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While there is compelling evidence for the existence of magnetic monopoles in spin ice, the direct
observation of a point-like source of magnetic field in these systems remains an open challenge. One
promising approach is electron holography, which combines atomic-scale resolution with extreme
sensitivity to magnetic vector potentials, through the Aharonov-Bohm effect. Here we explore what
holography can teach us about magnetic monopoles in spin ice, through experiments on artificial
spin ice, and numerical simulations of pyrochlore spin ice. In the case of artificial spin ice, we
show that holograms can be used to measure local magnetic charge. For pyrochlore spin ice, we
demonstrate that holographic experiments are capable of resolving both magnetic monopoles and
their dynamics, including the emergence of electric fields associated with fluctuations of closed loops
of spins. These results establish that the observation of both magnetic monopoles and emergent
electric fields in pyrochlore spin ice is a realistic possibility in an electron microscope with sufficiently
high phase resolution.

Although the concept of magnetic monopoles — parti-
cles which act as point–sources of magnetic field — is over
a century old [1–3], their existence remains an enigma
[4]. While Dirac conceived of magnetic monopoles as ele-
mentary particles in a vacuum [3], the best–characterised
examples arise as monopoles of the magnetic field (H)
within the pyrochlore magnets known as “spin ice” [5]
[Fig. 1], and their artificial cousins [6]. Great ingenu-
ity has been brought to the detection of monopoles in
spin ice [7–12] exploiting analogies with electrolytes [5, 7–
9]; Dirac strings [10]; and even the “sound” made by
monopole motion [11, 12]. None the less, direct obser-
vation of an individual monopole remains an open chal-
lenge.

The method we pursue is electron holography. An elec-
tron wavefront incident on a point–source of magnetic
field undergoes a profound change, acquiring a phase
which winds around its axis, so the wavefunction de-
scribes a “vortex” with finite angular momentum [13–15].
The ideal technique for measuring this phase is hologra-
phy, in which an image is created through the interference
of coherent waves [16].

In recent years, the use of electron holography to image
microscopic magnetic structures has been raised to a high
art [17–21], and proof–of–principle holographic measure-
ments of a magnetic needle, as a macroscopic monopole
analogue, have already been reported [22]. In this Ar-
ticle, we extend electron holography to the emergent
monopoles of spin ice, with the goal of directly imaging
both their magnetic charge, and dynamics. We do this
through experimental measurements of artificial spin ice,

∗ ankur.dhar@alumni.oist.jp
† ludovic.jaubert@cnrs.fr
‡ c.cassidy@oist.jp
§ shintake@oist.jp
¶ nic.shannon@oist.jp

and detailed simulations of holographic measurements of
pyrochlore spin ice.

Our experiments on artificial spin ice confirm that
holography can be used to characterise the magnetic
monopoles of a spin–ice like system, providing quantita-
tive measurements of their (quantized) magnetic charge.
Meanwhile, simulations of thin films of pyrochlore spin
ice show how holography could be used both to im-
age magnetic monopoles, and to study their dynamics.
We exhibit the characteristic phase map associated with
monopoles, and establish that electron holography could
also be used to resolve the emergent electric field found
in a spin ice with dynamics. We also provide estimates
of the instrumental requirements needed to resolve these
emergent excitations. These results establish that the
observation of both magnetic monopoles and emergent
electric fields in pyrochlore spin ice is a realistic possibil-
ity, in an electron microscope with sufficiently–high phase
resolution.

Spin ice, exemplified by Dy2Ti2O7 and Ho2Ti2O7 [23],
is a family of magnetic insulators with a pyrochlore lat-
tice [Fig. 1]. Magnetic ions have Ising moments, and at
low temperatures obey the ice–rules [24, 25], with exactly
two moments (spins) pointing into and two out of, each
tetrahedron in the lattice, such that the divergence of the
magnetization ∇ ·M = −∇ ·H = 0 [Fig. 1a]. Flipping
a single spin creates a source and sink of magnetic field
in neighbouring tetrahedra, ∇ · H = ±qm [5, 26], and
successive spin–flips permit both excitations to move,
independently, through the lattice [7]. These are the
magnetic monopoles of spin ice [Fig. 1b], which share
many of the properties of Dirac’s monopoles [3], includ-
ing Coulomb interactions, and strict quantization of mag-
netic charge [5]. Where magnetic moments behave like
idealised magnet dipoles, this charge can be calculated
through the “dumbbell model” [5], and for Dy2Ti2O7 is
given by

qSIm = 2m/d = 4.3× 10−13 A.m , (1)
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Figure 1. Spin ice, its emergent magnetic monopoles and electric field. (a) Pyrochlore lattice in spin–ice materials,
formed of corner–sharing tetrahedra. The spin configuration shown obeys the “ice rules”, in which two spins point out of, and
two spins point into, each tetrahedron in the lattice. A “flippable” plaquette, in which spins point head–to-tail in a closed
loop, is highlighted in green. (b) Flipping a single spin causes two neighbouring tetrahedra to violate the ice rules, and act as
sources and sinks of magnetic field (magnetic monopoles). These monopole excitations (red/blue) can then move within the
lattice by successive spin flips (green arrows). (c) A pair of monopoles can recombine by traveling around a flippable loop of
spins (green arrows). Just as electric current traveling in a loop acts as a source of magnetic field, so the transport of magnetic
charge around this hexagonal plaquette induces an electric field.

where m = 10µB is the moment, and d =
√

3/4 nm is
the distance between the centers of neighbouring tetrahe-
dra. While there is compelling evidence for the existence
of monopoles in spin ice [7–12], their direct observation
remains a significant challenge, demanding sensitivity to
magnetic fields on the scale of a single tetrahedron.

One technique which has the potential to overcome
this barrier is electron holography [27]. Early in the
history of magnetic monopoles [1], it was realised that
their interaction with electrons would have interesting
properties [2]. And with the arrival of quantum mechan-
ics, it was established that an electron encountering a
monopole acquires a characteristic discontinuity (branch
cut) in the phase of its wave function [13, 14], with a
jump in phase proportional to the magnetic charge of
the monopole [15]. Holography, which uses interference
to measure the phase of an electron wave [16], therefore
provides a way of both identifying individual monopoles,
and measuring their magnetic charge.

Today, electron holograms are most commonly mea-
sured using a transmission electron microscope (TEM)
equipped with an electrostatic biprism [27] [Fig. 2a].
Since the phase of electron waves is modified by the mat-
ter they pass through, 2D holograms encode information
about 3D samples [28, 29]. And where an electron wave
interacts with a magnetic field, it picks up an additional
phase through the Aharonov–Bohm effect [30]

φ = − e
~

∫
Azdz, (2)

where Az is the magnetic vector potential in the direction
of the electron’s motion. This makes electron holography
a powerful tool for imaging magnetic structures, from the
macroscopic down to the atomic scale [17–21].

Experiments on magnetic needles. As a prelude
to measurements on spin ice, we consider first a macro-
scopic analogue of a magnetic monopole, in the form of
a magnetic needle, extending the earlier experiments of
Béché et al [22]. We now show how these measurements
can be used to determine magnetic charge. In Fig. 2b, we
present the phase–map reconstructed from holographic
images of our sample [inset to Fig. 2a]. This exhibits
a characteristic ramp in phase, winding around the tip
of the needle, and terminating in a line–like discontinu-
ity, which corresponds to the Dirac string of a magnetic
monopole [22]. Experimental results are found to be
in quantitive agreement with the phase obtained from
finite–element simulations of the field A(r) generated by
the magnetic sample [31] [Fig. 2c]. Moreover, as shown
in Supplementary Information, this phase ramp vanishes
when the magnetic needle is heated above its Curie tem-
perature, confirming its magnetic origin.

The charge of a magnetic monopole can be found by
integrating the phase of an electron wave function on a
contour encircling the monopole [15]

qm =
~
µ0e

∮
dφ . (3)

We can apply this approach to a magnetic needle, with
an important caveat: unlike a monopole, the magnetic
needle is not a point–like object, and it does not have
a quantized magnetic charge. It follows that the value
of qm obtained will depend on the path of integration.
Choosing a circular path of radius r = 120 nm [Fig. 2d]
we find qexpm = (6.79± 0.08)× 10−9 A.m, in good agree-
ment with the value qsimm = 6.78 × 10−9 A.m found in
simulation.
Experiments on artificial spin ice. Having estab-

lished our methodology, we now turn to the magnetic
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Figure 2. Holographic measurement of the (unquantized) magnetic charge associated with a magnetic needle.
(a) Standard configuration of electron microscope used for holographic measurements; an electron wave interacting with the
specimen interferes with a reference beam to create a hologram which encodes its phase (cf Fig. 2, Supplementary Information).
The sample used is shown in an inset. (b) Ramp in phase measured in an electron wave traversing the tip of a magnetic needle.
For greater clarity, the area masked by the needle has been excluded from the plot. (c) Ramp in phase found in equivalent
finite-element simulation. (d) Phase on a closed contour encircling the tip of the needle at a radius of r = 120 nm (black circle
in b), as found in simulation and experiment. The magnetic charge associated with the tip of the needle can be estimated by
integrating phase around this contour, following Eq. 1. For a magnetic needle, the charge measured depends on the radius of
integration. For r = 120 nm, we find qexpm = (6.79 ± 0.08) × 10−9 A.m, in agreement with simulation.

monopoles of an artificial spin ice system. Artificial spin
ices are constructed by fabricating a lattice of micron–
scale magnetic islands, each of which acts as a meso-
scopic magnetic moment, subject to the ice rules [6, 32–
36]. Dirac strings and monopoles in artificial spin ice
have previously been studied using transmission electron
microscopy, but with the limitation of utilizing numeri-
cal reconstruction of focal series stacks [37–39], or focus
on quantification of island in-plane magnetization [40].
Our motivation here is to go beyond the state of the
art in this field and directly visualise the phase shift due
to emergent magnetic monopoles using off-axis electron
holography, which will allow us a quantitative measure-
ment of the magnetic charge, and offers the possibility
of time-resolved observation of monopole dynamics. We
work with “Kagome spin ice” [33, 34] a honeycomb net-
work [Fig. 3a], for which the ice rules are 2–in,1–out (1–
in,2–out), such that vertices have (quantized) magnetic
charge ±q. Meanwhile, monopole excitations have 3–in
(3–out) spins with charge ±3q. The sample we study has
a lattice constant a = 580 nm, and islands with mag-
netic moment m = (2.9 ± 0.3) × 10−16A.m2. Within a
dumbbell model m = qa [5], this gives a natural scale of
magnetic charge qASI

m = (5.0± 0.4)× 10−10A.m.

In Fig. 3 we show the results of holographic mea-
surements. We consider the phase map reconstructed
from measurements of a monopole excitation with a +3q
charge (3–in) [Fig. 3b], which compares remarkably well
with simulations [Fig. 3c]. Resolving the phase on a cir-
cular path of radius r around the vertex, we recognise
three successive phase ramps – from negative (red) to
positive (blue) – between each pair of islands. Integrat-
ing Eq. (3) we obtain the magnetic charge Qexp

m of a 3q

monopole excitation on Kagome spin ice [Fig. 3d]. For
the largest radius r ≈ 200 nm available in the experimen-
tal window of measurement, Qexp

m reaches about 2/3 of
the theoretical expectation, 3qASI

m = 15.0× 10−10A.m.
The resolution of this apparent mismatch lies in the

use of the dumbbell model, which is only strictly valid
for an infinitely long and thin magnetic island. The role
of finite aspect ratio is an aspect of the problem which
can easily be studied in simulation. In Fig. 3e we show
how estimates of charge Qsim

m depend on radius of inte-
gration r and lattice constant a, keeping other param-
eters constant. For a given lattice of constant a0, the
initial increasing phase is the same for all lattices made
of longer islands a > a0; the charge does not “see” the end
of the islands beyond the integration radius. Qsim

m passes
a maximum before falling rapidly when r reaches the end
of the three islands.[41] The value of this maximum in-
creases with a and converge asymptotically to the satu-
rated value 3qASI

m as the islands become infinitely long.
Note that the asymmetry of the curves – smooth increase
and sharp decrease – is largely due to the presence of 12
surrounding islands in our simulations, whose inclusion is
necessary to match simulations to experiments in Fig. 3c.

Our experiments on artificial spin ice confirm that it
is possible to measure the charge of a monopole excita-
tion using electron holography. And in contrast with the
magnetic needle [22], this charge saturates at a quantized
value. None the less, the “point source” of magnetic field
is smeared over a region of size a/2, introducing finite–
size effects which need to be taken into account when
analysing data.
Simulation of pyrochlore spin ice. In pyrochlore

spin ice, monopoles are localised on a scale of a single
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Figure 3. Holographic measurements of quantized magnetic monopole with charge 3Q in artificial spin ice.
(a) Defocused Lorentz–mode image of artificial “Kagome” spin ice, comprising a honeycomb network of permalloy magnetic
islands, with a lattice constant of 580 nm, on a SiO base. Coloured overlay shows the individual vertex resolved in (b). (b)
Phase map of a monopole excitation with a +3q magnetic charge, reconstructed from TEM measurements. (c) Comparison
to simulation for a 3q–vertex. (d) Magnetic charge found by integrating phase around 3q–vertex, measured in units of qASI

m ,
as a function of the radius of integration r. Experimental data (points with error bars) match quantitatively with simulations
(solid line). The radius r is limited by the field of view in TEM experiments. (e) Charge integrated for simulations of islands
with varying lattice constant a, showing how the measured charge converges on 3qASI

m in the limit of a long, thin island. For
the sample studied, the natural unit of monopole charge is qASI

m = 5 × 10−10 A·m.

tetrahedron, ∼ 3.5 Å. This is a favourable scale for ob-
servation using an electron with wavelength λ ∼ 0.2 Å,
typical of a modern TEM. Moreover, the motion of
monopoles in spin ice occurs on timescales ∼ 1 ms [7],
comparable with the rate at which holographic images
can be taken. This raises the prospect of directly imag-
ing a magnetic monopole, and its associated dynamics,
by the methods applied to artificial spin ice. Since avail-
able TEMs are not equipped to operate at temperatures
. 1 K, relevant to spin ice, we have used simulation to
explore what could be learned from holographic experi-
ments on a thin film of pyrochlore spin ice. For concrete-
ness, we consider films with the thickness of a single (cu-
bic) unit cell, and parameters appropriate to Dy2Ti2O7,
which has a (cubic) lattice constant a = 10.0(1) Å [42].

We start by considering the limit which is easiest to
understand; a system polarised by magnetic field [10],
and containing a single monopole [Fig. 4]. In this case
the excitation comprises a chain of flipped spins (Dirac
string), terminating in a tetrahedron with a 3–in, 1–out

configuration (magnetic monopole), within a state where
all other tetrahedra obey the ice rules (∇·H = 0), and are
polarised in the plane of the sample. These features are
immediately obvious in the phase map [Fig. 4a], where
an isolated magnetic monopole (	) can be identified at
the end of a Dirac string (diagonal white line), associated
with a jump in phase of the electron wave function, ∆φ ∼
0.8 mrad. Being topological in character, these features
are stable against the effects of finite spatial and phase
resolution [Fig. 4b]. And estimating the charge of the
magnetic monopole is now straightforward; integrating a
circle of radius r = 2 nm, in the presence of phase noise
0.2 mrad [Fig. 4c], we find qm = (4.4± 0.3)× 10−13 A.m,
in good agreement with the expected value [Eq. 1].

We now turn to a thermalised sample, in the absence of
magnetic field. In Fig. 5a–5d we show simulated phase
maps for spin configurations drawn from Monte Carlo
(MC) simulation of a sample at T = 700 mK. In re-
gions without monopoles, e.g. top right corner of Fig. 5a,
the phase map can be divided into discrete “boxes” with
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Figure 4. Holographic signal of a single, quantized magnetic monopole in a thin film of spin ice, polarised by
magnetic field. (a) Phase map found in simulations with a spatial resolution of 20 pm, assuming perfect phase resolution. An
isolated magnetic monopole (	) can be identified at the end of a Dirac string (diagonal white line), associated with a jump in
phase of the electron wave function, ∆φ ∼ 0.8 mrad. (b) Equivalent phase map with a spatial resolution of 240 pm, and phase
noise ±0.1 mrad. The Dirac string, and associated phase jump, remain clearly visible. (c) Phase ramp extracted from circular
trace about magnetic monopole at a radius of 2 nm. The magnetic charge of the monopole can be accurately determined from
the jump in phase across the Dirac string, even in the presence of noise. The monopole charge determined from fitting the
blue data is qm = 4.4 ± 0.3 × 10−13 A.m, in very good agreement with the dumbbell model of spin ice [5] [Eq. (1)] despite the
presence of phase noise. Simulations were carried out on a film of spin ice, one unit-cell thick, for parameters appropriate to
Dy2Ti2O7, with magnetic field parallel to a cubic crystal axis in the plane of the image.

phase φ ∼ ±0.4 mrad, a fact related to the “height repre-
sentation” of two–dimensional vertex models [43]. How-
ever in regions visited by monopoles (remainder of sam-
ple), phase maps are more complicated, reflecting the
fact that the Dirac string connecting monopoles cannot
be uniquely defined in the absence of magnetic field [10].

The key to imaging monopoles in thermalised sam-
ples is to consider the difference in phase which accu-
mulates over time, relative to an initial spin configura-
tion. Since all changes in spin configurations come from
the movement of monopoles, this provides a direct mea-
surement of both the location of monopoles, and the
path by which they have moved. Moreover, it is known
that the Markovian dynamics of classical MC simulation,
carried out using local spin updates, gives a good ac-
count of the diffusive dynamics of monopoles in spin ice
[7, 44]. This implies that simulation time can be used as
a proxy for real time, up to a known conversion factor
of 1 MC step = 2.5 ms, characteristic of Dy2Ti2O7 at
T = 700 mK [44].

In Fig. 5e we show a map of the phase difference at a
timestamp of t = 5 ms, relative to a reference state at
t = 0, in which two monopoles were present. (See Sup-
plementary Information for an animation of the phase–
difference as a function of time). During the first 5 ms,
both monopoles have moved a short distance, leaving a
track which functions much like the Dirac string for a
monopole in field, with a ramp in phase ∆φ ∼ 0.8 mrad
marking the (change in) magnetic charge at each end
of the track. Qualitatively similar results are found at
t = 10 ms [Fig. 5f] and t = 15 ms [Fig. 5g], as the two
monopoles continue to diffuse around the lattice. And
being topological in nature, the tracks left by moving

monopoles remain discernable in the presence of finite
phase noise [Fig. 5i, Fig. 5j, Fig. 5k].

A qualitatively new feature is visible in the phase–
difference maps for t = 20 ms [Fig. 5h, Fig. 5l]. In
addition to tracks left by moving monopoles, these ex-
hibit bounded regions of constant phase–difference ∆φ ∼
±0.4 mrad, with both square and hexagonal perimeters.
These reflect (incoherent) tunnelling between different
states obeying the ice rules. Over a timescale δt ∼ 5 ms
(2 MC steps) it is possible for a pair of monopoles to
come into existence, traverse a closed loop of spins, and
anihilate. The shortest path on which they can do so is
one of hexagonal plaquettes of the pyrochlore lattice [cf.
Fig. 1c and the hexagonal pattern of Fig. 5h]. The square
patterns in Fig. 5h are recognised as two-dimensional pro-
jections of a four-spin spiral connecting the top to the
bottom surfaces of the thin film.

Associated with these new features, is a new piece of
physics. Where an electric current is transported around
a loop, it acts as a source of magnetic field (current
loop). By direct analogy, where a magnetic charge trav-
els around a loop, this has the interpretation of a mag-
netic current loop, i.e. a source of electric field. Fluctua-
tions of electric field have already been widely discussed
in the context of quantum spin ice, where they are asso-
ciated with coherent quantum tunnelling, and contribute
to emergent photon excitation [45, 46]. To the best of our
knowledge, the incoherent fluctuations of electric fields
in a classical spin ice with diffusive monopole dynamics
have not previously been discussed. None the less, they
are a robust feature of our simulations of thin films of
Dy2Ti2O7. And, since they involve a jump in phase over
an extended area, electric fields should prove easier to ob-
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Figure 5. Holographic signals of quantized magnetic monopoles, and emergent electric fields, in a thin film
of spin ice at T = 700 mK. (a-d) Phase maps taken from simulations at time stamps of t = 5, 10, 15, 20 ms, showing
magnetic monopoles (	/⊕) subject to diffusive dynamics. Results are shown for a spatial resolution of 20 pm, and ideal
phase resolution. (e-h) Differential phase maps for the spin configurations shown in (a-d), calculated relative to phase at time
t = 0. Magnetic monopoles trace Dirac strings as they move. Where monopoles annihilate after traversing a closed loop, the
associated fluctuation of an emergent electric field is visible as a region of constant phase difference. (i-l) Differential phase
maps equivalent to (e-h), but calculated for a spatial resolution of 240 pm, and with phase noise of 0.1 mrad. Fluctuations
of electric field remain clearly visible. Movement of magnetic monopoles can be distinguished by comparing successive frames
in simulations [cf. Animation in Supplementary Information]. Simulations were carried out for parameters appropriate to
Dy2Ti2O7, with a cubic lattice constant of a = 1.00(1) nm, for a film 1 nm thick, in the absence of magnetic field.

serve in experiment than point–like magnetic monopoles,
and their Dirac strings.

Conclusion. We have used electron holography to
characterise the magnetic monopoles of spin ice, through
experiments on artificial, “Kagome spin ice”, and simu-
lations of thin films of pyrochlore spin ice. Our experi-
ments on artificial spin ice demonstrate how holography
can be used to observe a magnetic monopole, measure its
(quantized) magnetic charge, and estimate its effective
size. They also offer new insights into the distributions
of magnetic fields on the scale of the lattice, and the lim-

its of the “dumbbell model”, when applied to macroscopic
magnetic moments.

Meanwhile, our simulations of pyrochlore spin ice pro-
vide a clear road map for observing individual magnetic
monopoles and their dynamics, using electron hologra-
phy. We exhibit phase maps for individual monopoles in
a sample polarised by magnetic field, demonstrate how
these can be used to measure magnetic charge, and show
how time–resolved experiments could be used to isolate
the signal of monopoles in a thermalised sample of spin
ice. These results also reveal that electron holography is
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sensitive to the emergent electric fields of a spin ice with
dynamics.

Having characterised pyrochlore spin ice through
simulation, we conclude with a few remarks about what
it would take to observe monopoles in experiment.
The synthesis of thin films of spin ice is now well
established. [47, 48] Installing a sample stage in a
TEM capable of holding a specimen at T = 700 mK,
while novel, presents no problem of principle. The
required spatial resolution (≈ 350 pm for a monopole;
≈ 700 pm for a fluctuation of electric field) compares
with a current state of the art of 240 pm. [49] And the
temporal resolution & 5 ms needed to see fluctuations
of electric field is also easily achievable with modern
electronics. The greatest challenge, therefore, is likely to
be phase resolution, with key phenomena occurring on
a scale ∆φ ∼ 0.4–0.8 mrad. Even so, this requires only
an incremental improvement on a current benchmark
figure of 1 mrad. [49, 50] We conclude that, with modest
development of instrumentation, electron holography
holds the realistic promise of directly imaging magnetic
monopoles in pyrochlore spin ice, and their dynamics.
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Methods
Holographic measurements and characterisation

were performed using a ThermoFisher Scientific Titan
G2 300kV Transmission Electron Microscope (TEM)
equipped with an electrostatic biprism [51]. The mag-

netic samples were mounted (needles) or patterned
(artificial spin ice) onto standard 3mm TEM grids,
before loading into standard side-entry TEM holders for
insertion into the microscope. Images and holograms
were acquired in Lorentz mode, in order to keep the
region around the sample free of external magnetic
fields. The biprism was mounted into the selected
area aperture strip, and this could be loaded into view
after alignment and focusing was complete. Holograms
were reconstructed into phase maps through the use of
Holoworks 5 as part of the Gatan Digital Micrograph
software suite.

Artificial Spin Ice (ASI) was thermalised ex-situ
based on the standard protocol of Ref. 52. Then, to in-
duce the formation of all-in/all-out vertices after loading
into the microscope, an external field was applied to the
sample in situ [36, 53]. This was done by tilting the
sample 30◦, applying the objective lens field to saturate
the artificial spin ice along one direction (which requires
about 5% of the objective lens field, corresponding to
0.8kG flux density), and then applying a slightly weaker
(3%) lens field in the opposite direction to partially re-
verse this saturation. This forms 3q monopoles along the
boundary between oppositely magnetized regions, allow-
ing them to be reproducibly generated.

The lattice spacing a was measured through focused
Lorentz imaging, a = 580±11 nm. Additionally, in order
to screen the artificial spin ice lattice for suitable vertices
to image, the general orientation of each magnetic island
domain was inferred through defocused Lorentz imaging
[Fig. 3a]. As the electron beam experiences a Lorentz
deflection in a direction perpendicular to the direction
of magnetization, the presence of bright and dark fringes
along the long edges of the magnetic islands allows
the magnitude and direction of magnetization to be
inferred [28].

Monte Carlo simulations of a thin film of spin
ice. The model system chosen for pyrochlore spin ice
simulations is dipolar spin ice with nearest neighbour
exchange and dipolar interactions, using parameters for
Dy2Ti2O7 [42]. The system is a slab of pyrochlore grown
along the [001] axis, of one cubic unit-cell thick (≈ 1.0
nm); it includes three layers of tetrahedra and four lay-
ers of spins. All nearest-neighbour exchange couplings
are included, including the orphan bonds on the surfaces
that do not belong to tetrahedra [54]. Such a system
could be realised in heterostructures where the spin-ice
thin film is sandwiched between two non-magnetic py-
rochlore lattices. All spins interact with each other via
magnetic dipolar interactions. The Ewald summation for
dipolar interactions has been adapted to the slab geom-
etry [54].

The in-plane system size is L = 10 cubic unit
cells, which means the total number of spins is
N = 16L2 = 1600. Monte Carlo simulations are first
thermalised at T = 700 mK, where monopoles are
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present but sparse [44]. During thermalisation [54], we
use a combination of worm algorithm [55] and Metropo-
lis single-spin-flip updates. After thermalisation,
measurements are taken using Metropolis single-spin-flip
updates, which are known to approximate the dynamics
of spin-ice compounds [7]. One Monte Carlo step (MCs)
is N attempts to flip a spin, and corresponds to 2.5 ms
in real time [44].

Computation of the vector potential was accom-
plished through the use of a parallelised Fortran code to
sum the vector potential in a 3D volume around a sam-
ple, with spatial resolution of 10 pm in each dimension.
In the case of the needle and artificial spin ice, the mag-
netic objects (needle and islands) were broken into small
domains with uniform magnetic moment mj . From there
the total vector potential in free space is

A(ri) =
µ0

4π

∑

j

mj × ri,j
|ri,j |3

. (4)

For pyrochlore spin ice, mj corresponds to Ising spins
obtained from Monte Carlo simulations. To minimise
boundary effects, periodic boundary conditions are used
and Eq. 4 becomes

A(ri) =
µ0

4π

∑

j,n

mj × (ri,j + L(nxx̂ + nyŷ))

|ri,j + L(nxx̂ + nyŷ)|3 , (5)

where L = 10 nm is the lattice period. We chose
the number of periods in order to keep the relative

error between n and n + 1 less than 0.1%. We found
−5 ≤ nx, ny ≤ 5.

Spatial Resolution and Phase Noise Estimates
In order to properly estimate the effects of lower spatial
resolution and phase noise, spatial filters are applied to
the high resolution phase maps. The reduced spatial res-
olution is generated by limiting the spatial information
that can be reconstructed through holography. This is
done by Fourier transforming the phase map, selecting
only the information that represents length scales above
the resolution limit via a circular aperture formed from
a Gaussian window, and inverse transforming back into
real space, represented as

Ifiltered = F−1
[
F [e−iφideal ]

(
|k− kedge| ≤

2π

xres

)]
,

(6)

where xres is the spatial resolution limit, and kedge
represents the FWHM of the Gaussian window. The
resultant image is then taken as the filtered phase map.
The phase noise is generated as shot noise from a Pois-
son distribution and then run through the same spatial
filtering before being added to the filtered phase map.
The standard deviation of this resultant noisy phase
map dictates the phase resolution, as with experimental
phase maps.
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I. HOLOGRAPHY METHODS

In Figures 2 and 3 of the main text, we present experimental electron holography measurements, acquired from
magnetic needles and artificial spin ice, as magnetic monopole analogues. These measurements were carried out
using a Thermofisher Scientific Titan G2 ETEM, operated at 300kV, as shown in Figure S1. This microscope was
equipped with a Schottky (XFEG) field emission electron gun, S-TWIN pole piece with 5.4mm gap, Lorentz lens
(for field-free imaging), post-specimen Cs-corrector (CEOS Gmbh) for the imaging forming lens system, and 2k x 2k
Gatan Ultrascan XP1000 CCD camera. To enable off-axis hologram formation, an electrostatic biprism was mounted
in the Selected Area plane. This experimental configuration allowed hologram fields of view of approximately 400nm
x 400nm, and typical biprism fringe contrast of 20% in vacuum. The specified spatial resolution in Lorentz mode was
1.3nm. For specimen mounting, a Thermofisher Scientific double-tilt low-background holder, and a Gatan 626 heating
holder, were utilized, both of which accepted standard 3mm diameter TEM grids. To study magnetic samples, the
microscope was set into Lorentz mode before loading the sample, to ensure field-free conditions around the sample
at all times. Using Lorentz mode allows the electron wave emitted by the field emission gun in the microscope to
propagate though the sample under field-free conditions, ensuring that any change in phase is caused by the sample,
as shown in Figure S1. This phase difference between the sample beam and the reference beam (which remains
unperturbed and propagates off-axis from the sample beam), is then encoded into an interference pattern, creating
the measured hologram.

Reconstructing the phase difference can be done via computational methods, selecting a side band in Fourier space
and then transforming back, as shown in Figure S2. This process was partially automated using Holoworks 5 as part
of the Gatan Digital Micrograph software suite. In all cases, after acquisition of the specimen hologram, an empty
reference hologram was acquired with the same optical parameters, to allow for correction of any residual distortions
or phase inhomogeneity arising from the optical system. This process was used for reconstructing phase maps for all
of the experimental data presented in this work. Note that the primary objective lens, while powered down in Lorentz
mode during all image and hologram acquisitions, could be temporarily excited in a controlled fashion to apply an in
situ magnetic field in the specimen area, to achieve controlled magnetization of the specimen.
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(a) (b)

Figure S1. Overview of the main elements used for off-axis electron holography (a) The elements of transmission
electron microscope utilized for holography, including a Lorentz lens which is used in place of an objective lens for magnetic
samples. (b) Similar elements represented in the Titan microscope used for this study.
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Figure S2. Breakdown of the information extracted from a hologram. Consider a hologram (a) of a magnetic island
in an artificial spin ice sample. The primary interference fringes of the hologram, which encode the amplitude and phase
information of interest, are present in the central region of the bright band (shown in zoomed inset). At the edges of the
bright band, variable period Fresnel fringes arising from diffraction at the edges of the biprism wire, are evident. These are an
unavoidable artifact of the utilized experimental system. The corresponding Fourier Transform is shown in (b). The sidebands
(blue) arise from the primary fringes in the hologram, and constitute the primary carrier frequency for the amplitude and phase
information. The centreband (red) arises from the conventional image intensity. Note that the oblique streak through the origin
arises from the Fresnel fringes, as well as the incomplete occupancy of the bright interference region in the acquired field of view
- a large spread of Fourier frequencies is necessary to reproduce the sharp bright/dark transition at the edge of the bright band.
Similarly, the horizontal and vertical streaks arise from the abrupt edges of the image. For reconstruction of the data, selecting
the centreband and performing an inverse Fourier Transform returns a real intensity image, similar to a normal TEM image
(c). However, a selective inverse Fourier Transform on the sidebands instead returns the actual interference fringes (zoomed)
encoding the complex attributes of the electron wave (d). For standard hologram reconstruction, selection and translation of a
single sideband to the origin in Fourier space, prior to performing the filtering and inverse Fourier transform, yields the desired
amplitude (e) and phase (f) signals.
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II. CHARACTERIZATION OF MAGNETIC NEEDLE AS A FUNCTION OF TEMPERATURE

In Figure 2 of the main text, we present results for holographic measurement of the magnetic charge associated
with the tip of a magnetic needle, extending earlier work by Beché et al. [1] In modelling these results we, like Beché
et al., assumed that the phase ramp found in experiment originated from the magnetization of the needle [Figure
2c,d]. Here we confirm that this is indeed the case, by showing that the phase ramp in vacuum disappears, once the
magnetic needle is heated above its Curie point.

In Figure S3 we show the phase maps reconstructed from a series of holographic measurements taken at temperatures
ranging from 25◦C to 375◦C. Heating was accomplished in–situ, using Gatan 626 TEM holder with heating element.
Prior to heating, the magnetic domains within the needle were aligned by magnetizing it along the long axis, in situ,
via manual control of the microscope’s objective lens. A phase ramp is clearly visible in the initial measurements at
25◦C [Figure S3a, cf. Fig 2b of the main text]. This phase ramp becomes progressively less pronounced on heating,
and is barely perceptible at 325◦C [Figure S3g]. At 375◦C [Figure S3h], the needle has been heated above the Curie
point of Ni [Tc ≈ 365◦C], and no phase ramp is observed. These results confirm the magnetization of the needle as
the origin of the phase ramp described in the main text.

(a) 25◦C (b) 75◦C (c) 125◦C (d) 175◦C

(e) 225◦C (f) 275◦C (g) 325◦C (h) 375◦C

Figure S3. Phase maps of needle while heated past Curie point. (a-h) Starting with a Ni needle magnetized along its
long axis, phase shifts about the needle were recorded at regular temperature intervals while ramping up past the Curie point
of 350◦C. The field of view is 150 nm×150 nm. Note that the scale bar range reduces as temperature rises, since the phase shift
is progressively weaker, until it wholly disappears at 375◦C. These results confirm the magnetization of the needle as the origin
of the phase ramp described in the main text, and conclusively exclude any contribution from optical or numerical artifacts.

III. ARTIFICIAL SPIN ICE CHARACTERIZATION

In Figure 3 of the main text we present our results for studying artificial spin ice with electron holography. The
results focus on vertices with a net charge of 3q, where all three islands are pointing towards or away from the vertex
center. In order to screen the artificial spin ice lattice for suitable vertices to image with holography, the general
orientation of each magnetic island domain can be inferred through defocused Lorentz imaging [Figure 3a]. The
contrast in this Fresnel mode of Lorentz imaging is affected by the electron beam being deflected perpendicular to
the direction of the magnetic field in the sample. [2] Given the aspect ratio of the islands, they are expected to be
remanently magnetized along the long axis, but the direction is unknown. The bright and dark fringes on either long
side, arising from Lorentz deflection of the electrons, allow the respective magnetization directions to be inferred,
thereby allowing 3q vertices to be identified. Additionally, in-focus Lorentz imaging, as shown in Figure S4, was
utilized for accurately measuring the magnetic island dimensions and spacings. The artificial spin ice lattice spacing
was measured to be 580±11 nm.

To induce the formation of all-in/all-out “3q” vertices, an external field can be applied to the sample in situ, as
illustrated in Figure S5. [3, 4] This is achieved by first tilting the sample 30◦, then applying the objective lens field to
saturate the artificial spin ice along one direction, which requires about 5% of the objective lens field (corresponding to
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Figure S4. In-focus image of artificial spin ice sample. Scale bar is included to give a sense of the lattice spacing between
adjacent vertices.

0.8kG flux density), and then applying a moderate amount (3%) of the lens field in the opposite direction to partially
reverse this saturation. This forms 3q monopoles along the boundary between oppositely magnetized regions, allowing
them to be reproducibly generated. In addition, any vertices within these magnetized regions would have a slight
phase ramp on top of their local phase signal, due to the correlated phase contribution from the surrounding islands.

Figure S5. Illustration of the methodology utilized to induce monopoles in artificial spin ice. Applying a strong
coercive field in one direction will force all islands along one direction (blue). By then applying a slightly weaker field in the
opposite direction, islands will begin to flip in the opposite direction (red) causing monopoles to form at the boundary (green).

A. Magnetic Moment Determination

The magnetic dipole moments of individual islands were determined from the experimental data. In-focus Lorentz
micrographs were utilized to obtain the lateral dimensions, while reconstructed phase maps were utilized to obtain
the permalloy layer thickness. The associated volumes, in conjunction with the known magnetization of permalloy
(7.8×105A/m),[4] allow the magnetic dipole moments to be determined. These measurements resulted in an average
magnetic moment of m = (2.9 ± 0.3) × 10−16A.m2. The specific moments for individual islands were also used to
match simulations to experimental phase maps.

Note that the determination of permalloy layer thickness, as mentioned above, involved some careful treatment of
the data. Firstly, the phase maps were corrected for any background phase distortions, utilizing reference holograms
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for standard correction, and additionally manual adjustment to correct any slight residual phase wedges. Secondly, the
local phase shift arising from the electrostatic mean inner potential of permalloy (V0 = 27.8 V) [5] was utilized to get
a first estimate for permalloy thickness. Finally, the thickness value was then refined against the total experimental
phase signal, in regions with and without permalloy. This comparison in thickness estimates from mean inner potential
and generated phase signal for a given magnetic volume provided a sanity check on this measurement. This layer
thickness value was then utilized for all subsequent magnetic dipole moment calculations.

IV. SIMULATION METHODS

Throughout the main text [Figures 2-5] we present simulations of electron holography on experimental magnetic
monopole analogues at various length scales. Here we describe the finite-element simulation techniques used to
generate those simulations. In order to simulate holography on magnetic systems, it is necessary to calculate the
contribution to the electron phase from the magnetic vector potential (cf. Aharonov-Bohm effect). This requires
calculating the magnetic vector potential ~A in the volume around each sample, then propagating the electron wave
through it to sum up the net phase change ∆φ. Once this vector potential is calculated, any arbitrary electron beam
path can be integrated through it to determine the effective phase shift. However, given that electron holography
utilizes a wide, collimated, and coherent beam, it is reasonable to assume that the beam path is parallel and pointed
entirely along the Z axis. [6] This means in reality that only the Z component of the vector potential is necessary to
calculate the phase, reducing a path integral into the following one dimensional integral

∆φAB

∣∣∣∣
z

= − e
~

∮
A · dl

∣∣∣∣
z

(S1)

= − e
~

∫
Azdz, (S2)

where Az is defined based on the system begin studied. Thus the phase map for a given sample can be calculated by
integrating the vector potential around it along the Z axis.

In order to calculate this vector potential, it was necessary to first generate the arrangement of spins/magnetic
domains for each experimental system. In the case of the needle and artificial spin ice [Figures 2c,3c] this can be done
by breaking up the magnetic objects into sufficiently small magnetic domains (u5 nm by 5 nm by 5ṅm). From there
the vector potential for a given spin/domain in a given system is given by

A(ri) =
µ0

4π

∑

j

mj × ri,j
|ri,j |3

in free space, (S3)

where mi represents the magnetic moment for each spin/domain. Using these simulation methods the phase maps
around various magnetic systems could be calculated to understand how holography would visualize spin phenomena.

A. Artificial Spin Ice

These simulation methods were used to compare with experimental measurements of artificial spin ice monopole
vertices [Figures 3c,e]. In order to ensure a good comparison between experiment and simulation, the size and shape
of each simulated island was adjusted to match the experimental islands. For this reason the volume measurement
of each island was helpful to ensuring this match. A given simulation would simulate the three islands of the vertex
along with the 12 islands immediately connected to these three, as any further islands would not contribute strongly
to the phase of the vertex. A representation of this region is shown in Figure S6.

Another simplification that was taken to improve simulation performance was designing the simulation kernel to
include the analytical form of Eq S2 evaluated at ±∞, which would result in the following equation:

− e
~

∫ ∞

−∞

µ0

4π

∑

j,i

myjxi −mxjyi
(x2i + y2i + z2i )3/2

dz = − e
~
µ0

2π
T
∑

j,i

myjxi −mxjyi
(x2i + y2i )

(S4)

where T is the thickness of the island, and the sum is applied over each point in the phase map (i), and the subdomains
of each island (j). These simulated phase maps were then compared to experimental phase maps with both heatmaps
[Figure 3b,c], as well as circular traces to ensure the phase map topology was correct, as shown below in Figure S7.
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Figure S6. Overview of the surrounding islands (blue) that are simulated alongside the vertex of interest (red) to account for
long range effects. These effects are minimal beyond this distance, so no further islands are required for simulating the details
of one vertex.

(a) (b) (c) (d)

Figure S7. Circular trace around 3q–vertex at radii of 40 nm, 80 nm, 120 nm, and 160 nm, showing the emergence of phase
ramps between islands in both experiment and simulation (cf. Figure 3b,3c). The data shown here is from the same sample as
Figure 3 of the main text.

B. Pyrochlore Spin Ice

In Figures 4 and 5 of the main text we show simulations of how pyrochlore spin ice phase maps would appear,
assuming a holography microscope with sufficient resolution were available. For the simulation of pyrochlore spin
ice, the sample chosen was a thin film (1 nm) of spin ice. This thickness corresponds with a single cubic cell of the
pyrochlore lattice, meaning spins are distributed over 4 layers and form 3 layers of tetrahedra. To more accurately
calculate a large lattice of magnetic spins and minimize boundary effects the sum is taken over a collections of spins
in a periodic lattice. This means Eq S3 evolves to

A(ri) =
µ0

4π

∑

j,n

mj × (ri,j + L(nxx̂ + nyŷ))

|ri,j + L(nxx̂ + nyŷ)|3 , (S5)

The position vector is now modified by a lattice period L = 10 nm, which represents the size of a single unit of the
periodic lattice. The number of periods in each direction n was chosen based on how many would be required to keep
the relative error between n and n+ 1 periods less than 0.1%. Based on this criterion 5 periods in each direction were
used for the periodic sum for pyrochlore spin ice.

In practice this simulation was accomplished through the use of Fortran code written to sum the vector potential in a
3D volume around a sample. The volume is represented by a three-dimensional array where each element corresponds
to one of the three components of magnetic vector potential (Ax,Ay,Az), with spatial resolution of 20 pm in each
dimension. The simulation then goes through the volume via a loop, calculating the vector potential for a point
in space based on all the contributions from the magnetic spins/domains in the sample and the periods in both X
and Y directions. The location of each of these spins is read in from a file to easily test many different magnetic
configurations. This summation is parallelized through MPI to allow for reasonable computation time. Once the
vector potential around the thin film is calculated it is integrated into a phase map, as shown in Figure S8 as well as
Figures 4a and 5a-d in the main text.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S8. Simulated phase maps of a thermalized spin ice thin film at 700mK. (a-d) These simulated phase maps
at 20 pm resolution, close to the theoretical ideal, show how monopoles (black) disrupt phase regions (red/blue) as they move
through the lattice. (e-h) Once higher phase noise and limited spatial resolution is introduced however, this movement and
disruption of phase regions becomes difficult to discern. This difficulty is the reason why using a differential measurement of
the phase over time [Figure 5e-l] is preferable to visualize monopole movement.

V. ANIMATIONS OF MONOPOLE DYNAMICS IN PYROCHLORE SPIN ICE

In Figure 5 of the main text we present a series of differential phase maps, showing how dynamics of magnetic
monopoles [Figure S10] and electric fields [Figure S11] could be resolved through holographic measurements of spin
ice. These results were obtained through Monte Carlo simulations of the time–evolution of spin configurations within
a thin film of pyrochlore spin ice at 700 mK, over a period of 1 s, sampled at an interval of 2.5 ms, corresponding to
a single Metropolis update of the entire lattice. For the purpose of Figure 5, this time series was further sampled at
an interval of 5 ms, over a period of 20 ms. Here we present phase maps for a 70 ms segment of the same time series
in the form of two animations.

In the first animation [movingMonopole.mp4], we show differential phase maps obtained assuming spatial resolution
of 20 pm and perfect phase resolution, equivalent to Figure 5e-h. Two monopoles are visible in the initial configuration
at t = 0. Since the differential phase map is obtained by subtracting the phase map at t = 0 as a reference, it is entirely
featureless at t = 0. Over the next ∼ 15 ms these monopoles diffuse independently around the lattice, leading to a
differential phase signal which tracks their motion. The charge associated with each monopole can now be identified
from the sense of the phase ramp it generates as it moves. And in the wake of the monopole motion, a Dirac string
appears, connecting the monopole with its initial position at t = 0.

A new element of spin–ice dynamics is visible from t ≈ 15 ms. Thermal fluctuations constantly create new pairs
of monopoles. However these are short–lived, and typically annihilate, invisibly, in less than 2.5 ms. However where
monopoles traverse a closed loop before annihilating, they leave a signal in the differential phase map, in the form of
a region of constant phase difference. And just as the movement of electric charge in a closed loop creates a magnetic
field, so the movement of magnetic charge in a closed loop generates an electric field. [7, 8]

The shortest closed loops on the pyrochlore lattice have the form of regular hexagons in [111] planes (cf. Fig. 1 of
the main text). In the [100] projection shown here, these present as elongated hexagons of constant phase difference.
This phase difference can be positive or negative, depending on the sign of the monopoles’s charge, and sense in which
it traversed the loop. In a thin–film geometry, it is also possible for monopoles to move on an open, corkscrew path
connecting the two edges of the sample. In the [100] projection, these present as unit–square regions of constant phase
difference. Both signals are visible in the animation.

In the second animation [movingMonopoleNoise.mp4], we present exactly the same results, but with simulated phase
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noise of 0.2 mrad, comparable to Figure 5f-l. In this case, the differential phase maps are subject to a constantly
fluctuating background. None the less, the signals coming from the movement of monopoles, and fluctuations of
electric field, are clearly visible.

VI. SPATIAL RESOLUTION AND PHASE NOISE ESTIMATES

In Figures 4 and 5 of the main text, we present phase maps of pyrochlore spin ice with ideal phase resolution, but
also phase maps with finite spatial and phase resolution to estimate experimental limits for observation. In order
to properly estimate the effects of lower spatial resolution and phase noise, spatial filters are applied to the high
resolution phase maps. The reduced spatial resolution is generated by limiting the spatial information that can be
reconstructed through holography. This is done by Fourier transforming the phase map, selecting only the information
that represents length scales above the resolution limit via a circular aperture formed from a Gaussian window, and
inverse transforming back into real space, represented as

Ifiltered = F−1
[
F [e−iφideal ]

(
|k− kedge| ≤

2π

xres

)]
, (S6)

where xres is the spatial resolution limit, and kedge represents the FWHM of the Gaussian window. The resultant
image is then taken as the filtered phase map. The phase noise is generated as shot noise from a Poisson distribution
and then run through the same spatial filtering before being added to the filtered phase map. The standard deviation
of this resultant noisy phase map dictates the phase resolution, as with experimental phase maps.

Using this definition of phase resolution, it was possible to test the requirements needed to observe monopoles and
similar signals. This was first applied to the test case of a single monopole in a magnetized lattice, as shown in
Figure S9. All of these phase maps were taken with a spatial resolution of 240 pm, but with increasing amounts of
phase noise. As with Figure 4 in the main text, a single monopole is well resolved at phase resolution of 0.2 mrad.
However when scaling up to phase resolution levels of 2mrad, the monopole signal is completely washed out by noise
for a single phase map.

Moving on to differential phase maps, a similar limit of 0.2 mrad was set for resolving monopole movement through
a thermalized lattice around 700mK [Figure 5i-l]. This is further visualized in Figure S10 where the same frames
of monopole movement are simulated with increasing amounts of phase noise, from 0 to 0.4 mrad. Based on this
comparison it becomes difficult to clearly identify monopole movement at 0.3 mrad, and completely impossible at
0.4 mrad. However, the electric field fluctuations in the final column of Figure S10 remain distinct even at these higher
phase noise levels. Testing the limits of that particular signal in Figure S11 even further shows that these fluctuation
can be resolved with a phase resolution of 0.6mrad, well above any monopole signals. This suggests that the electric
field fluctuations also provide an important target for future holography studies, as equipment and specifications
improve.
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(a) (b) (c)

(d) (e) (f)

Figure S9. Simulation of holographic measurement of magnetic monopole in a thin film of spin ice in applied
magnetic field. (a) Simulated phase maps with 240 pm resolution give a sense of how the flipped spins reveal a Dirac string
emerging from a single monopole (	). The simulated thin film is 1 nm thick with all spins magnetized along the Y axis. The
Dirac string connected to each monopole breaks this order and divides the phase into distinct regions. A single -1 monopole
(	) draws a Dirac string with positive phase on the right and negative phase on the left. (b,c) Taking into account phase
noise as well also shows this Dirac string can be easily identified at phase resolution levels of 0.2 mrad, but not quite at 2mrad.
(d-f) Furthermore circular traces around each monopole show linear ramps similar to previous results. Each trace was taken
at a radius of 2 nm, with the background correction for phase contribution from the lattice. Although the sharp jump in phase
across the Dirac string is initially distinguishable, it eventually becomes lost even at higher noise levels. These resolution
limits of 240 pm and 2mrad are an upper bound for the capabilities of Hitachi’s Atomic Resolution Holography Microscope for
field-free imaging, which is required for magnetic samples. [9] The position axes are given in units of the cubic-unit-cell length
a = 1.00(1) nm for Dy2Ti2O7.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure S10. Simulated phase maps of a thermalized spin ice thin film at 700mK and increasing noise. (a-d)
These differential phase maps at 20 pm resolution, close to the theoretical ideal, show how monopoles (black 	 and ⊕) trace
differential signals in phase as they move within the lattice. (e-h) This movement remains distinguishable when considering
phase noise at 0.1 mrad or at 0.2 mrad (i-l), but becomes harder to distinguish with 0.3 mrad (m-p) and 0.4 mrad noise (q-t).



12

(a) (b) (c)

(d) (e) (f)

Figure S11. Simulated phase maps of a thermalized spin ice thin film at 700mK and emergent electric fields.
Alongside monopole movement, the emergence of electric field can be visualized with these same differential phase maps. Since
these emergent fields are formed from small loops of flipped spins, their collective phase signature is stronger than a single
monopole, allowing for their visualization at from 0.2 to 0.6mrad (a-e) before finally becoming indistinguishable from noise at
0.7mrad (f)
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