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Abstract. The class imbalance issue involves many real world domains
such as fraud detection, medical diagnosis, intrusion detection, etc.
Most classification algorithms tend to perform poorly when the training
dataset is class-imbalanced. This problem gets more challenging in the
presence of other factors such class-overlapping and noise. Among many
methods, undersampling is a simple and efficient approach which re-
balances the imbalanced dataset by removing majority samples. In this
paper, we propose a novel method named Evidential Undersampling
(EVUS), which is a re-sampling approach based on the theory of
evidence. To avoid removing meaningful samples, each majority object
is assigned a soft evidential label to gain more information about its
location, then majority samples which are considered ambiguous or noisy
by our framework, are eliminated from the training set. The conducted
results with CART and SVM show that our proposal outperformed other
well-known undersampling methods according to the AUC metric.
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1 Introduction

In real-world classification tasks, instances are not always evenly distributed
among classes. This form of distributions is typically referred to as imbalanced
or skewed. In a binary class-imbalanced dataset, the class with the higher size is
called the majority class, whereas the rare class is regarded as the minority class.
Imbalanced classification has been reported in many domains such as medical
diagnosis [4], fraudulent credit card detection [25], drug discovery [18], etc. From
an application perspective, misclassifying a minority example is more critical
than misclassifying a majority example [6]. For instance, failing to recognize a
rare disease can be crucial. Class-imbalanced distributions can be due to a lot
of factors, including the domain’s background (e.g. rare fraudulent transactions)
or data collection (e.g. storage). This significantly deteriorates the performance
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of most classifier algorithms, since most of them assume an even distribution of
the classes [14].

Over the years, many methods have been proposed to deal with imbalanced
classification [12]. Generally, existent solutions can be categorized into two main
groups: data-level [9], algorithm-level [14], as well as combinations of the two
strategies. Algorithm-level methods involve modifying the classifier algorithm to
adapt it for imbalanced datasets. It can also contain cost-sensitive solutions [1]
and ensemble methods [29]. Data-level approaches typically change the class
distribution of the training dataset by adding synthetic samples (oversampling),
removing majority examples (undersampling), or both. One advantage is that
data-level methods are independent of the used classifier. In other words,
they are more flexible and do not require deep understanding of learning
algorithms. Oversampling techniques are becoming more expensive in terms of
complexity and memory as the amount of data is substantially increasing. In
many classification cases, it is more effective to perform undersampling.

The most naive form of undersampling is random undersampling (RUS)
[12], which randomly eliminates majority class objects to improve the class
distribution of the training set. Nonetheless, it is possible that this method
may remove potentially meaningful information from the dataset. To avoid this,
many methods have been proposed to intelligently select unessential majority
points for elimination. Some works used traditional filtering techniques, such
as Edited Nearest Neighbors (ENN) [37], Nearest Neighbor Rule (CNN) [3],
and Tomek Links (TL) [15]. These strategies discard majority points based on
their nearest neighbors. Undersampling based on evolutionary algorithms were
also proposed. In [10], authors implemented evolutionary prototype selection to
create an improved subset of the majority class. ACOSampling [40] is another
evolutionary-based undersampling technique, which makes use of ant colony
optimization (ACO) [7]. More recently, clustering-based methods were developed
[21,22,27,35]. In [22], the authors used the k-means algorithm [16] to reduce the
majority class size by only selecting the cluster centers for training. CBIS [35] is
another clustering-based undersampling approach which uses clustering analysis
to divide the majority class into sub-classes, and remove the unessential points
in each sub-class.

Although studies have confirmed that a fair distribution of the classes typically
performs better [5,14], it is important to note that class imbalance is usually not
a concern when the classes are easily separable. However, real-world datasets
tend to have class-overlapping regions. This issue can elevate the complexity of
the classification, especially when allied with class imbalance. In addition, noise
can also amplify the class imbalance problem [30], since rare instances and noise
have similar characteristics. Thus, they may be treated as the same pattern.

In this paper, we propose a new undersampling method based on the evidence
theory [31], which was recently used for oversampling [11]. The intuition of our
proposed method is to improve the visibility of the minority class region in binary
imbalanced datasets. To do that, we assign a soft evidential label to each majority
class sample, in order to acquire information about their locations. Then, we
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eliminate the majority objects that are considered ambiguous (in overlapping
regions), label noise (in the minority area), or outliers (far from both classes).
This will not only improve the imbalance ratio, but also reduce the amount of
overlap and noise in the training dataset. The considered evidential structure
based on the theory of evidence, is suitable for our objective, since it provides
membership values towards classes, in addition to a belief mass assigned to meta-
classes (both classes). This flexibility helps us develop precise rules to detect the
unwanted samples for undersampling, with the possibility of tuning each rule
individually.

The remainder of this paper will be divided as follows. The theory of evidence
will be recalled in Section 2. Section 3 presents our idea, detailing each step.
Experimental evaluation and discussion are conducted in Section 4. Our paper
ends with a conclusion and an outlook on future work in Section 5.

2 Evidence theory

The theory of evidence [8, 31, 33], also referred to as belief function theory or
Dempster-Shafer theory (DST), is a flexible and well-founded framework for
representing and combining uncertain information. The frame of discernment
denotes a finite set of M exclusive possible events, e.g., possible class labels for
an object in a classification problem. The frame of discernment is denoted as
follows:

Ω = {w1, w2, ..., wM} (1)

A basic belief assignment (bba) represents the amount of belief given by a
source of evidence, committed to 2Ω , that is, all subsets of the frame including
the whole frame itself. Formally, a bba is represented by a mapping function
m : 2Ω → [0, 1] such that: ∑

A∈2Ω
m(A) = 1 (2)

Each mass m(A) measures the amount of belief allocated to a proposition A
of Ω. A bba is called unnormalized if the sum of its masses is not equal to 1, and
should be normalized under a closed-world assumption [32]. A focal element is
a subset A ⊆ Ω where m(A) 6= 0.

The Plausibility function is another representation of knowledge defined by
Shafer [31] as follows:

Pl(A) =
∑

B∩A6=∅

m(B), ∀ A ∈ 2Ω (3)

Pl(A) represents the total possible support for A and its subsets.

3 Evidential undersampling approach (EVUS)

EVUS starts by assigning soft labels to each majority point using the credal
classification rule (CCR) introduced in [23]. Generally, it firstly consists of
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determining the centers of each class and meta-class (the overlapping region),
then creating a bba based on the distance between the majority sample and each
class center. The computed bba is later used for undersampling.

The remaining of this section will provide detailed descriptions of each step.

3.1 Determination of centers

The simple approach to calculating class centers is to compute the mean value of
the training data in the corresponding class. For the overlapping region, which
is represented by a meta-class, the center is defined by the barycenter of the
involved class centers as follows:

CU =
1

|U |
∑
ωi∈U

Ci (4)

where U represents the meta-class, ωi are the classes involved in U , and Ci is
the corresponding center.

3.2 Computing the soft labels

The evidential membership of each majority example is represented by a bba
over the frame of discernment Ω = {ω0, ω1, ω2} where ω1 and ω2 represent
respectively the majority and the minority class. The element ω0 is included in
the frame explicitly to represent the outlier, i.e., the unknown class.

Let xs be a sample belonging to the majority class. Each class center represents
a piece of evidence to the evidential membership of the majority sample. The
mass values regarding the class memberships of xs should depend on d(xs, C),
i.e., the distance between xs and the corresponding center of the class. The
greater the distance, the lower the mass value. Hence, if xs is more close to a
specific class center, it means that xs belongs very likely to the respective class.
Thus, the initial (unnormalized) masses should be represented by decreasing
distance based functions. To deal with anisotropic datasets, the Mahalanobis
distance [24] is used in this work as recommended by [23].

The unnormalized masses are calculated as follows:

m̂({ωi}) = e−d(xs,Ci), i ∈ [1, 2] (5)

m̂(U) = e−γ λ d(xs,CU ), U = {ω1, ω2} (6)

m̂({ω0}) = et (7)

where λ = β 2α. A recommended value for α = 1 can be used to obtain good
results on average, and β is a parameter such that 0 < β < 1. It is used to
tune the number of objects committed to the overlapping region (see Section
3.3). The value of γ is equal to the ratio between the maximum distance of xs
to the centers in U and the minimum distance. It is used to measure the degree
of distinguishability among the majority and minority classes. The smaller γ



Evidential undersampling for imbalanced datasets 5

indicates a poor distinguishability degree between the classes of U for xs. The
outlier class ω0 is taken into account in order to deal with objects far from both
classes, and its mass value is calculated according to an outlier threshold t.

Finally, the previous unnormalized masses are normalized as follows:

m(A) =
m̂(A)∑

B⊆Ω m̂(B)
, ∀A ⊆ Ω (8)

3.3 Selecting majority samples for elimination

Once basic belief assignments are created, the soft memberships are used to
reject samples that are unwanted from the majority class. Rejection strategies
in evidence theory are common in many applications [17, 34]. The amount
of information provided by evidential functions helps us determine whether a
sample should be rejected or valid for classification.

As a result of bba creation, each majority object will have masses in 4 focal
elements namely: m({ω1}) for the majority class, m({ω2}) for the minority class,
m(U) for the overlapping region U , and m({ω0}) for the outlier class.

Overlapping rejection. Ambiguous samples are usually located in regions
where there is strong overlap between classes as seen in Figure 1a. Consequently,
this type of objects will have a high mass value in m(U) in our framework. Thus,
majority samples whose bba has the maximum mass committed to m(U) are
considered as part of an overlapping region, and are automatically discarded.
Additionally, to avoid excessive elimination and allow tuning, it is possible to

(a) Ambiguous samples in
an overlapping area.

(b) An outlier far from both
classes.

(c) A sample that could be
characterized as label noise.

Fig. 1: Illustrations describing the different data difficulty factors that could
worsen class imbalance. Green and red colors respectively represent the majority
class and the minority one.

tune the parameter β. The bigger value of β will result in smaller number of
objects committed to the overlapping region as seen in Figure 2.
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As for majority objects not in overlapping areas (i.e. the highest mass is not
committed to m(U)), the object is necessarily committed to one of the singletons
in Ω ({ω1}, {ω2}, or {ω0}). To make a decision of acceptance or rejection, the
plausibility function defined in eq. (3) is used. Each majority object xs is assigned
to the class with the maximum plausibility Plmax = maxω∈ΩPl({ω}).

Label noise In EVUS, majority objects should normally have the maximum
plausibility committed towards m({ω1}) which represents the membership value
towards the majority class. Accordingly, objects with Plmax committed to
m({ω2}) signify that they are located in the minority region, as illustrated
in Figure 1c. In other words, this situation could be characterized by label
noise, which is another data difficulty factor that amplifies the class imbalance
issue [19]. In our undersampling framework, these types of majority objects are
eliminated from the dataset.
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(d) β = 0.3

Fig. 2: Undersampling made by EVUS on a synthetic imbalanced dataset with
overlapping. Different tunings of the overlapping parameter β were tested.
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Outlier rejection. The final possibility occurs when Plmax is committed to
ω0. This situation describes indecisive samples that are far from both classes and
could be considered outliers as shown in Figure 1b. In our framework, majority
objects with the maximum plausibility committed towards ω0 are eliminated
from the training dataset. The parameter t in eq (7) can be used for tuning the
outlier rejection, although t = 2 is recommended for good results on average.
The bigger t results in smaller number of outliers, and it is recommended to take
t ∈ [2, 5].

4 Experimental study

In this section, we describe our experimental setup and present the observed
results.

4.1 Setup

Datasets. Binary imbalanced datasets were selected from the KEEL repository
[2] to conduct the experimental study. Specifically, we have chosen a total of 20
datasets which vary in imbalanced ratios (1.87 to 129.44), number of instances
(173 to 4174), number of features (6 to 41). The characteristics are further
detailed in Table 1. The imbalance ratios (IR) are calculated as #majority

#minority . These
variations allowed for comparisons in a range of different scenarios. In the case
of kr-vs-k-zero vs eight and kddcup-rootkit-imap vs back datasets, categorical
features were encoded as integers before applying undersampling. There was no
further preprocessing done.

Baseline classifiers. CART decision tree and Support Vector Machine (SVM)
were chosen as baseline classifiers to conduct the comparisons. These learning
methods are considered as one of the most used classifiers in class-imbalanced
problems [12]. For all experiments, the implementations provided in the scikit-
learn machine learning python library [28] were used, with the default parameters
unchanged (RBF kernel was used for SVM).

Compared methods. EVUS was compared against 5 other undersampling
methods, in addition to baseline (BL). The approaches used are: random
undersampling (RUS), Cluster Centroid undersampling (CC) [39], Condensed
Nearest Neighbour editing (CNN) [13], One- Sided Selection (OSS) [20], and Near
Miss undersampling (NM) [26]. The implementations provided by the python
toolbox imbalanced-learn [21] were used for the compared methods.

Metric and evaluation strategy. The Area Under the ROC-Curve (AUC)
was used as an evaluation measure. This metric provides a score to determine how
well a classifier compensates its true positive and false positive rates. It has been
shown to be a reliable assessment criterion for imbalanced classification problems
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[38]. The AUC scores were averaged through a 10-fold stratified cross validation
to eliminate inconsistencies. It is worth mentioning that undersampling was
performed only on the training set at each fold. Finally, statistical comparisons
were carried out using the Wilcoxon’s signed rank tests [36] to further evaluate
the significance of the results.

Parameters The following parameters were considered for EVUS: α was set
to 1 as recommended in [23], the outlier tuning parameter t was fixed to 2
to obtain averagely good results, and we tested three different values for β
in {0.3, 0.5, 0.7} and selected the most performing value each time, since the
amount of overlapping differs in each dataset. For the other reference methods,
the recommended parameter in the respective papers were used.

Table 1: Description of the imbalanced datasets selected from the KEEL
repository.

Datasets Imbalance ratios (IR) Features Samples

wisconsin 1.860 9 683
glass0 2.060 9 214
vehicle3 2.990 18 846
ecoli1 3.360 7 336
yeast3 8.100 8 1484
ecoli-0-6-7 vs 3-5 9.090 7 222
yeast-0-3-5-9 vs 7-8 9.120 8 506
ecoli-0-2-6-7 vs 3-5 9.180 7 224
ecoli-0-1-4-7 vs 2-3-5-6 10.590 7 336
glass-0-1-4-6 vs 2 11.060 9 205
glass4 15.460 9 214
yeast-2 vs 8 23.100 8 482
winequality-red-4 29.170 11 1599
winequality-red-8 vs 6 35.440 11 656
kr-vs-k-zero vs eight 53.070 6 1460
winequality-white-3-9 vs 5 58.280 11 1482
poker-8-9 vs 6 58.400 10 1485
poker-8 vs 6 85.880 10 1477
kddcup-rootkit-imap vs back 100.140 41 2225
abalone19 129.440 8 4174

4.2 Results and discussion

Table 2 presents the AUC scores obtained by CART and SVM on each
imbalanced dataset after performing undersampling. The best scores are marked
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in bold. We can initially observe that undersampling improved the classification
performance on all cases. Our proposed method achieves the best AUC scores
in 13 out of 20 datasets for CART, and 11 out of 20 in the case of SVM. In 7
out of 20 datasets, EVUS performed better compared to the other methods for
both classifiers. This can imply that the choice of the classifier did not affect
much the end results. Furthermore, EVUS performed relatively better in cases
when there are many borderline points in the dataset, i.e., when the overlapping
between the classes is strong. By contrast, one can say that EVUS is not much
of use in the cases of small number of borderline majority points.

Table 2: AUC results for KEEL datasets using CART and SVM.
CART SVM

Datasets BL RUS CC CNN OSS NM EVUS BL RUS CC CNN OSS NM EVUS

wisconsin 0.935 0.945 0.939 0.910 0.914 0.936 0.964 0.971 0.972 0.971 0.968 0.971 0.967 0.977
glass0 0.753 0.758 0.747 0.762 0.767 0.673 0.770 0.500 0.670 0.656 0.500 0.500 0.485 0.667
vehicle3 0.708 0.720 0.709 0.675 0.672 0.649 0.789 0.500 0.606 0.662 0.648 0.517 0.639 0.619
ecoli1 0.826 0.842 0.848 0.852 0.876 0.804 0.886 0.861 0.902 0.889 0.904 0.875 0.838 0.904
yeast3 0.808 0.897 0.869 0.824 0.811 0.768 0.882 0.841 0.854 0.923 0.890 0.865 0.846 0.891
ecoli-0-6-7 vs 3-5 0.829 0.776 0.821 0.841 0.799 0.758 0.852 0.839 0.804 0.837 0.868 0.845 0.726 0.886
yeast-0-3-5-9 vs 7-8 0.659 0.614 0.544 0.616 0.665 0.546 0.663 0.597 0.728 0.676 0.597 0.607 0.538 0.645
ecoli-0-2-6-7 vs 3-5 0.822 0.790 0.797 0.825 0.809 0.748 0.829 0.839 0.827 0.862 0.896 0.842 0.670 0.867
ecoli-0-1-4-7 vs 2-3-5-6 0.777 0.756 0.814 0.822 0.819 0.735 0.852 0.840 0.869 0.902 0.850 0.815 0.674 0.906
glass-0-1-4-6 vs 2 0.571 0.680 0.685 0.590 0.560 0.601 0.596 0.500 0.630 0.585 0.500 0.500 0.473 0.600
glass4 0.838 0.850 0.716 0.743 0.698 0.875 0.898 0.500 0.788 0.843 0.500 0.500 0.573 0.895
yeast-2 vs 8 0.714 0.678 0.553 0.683 0.762 0.718 0.764 0.774 0.772 0.772 0.774 0.774 0.816 0.782
winequality-red-4 0.540 0.595 0.568 0.593 0.579 0.456 0.588 0.500 0.524 0.546 0.500 0.500 0.421 0.556
winequality-red-8 vs 6 0.612 0.695 0.713 0.759 0.637 0.454 0.784 0.500 0.662 0.546 0.500 0.500 0.356 0.566
kr-vs-k-zero vs eight 0.822 0.962 0.778 1.000 1.000 0.960 1.000 0.791 0.884 0.959 0.807 0.791 0.796 0.931
winequality-white-3-9 vs 5 0.630 0.644 0.558 0.595 0.612 0.542 0.648 0.500 0.636 0.550 0.500 0.500 0.526 0.585
poker-8-9 vs 6 0.527 0.543 0.630 0.563 0.543 0.661 0.573 0.500 0.525 0.497 0.500 0.500 0.531 0.629
poker-8 vs 6 0.549 0.511 0.635 0.496 0.547 0.541 0.548 0.500 0.522 0.515 0.500 0.500 0.536 0.525
kddcup-rootkit-imap vs back 0.992 0.997 0.561 1.000 0.911 0.560 1.000 0.997 1.000 0.998 0.550 0.973 0.999 1.000
abalone19 0.529 0.673 0.690 0.553 0.528 0.522 0.629 0.500 0.623 0.626 0.500 0.500 0.591 0.665

To assess the significance of the comparisons, Table 3 presents the statistical
analysis made by Wilcoxon’s signed ranks test. R+ represents the sum of ranks
in favor of EVUS, R−, the sum of ranks in favor of the other compared methods,
and p-values are calculated for each comparison. As shown in Table 3, all p-values
are lower than 0.10.

Table 3: Wilcoxon’s signed ranks test results comparing the AUC scores for both
CART and SVM.

CART SVM

Comparisons R+ R− p-value R+ R− p-value

EVUS vs RUS 173.5 36.5 0.009436 133.5 76.5 0.063069
EVUS vs CC 164.0 46.0 0.013321 154.0 56.0 0.03479
EVUS vs CNN 169.0 41.0 0.00015 177.0 33.0 0.000518
EVUS vs OSS 187.5 22.5 0.000107 210.0 0.0 <0.000001
EVUS vs NM 200.0 10.0 0.000041 198.0 12.0 0.000067
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Thus, one can say that EVUS outperformed the compared techniques at a
significance level of α = 0.10.

5 Conclusions

Throughout this paper, we have proposed a new method called Evidential
Undersampling (EVUS), based on the evidence theory. Majority samples are
selected for elimination based on soft evidential labels, which provide us with
more information about the point’s location. This resulted in AUC improvements
over well-known undersampling methods. The main motivation behind our
proposed algorithm was to improve the visibility of the minority class regions,
to avoid the misclassification of minority objects.

For future work, we intend to explore heuristic methods to further optimize the
parameters β and t. This will provide a more adaptive behavior of the parameters
based on the amount of overlap and noise present in the majority class.
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