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Abstract

There has been a resurgent interest in formalizing the notion of ‘algorithm’. In this
paper, I discuss the relation between algorithms and computations, point to some tensions
inherent in our informal concept of an algorithm, and discuss some trade-offs between
competing desiderata for any proposed formal definition.

1 Introduction

The idea of an algorithmic procedure is almost as old as mathematics itself (see, e.g., [3]). Never-
theless, despite the long-standing prevalence of algorithmic methods in mathematics, attempts
to formalize the concept of an ‘algorithm’ itself are relatively recent, and they are mostly a
spin-off from the impressive conceptual advancements in understanding how to demarcate the
computable functions. As is well known, this understanding came about as the result of seminal
work in the 1930s, by Turing, Gödel, Church, Kleene, Rosser, Herbrand, and others.

The formalisms of Church, Rosser and Kleene (λ-calculus), Gödel and Herbrand (general
recursion) and Kleene (µ-recursion) were soon proved equivalent and turned out later to capture
what we now consider the correct class of number-theoretic computable functions. However,
from a conceptual point of view, these particular formalisms lacked convincing power regarding
their completeness, for there seemed to be no compelling reason why (e.g.) the general recursive
or the λ-definable functions would include all and only those functions that can be calculated
by purely mechanical means. A great reluctance to accept Church’s thesis (in this form) was
expressed by Gödel’s famous comment to Church that such approaches were “thoroughly unsat-
isfactory”. The situation changed radically when Turing’s [19] analysis came along, which fo-
cused on the process of computation itself, by breaking it down into its conceptual constituents;
this provided a low-level analysis of what can (and cannot) ultimately be achieved by purely
mechanical and elementary steps, carried out by an (idealized) human agent. Turing’s analysis
was widely conceived as conclusive, and the Church-Turing thesis (CTT) became a universally
accepted foundation for computer science, and especially computability and complexity.

The fact that Turing’s analysis focused on the process of computation, together with the
(seemingly innocuous) tacit assumption that what is meant by a “mechanical process of com-
puting a function” (aka “effective procedure”) coincides with what is meant by “execution of an
algorithm” led to the widely held view that the CTT and the Turing Machine (TM) formalism
explicate the notion of algorithm. As a result, this view has become part of the folklore of logic
and computer science (CS).1 However, Turing does not mention ‘algorithms’ at all in [19], and
while Church [4] does use the term, he is not concerned with the process of computation itself
(only with the extension of the concept of ‘computable function’). In actual fact, then, the
1930s developments did not concern the (intentional) concept of algorithm per se but solely the
demarcation of the class of computable functions (which is an extensional concern).

1See, e.g., [16, 3,102] and [11, 246] for two examples of this view being clearly articulated.
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When did the interest in the idea of algorithm itself come along? Markov’s [12, 13] seem
to be among the very first works that claimed to define ‘algorithms’. But Markov’s definition
was a narrow one (not too different from a Turing program), unable to capture the informal
notion in its generality. But, without an intentionally good definition of algorithms, it was still
a conceptual possibility that one could follow a procedure that is much more permissible than
Markov’s —yet would still seem algorithmic— and get to compute a function that’s beyond the
class of partial recursive ones. To rule out such scenarios Kolmogorov and Uspenskii (K&U)
set out to give the first full-fledged formal definition of algorithms, in a work so influential [10]
that some of the ideas it introduced are still found today (even implicit) in almost every work
in the area. But what is exactly the relation between algorithms and computable functions?

2 Algorithms and computation: A marriage made in heaven?

Computability is a semantic notion. A function is computable if it is such that its values
can be identified by a process of computation; that is, by following a mechanical procedure.
But the process of computation is syntactic and symbolic. In carrying out a computation, an
agent (human or otherwise) deals with concrete entities (symbols on paper, physical voltages,
etc.). Insofar as algorithms are understood as specifying mathematical computations, then,
they specify procedures over symbols. Shapiro echoes exactly this view:

Mechanical devices engaged in computation and humans following algorithms[..] do
not encounter numbers themselves, but rather physical objects such as ink marks
on paper. Since strings are the relevant abstract forms of these physical objects,
algorithms should be understood as procedures for the manipulation of strings, not
numbers. ([18, p.14]; emphasis added)

Thus, on a view that sees algorithms as specifying actual computations, algorithms are pro-
cedures for manipulating symbols and, hence, synonymous to effective procedures. They are
tightly interlocked with the representations of the data they operate upon. Given some vocabu-
lary and a representation of the input by strings of symbols from this vocabulary, an algorithm
is a stepwise procedure for combinatorily manipulating these symbols and obtaining a result,
which is a representation of the computed function’s output. Since a schoolchild in ancient
Rome would be taught a different combinatory sequence of steps for multiplying two 3-digit
integers from a schoolchild in ancient Greece (owing to the different notation systems), the two
children would have mastered different algorithms for obtaining the product of two numbers
(and the same holds for multiplying two integers today in, say, decimal and binary notations).

This presupposition is clearly seen embedded in Markov’s as well as in K&U’s approach
to defining algorithms: “Without fixing a standard way of writing numbers, to speak of the
algorithm computing [the value of a function from its input] would make no sense.” [10, fn.2].
What is more, if one goes further and simply identifies algorithms to Turing programs, then
the above presupposition becomes also reflected in the dominant contemporary approach to
real computability, in terms of Type-2 Turing Machines (TTE) [21]. As some key results in
this area indicate, when Turing computations are extended to uncountable domains (such as
R) computability of functions acquires a strong dependence on the employed representations.2

The strong association of algorithms with computation has placed the concept of ‘algorithm’
at the heart of computer science. Since it is indeed a dominant view that algorithms specify

2For example, there is no (Type-2) Turing machine —hence no algorithm either— that computes the function:
g(x) = 3x (g : R → R) on the decimal representation. Yet, the same function is (almost trivially) computable
on the base-3 representation.
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computations, statements about specific properties of algorithms (including existence) are sta-
ples in areas such as computability and complexity theory. Consider, e.g., assertions like “there
is no algorithm that decides the validity for any first-order sentence” or “if P 6= NP, there is
no algorithm that solves the Boolean satisfiability problem in polynomial time.”

3 The third in the marriage: Mathematical practice

Despite the well-received view of algorithms and computations as being tightly interlocked,
one quickly notices non-negligible conceptual problems. The view of algorithms as specify-
ing computations does not quite square with prominent uses of the term in certain areas of
mathematical practice. To wit, recall that algorithms have also been the subject-matter of the
long-standing field of numerical analysis. Numerical algorithms concern continuous problems,
and their purposes, very often, include identifying (exactly or approximately) solutions of (sys-
tems of) equations, guiding linear interpolation, etc. Typical examples include the bisection
method, least-squares fitting, Gaussian elimination, Newton’s method, and many others.

It does not seem natural to say that algorithms like the aforementioned specify computations
(i.e., syntactic procedures) in the same sense that we saw in the previous section. They definitely
do not specify exact sequences of steps to the smallest detail, in the sense that any specified
sequence would have to change, had the employed notation (or representation) changed as well.
Rather, numerical algorithms are developed and analyzed without any consideration of notation
or representation, and they are naturally thought of as each one possessing a natural structure
and identity of its own; a structure and identity that are invariable under changes in how
data are represented and in what the exact order of operations is.3 This attitude toward the
fundamental idea of an ‘algorithm’ is an explicit motivation behind the Blum-Shub-Smale (BSS)
model of real computability [2] as well as Moschovakis’s foundational approach to algorithms
(e.g., [14, 15]). As L. Blum puts it:

We want a model of computation which is more natural for describing algorithms
of numerical analysis, such as Newton’s method [..] Translating to bit operations
would wipe out the natural structure of this algorithm. [1, 1028]

Indeed, attending to the long-standing study of numerical algorithms and their purposes
([3], [6]) shows that it would be stretching a point to say that (e.g.) Newton’s method is a
mechanical procedure for pushing symbols around, in the sense found in works on algorithms
like [13], [10], [9], and others. In stark contrast to the multiplication example from above —i.e.,
different algorithms for different notations— Newton’s algorithm arguably remains the same
(abstract) entity, regardless of what notation is used or what the exact order of operations is.

One might try to remedy this apparent discrepancy between the two understandings of al-
gorithms just described by saying that numerical algorithms still specify computations, albeit
at some “higher level” of abstraction. That is, they still report mechanical procedures, but by
abstracting away from any particular details of the process (such details can always be filled
in later). But, as usual, the devil hides in the details: consider that a good many numerical
algorithms specify as essential steps comparisons between real numbers; think, for example,
the bisection algorithm. This creates a conceptual gap between numerical algorithms and ac-
tual mechanical computations, because comparing two reals is in fact not effectively decidable.
More precisely, comparisons (and identity) are not decidable by a (Type-2) TM [21]; they are

3This holds also for CS algorithms; think, e.g., of the Mergesort algorithm. But, for reasons that will only
briefly be touched upon here, the case for numerical algorithms is stronger, because the existence of their natural
structure is orthogonal to whether they are realizable by a TM (which is not the case with CS algorithms).
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only (negatively) semi-decidable. As a result, if we adopt an extended version of the CTT
(an ‘Uncountable-CTT ’) to the effect that “the effectively computable real-valued functions
are exactly the functions that are computable by a Type-2 TM” —which is a very natural
assumption—, then most numerical algorithms will turn out not to be effectively computable.
This indicates that the link between algorithms and effective procedures/mechanical compu-
tations has to be severed. But now a fundamental question arises: how, and to what extend,
should the above considerations be taken into account by any attempt to define algorithms?

4 A tension in definitions: inclusive or specialized?

Mathematical definitions often face challenges imposed by a strong tension between generality
and inclusiveness on the one hand and domain-specific fecundity on the other. Regarding al-
gorithms, we have, on the one hand, the desire to include under some unified formal concept
both algorithms over countable and uncountable domains; in particular, both effective proce-
dures and numerical algorithms; but, ideally, the definition might also go some distance toward
subsuming additional related notions such as parallel algorithms and geometric constructions,
so that a uniform study of all these notions could become possible. This desideratum for in-
clusiveness pushes in the direction of a formal concept that is as abstract as possible. More
specifically, we would like to have a formal explicatum of ‘algorithms’ such that: (a) the identity
of any algorithm is not essentially dependent on the representations of the data it operates upon
or on the finest-grained details of its evolution (so it is not essentially affected by implemen-
tation details); (b) it lends itself to a spectrum of primitive operations of variant strengths (a
desideratum that is best served by a model/structure/level-theoretic view of algorithms, since
in that case a step can be any primitive operation defined as such by the model/structure/level
itself); (c) it retains its applicability to particular domains, so it does not contradict funda-
mental results of the more specific instances of the same concept (i.e., it should preserve basic
theorems of computability theory or of numerical analysis). The formal approaches by Blum et
al. [2], Gurevich (e.g., [7, 8]), and Moschovakis (e.g., [14, 15]) all satisfy the first two conditions,
for they all offer formal concepts that are representation-invariant and level-relative (though
not necessarily effective), trying purposely to capture algorithms that go beyond Turing pro-
grams, while TTE is mainly the only model with a wide scope (it applies to both countable
and uncountable domains) which satisfies (c) (though it does not satisfy a and b).

On the other hand, the desire for the formal counterpart to be such that it lends itself to
interesting relations with well-entrenched concepts pushes in the direction of a formal concept
with a significantly narrower domain of application than in the previous case. More specifically,
we would like to have a formal explicatum of algorithms such that (a′) it retains as much as
possible the intentional character of the informal processes it purports to formalize; (b′) more
importantly, it would feature in deep theorems and connect to other well-established concepts,
such as those from complexity theory. Formal approaches like K&U machines [10], (ordinary or
Type-2) TMs [21], and BSS machines [2] are successful models in these regards but, predictably,
each one meets only one of the two conditions and in a particular domain. As I discuss next,
K&U fares better in (a′) and applies to discrete algorithms, while BSS and (ordinary or Type-2)
TMs fare better in (b′) and apply solely to either discrete or real algorithms but not both.

5 How the existing definitions meet the different needs

A main upshot of the above discussion is that it seems a Herculean task to find a formal
explicatum of ‘algorithms’ that respects all our intuitions and expectations together. This is
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not an unusual situation in logic and mathematics. In many other cases, however, a certain
formal concept among the rivals (capturing some of what we consider the essential features of
the intuitive idea) catches on and becomes the “orthodoxy”, on account of being successful in
providing interesting results (‘continuity’ being a case in point). But in the case of algorithms
most formal frameworks have been fruitful already, even though some of them are genuinely
incompatible (e.g., TTE vs. BSS).

The way I see the situation, then, is that ‘algorithm’ is a cluster concept; this means that
in order to be able to give preference to any particular framework, the community first needs
to have decided on which intuitions and goals to prioritize. In what follows, I will consider
some of the (conflicting) intuitions and possible different goals. Undoubtedly, there are many
intuitions about algorithms that most mathematicians would agree on. Here I will focus only
on those that I think practitioners might rather disagree.

Symbolic vs. Abstract : Is the identity of an algorithm relative to the vocabulary of symbols
it operates upon? For example, by changing from a decimal to a binary notation, would we have
different algorithms of (say) multiplication or one algorithm with different implementations?
At its heart, the question concerns the extent to which the precise sequence of steps bears on
the identity of an algorithm. Based on common informal characterizations of algorithms in
logic texts (commonly to the effect that “an algorithm is a precise, step-by-step procedure...”)
any difference in the exact sequence of steps (caused by the different notations) would give rise
to a different algorithm. But based on the (also) common practice of assigning specific names
(e.g., ‘Euclid’s algorithm’) and properties (e.g., asymptotic running costs) to various algorithms,
“small variations” in steps should not affect the algorithm’s identity. To give an example of
what is at stake: in sequentially executing a Mergesort, does the algorithm change if we
stipulate that the left-most possible merge operation is to be executed first (and the right-most
one second) or if we stipulate the opposite? Intuitively, we might want to say that it is always
the same algorithm, which is just implemented differently; so algorithms are abstract objects
in a sense. But, then, such an abstract notion with no additional constraints may be too broad
to underpin algorithmic analyses, for, it may allow of “algorithms” that trivially accomplish
complicated tasks within just one step.4 This is because, in practice, the way to exclude
such unrestricted cases is by assuming that the algorithms that are suitable for underpinning
complexity analyses are those that are easily couched in some formal model of computation ([5])
from the first machine class (fn.5). But this leads us back to granting conceptual priority to
machine models, i.e., entities that have sensitive dependence on notational choices. The formal
concepts of (Type-2) TMs, K&U machines, ASMs (Gurevich), BSS machines (Blum et al.)
and recursors (Moschovakis) tackle these questions differently. But there seems to be no way
of ranking our preferences for these concepts on the basis of how well they address the above
questions, unless one has already decided on answers to the above questions pre-formally.

Absolute vs. Relative: Are algorithms absolute entities, whose existence is a yes-or-no mat-
ter, or relevant with respect to some structure/model/level of abstraction, whose existence
is dependent on the defined primitive operations over the stipulated entities in the struc-
ture’s/model’s/level’s universe? While a choice on this matter may have no significant bearing
on algorithms over countable domains, it does make a difference in the case of uncountable
domains, for the latter approach may give rise to algorithmic steps that even involve infinitary
labor on a symbolic configuration within one step —e.g., a complete operation between two
irrational numbers— and to functions that would be deemed algorithmically computable with-

4Consider a TrivialSort(B) algorithm for sorting a list B, whose sole instruction reads: “Return sort(B)”.
The unique step of this algorithm is effective (since effective sorting algorithms exist) and the algorithm is very
efficient (running time is O(1)). Clearly this is an undesirable “algorithm” for purposes of algorithmic analysis,
for, if accepted, it would lead astray our analyses of the complexity of sorting tasks. The example is from [5].
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out being effectively computable (an example is the floor function). A related dilemma has to
do with the notion of an algorithmic step, and whether any such step is required to be “local”
in the sense of some pre-fixed suitable metric or just in relation to the stipulated primitive
operations within the given structure/model/level in which the algorithm lives. TMs (ordinary
and Type-2) and K&U machines can be seen as formalizing an “absolute” view of algorithms
and steps, while BSS, ASMs and recursors can be seen as capturing a “relative” view.

Turning now to trade-offs between goals, it seems difficult to single out a formal explicatum
on hopes that it would be responsive to all the linguistic and technical practices in mathematics
and computer science. An important issue is complexity theory. Can we single out a formal
explicatum that would underlie a unified complexity theory for both computer science and
numerical analysis? To answer, consider that in computational and mathematical practice we
grant (discrete and numerical) algorithms intrinsic asymptotic running time costs. As Dean
[5] notes for the discrete case (but also holds for the numerical one), such asymptotic costs
must be preserved by any particular machine model that aspires to formalize these algorithms.
Ordinary TMs (or equivalent models) satisfy this condition for the discrete case. Therefore,
such models support a rich theory of classical complexity and a network of powerful theorems.
But the TM model is too narrow to express algorithms in their generality, and it violates the first
two inclusiveness desiderata from above (a and b).5 And when it comes to computations over
uncountable domains, although the TTE-framework offers also a relevant complexity theory for
real computation [21], it is however too “low-level” to be naturally used by practitioners [17].
Recall after all that Type-2 TMs cannot compute comparisons between reals, which are staples
in numerical algorithms. Finally, the BSS formalism, which accepts highly-idealized TMs that
operate on exact real numbers as unanalyzed entities in an algebra (so it permits comparisons
in a single step) does provide a rich complexity theory for numerical analysis (so it satisfies a,
b, and c′). But a BSS machine is far too powerful to be a first machine class, so it cannot be a
formal concept that relates to the concepts of classical complexity theory for discrete problems.

The upshot is that formal concepts that turn out to be successful in theorem-generation (in
particular, those that support a rich complexity theory in some particular domain) achieve this
goal at the expense of generality, violating either (a) or (b) or even (c). On the other hand,
Gurevich’s and Moschovakis’s frameworks fare much better at the generality desideratum. But,
as Dean [5, p.54] notes, their achieved generality comes at the cost of severing the foundational
link between the practice of informal algorithmic analysis (concerning discrete algorithms) and
the complexity costs of first class machine models.

6 Conclusions

I have proposed that there is no unambiguous and uniform way in which the concept of algo-
rithm functions in mathematical and computational practice. Consequently, there is no unique
informal concept that could serve as the yardstick by which we evaluate the success of the formal
concepts purporting to explicate it. The inherent tensions in our long-time use of algorithms
can be alleviated by deliberately sharpening the informal concept in advance. And yet there is
a number of different ways of trading off inclusiveness against strength of results, which makes
it possible that in the end we will have more than one formal notion of ‘algorithm’ established
in the theoretical and practical discourse.

5In fact, the situation is worse, because there are additional restrictions for those TMs that found complexity
classes. Such machines form an (equivalence) class, called the first machine class, which imposes restrictions on
the computational power of its members. First machine class models must be powerful enough to handle repre-
sentation of numbers in binary, but no so powerful as to allow parallel computations with arbitrary branching
(see [20]). As it becomes apparent, this pushes even stronger in the direction of a specialized formal concept.
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