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Abstract

Purpose. Segmenting organs in cone-beam CT (CBCT) images would allow to adapt the

radiotherapy based on the organ deformations that may occur between treatment fractions. How-

ever, this is a difficult task because of the relative lack of contrast in CBCT images, leading to high

inter-observer variability. Deformable image registration (DIR) and deep-learning based automatic

segmentation approaches have shown interesting results for this task in the past years. However,

they are either sensitive to large organ deformations, or require to train a convolutional neural

network (CNN) from a database of delineated CBCT images, which is difficult to do without im-

provement of image quality. In this work, we propose an alternative approach: to train a CNN

(using a deep learning-based segmentation tool called nnU-Net) from a database of artificial CBCT

images simulated from planning CT, for which it is easier to obtain the organ contours.

Methods. Pseudo-CBCT (pCBCT) images were simulated from readily available segmented

planning CT images, using the GATE Monte Carlo simulation. CT reference delineations were

copied onto the pCBCT, resulting in a database of segmented images used to train the neural

network. The studied segmentation contours were: bladder, rectum, and prostate contours. We

trained multiple nnU-Net models using different training: 1) segmented real CBCT, 2) pCBCT, 3)

segmented real CT and tested on pseudo-CT (pCT) generated from CBCT with cycleGAN, and

4) a combination of 2) and 3). The evaluation was performed on different datasets of segmented

CBCT or pCT by comparing predicted segmentations with reference ones thanks to Dice similarity

score and Hausdorff distance. A qualitative evaluation was also performed to compare DIR-based

and nnU-Net-based segmentations.

Results. Training with pCBCT was found to lead to comparable results to using real CBCT

images. When evaluated on CBCT obtained from the same hospital as the CT images used in

the simulation of the pCBCT, the model trained with pCBCT scored mean DSCs of 0.92 ± 0.05,

0.87 ± 0.02, and 0.85 ± 0.04 and mean Hausdorff distance 4.67 ± 3.01, 3.91 ± 0.98, and 5.00 ± 1.32

for the bladder, rectum, and prostate contours respectively, while the model trained with real

CBCT scored mean DSCs of 0.91± 0.06, 0.83± 0.07, and 0.81± 0.05 and mean Hausdorff distance

5.62±3.24, 6.43±5.11, and 6.19±1.14 for the bladder, rectum, and prostate contours respectively.

It was also found to outperform models using pCT or a combination of both, except for the

prostate contour when tested on a dataset from a different hospital. Moreover, the resulting

segmentations demonstrated a clinical acceptability, where 78% of bladder segmentations, 98% of
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rectum segmentations, and 93% of prostate segmentations required minor or no corrections, and

for 76% of the patients, all structures of the patient required minor or no corrections.

Conclusion. We proposed to use simulated CBCT images to train a nnU-Net segmentation

model, avoiding the need to gather complex and time-consuming reference delineations on CBCT

images.

Keywords: deep learning, segmentation, CBCT, Monte Carlo simulation, prostate, cancer

iii



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

I. INTRODUCTION

In adaptive radiotherapy of pelvic treatments, the delineation of organs at risk (OAR)

from cone-beam computed tomography (CBCT) images is an important step to ensure

proper OAR sparing, because anatomical deformations may occur between the treatment

fractions and may not be accounted for in the treatment plan, leading to uncertainties in the5

dose distribution1. However, this is a difficult and time consuming task that is generally not

routinely done in clinical practice because of the relative lack of contrast in CBCT images,

leading to high inter-observer variability2.

One common strategy proposed for CBCT segmentation is to perform deformable image

registration (DIR) between the treatment planning CT and the CBCT images in order to10

deform contours delineated on CT images to CBCT images3. Another method is to use

multi-atlas based segmentation approaches for propagating manual delineations to CBCT

images4. However, DIR is sensitive to large organ deformations (e.g. bladder), which may

lead to unacceptable segmentation accuracy5,6. Another limitation is the amplification of

segmentation errors through contour deformation.15

Recently, deep learning (DL) based automatic segmentation approaches have shown im-

pressive results compared to conventional methods7, especially for bladder, prostate and

rectum segmentation in CT images8. However, such methods may be harder to apply to

CBCT images due to the lower quality of these images compared to CT, with poor soft tissue

contrast and high noise levels. Moreover, those supervised methods require the training of20

a convolutional neural network (CNN) from a database of segmented CBCT images, which

can be difficult to obtain and may contain relatively large contours uncertainties9 compared

to contours made on CT2.

There have been multiple attempts to enhance the quality of CBCT images. One ap-

proach is to perform a scatter correction of the CBCT projections, e.g. using scatter kernel25

algorithms10, a CT image of the same patient11 or an anti-scatter grid12. Another approach

is to train a generative deep learning network to synthesize CT images13–16. The training

database is then made of delineated planning CT images, which can be obtained from ex-

isting clinical databases. The CBCT image is first transformed into a pseudo-CT (pCT,

for example with cycleGAN) before being processed by the CNN for segmentation. Using30

synthesized images from GAN is still in its infancy and the limitations of it are still unclear.

1
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FIG. 1: Different trained neural network models for auto CBCT image segmentation, using

1) segmented CBCT images, 2) pCBCT images simulated from CT, 3) CT images and

pCT generated from CBCT, and 4) a combination of the previous two.

In the continuity of those ideas, we propose to explore an original auto segmentation ap-

proach. Instead of training a CNN from segmented planning CT images and using pseudo-

CT generated from CBCT, we propose to train the CNN from pseudo-CBCT images sim-

ulated from planning CT using physically realistic Monte Carlo simulations. We compare35

CNN trained 1) from segmented CBCT images, 2) from pCBCT images, 3) from CT images

+ using pCT, and 4) a combination of 2) and 3), as summarized in figure 1. Note that

the neural network used in this work is a deep learning-based segmentation tool called no-

new U-Net (nnU-Net), however, we refer here to CNN in general because alternative neural

networks could be used.40

2
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II. MATERIALS AND METHODS

A. Database of CT and CBCT images

The first database DBCT contains data from 90 prostate cancer patients, collected from

the radiotherapy department of the Léon Bérard cancer center (CLB, Lyon, France). A total

of 90 CT was available, acquired between December 2011 and November 2019. All data were45

anonymized and respected GDPR and local regulations for patient privacy. For each patient,

the database includes: 1) the planning CT image, 2) the contours of pelvic organs, manually

delineated by experts on the planning CT during the treatment planning, 3) several CBCT

images, 4) geometrical information for each CBCT acquisition, such as the gantry angles

and detector offsets at each projection. The CBCT images in DBCT have not been used in50

this study, only the planning CT of each patient and the geometrical information for the

simulation of CBCT images from the planning CT (see section II C). The size of the CT

images varies from patient to patient, but it is usually 512 x 512 pixels per slice, with a

pixel size of about 1 mm in axial slices, and 3 mm in the axial direction. CT images have

been acquired with a Philips Gemini Big Bore CT system or with a Siemens Confidence 2055

scanner using 120 kVp and a tube current of 146 mA. CT contours have been delineated once

by different physicians and medical physicists in charge of the patient treatments. Several

contours of volumes of interest (VOI) were available: bladder, prostate, rectum, femoral

heads, and seminal vesicles. Note that rectums were generally only delineated in the region

of irradiation and not entirely (usually 2 cm below and above the prostate). All contours60

have been converted to 3D binary mask images. CBCT images have a size of 410×410×264

voxels and spacing 1 × 1 × 1 mm. They were acquired with an Elekta Synergy XVI device

and a bow-tie filter, a voltage of 120 kV, a tube current of 40 mA, and an exposure time of

40 ms/projection, which are the presets suggested by the vendor for imaging the pelvis.

Two other databases DBCBCT, CLB and DBCBCT, CEM were built with CBCT images from65

patients different from those in DBCT, where several VOI have been delineated on the CBCT

images by experts. The contours for the images in DBCBCT, CEM were manually delineated

by multiple physicians, while those for DBCBCT, CLB were first obtained using a DIR auto-

segmentation tool (ADMIRE v3.26, Elekta AB, Stockholm, Sweden), and then reviewed

and corrected by a physician. 41 images (of size 410 × 410 × 264 voxels and 1 × 1 × 1 mm70
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spacing), acquired between November 2020 and June 2021, were collected from 9 patients at

the Léon Bérard cancer center (CLB, Lyon, France), and 130 images of size 410× 410× 168

voxels and 1 × 1 × 1 mm spacing, acquired between February 2010 and April 2014, were

collected from 6 patients at the Eugène Marquis cancer center (CEM, Rennes, France). All

images were acquired with an Elekta Synergy XVI. Bladder, prostate, and rectum contours75

were considered here. Those two databases were used to evaluate the accuracy of the auto-

segmentation on images collected from different sources. Indeed, because CT contours in

DBCT and reference CBCT contours in DBCBCT, CLB have been performed in the same

hospital (CLB), the second reference CBCT dataset DBCBCT, CEM with contours performed

by different physicians may contain differences due to the inter-observer variability, and80

hence provides an additional challenge to the proposed model. Obtaining a dataset of

segmented CBCT is a tedious task because CBCT images generally have a low contrast,

especially in the pelvic region. Here, while the number of patients included is limited (9+6),

the number of images is rather large (41+130), and is comparable to other similar studies

in that field (between 6 and 15 patients, 15 and 115 images17–20). Table I summarizes the85

database properties.

TABLE I: Available databases

Database Num. Images Size Machine Type Available VOI

DBCT

(CLB)

90 CT

(90 patients)

512 × 512/slice

approx. 1 × 1 × 3

[mm/px]

Philips Gemini Big Bore

or

Siemens Confidence 20

Bladder, prostate,

rectum, femoral

heads, and

seminal vesicles

DBCBCT, CLB

(CLB)

41 CBCT

(9 patients)

410 × 410 × 264 px

1 × 1 × 1 [mm/px]
Elekta Synergy XVI Bladder, prostate,

rectum

DBCBCT, CEM

(CEM)

130 CBCT

(6 patients)

410 × 410 × 168 px

1 × 1 × 1 [mm/px]
Elekta Synergy XVI Bladder, prostate,

rectum

4
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B. Deformable image registration

DIR estimates the geometric transformation that warps one image in order to maximise

the similarity to another image, which may be from a different modality. It is a conventional

technique used in adaptive treatment radiotherapy as it deals with organ deformation be-90

tween images, by warping not only the image, but other information attached to the image,

such as anatomical contours and radiation dose21. Contours for the 41 CBCT images in

DBCBCT, CLB were obtained using a DIR auto-segmentation tool, Advanced Medical Imaging

Registration Engine (ADMIRE) v3.26 (Elekta AB, Stockholm, Sweden), which uses the im-

age correspondence between the planning CT and the CBCT in order to propagate the CT95

contours to the CBCT3. These contours will be used to compare the proposed CNN-based

auto-segmentation method to a DIR-based method commercially developed and currently

used in the clinic.

C. Pseudo-CBCT generation from CT via simulation

We propose to simulate pseudo-CBCT (pCBCT) images from CT images to exploit the100

associated contours that are delineated by clinicians for treatment planning. Once the

pCBCT is created, all CT contours are directly aligned with the pCBCT and can be used

to train a network for auto-contouring from real CBCT images. We used the 90 CT images

in DBCT to built DBpCBCT , a database of 90 simulated pCBCT that will be used in training

some of our models.105

pCBCT images were created by reconstruction from radiographic projections generated

from the planning CT image with a Monte Carlo simulation of the CBCT scanner using the

simulation software GATE22,23. The input planning CT image was positioned and oriented

in the simulation according to the treatment machine log files available for each patient in

the initial database DBCT. The source and the detector of the Elekta XVI CBCT scanner110

were simulated using estimated source spectrum and detector response from measurements24

and geometrical information (position and orientation) available in DBCT. The output x-

ray projections at each angle were simulated using Fixed Forced Detection (FFD)25,26, a

variance reduction technique which simulates the scatter by mixing Monte Carlo and deter-

ministic simulation to accelerate conventional Monte Carlo simulations. The simulation of115

5
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the primary radiation is completely deterministic, i.e., it computes the source-to-detector

line integrals of the attenuation coefficients with ray tracing. Each projection was divided

by the flat field image, i.e., the projection simulated without CT image. The simulated

projections were reconstructed using RTK27, a CBCT reconstruction toolkit based on ITK.

The projections had a size of 512 × 512 pixels and 0.8 × 0.8 mm pixel size, and the output120

image had a size of 410 × 410 × 264 voxels and 1 mm isotropic voxel size, similar to that

of the real projections and CBCT images of DBCT. After reconstruction, voxels outside the

field of view were set to 0. The reconstructed voxel values represent the photon attenuation

coefficient µ, which was converted to CBCT numbers with CBCT# = µ × 216 − 1024 to

mimick the scanner processing indicated in previous works26,28.125

D. Pseudo-CT generation from CBCT via cycleGAN

Another strategy would be to use a network trained with delineated planning CT to

segment pseudo-CT images generated from CBCT images. The labels predicted by the

network could then be transferred to the corresponding CBCT image. This is for example

done by Zhao et al.15 To that end, two databases of pseudo-CT, DBpCT, CLB (41 images) and130

DBpCT, CEM (130 images) were generated from DBCBCT, CLB and DBCBCT, CEM respectively using

a cycleGAN29,30. The delineations of each CBCT were transferred to the corresponding pCT,

to evaluate the result of its auto-segmentation by the CNN network. The cycleGAN is based

on the combination of two generative adversarial networks (GANs) working in parallel. One

of them was trained to provide a mapping from the CBCT image space to the CT image135

space, and the other one conversely. Both GAN were trained together, alternating back-

propagation during each iteration. A loss function was computed over the composition of

both mappings, enforcing that coming back to the original image space provided a coherent

intensity distribution. It was combined with the loss functions of the GANs, based on a

least-square objective function for both the generator and discriminator. The cycleGAN was140

trained on CT and CBCT images of 18 patients from the CEM hospital treated for prostate

cancer (completely different from the patients included in DBCBCT, CEM). The number of

images, while limited, is close to the ones reported in other studies generating pCT from

CBCT (between 5 and 20531).

6
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E. Deep learning-based image segmentation145

We used no-new U-Net (nnU-Net), a self-configuring deep learning-based segmentation

method32 to investigate automated segmentation from pCBCT and pCT. nnU-Net is char-

acterized by its ability to self adapt to new datasets, by automatically adjusting the U-Net

model parameters based on the properties of the training dataset. For the training images

from DBCT and DBCBCT, CLB, the patch size set by nnU-Net was 191× 257× 219 voxels, with150

a batch size of 2, and minimum feature map size of 32. For the images from DBCBCT, CEM,

the patch size was 178 × 308 × 233 voxels. In nnU-Net, each image is normalized indepen-

dently using z-scoring, except for CT images where a global normalization scheme is applied

on the whole dataset by clipping to the [0.5, 99.5] percentiles of all intensity values, then

applying a z-score normalization based on the mean and standard deviation of all collected155

values. This is done because intensity values in CT images are quantitative and reflect phys-

ical properties of the tissue, and so it can be beneficial to retain this information32. Since

the images used in this project are CT and CBCT images, so with quantitative intensity

values, the global normalization scheme was applied. In addition, nnU-Net automatically

applies, stochastically according to a predefined probability, a variety of data augmentation160

techniques during training: rotations, scaling, gamma correction and mirroring33.

Other model parameters are configured automatically by the built-in nnU-Net trainers

regardless of the provided dataset. The default architectures use plain convolutions, instance

normalization and Leaky ReLU activation function. Downsampling is done with strided con-

volutions, upsampling is done with convolutions transposed, and two computational blocks165

are used per resolution stage both in the encoder and the decoder32. The default optimizer

is a stochastic gradient descent with a high initial learning rate (0.01) and a large Nesterov

momentum (0.99). The loss function is the sum of cross-entropy and Dice loss. nnU-Net also

uses five-fold cross validation training, where the training dataset is automatically divided

into five folds to train five configurations, each using one subset as a validation dataset. This170

allows to use the entire training set for validation, improving the accuracy of the inference

which uses the ensemble of these five configurations to predict the test cases.

In this study, the number of epochs was set to 200 instead of the default 1000 in order

to save computation time while still allowing convergence of the loss function.

7
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F. Trained models175

1. Datasets

As previously mentioned, we investigated the interest of using pCBCT images for training

nnU-Net compared to using real CT images or real CBCT images. Table II summarizes the

datasets used for training the different models.

One nnU-Net (M3) was trained using the pCBCT images simulated from DBCT (approach180

2 in figure 1), another nnU-Net (M4) using the real CT images, of the same patients, from

DBCT (approach 3 in figure 1), and a third one (M5) using both pCBCT and CT as

two channels multi-modal input images (approach 4 in figure 1). Since the pCBCT have

been simulated from the planning CT, the training datasets M3, M4, and M5 share the

same reference labels. Similarly, the reference labels for the CBCT (from DBCBCT, CLB and185

DBCBCT, CEM) and pCT (from DBpCT, CLB and DBpCT, CEM) of the test datasets of these models

are the same. Additionally, two reference models (M1 and M2) were trained using real

delineated CBCT images (approach 1 in figure 1), once using those obtained from CEM,

and once using those from CLB. Note that the validation dataset is automatically defined

and used by the five-fold process of nnU-Net (see section II E).190

TABLE II: Datasets used for the training of the 5 models.

Model Training datasets Test datasets

M1 DBCBCT, CLB (41 real CBCT from CLB) DBCBCT, CEM (130 real CBCT from CEM)

M2 DBCBCT, CEM (130 real CBCT from CEM ) DBCBCT, CLB (41 real CBCT from CLB)

M3 DBpCBCT (90 pCBCT) DBCBCT, CEM (130 real CBCT from CEM)

DBCBCT, CLB (41 real CBCT from CLB)

M4 DBCT (90 real CT) DBpCT, CEM (130 pCT from CEM)

DBpCT, CLB (41 pCT from CLB)

M5 DBCT + DBpCBCT (90 real CT + pCBCT) DBpCT, CEM + DBCBCT, CEM (130 pCT + real CBCT from CEM)

DBpCT, CLB + DBCBCT, CLB (41 pCT + real CBCT from CLB)

8
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2. Experimental settings

All training and test images were cropped and resampled to a size of 410 × 410 × 264

voxels with 2 mm spacing. The images in all training datasets were further cropped along

the coronal plane to the area where at least a reference contour was available because the

rectum was, in general, not delineated in all axial slices. It was expected that this would195

improve the performance of the model.

3. Evaluation metrics

The Dice similarity coefficient (DSC) was used to evaluate the accuracy of the contour

prediction of the models. Since all test datasets have the same reference labels, it is possible

to provide a direct comparison between the scores of each model on both the CEM and CLB200

datasets. It was calculated only with the slices where a reference delineation was available.

For the rectum, it was only calculated in the slices were a prediction was available because

the rectum was not delineated similarly between all hospitals (delineation length differs

from hospital to hospital). We also computed the 95th percentile of the Hausdorff distance

(computed with MedPy34). It measures how far the predicted contours are from the reference205

contour, by calculating the 95th percentile of longest surface distance from any point in

one set to the closest point in the other set. Using the 95th percentile as opposed to the

maximum distance is preferable to make the metric less sensitive to outliers34. Both metrics

were evaluated for the 3 soft tissues contours: bladder, rectum, and prostate. To evaluate the

statistical significance of the difference in the DSCs and Hausdorff distances of the different210

models, the Wilcoxon signed-rank test (from SciPy35) was used since the distribution of the

differences between these sets cannot be assumed to be normally distributed.

G. DIR contours comparison

The contours generated by our method (M3) were also compared to DIR-based contours

from ADMIRE (see section II B). However, it was not possible to directly compare DSC215

computed between M3 and reference DBCBCT, CLB on one hand, and between ADMIRE and

reference DBCBCT, CLB on the other hand, because the reference contours were obtained

in a two steps process, starting from the DIR auto contours from ADMIRE, followed by

9
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manual refinement and correction by the clinician expert. Hence, the final reference contours

are not independent of the DIR-based contours. Instead, we proceeded with the following220

qualitative blind process. An expert from CLB was provided with 82 randonmly ordered

CBCT images, each image from DBCBCT, CLB occurring twice, once with contours obtained

using nnU-Net (M3), and once with contours obtained using ADMIRE. Not knowing the

source of the contours for each image, the clinician visually evaluated the contours (bladder,

rectum, prostate) based on the grading scheme presented in table III, proposed by Schreier225

et al.19 The Wilcoxon signed-rank test was performed to evaluate the statistical significance

of the differences between the scores of the DIR- and nnU-Net-based contours. Moreover,

Schreier et al.19 defined two criteria to evaluate the clinical acceptability of the effort needed

to correct automatically generated contours: 1) for each structure, more than 80% of the

patients receive a score of 2 or 3 for that structure, and 2) for more than 70% of all patients,230

all structures of this patient receive a score of 2 or 3.

TABLE III: The grading scheme used for the qualitative evaluation.

Score Definition

0 Not acceptable, manual (re)drawing of the entire structure is required

1 Acceptable, major corrections necessary but with acceptable effort.

Corrections on more than 5 slices

2 Accepted, only minor corrections required. Corrections on less than 5 slices

3 Accepted, no corrections required

III. RESULTS

A. CBCT simulation

Figure 2 shows the real CT and real CBCT of a patient from DBCT, and the pCBCT

simulated from the CT for comparison, and the histogram and intensity profiles of the 3D235

images. On the image slices we can see that the pCBCT has the same field-of-view and

similar quality as the real CBCT.

10
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FIG. 2: Image slices of real CT, real CBCT and pCBCT (top), histogram of the 3D images

(bottom left) and intensity profiles (bottom right) taken in the left-right direction (blue

horizontal lines in the top images).

B. Pseudo CT generation

For evaluating the performance of the GAN, the mean absolute error (MAE) was cal-

culated between the pseudo-CT generated by the GAN (86 pseudo-CT from 5 patients,240

completely independent from the patients in the training dataset), and the reference CT of

the same patient. The MAE in the patient contour for this GAN was 38.4 HU, which is in

accordance with MAE values reported by Spadea et al.31 (between 16 and 87 HU) for pelvic

pseudo-CT generation in other studies.

Figure 3 shows the real CT, real CBCT, and the pCT simulated from the CBCT of a245

patient from DBCBCT, CEM. The histograms and intensity profiles images are also included.

We notice that the quality and contrast in the pCT is similar to the real CT.

C. Loss plots

During a model training, nnU-Net provides a set of output files that monitor the progress

of the training. One file includes the plot of the training and validation loss during training,250

11
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FIG. 3: Image slices of real CT, real CBCT and pCT (top), histogram of the 3D images

(bottom left) and intensity profiles (bottom right) taken in the left-right direction (blue

horizontal lines in the top images).

as well as an approximation of the evaluation metric, which is the average Dice score of the

foreground classes, computed on randomly drawn patches from the validation data at the

end of each epoch33. The Dice loss ranges from 0 to -1 and cross-entropy loss from infinity

to 0, so the best loss is -1. Dice scores range from 0 to 1, so the best evaluation metric is 1.

Figure 4 displays the plot for one of the trained models. As we can see, this model converges255

by the end of the 200 epochs.

D. CBCT segmentation visual evaluation

Figure 5 shows the reference labels (yellow), M3 prediction labels (red), and M4 prediction

labels (green) on real CBCT images for 6 different patients from the CLB and CEM cohorts.

As we can see in figure (b), the rectum is not entirely delineated in the reference label, and260

while the models correctly contoured a larger area of the rectum, the DSC and HD in these

slices would have indicated a worse performance of the model. To prevent this, the slices

where a prediction is available and a reference label is not provided are excluded from the

DSC and HD calculation.
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FIG. 4: Plot of the training (blue) and validation (red) loss and the evaluation metric

(green) against epochs for one of the trained models.

E. CBCT segmentation evaluation metrics265

Figure 6 displays the violin plot of the DSCs for the different models (summarized in table

II), evaluated with both CLB and CEM test datasets. Figure 7 displays the violin plot of

the Hausdorff distance from the same tests. The dashed red line allows to visualize the mean

value of the models with respect to that for M3. A higher mean DSC or lower mean HD

implies a better performance of that model in comparison to M3. The stars below or above270

each violin plot indicate the statistical significance of the difference between the results of

each model with that of M3 (pCBCT), based on the p-value computed with the Wilcoxon

signed-rank test. The ”ns” symbol represents a p-value above 0.05 (no statistical difference),

one star represents a p-value between 0.001 and 0.05 (statistically significant difference), and

two stars represent a p-value below 0.001 (highly statistically significant difference). The275

numbers above the plots indicate the number of outliers for each violin plot, which consists

of the values that are below (Q1 − 1.5 × IQR) or above (Q3 + 1.5 × IQR), where Q1 and

Q3 are the first and third quantiles respectively, and the interquartile (IQR) range is IQR

= Q3 − Q1. It provides a more comprehensive evaluation of the models as an elevated

number of outliers indicates a low or inconsistent performance of the model with too many280

values falling outside the boundaries of the violin plot. The first violin plot (M1 or M2)

on the left of all panels corresponds to the conventional training from real CBCT images,
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FIG. 5: Image slices of real CBCT of 6 different patients, 3 from CLB (P1 - P3) and 3

from CEM (P4 - P6), with reference labels (yellow), M3 prediction labels (red), and M4

prediction labels (green) for the bladder, rectum, and prostate labels.

evaluated on real CBCT images. The second violin plot (M3) corresponds to training with

simulated pCBCT images, evaluated on real CBCT images. The third violin plot in the

panels (M4) corresponds to training with real CT images, evaluated on pseudo-CT images.285

The last violin plot (M5) corresponds to combined training using real CT images in channel
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0 and simulated pCBCT images in channel 1, evaluated on pseudo-CT in channel 0 and real

CBCT in channel 1.

Table IV summarizes the mean DSC and Hausdorff distance for the different models,

with the same semantic for the statistical significance tests.290

TABLE IV: DSCs and Hausdorff distance mean values. The stars next to the values

indicate the statistical significance of the difference between the scores for that model and

that of M3 for the same metric and same structure, based on the p-value computed with

the Wilcoxon signed-rank test.

Dataset model Mean DSC

(Bladder)

Mean HD (mm)

(Bladder)

Mean DSC

(Rectum)

Mean HD (mm)

(Rectum)

Mean DSC

(Prostate)

Mean HD (mm)

(Prostate)

CLB

M2 0.91 ± 0.06 5.62 ± 3.24 0.83 ± 0.07∗∗ 6.43 ± 5.11∗∗ 0.81 ± 0.05∗∗ 6.19 ± 1.14∗∗

M3 0.92 ± 0.05 4.67 ± 3.01 0.87 ± 0.02 3.91 ± 0.98 0.85 ± 0.04 5.00 ± 1.32

M4 0.87 ± 0.08∗∗ 7.84 ± 4.13∗∗ 0.85 ± 0.04∗∗ 6.07 ± 4.65∗ 0.80 ± 0.08∗∗ 7.09 ± 3.26∗∗

M5 0.87 ± 0.07∗∗ 9.10 ± 4.68∗∗ 0.86 ± 0.04∗ 4.96 ± 3.33 0.80 ± 0.10∗ 7.33 ± 4.24∗

CEM

M1 0.91 ± 0.04 6.04 ± 2.88∗ 0.83 ± 0.06 6.53 ± 3.69∗∗ 0.82 ± 0.08 6.91 ± 3.08

M3 0.91 ± 0.04 5.29 ± 2.63 0.84 ± 0.05 5.34 ± 2.27 0.83 ± 0.07 6.35 ± 2.64

M4 0.91 ± 0.04 5.16 ± 1.99 0.83 ± 0.05 5.50 ± 2.24 0.85 ± 0.05∗∗ 5.51 ± 1.87∗∗

M5 0.91 ± 0.04 5.22 ± 2.26 0.84 ± 0.05 5.34 ± 2.28 0.84 ± 0.06∗ 6.03 ± 2.26∗

F. DIR and nnU-Net comparison

This section discusses the qualitative evaluation between the DIR-based contours (see

section II B) and the nnU-Net-based contours obtained with the M3 model (see section II F).

Figure 8 plots the histograms of the quality scores assigned by the expert for the contours for

each structure, and table V summarizes the mean and standard deviation of these scores (see295

grading scheme table III). The stars next to the values indicate the statistical significance

of the difference between the scores for the DIR-based and nnU-Net-based contours for each

structure, based on the p-value computed with the Wilcoxon signed-rank test.
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FIG. 6: 6 violin plot panels of the DSCs for the bladder, rectum, and prostate contours for

the different models evaluated with the CLB dataset (left) and CEM dataset (right). The

dashed red line represents the mean DSC for M3. The statistical significance of the

difference between the results of that model and those of M3 is displayed below each violin

plot. The ”ns” represents no statistical difference, one star represents a statistically

significant difference, and two stars represent a highly statistically significant difference.
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FIG. 7: 6 violin plot panels of Hausdorff distance for the bladder, rectum, and prostate

contours for the different models for the CLB dataset (left) and CEM dataset (right). The

dashed red line represents the mean Hausdorff distance for M3. The statistical significance

of the difference between the results of that model and those of M3 is displayed above each

violin plot. The ”ns” represents no statistical difference, one star represents a statistically

significant difference, and two stars represent a highly statistically significant difference.
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FIG. 8: The distribution of the quality scores of the qualitative evaluation for the

DIR-based and nnU-Net-based segmentations.

TABLE V: The mean and standard deviation of the quality scores of the qualitative

evaluation for the DIR-based and nnU-Net-based segmentations. The best score per

structure is marked with bold letters. A star next to the value in bold indicates a

statistically significant difference between the DIR and nnU-Net scores for that structure.

Two stars indicate a highly statistically significant difference.

Bladder Rectum Prostate

DIR 1.20 ± 1.03 1.41 ± 0.74 1.71 ± 0.81

nnU-Net 2.00 ± 0.81∗ 2.39 ± 0.54∗∗ 2.39 ± 0.63∗∗

Figure 9 shows the DIR-based labels (in lighter shades) and nnU-Net-based labels (in

darker shades) for three different CLB patients. The quality score for each organ segmenta-300

tion is also displayed.

FIG. 9: DIR-based (light) and nnU-Net-based (dark) segmentations for bladder (green),

rectum (red), and prostate (blue). The quality scores for the segmentations are also

displayed.
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Table VI summarizes: 1. the percentage of scores equal or higher than 2 for each structure

(criteria 1 in the clinical acceptability evaluation described in section II G), and 2. the

percentage of patients whose structures all scored 2 or higher (criteria 2 in the clinical

acceptability evaluation).305

TABLE VI: The percentage of scores equal or higher than 2 for the DIR- and

nnU-Net-based segmentations per structure and combined. For the combined calculation,

all structures per patient need to score 2 or higher.

Bladder Rectum Prostate Combined

DIR 34% 46% 63% 29%

nnU-Net 78% 98% 93% 76%

G. Computation times

The CBCT simulations were performed on a cluster of CPUs (IN2P3 Computing Center,

CNRS, Lyon, France) and the deep learning tasks on a cluster of GPU (Jean Zay, CNRS,

Orsay, France) with NVIDIA V100 SXM2 32 GB. The approximate computation times are

summarized in Table VII. The duration of the deterministic (primary) part of the pCBCT310

simulation takes between 5 to 8 hours on the IN2P3 cluster per image. For the Monte

Carlo (secondary) part of the simulations, the number of particles used was set (300,000

particles over 300 jobs) in order to finish at the same time as the primary part. The image

reconstruction takes 2 minutes per image. The training of the cycleGAN for the pCT

generation takes 24 hours on a GTX-1080-Ti GPU, while the inference takes 10 seconds per315

image. For the nnU-Net model, the training takes up to 9 hours on the Jean Zay GPU using

40 cores, and the inference takes approximately 10 seconds per image.
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TABLE VII: Approximate computation times.

Task Job Time Tool

pCBCT simulation

Simulation job (primary) 5 - 8 hr Gate on IN2P3 cluster (1 core)

Simulation job (scatter) 5 - 8 hr Gate on IN2P3 cluster (1 core)

Reconstruction 2 min RTK on IN2P3 cluster (1 core)

pCT generation
CycleGAN training 24 hr GTX-1080-Ti GPU

Inference 10 sec GTX-1080-Ti GPU

CBCT segmentation
nnU-Net training 9 hr nnU-Net on JeanZay GPU (40 cores)

Inference 10 sec nnU-Net on JeanZay GPU (10 cores)

IV. DISCUSSION

Globally, we observed qualitatively (figure 5) and quantitatively (figure 6 & 7) that train-

ing on pCBCT performed better or was not statistically different than the other methods,320

and, in general, with less outliers. Combining training on both pCBCT and CT led to a

degradation of the results.

A. pCBCT quality

While GATE simulation and RTK reconstruction aim to replicate realistic CBCT acqui-

sition conditions, there are some residual differences in the pixel intensities between real and325

simulated CBCT images, as seen in figure 2(d,e). Indeed, during the reconstruction of a

real CBCT image, the Elekta system applies additional steps to reduce the effect of scat-

ter, which have not been implemented in our reconstruction algorithm. Moreover, the real

CBCT images were acquired using a bowtie filter, which is not implemented in the GATE

simulations. Finally, motion during the acquisition of the real CBCT projections induces330

artefacts which are not simulated. The anatomy of the patient can sometimes differ between

the acquisition of the CT and of the CBCT. Nevertheless, the overall image characteristics

seem well reproduced and the normalization process in nnU-Net should compensate the

differences in pixel range.
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B. CLB and CEM comparison335

As seen in table II, the test dataset contains images from two hospitals with two

slightly different ways to contour organs, e.g. rectums were contoured on more slices in

DBCBCT, CEM compared to DBCBCT, CLB. Therefore, when the training is performed with CT

from DBCT , one expects slightly better results with the validation dataset from the same

hospital (CLB) than with the other hospital (CEM). Indeed, in figures 6 and 7, for a given340

method (M3, M4 or M5), DSCs and HD were slightly better when validated with cohort

CLB (left) than with cohort CEM (right).

C. pCBCT and real CBCT comparison

Figures 6 and 7 also show that the model trained with simulated pCBCT images (M3)

generally display a better performance than models trained with real CBCT images (M1345

and M2, first column in all panels), or a statistically non-significant difference like the case

of the bladder for CLB dataset, which indicates that we are not losing accuracy when using

simulated instead of real images.

In general, the performance of one model with respect to the M3 model and the confidence

level in this difference is consistent between the DSCs and HD, except for the bladder350

and rectum contours for the CEM dataset where M1 has a statistically significant lower

performance than M3 in figure 7, but the M1 DSCs are statistically not different from the

M3 DSCs. But even those two cases do not contradict the conclusion that M3 generally

performs as good, and often better than M1 and M2.

D. pCBCT and pCT comparison355

1. CLB dataset

The violin plot panels also show that the model trained with simulated pCBCT images

(M3) performs better, for the CLB dataset, than the model trained with real CT images

and evaluated on pseudo-CT (M4), and that this difference is highly statistically significant

for the DSCs and Hausdorff distance for all contours. For example, M3 / M4 scored mean360

DSCs of 0.92 ± 0.05 / 0.87 ± 0.08 for the bladder, 0.87 ± 0.02 / 0.85 ± 0.04 for the rectum,
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and 0.85 ± 0.04 / 0.80 ± 0.08 for the prostate. M3 also has a lower number of outliers than

M4 for the DSCs, but it has a higher number of outliers for the HD for the bladder and the

prostate. Nonetheless, this does not indicate a worse performance in these cases, because it

can be seen from the distribution of the values for M3 and M4 in the violin plots of the left365

panels of figure 7 that the HD values for M3 are more concentrated towards the lower values

(thicker violin in the bottom), which indicates a lower IQR in these cases which increases

the sensitivity to outliers.

2. CEM dataset

For the CEM dataset, M3 performed better than M4 for the rectum contour, however,370

this difference is not statistically significant. For the bladder and prostate contours, M3 has

a lower performance than M4, but the difference for the bladder contour is not statistically

significant (M4 column in the top panel on the right in figures 6 and 7), while the difference

for the prostate contour is highly significant (M4 column in the bottom panel on the right

in figures 6 and 7). It may be related to the difference in the way the prostate is contoured375

at CEM compared to CLB, and how the high inter-observer variability for the prostate

in CT and CBCT images affects the certitude of evaluation metrics such as DSC and HD

comparisons19. Rectum and bladder DSC and HD values fluctuate less because of their large

sizes, since the main source of errors is at the boundary of the organs19.

E. pCBCT and multi-modal images comparison380

We observe that including both types of images as channels (M5) does not improve the

performance in comparison to the models that use one modality (M3 and M4). Indeed,

M5 tends to perform like M3 and M4 with lower DSCs and higher Hausdorff distance. For

example for the bladder contour for the CLB dataset, M3 scored mean DSC of 0.92 ± 0.05,

M4 scored 0.87 ± 0.08, and M5 scored 0.87 ± 0.07. For the CLB dataset, it can be seen in385

the left panels of figures 6 and 7 that M5 always has a lower performance than M3 for all

contours, and these differences are all statistically significant. For the CEM dataset (panels

on the right in figures 6 and 7), M5 performs as good, and sometimes even better than M3

for the DSCs and HD for all contours. The shape of the violin plots and the number of
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outliers are close between these models for the bladder and rectum contours. However, for390

the prostate contour, M5 has a higher number of outliers in both figures 6 and 7, but a better-

shaped distribution where the values are more concentrated towards the higher values in the

DSC, and the lower values in the Hausdorff distance. These differences between the results

of those two models are statistically non-significant, except for the results of the prostate

contour. So M4 and M5 only improved the scores of M3 for the prostate contour for the CEM395

dataset, while they showed a lower performance or a statistically non-significant difference

in all other cases. The results for the CEM dataset indicate that the method still require

improvement in order to accurately segment images across hospitals. Indeed, we hypothesize

that the differences in contouring (inter-expert variability) are larger than differences in the

auto-contour methods.400

F. nnU-Net and DIR comparison

Regarding M3 performance in comparison to a DIR-based method, we see in figure 8 that

nnU-Net-based contours tend to score 2 or higher (only minor or no corrections needed) more

often than DIR-based contours. This can also be seen in the mean of these scores in table V,

where DIR-based / nnU-Net-based contours scored an average of 1.20 ± 1.03 / 2.00 ± 0.81,405

1.41±0.74 / 2.39±0.54, 1.71±0.81 / 2.39±0.63 for the bladder, rectum, and prostate contours

respectively. These differences are also found to be statistically significant (bladder) or highly

significant (rectum and prostate) by the Wilcoxon signed-rank test. Figure 9-b also shows

the limitations of DIR methods in accounting for bladder deformation. Table VI shows that

for DIR-based segmentations, 34% of bladder segmentations, 46% of rectum segmentations,410

and 63% of prostate segmentations required minor or no corrections, while those percentages

are considerably higher for the nnU-Net-based scores, where 78% of bladder segmentations,

98% of rectum segmentations, and 93% of prostate segmentations required minor or no

corrections. Similarly, for 29% of the patients, all structures of the patient received a score of

2 or higher for the DIR-based segmentations, while that percentage rises to 76% for nnU-Net-415

based segmentations. So for M3, both criteria for clinical acceptability are fulfilled, except

for the bladder contour where less than 80% (78%) of the patients received a score of 2 or

higher. Nonetheless, the mean score for that structure was 2.00±0.81. And so overall, these

results are encouraging for the adoption of automated nnU-Net-based segmentation into
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the clinical workflow. This qualitative evaluation provides a clinically-oriented comparison420

between the segmentation methods, and is better able to take into account the differences at

the boundaries of the organs than DSC or HD calculations. However, while the process was

blinded, it may be sensitive to the scorer’s cognitive bias, since only one expert evaluated

the segmentations and marked the scores.

G. Related studies425

In another study17,36, the authors presented a data augmentation method that generates

multiple CBCTs from a single deformably registered baseline CBCT and planning CT pair,

by extracting artifacts from the CBCT and adding them to the corresponding pCT. The

resulting synthetic CBCTs are then used in the training of a deep learning model for CBCT

segmentation. This can be related to the method proposed in this paper as a training430

dataset of paired CT/CBCT images is created, but, in our case, we opted for generating

CBCT using Monte Carlo method as it is known to be the most accurate way to reproduce

the physical effects of CBCT image acquisition. Moreover, our approach does not require

initial deformable registered planning CT and week1 CBCT pair, because any planning CT

image can be converted into its CBCT counterpart (hence perfectly registered). However,435

Monte Carlo is a slow method and other methods could be investigated to create realistic

CBCT, e.g. Generative Adversarial Net (GAN). In their latest work17, Dahiya et al. used

an image-to-image translation method based on conditional generative adversarial networks

(cGANs) for segmenting and translating CBCT to CT at the same time. Their results

compare to the state-of-the-art results for these tasks, however, one challenge is to develop440

a loss function that reduces GAN-produced artifacts without sacrificing the segmentation

results for the smaller structures. In our case, we choose to use a simple and robust U-Net

method, focusing on the impact of the type of images used in the training dataset.

V. CONCLUSION

The aim of this work was to investigate the interest of using pseudo-CBCT images sim-445

ulated from CT images for the training of U-Net deep learning model for pelvic CBCT

segmentation. This approach avoids the use of contours on real CBCT images that are dif-
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ficult to obtain and is an alternative to the use of pseudo-CT images computed from CBCT

images and to DIR-based segmentations. Comparison of the Dice and Hausdorff scores

shows that the nnU-Net trained with pCBCT performs equally or better on almost all the450

evaluated test sets. Qualitative evaluation shows the clinical advantage of nnU-Net-based

segmentations over DIR-based ones. Contouring variability between different hospitals plays

a role as results were slightly lower when models were trained from contour data from one

hospital and tested with contours performed by different physicians in another hospital.
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