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Yb2Ti2O7 is a celebrated example of a pyrochlore magnet with highly-frustrated, anisotropic exchange inter-
actions. To date, attention has largely focused on its unusual, static properties, many of which can be understood
as coming from the competition between different types of magnetic order. Here we use inelastic neutron scat-
tering with exceptionally high energy resolution to explore the dynamical properties of Yb2Ti2O7. We find that
spin correlations exhibit dynamical scaling, analogous to behaviour found near to a quantum critical point. We
show that the observed scaling collapse can be explained within a phenomenological theory of multiple–phase
competition, and confirm that a scaling collapse is also seen in semi–classical simulations of a microscopic
model of Yb2Ti2O7. These results suggest a general picture for dynamics in systems with competing ground
states.

Frustration generates competition. When the interactions of
a many body system are frustrated, it is common to find many
competing phases close in energy to the ground state [1–3].
Even though some particular order may emerge as the stable
ground state at sufficiently low temperature, the proximity of
the competing phases may still have a substantial influence
on the system’s properties [2, 4–6, 8, 9]. In such a case, we
must understand the system through the lens of multiple phase
competition.

This multiple phase competition perspective has yielded es-
pecially helpful insight into rare-earth pyrochlore magnets [2],
most prominently Yb2Ti2O7 [2, 4, 6, 10–16, 18–31, 33]. Com-
posed of magnetic Yb3+ ions arranged in a lattice of corner-
sharing tetrahedra, the system orders ferromagnetically at T =

270 mK [27, 34, 35]. Its magnetic Hamiltonian lies extremely
close to the boundary between canted ferromagnetic (FM) or-
der and Γ5 antiferromagnetic (AFM) order [4, 6, 22, 26]. And
in the broader parameter space, this phase boundary termi-
nates in a spin liquid where it meets a Γ7 AFM [2, 7]. Various
static properties of Yb2Ti2O7, such as its low ordering tem-
perature, the strong variation between samples and the equal-
time spin correlations have been understood as arising from
multiple phase competition [2, 4, 22, 23, 26].

However not all behaviors of Yb2Ti2O7 are well–
understood, particularly those relating to dynamics. Above
the long range magnetic ordering transition T = 270 mK and
up to T ∼ 2 K, Yb2Ti2O7 is in a short-ranged correlated mag-
netic phase [10]. In this temperature regime, diffuse rods of
neutron scattering appear along {111} directions which signal
structured spin correlations [14–16, 18, 22]. The presence of
these rods is a signature of the proximity of AFM order, and
thus falls within the picture of multiple phase competition, but
their energy dependence remains an open issue. Meanwhile,
thermal conductivity [37, 38] and thermal hall conductivity

[39] reach anomalously large values in the Yb2Ti2O7 short-
range correlated phase, and terahertz spectroscopy appears to
show the presence of massive magnetic quasiparticles [40].
Thus the 0.27 K < T < 2 K magnetic state hosts exotic but
poorly understood dynamics. This raises the question: can
the intermediate temperature dynamics of Yb2Ti2O7 be under-
stood via multi-phase competition? What role, if any, does the
nearby spin liquid play? And, more generally, does multiple-
phase competition imply anything universal about the dynam-
ics of the disordered phase, in analogy with quantum critical-
ity?

In this study, we experimentally demonstrate a univer-
sal scaling relation for the energy dependence of the rod-
like scattering in Yb2Ti2O7 and connect it with the multiple
phase competition paradigm. This is accomplished through
low-energy neutron scattering measurements between 0.3 K
and 2 K, using ultra-high resolution inelastic neutron spec-
troscopy. The inelastic neutron scattering intensity along the
{111} directions of reciprocal space, S rod(ω), is described by
a scaling relation between temperature and energy:

kBTS rod(ω) = f
(
~ω

kBT

)
. (1)

We then show how this scaling relation can be understood
within a phenomenological theory of multiple phase com-
petition, combined with Langevin dynamics. This theory
is corroborated using semi-classical Molecular Dynamics
(MD) simulations of a microscopic model known to describe
Yb2Ti2O7, which confirm that the scaling behavior is asso-
ciated to the region of parameter space where FM and AFM
orders compete. We thus show that multiple phase competi-
tion has universal consequences—independent of the precise
Hamiltonian—in finite-temperature dynamics.

We measured the low-energy inelastic neutron spectrum of
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Figure 1. Low-energy neutron scattering from the short-range correlated phase of Yb2Ti2O7. Panels (a)-(i) show colorplots of neutron scattered
intensity, with the horizontal rows showing three different temperatures and the vertical columns show different constant energy slices in the
hh` scattering planes. All temperatures and energies show diffuse scattering rods along {111} directions along with crosses of scattering
centered at (220). Panel (j) shows the data integrated over the {111} scattering rods [indicated by the red box in panel (a)] scaled by the
temperature. Up to 2 K, the data collapses onto itself and follows a scaling relation of type Eq. 1. The specific form of scaling predicted by
our phenomenological theory of multiple-phase competition, Eq. 3, is shown with a solid line. Error bars indicate one standard deviation.

Yb2Ti2O7 between 0.3 K and 2 K using the ultra-high resolu-
tion BASIS backscattering spectrometer [1] at ORNL’s SNS
[42]. The sample was two single crystals grown with the
traveling solvent floating zone method [34] (the same crys-
tals as ref. [4]) co-aligned in the (hh`) scattering plane,
and mounted in a dilution refrigerator. We rotated the sam-
ple over 180◦ about the vertical axis, measuring the scatter-
ing up to 300 µeV (the full bandwidth of this configuration)
with 3 µeV full width at half maximum energy resolution—
much higher resolution than previous measurements of these
features. Constant-energy slices of the data are shown in
Fig. 1. We measured the Yb2Ti2O7 spectrum at temperatures
330 mK, 500 mK, and 800 mK with 12 K background in one
experiment, and then 330 mK, 2 K, 3 K with 12 K background
in a second experiment with the same sample. (12 K is well
into the paramagnetic phase where all spin correlations are
lost, and thus makes an appropriate background for the in-
elastic data—see supplemental information for details [43].)
Because of beam heating, the cryostat thermometer may differ
from the actual sample temperature; accordingly, the tempera-
ture of the lowest temperature measurement was derived from
a fitted Boltzmann factor for the positive and negative energy
transfer scattering on the {111} feature: T = 0.33(4) K.

As is clear from Fig. 1, the inelastic scattering pattern in
the short-range correlated phase has well-defined rods of scat-
tering extending along {111} directions. As energy transfer
ω increases, the scattering pattern grows weaker and broad-
ens, but does not change its overall character. Intriguingly, the
same effect is observed as temperature increases: the rod scat-
tering pattern is preserved but grows weaker and broader. This
suggests a scaling relation between temperature and energy.

To test this hypothesis, we integrated the {111} rod scatter-

ing [shown by a red box in Fig. 1(a)] and plotted the inten-
sity multiplied by temperature as a function of energy divided
by temperature in Fig. 1(j). We find that the data collapse
onto a universal curve, and above ~ω/kBT ≈ 1 the data fol-
low a (~ω/kBT )−n power law behavior, with a fitted exponent
n = 1.03(3). (In the supplemental information, we show this
exponent to be robust against different Q integration regions
[43].) This implies a scale-invariance in the dynamics of the
Yb2Ti2O7 short-range correlated phase.

To understand this, we construct a phenomenological the-
ory which takes into account the competition between FM and
AFM phases. Writing a Ginzburg-Landau theory with dissi-
pative dynamics [3] in terms of competing order parameters
of ferromagnetic and antiferromagnetic phases, and assuming
low-energy modes along {111} which collapse to zero energy
at some temperature Trod, we find an equation (derived in the
Supplemental Information [43]) for the inelastic structure fac-
tor of a [111] rod S rod

S rod(ω) =

∫ q2

q1

S (q111, ω)

= 2(nBE(ω) + 1)
1

k2
B(T − Trod)2

B~ω

R2 + ~2ω2

k2
B(T−Trod)2

. (2)

Here B and R are non-universal dimensionless constants, and
nBE(ω) is the Bose-Einstein distribution.

Fitting Eq. 2 to the Yb2Ti2O7 experimental data, we find
good agreement with Trod = −0.05(5). This is zero to within
uncertainty. Setting Trod = 0 explicitly we obtain the scaling
relation (1), with the scaling function:

f (x) = 2
(

1
exp(x) − 1

+ 1
)

Bx
R2 + x2 (3)
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Figure 2. Dynamical scaling collapse of S cl
rod(ω) calculated using Molecular Dynamics simulations. (a) Calculations with exchange parameters

set to the values estimated for Yb2Ti2O7 in [4] (point A in Fig. 3). A near, but imperfect, collapse is observed. (b) Calculations with a modified
value of J1 such that the exchange parameters lie on the FM/AFM boundary (point B in Fig. 3). A much closer data collapse is observed
compared to (a). (c) Calculations at the spin liquid point J1 = J2 = J4 = 0, J3 < 0 (point C in Fig. 3). The collapse is observed with a
vanishing value of the rod criticality temperature Trod.

which depends only on the ratio x = ~ω
kBT . This form for f ( ~ωkBT )

beautifully matches the experimental data as shown in Fig. 1,
with fitted constants B = 0.0181(3) and R = 0.80(3).

The crucial ingredients in the phenomenological theory be-
hind Eq. 3 are (i) dissipative dynamics; (ii) close competi-
tion between two phases, here ferromagnetic and antiferro-
magnetic; (iii) flat, low energy modes, along the {111} direc-
tions; (iv) a collapse of these modes to zero energy at some
temperature Trod; (v) Trod ≈ 0.

Of these, (i) is a natural assumption for a paramagnetic
phase in a strongly interacting system, (ii) has been inferred
previously from the static behavior of Yb2Ti2O7 [4, 22, 23]
and (iii) is known to follow from (ii) [2]. Explaining the data
then requires one novel assumption [(iv)] and an empirical de-
termination that Trod ≈ 0 for Yb2Ti2O7 [43].

To validate the idea of a temperature-dependent, collapsing,
energy scale for the {111} rods in a microscopic model ap-
propriate to Yb2Ti2O7, we turn to molecular dynamics (MD)
simulations. We simulate a nearest-neighbor anisotropic ex-
change Hamiltonian:

Hex =
∑
〈i j〉

∑
αβ

Jαβi j S α
i S β

j . (4)

The form of the exchange matrices Jαβi j is fixed by sym-
metry [2, 5, 6] and there are four independent parameters
{Jk} = {J1, J2, J3, J4}. Several different estimates of these pa-
rameters are available for Yb2Ti2O7 [4, 6, 22, 26], generally
placing Yb2Ti2O7 close to a phase boundary between ferro-
magnetic and antiferromagnetic order [2].

The dynamics of the model (Eq. 4) are simulated following
the method in (e.g.) [8, 46, 47]. First, an ensemble of config-
urations is generated at temperature T using a classical Monte
Carlo simulation, treating the spins as vectors of fixed length
|Si| = 1/2. We then time-evolve the configurations using the
Heisenberg equation of motion

~∂tSi(t) = Si(t) × heff
i (t) (5)

where heff
i (t) is the effective exchange field produced by the

spins surrounding i. The dynamical structure factor is then
calculated by Fourier transforming the correlation functions
in both time and space and averaging over the ensemble. We
do not include an explicit dissipation term in Eq. (5) but the
resultant dynamics can nevertheless be dissipative, due to the
strong interactions between modes, arising from non-linearity.

Since the simulations sample from a classical ensemble of
states, the comparison of the phenomenological theory with
the simulation results requires using the classical fluctuation-
dissipation relationship S (ω) = 2kBT

ω
Im[χ(ω)], as opposed to

the quantum relationship S (ω) = 2(nBE(ω) + 1)Im[χ(ω)] used
to derive Eq. (2) [43]. This leads to the following modified
scaling law:

kB(T − Trod)2

T
S cl

rod(ω) =
A

W2 +
(

~ω
kB(T−Trod)

)2 (6)

S cl
rod(ω) is the semi-classical structure factor integrated along

a {111} rod and the right hand side of Eq. (6) is only a function
of the ratio ~ω

kB(T−Trod) . A and W are non-universal constants.
In Fig. 2 we show the scaling collapse of the simulated

S cl
rod(ω) for three different sets of exchange parameters {Jk}.

For each parameter set, Trod is treated as an adjustable param-
eter to optimize the data collapse.

In Fig. 2(a) we show the simulation data for the exchange
parameters estimated for Yb2Ti2O7 in [4]. This parameter set
lies close to the FM/AFM boundary, but not exactly on it. Ac-
cordingly, the collapse of the simulation data is close, but im-
perfect. Adjusting the value of J1, such that the parameters
lie exactly on the T = 0 FM/AFM phase boundary, greatly
improves quality of the data collapse as shown in Fig. 2(b).
Moving away from the phase boundary the collapse becomes
worse (see Supplemental Materials [43]). This confirms the
connection between the observed dynamical scaling and the
proximity of the FM/AFM phase boundary.

The MD data collapses in Fig. 2(a) and (b) both use finite
values of Trod. In both cases Trod < Torder where Torder is the
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Figure 3. Finite temperature phase diagram of the pyrochlore
{J1, J2, J3, J4} exchange model [5, 6, 43], determined from classi-
cal Monte Carlo simulations. The horizontal axis is J1, the ver-
tical axis is temperature, and the out-of-the-page axis is J2, with
J3 = −0.322 meV and J4 = −0.091J2. The solid lines show Torder

as a function of J1, for a series of values of J2. Point A shows the
Yb2Ti2O7 exchange parameters [4], Point B has the same values of
J2,3,4 as A, but J1 is adjusted so as to lie exactly on the phase bound-
ary, and Point C is a point at which FM and Γ5 orders meet another
form of antiferromagnetic order and a spin liquid emerges [7]. The
green line shows the finite temperature boundary between the ferro-
magnet (FM) and antiferromagnetic Γ5 (AFM) states, which goes to
zero at the classical pinch line spin liquid point. Thus in the finite
temperature regime, Yb2Ti2O7 is continuously connected to a zero
temperature spin liquid phase.

temperature of a magnetic ordering transition. Similarly, in
experiment Trod = 0 < Torder = 0.27 K. The point where
the rods become critical is thus hidden beneath a thermody-
namic phase transition and never reached in the simulations,
although its effects are seen in the correlated paramagnetic
phase.

A striking aspect of the experimental results is the vanish-
ing value of Trod ≈ 0, whereas the simulations for parameters
close to Yb2Ti2O7 find a finite value of Trod. The vanishing
of Trod is suggestive of the influence of a spin liquid, and in-
deed there is such a spin liquid on the phase diagram where
three ordered phases meet and magnetic order is completely
suppressed [2, 7]. In Fig. 3 we show how the transition tem-
peratures of FM and AFM phases found in simulation collapse
approaching this point, marked C. The temperature scale Trod
also tends to zero approaching the spin liquid, as shown in
Fig. 4. The vanishing value of Trod in experiment is therefore
suggested to stem from the influence of a nearby spin liquid,
whose regime of influence is widened by quantum fluctua-
tions.

This hypothesis, that the Yb2Ti2O7 finite temperature phase
is driven by a proximate spin liquid, is reasonable given (i)
the finite-temperature regime is continuously connected to the
zero-temperature spin liquid, with a smooth decrease of Torder
connecting the two [Fig. 3], (ii) the observed experimental
scaling collapse in S rod(ω) with Trod = 0 [Fig. 1.(j)] is a
feature of the pinch-line spin liquid point [Fig. 2.(c)], (iii)
spin-wave calculations suggest that quantum fluctuations ex-
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Figure 4. Variation of thermodynamic transition temperature
Torder, and dynamic criticality temperature Trod, found in simula-
tion. Results are shown for a path in parameter space which connects
Yb2Ti2O7 (A) to the spin-liquid point J2 = 0 (C), shown by a white
line in the inset. Both Torder and Trod tend to zero approaching the
spin liquid. Trod < Tordering for all parameters, meaning that the ap-
proach to criticality on the rods is cut-off by the ordering transition
as temperature is lowered. The effects of this hidden critical point
are nevertheless seen in the paramagnetic phase.

pand the pinch-line spin liquid to a finite region in parameter
space extending especially along the FM/AFM phase bound-
ary [2]. This may explain the anomalous transport behavior in
the Yb2Ti2O7 finite-temperature phase [37–40].

In summary, we have experimentally demonstrated a dy-
namical scaling relation in the structure factor for inelastic
neutron scattering in Yb2Ti2O7. We have shown how this
scaling can be understood using a phenomenological theory
based on multiple phase competition, and demonstrated that
equivalent scaling can be found in simulations of a micro-
scopic model of Yb2Ti2O7. These results show how multiple
phase competition can have universal consequences beyond
the ground state, manifesting in the spin dynamics of a corre-
lated paramagnetic phase.

The short-range correlated phase of Yb2Ti2O7 is thus best
understood in terms of an underlying competition between
ferromagnetism and antiferromagnetism and the influence of
this competition extends not just to static but also dynamic
properties. The description of the dynamics in terms of a
Langevin equation suggests an absence of long-lived prop-
agating quasiparticles in the paramagnetic regime. Future
work will be needed to address whether this theory can ex-
plain other mysterious intermediate-temperature behaviors of
Yb2Ti2O7, such as transport.

Since extended low energy modes are quite a common fea-
ture of frustrated magnets in general it seems likely that a
similar framework may apply to several materials. In par-
ticular, given that a finite-temperature correlated phase is a
feature of many Yb3+ pyrochlores [49], the phenomenology
seen here may prove generic to the entire class, particularly
Yb2Ge2O7 which also lies close to a phase boundary [50, 51].
Moreover, since extended degenerate modes emerge on sev-
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eral phase boundaries of the pyrochlore anisotropic exchange
model (Eq. 4) [2], it would be interesting to search for dy-
namical scaling behavior in other pyrochlore oxides such as
Er2Sn2O7 [52–54].

Taking a wider perspective, our experimental results and
their interpretation via Eq. (3) imply an emergent relax-
ation time τrod = 1

R
~

kBT with R ≈ 0.8 [43]. This is close
to the “Planckian” dissipation time τPlanck = ~

kBT which has
been discussed as a possible fundamental bound on dissipa-
tive timescales in strongly coupled systems [55–58]. Experi-
mental efforts in this area have focussed principally on charge
scattering in metals, but if there is a universal principle at play
it should presumably show up in other contexts too, including
the spin dynamics of correlated insulators. Whether there is
any link between these concepts and the physics uncovered
here in Yb2Ti2O7 is a direction worth exploring.
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S1

SUPPLEMENTAL INFORMATION FOR DYNAMICAL
SCALING AS A SIGNATURE OF MULTIPLE PHASE

COMPETITION IN YB2TI2O7

I. EXPERIMENTS

We measured the Yb2Ti2O7 inelastic scattering using the Si
(111) reflection on the Basis spectrometer in 60 Hz operation
mode, giving a wavelength λ = 6.1 Å, an energy resolution of
3.6 µeV, an energy bandwidth from -50 to 300 µeV [S1]. The
raw data from these measurements are shown in Fig. S1. As
noted in the main text, these data were taken over two separate
BASIS experiments using the same sample, but with slightly
different slit configurations. Thus we normalized the intensity
scale by the lowest temperature 10 µeV rod scattering, where
the rods are strongest and clearest.

To remove experimental artifacts from the data, we treated
the 12 K scattering—well above the short-range correlated
phase—as background and subtracted it from the lower tem-
perature data. At these low energies, this eliminates artifacts
isolates the magnetic scattering very well, as shown in Fig.
S2. The Q resolution of BASIS is not very good, which leads
to a choppiness in the data in the Q-dependence of the rods.
However, the BASIS energy resolution is excellent. Provided
a large enough Q region is integrated over, the magnetic scat-
tering energy dependence is revealed in exquisite detail.

A. Fitting the timescale

The Yb2Ti2O7 short-range correlated phase scattering pat-
tern has no noticeable dispersion, but does have a mono-
tonic decrease in intensity as energy increases. On the sim-
plest level, the fluctuation timescale can be extracted from the
energy-dependence by fitting it to a Lorentzian function. We
do this, pixel-by-pixel, for the 0.33 K, 0.5 K, and 0.8 K scat-
tering in Fig. S3. In this case we use a Lorentzian func-
tion (the Fourier transform of exponential decay) weighted
by the Boltzmann factor, such that the temperature can also
be extracted from the imbalance between negative and pos-
itive energy transfer scattering. (Incidentally, the data in
Fig. S3(a) is what was used to define the lowest tempera-
ture T = 0.33(4) K.) After smoothing the data (to cover over
the gaps in intensity along the {111} rods), the spin fluctu-
ation timescale can be straightforwardly fitted. As expected,
the fluctuation timescale decreases as temperature increases.

Intriguingly, at the lowest temperatures the timescale does
not appear to be correlated with the strength of the scattering
feature. As shown in Fig. S3(d), at 0.33 K the {111} scat-
tering rods have the same timescale (∼ 2.5 ps) as the weaker
crosses at (220). However, this Q-independent timescale does
not appear to hold as temperature increases: by 0.8 K the
(220) correlations appear to fluctuate faster than the {111}
rods, suggesting that the {111} rods are associated with the
more persistent spin correlations at higher temperatures. This
comports with the theoretical result that the (220) feature does

not have the same critical scaling as the {111} rods. (Unfor-
tunately, the statistics of the experimental (220) scattering are
too weak to reliably test for critical scaling directly.)

B. Scaling relation

In the main text we show that the {111} rods follow a
(~ω/kBT )−1 scaling relation. Here we show this result is ro-
bust to different integration windows. In Fig. S4, we show
the data collapse of the Yb2Ti2O7 {111} scattering with dif-
ferent integration widths in Q perpendicular to the rods. As
the window narrows, the data becomes considerably noisier,
but it continues to follow a power law n ≈ −1. As the win-
dow widens, the low temperature low energy scattering begins
to deviate from the scaling collapse because the bin width
is wider than the actual rod, making the integrated intensity
smaller than it should be. Nevertheless, the overall trend still
shows a n ≈ −1 scaling relation. As a compromise between
these two effects (noisy data and unreliable low-energy points)
we chose to display the ∆Q = 0.15 rlu (reciprocal lattice units)
in the main text.

Eq. 2 of the main text gives a general equation for {111}
scaling as a function of T − Trod, where the {111} rods are
gapped at T = 0 but collapse to zero at some finite temperature
Trod [see Eq. (S.6)]. We treated Trod as a fitted parameter and
fit the Yb2Ti2O7 {111} scattering to Eq. 2, and the results
are shown in Fig. S5. The experimental Trod = −0.05(5) is
negative but overlaps with 0 to within one standard deviation
uncertainty (it is not even clear what a negative Trod would
mean in the phenomenological theory anyway). Therefore,
in our analysis of the Yb2Ti2O7 critical scaling we assume
Trod = 0, which gives a very good account of the data.

II. PHENOMENOLOGICAL THEORY

Here we derive scaling relation Eq. 2 in the main text.
First, we write down a Ginzburg-Landau free energy in

terms of the order parameters mT1 and mE [S2]. mT1 is the
three-component order parameter of the ferromagnetic phase,
mE is the two component order parameter of the antiferromag-
net [S2].
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1
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Figure S1. Low-energy neutron scattering from the short-range correlated phase of Yb2Ti2O7. The horizontal rows show three different
temperatures, and the vertical columns show different constant energy slices in the hh` scattering planes. The top four rows show the scattering
from the first BASIS experiment, and the bottom four rows show scattering from the second BASIS experiment. All temperatures and energies
show diffuse scattering rods along {111} directions along with crosses of scattering centered at (220).

F0 includes all bilinear terms in mE, mT1 and their first-order
spatial derivatives allowed by the time-reversal, inversion and
the point group symmetry of the lattice.

After Fourier transformation Eq. S.1 can be represented as

F0 =
1
2

∫
d3q Mα(−q)Vαβ(q)Mβ(q) (S.2)

where M is a five-component vector into which we collect
both mT1 ,mE and Vαβ(q) is a 5 × 5 coupling matrix.

To describe the close competition between FM and AFM
phases we assume cE = cT1 = c. The parameters fi, gi, ki

are chosen such that the eigenspectrum of V(q) (S.1) will fea-
ture low lying flat modes along the {111} directions. This re-

flects the microscopic physics of the FM/AFM phase bound-
ary where such a mode is known to emerge [S2]. This is built

into the theory by setting k1 = ±

√
12( f2 + 1

3 f3)(g1 + g2). The
low-lying mode thus obtained is two-fold degnerate by sym-
metry.

To describe the dynamics, we use a Langevin equation, of
a standard form appropriate for systems in which the order
parameters are not conserved quantities [S3]:

~∂t Mα(r, t) = −Γ
δF0

δMα(r, t)
+ θα(r, t) + Γhα(r, t) (S.3)

Γ is a dimensionless phenomenological parameter describing
the dissipation in the system. The first term in Eq. (S.3)
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Figure S2. The same data as Fig. S1, but with the 12 K data subtracted as a background. The elastic signal is very noisy due to the large
background, but the inelastic signal is clear at low energies. The diffuse scattering pattern broadens and grows weaker as T and ~ω increase,
in accord with the scaling relation we observe. In the 3 K data, the rods of intensity are barely visible, and we found that the 3 K data does not
follow the critical scaling relation seen at 2 K and below.

favours relaxation towards a state minimizing F0. hα is an
external field coupling to the order parameter components
Mα, which we include for the purpose of defining suscepti-
bilities. θα is a stochastic, Langevin noise field, which mod-
els the coupling of Mα to short-wavelength modes which
don’t appear explicitly in the phenomenological theory. θα
vanishes on average and is uncorrelated in space and time:
〈θα(r, t) θα′ (r′, t′)〉 = 2kBTΓδ(r − r′)δ(t − t′)δαα′ The magni-
tude of the fluctuations of θα is fixed by the requirement of
thermal equilibrium (fluctuation-dissipation theorem).

The a.c. susceptibility follows from Eq. (S.3)

χαβ(q, ω) =
∑
λ

(UT )αλ(q)
Γ

Γελ(q) − i~ω
Uλβ(q) (S.4)

where U(q) is the orthogonal matrix that diagonalizes V(q)
and ελ(q) are the eigenvalues.

We now consider momenta along (1, 1, 1): q =
1
√

3
q111(1, 1, 1) V(q) has two flat modes along this direction

with eigenvalue:

ε1,2(q111) = c (S.5)

with c being the coefficient in front of mE and mT1 in the
Ginzburg-Landau theory [Eq. (S.1)].

Let us then suppose these modes collapse to zero at some
temperature Trod

c = akB(T − Trod). (S.6)

Approaching Trod, these modes will dominate the suscepti-
bility, and the other modes can be neglected in the sum in Eq.
(S.4):

χαβ(q111, ω) =
∑
λ=1,2

(UT )αλ(q)Uλβ(q)Γ~ω
ΓakB(T − Trod) − i~ω

.

(S.7)

The real part of the susceptibility is then a Lorentzian:

Re[χαβ(q111, ω)] =
∑
λ=1,2

(UT )αλ(q)Uλβ(q)Γ2akB(T − Trod)

Γ2a2k2
B(T − Trod)2 + ~2ω2

(S.8)

which allows us to read off a relaxation time:

τrod =
~

ΓakB(T − Trod)
(S.9)

The structure factor is related to the imaginary part of the
susceptibility

Im[χαβ(q111, ω)] =
∑
λ=1,2

(UT )αλ(q)Uλβ(q)Γ~ω

Γ2a2k2
B(T − Trod)2 + ~2ω2

(S.10)
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Figure S4. Yb2Ti2O7 scaling relation of the {111} rods as a function
of the width of the integrated window. Qualitatively, the results do
not change as a function of integration window. rlu is reciprocal
lattice units.

The dynamical structure factor is then obtained using a
fluctuation-dissipation relationship, bearing in mind that we
need to use the quantum fluctuation-dissipation relationship,

S (q, ω) = 2(nBE(ω) + 1)Im[χ(q, ω)]

when comparing to experiment and the classical relation

S (q, ω) = 2
kBT
ω

Im[χ(q, ω)].

when comparing to simulation.
Using the quantum fluctuation-dissipation relationship, we

10 1 100 101

/ ( )

10 3

10 2

(
)

fitted = . ( ) K

0.33 K
0.5 K
0.8 K
2 K

Figure S5. Scaling relation of the Yb2Ti2O7 {111} rods where Trod

(main text Eq. 2) is allowed to vary as a fitted parameter. The results
show a slight deviation at low ω/T , but the fitted Trod value is nega-
tive and zero to within uncertainty. Error bars indicate one standard
deviation.

arrive at the result from the main text:

S rod(ω) =

∫ q2

q1

dq111S (q111, ω)

= 2(nBE(ω) + 1)
1

k2
B(T − Trod)2

B~ω

R2 + ~2ω2

k2
B(T−Trod)2

(S.11)

. Where

R = Γa (S.12)

and hence τrod = ~
RkBT when Trod → 0.

The constant of proportionality B is given by

B = Γ

∫ q2

q1

dq111

∑
µ,ν=x,y,z

2∑
λ=1

5∑
α,β=1

UT
αλ(q111)Uλβ(q111)GµαG∗νβ

(
δµν −

qµqν
q2

)
(S.13)

where Gµα(q) is a 3 × 5 matrix that relates the Fourier
transform of the magnetic moment distribution, m(q), to
the Fourier transform of the five-component order parameter
M(q):

mµ(q) =
∑
α

Gµα(q)Mα(q). (S.14)

For comparison to simulations, combining Eq. (S.7) with
the classical fluctuation-dissipation relation gives:

S cl
rod(ω) =

kBT
k2

B(T − Trod)2

A

W2 + ~2ω2

k2
B(T−Trod)2

(S.15)
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Figure S6. Finite temperature phase transitions of the anisotropic
exchange model, determined from classical Monte Carlo simula-
tions. This data was used to build the 3D phase diagram in main
text Fig. 3. Phase transition temperatures Tc are shown as a func-
tion of J1, for a series of values of J2, with J3 = −0.322meV and
J4 = −0.091J2. Values of J2 are shown in inset, in units of meV.
Filled circles represent phase transitions into the ferromagnetic (T1)
phase, open squares are transitions into the antiferromagnetic (E)
phase. The ordering temperature goes to zero approaching the spin
liquid point at J1 = J2 = J4 = 0.

with A and W being non-universal parameters:

A = 2Γ~

∫ q2

q1

dq111

∑
µ,ν=x,y,z

2∑
λ=1

5∑
α,β=1

UT
αλ(q111)Uλβ(q111)GµαG∗νβ

(
δµν −

qµqν
q2

)
(S.16)

W = Γa. (S.17)

Comparison of Eqs. (S.12), (S.13), (S.16) and (S.17) sug-
gests A = 2~B and W = R. We retain, however, a separate
notation to emphasise that we treat these as non-universal,
phenomenological, parameters which can be very different be-
tween the semi-classical and quantum systems. We use A and
W to refer to the fit parameters for the semi-classical scaling
and B and R to refer to the fit parameters for the experiment.

III. MONTE CARLO AND MOLECULAR DYNAMICS
SIMULATIONS

A. Microscopic Model

We simulate the nearest-neighbor anisotropic exchange
model on the pyrochlore lattice

Hex =
∑
〈i j〉

∑
αβ

Jαβi j S α
i S β

j . (S.18)

In the most general symmetry allowed model [S2, S5, S6]
there are six distinct interaction matrices Ji j, corresponding
to each of the six bonds within a pyrochlore tetrahedron. All

tetrahedra in the lattice then have the same set of six interac-
tion matrices. The six matrices are constrained by point group
symmetries and depend on four independent parameters. La-
belling the sites in a tetrahedron 0, 1, 2, 3, the exchange matri-
ces are:

J01 =

 J2 J4 J4
−J4 J1 J3
−J4 J3 J1

 J02 =

J1 −J4 J3
J4 J2 J4
J3 −J4 J1


J03 =

J1 J3 −J4
J3 J1 −J4
J4 J4 J2

 J12 =

 J1 −J3 J4
−J3 J1 −J4
−J4 J4 J2


J13 =

 J1 J4 −J3
−J4 J2 J4
−J3 −J4 J1

 J23 =

 J2 −J4 J4
J4 J1 −J3
−J4 −J3 J1


(S.19)

B. Monte Carlo (MC)

Monte Carlo simulations are performed on systems of clas-
sical Heisenberg spins with N = 16L3 sites, where L3 is the
number of cubic unit cells. The spin length is |S | = 1/2. Sev-
eral update algorithms are used together: the heatbath method,
over-relaxation and parallel tempering. Parallel tempering is
done every 100 Monte Carlo steps (MCS) and overrelaxation
is done at every MCS. Thermalization is made in two steps:
first a slow annealing from high temperature to the tempera-
ture of measurement T during te MCS followed by te MCS at
temperature T . After thermalization, measurements are done
every 10 MCS during tm = 10 te MCS.

The characteristics of our simulations are typically:

• L = 8,

• 106 ≤ tm ≤ 107 MCS,

• 100 different temperatures (regularly spaced) for paral-
lel tempering.

1. Finite temperature phase diagram

We have used classical Monte Carlo to determine the finite
temperature phase diagram of the nearest neighbor exchange
model on a path through parameter space interpolating be-
tween the parameters determined for Yb2Ti2O7 in [S4] and
the pinch-line spin liquid [S7].

The results are shown on a three-dimensional phase dia-
gram in Fig. 3 of the main text, and in a two-dimensional
projection of parameter space in Fig. S6 and show a continu-
ous suppression of the transition temperature as the spin liquid
is approached.

The equal-time structure factors of the lowest temperatures
of the three parameter sets in main text Fig. 2 have also been
calculated from classical Monte Carlo and are plotted in Fig.
S7.
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2. Generation of configurations for Molecular Dynamics (MD)
simulations

The initial configurations for the MD simulations of spin
dynamics are also generated using a Monte Carlo method, us-
ing a different algorithm than the simulations described above.

The initial configurations used for the dynamics are gen-
erated from a Monte Carlo sampling based on the heat bath
update. To speed up the update process, we use the property
that all spins of a given sublattice of the pyrochlore lattice can
be updated in parallel because they do not interact with each
other through first neighbors interactions.

We choose a unit cell of 16 spins to carry out the simula-
tions. In this configuration, we find that (i) 4 sublattices can
be updated in a single step at any given time, (ii) there are 24
different combinations of four independent sublattices. A full
lattice update corresponds to a selection of 4 sets of sublattices
taken randomly. All spins of each sublattice set is updated us-
ing the local heat bath algorithm. This update, which we call
a lattice sweep, is the basic update of these simulations.

We use simulated annealing to go from the high tempera-
ture paramagnetic regime to the target temperature of the spin
configurations. The other parameters for the simulated an-
nealing are the following:

• 16 different replicas of the same spatial size all start
from the high temperature paramagnetic regime of tem-
perature Tstart.

• Each replica is slowly cooled down to its respective
measurement temperature T i; i is the replica index;
with a temperature step given by δT = (Tstart − T i)/N,
N = 50000 being the number of intermediate tempera-
tures.

• 50 lattice sweeps are applied to all replica between tem-
perature updates.

Parallel tempering is applied before the thermalization cy-
cle. We apply 500 parallel tempering steps and 2500 lattices
sweeps to each configurations between each parallel temper-
ing swap.

Finally the full set of configurations is thermalized at their
respective target temperature with 125000 lattice sweeps. 250
spin configurations are regularly extracted during the calcula-
tion of the specific heat and order parameters.

The two Monte Carlo codes used in this work are the foun-
dation of all numerical results reported in Ref. [S8] and are
constantly compared using thermodynamics.

C. Molecular Dynamics (MD)

The Heisenberg equation of motion derived from the micro-
scopic model, Eq. (S.18), was numerically integrated using an
explicit, 8th–order Runge–Kutta scheme, with Dormand and
Prince coefficients given in [S9]. These results were validated
by comparison with numerical integration carried out using
the more demanding implicit Runge Kutta method, with no
major differences found over time scales of interest.

250 spin configurations of N = 164 spins are sampled from
the thermalized ensemble given by Monte Carlo simulations
for the target temperatures. The interval of integration is fixed
to 2048 J−1

3 to cover the full spectrum while the time step is
set to δt = 1/10 J−1

3 . With these parameters the total energy
per spin drifts by an amount less than 10−8J−1

3 over the entire
interval of integration.

The effect of the sharp boundaries of the time window
can be mitigated by multiplying the signal with a Dolph-
Chebyshev window before calculating the time-dependent
Fourier transform. The dynamical structure factor is then eval-
uated and averaged over the different spin configurations.

1. Behavior of dynamical scaling collapse tuning across phase
boundary

Fig. S8 shows the scaling collapse of the data for S rod(ω)
for a series of parameter sets crossing the FM/AFM phase
boundary. The collapse is best in Fig. S8(i), which is tuned to
the phase boundary and gets worse when tuning away.
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