eight	53.070	6	1460
	winequality-white-3-9 vs 5	58.280	11	1482
	poker-8-9 vs 6	58.400	10	1485
	poker-8 vs 6	85.880	10	1477
	kddcup-rootkit-imap vs back	100.140	41	2225
	abalone19	129.440	8	4174

To assess the significance of the comparisons, Table 3 presents the statistical analysis made by Wilcoxon's signed ranks test. R+ represents the sum of ranks in favor of EVUS, R-, the sum of ranks in favor of the other compared methods, and p-values are calculated for each comparison. As shown in Table 3, all p-values are lower than 0.10. Thus, one can say that EVUS outperformed the compared techniques at a significance level of α = 0.10.

Conclusions

Throughout this paper, we have proposed a new method called Evidential Undersampling (EVUS), based on the evidence theory. Majority samples are selected for elimination based on soft evidential labels, which provide us with more information about the point's location. This resulted in AUC improvements over well-known undersampling methods. The main motivation behind our proposed algorithm was to improve the visibility of the minority class regions, to avoid the misclassification of minority objects.

For future work, we intend to explore heuristic methods to further optimize the parameters β and t. This will provide a more adaptive behavior of the parameters based on the amount of overlap and noise present in the majority class.