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Abstract  

The long-term increase of satellite-based proxies of vegetation cover is a well-20 

documented response of seasonally snow-covered ecosystems to climate warming. However, 21 

observed greening trends are far from being uniform and substantial uncertainty remains 22 

concerning the underlying causes of this spatial variability. Here, we processed surface 23 

reflectance of the moderate resolution imaging spectroradiometer (MODIS) to investigate 24 

trends and drivers of changes in the annual peak values of the Normalized Difference 25 

Vegetation Index (NDVI). Our study focuses on the above treeline ecosystems in the 26 

European Alps. The NDVI changes of these ecosystems are highly sensitive to land cover and 27 

biomass changes and are marginally affected by anthropogenic disturbances. We found a 28 

widespread greening for the period 2000-2020, a pattern that is consistent with the overall 29 

increase of summer temperature. At the local scale, the spatial variability of greening was 30 

mainly due to the preferential response of north-facing slopes between 1900 m and 2400 m. 31 

Using high resolution imagery, we noticed that the presence of screes and outcrops 32 

exacerbated this response. At the regional scale, we identified hotspots of greening where 33 

vegetation cover is sparser than expected given the elevation and exposure. Most of these 34 

hotspots experienced delayed snowmelt and green-up dates in recent years. We conclude that 35 

the ongoing greening in the Alps primarily reflects the high responsiveness of sparsely 36 

vegetated ecosystems that benefitted the most from temperature and water-related habitat 37 

amelioration above treeline. 38 

  39 



 

 

Introduction 

The long-term increase of greenness in cold, seasonally snow-covered ecosystems is 40 

widely perceived as a consequence of climate change (Berner et al., 2020; Keenan & Riley, 41 

2018) . Arctic and alpine ecosystems have undergone particularly fast greening compared to 42 

other ecosystems and this is consistent with the accelerated warming documented for these 43 

regions (Callaghan et al., 2010; Pepin et al., 2015). However, this greening exhibits 44 

considerable spatial and temporal variability that is far from being understood (Berner et al., 45 

2020; Cortés et al., 2021; Ju & Masek, 2016; Myers-Smith et al., 2020). The complex 46 

interaction between regional climate trends, topography, geomorphological and other 47 

disturbance regimes and vegetation dynamics contributes to these non-uniform patterns of 48 

greening (Ropars & Boudreau, 2012; Tape, Hallinger, Welker, & Ruess, 2012). Further 49 

studies are required to document the relative contribution of these drivers and to advance a 50 

more predictive understanding of greening and its consequences on ecosystem processes and 51 

services (Duveiller, Hooker, & Cescatti, 2018; Forzieri, Alkama, Miralles, & Cescatti, 2017; 52 

Myers-Smith et al., 2020; Zhu et al., 2016).  53 

Temperate mountains have experienced warmer summers over the last decades 54 

(Beniston, 2006; Hock et al., 2019). Several studies have underlined the impact of these 55 

changes on land surface phenology (Asam et al., 2018; Dunn & de Beurs, 2011; Xie et al., 56 

2020; Zhang, Zhang, Dong, & Xiao, 2013), ecosystem productivity (Choler, 2015; Jolly, 57 

Dobbertin, Zimmermann, & Reichstein, 2005), and species richness (Lamprecht, Semenchuk, 58 

Steinbauer, Winkler, & Pauli, 2018; Steinbauer et al., 2018). Other studies reported on the 59 

long-term increase of greenness in the south-western Alps (Carlson et al., 2017; Filippa et al., 60 

2019), the Hindu Kush(Anderson et al., 2020) and underlined the particular responsiveness of 61 

sparsely vegetated areas located in the nival belt. However, none of these studies has provided 62 

a comprehensive analysis of the spatial variability of greening at the mountain range scale and 63 



 

 

an investigation of its determinants. More specifically, the distinction between exposure to 64 

change (e.g. climate) and the responsiveness of ecosystems to change has remained elusive. 65 

Yet, well-documented case studies in the Arctic suggest that this fundamental question may 66 

underpin much of the observed spatial complexity of greening. For example, the preferential 67 

expansion of arctic shrubs in particular topographical situations - such as along streams or in 68 

floodplains, lead to local-scale greening heterogeneity (Tape, Sturm, & Racine, 2006), which 69 

in turn is possibly related to the snow-holding capacity of shrubs in winter(Sturm et al., 2005). 70 

The initial cover of Betula glandulosa in the 1950s explained part of the spatial variability of 71 

greening in Nunavik (Ropars & Boudreau, 2012; Ropars, Levesque, & Boudreau, 2015). 72 

These studies pointed out that land cover properties are pivotal to predict the responsiveness 73 

of the system to on-going changes and to identify the underlying ecological mechanisms of 74 

greening.  75 

There is a growing body of evidence showing that mountain ecosystems of the Alps 76 

have undergone rapid changes in response to climate warming (Gottfried et al., 2012). Plot-77 

based long-term surveys revealed increasing vegetation cover in mountain grasslands, mainly 78 

due to the expansion of graminoids (Rogora et al., 2018) and a colonization of screes and 79 

outcrops by shrubs and trees (Vittoz, Bodin, Ungricht, Burga, & Walther, 2008). While these 80 

studies are invaluable to inform on ecological mechanisms underpinning ecological changes, 81 

their paucity precludes tracking complex, non-linear responses along topographical, 82 

geomorphological and climate gradients. For example, winter snow duration - which is widely 83 

acknowledged as a key driver of vegetation dynamics - for the time being shows decreased 84 

sensitivity to global warming at elevations above 2000 m (Hantel & Hirtl-Wielke, 2007; 85 

Schoener, Koch, Matulla, Marty, & Tilg, 2019). Another issue is the overrepresentation of 86 

high summits in plot-based surveys, considering that the area they cover represents a minute 87 

fraction of the land above treeline. For these reasons, remote sensing offers a complementary 88 



 

 

approach to probe ongoing land cover changes at a scale encompassing multiple 89 

environmental gradients and to examine their impacts on ecosystem services such as water 90 

provisioning, carbon sequestration or pastoral resources. 91 

Here, we exploit available time series of the moderate resolution imaging 92 

spectroradiometer (MODIS) to provide a comprehensive picture of recent greening and its 93 

spatial variability in the European Alps and to improve our understanding of its drivers. Our 94 

study utilizes annual peak values of the Normalized Difference Vegetation Index (NDVI) as a 95 

proxy of land surface greenness (Tucker, 1979). We quantified the significance and 96 

magnitude of NDVI trends for high elevation ecosystems that are located between the treeline 97 

and the permanent snowline. This allows us to overcome two potential issues in such remote 98 

sensing studies. First, high elevation ecosystems are less affected by anthropogenic 99 

disturbances than other European habitats at lower elevation, which should facilitate the 100 

unraveling of a climate signal on greening trends (Filippa et al., 2019; Gehrig-Fasel, Guisan, 101 

& Zimmermann, 2007). Second, the NDVI range of these ecosystems lies in a range where it 102 

is highly sensitive to land cover and biomass changes, in contrast to closed canopies where 103 

NDVI no longer linearly depends on biomass or plant cover (Huete et al., 2002; Myneni & 104 

Williams, 1994).  105 

We addressed the three following questions: 106 

1. How widespread is the greening signal in above-treeline ecosystems of the 107 

European Alps? 108 

2. Is the variability of greening spatially structured and what are its main drivers?  109 

3. Are there fine scale land cover features that predispose to fast greening response?  110 

 

Material and methods 



 

 

Study area and selection of pixels  111 

The European Alps is a mountain range stretching over 1’200 km from Nice (France) 112 

to Vienna (Austria). Our study focuses on the uplands of the massif that are located between 113 

the treeline and the permanent snowline. This area includes shrublands, grasslands and 114 

sparsely vegetated ecosystems established on screes, debris, and outcrops. We first selected a 115 

set of 250-m resolution MODIS pixels having non-forested land cover classes with a tree 116 

cover density below 5%, an elevation above 1400 m and an average NDVImax above 0.15. 117 

To do so, we relied on a 25-m resolution Digital Elevation Model, a 100-m resolution Tree 118 

Cover Density of year 2018 (https://land.copernicus.eu/pan-european/high-resolution-119 

layers/forests/tree-cover-density/) and the Corine Land Cover (CLC) product of year 2018 120 

(https://land.copernicus.eu/pan-european/corine-land-cover/), which is based on the visual 121 

photointerpretation of aerial images at a 100-m resolution. From the 44 CLC entries at level 3, 122 

we retained the following classes: Pastures (code 2.3.1), Natural grasslands (code 3.2.1), 123 

Moors and heathlands (code 3.2.2), Bare Rocks (code 3.3.2), Sparsely vegetated (code 3.3.3). 124 

We merged pastures and grasslands and we renamed the misleading “bare rocks” to “very 125 

sparsely vegetated” as we selected pixels with an average NDVImax above 0.15, i.e. not 126 

completely devoid of vegetation. We discarded pixels exhibiting more than 10% of 127 

settlements (ski resorts) or permanent water using data layers of European settlements 128 

(https://land.copernicus.eu/pan-european/GHSL/european-settlement-map/) and of permanent 129 

water (https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness/status-130 

maps/water-wetness-2018). We also removed pixels for which we found significant abrupt 131 

changes of NDVImax within the period 2000-2020, as this might be indicative of a physical 132 

or anthropogenic disturbance unrelated to climate trend. This was done by using the Breaks 133 

For Additive Seasonal and Trend (BFAST) on 8-days NDVI time series. Breaks were 134 

identified after the time series decomposition into trend, seasonal and remainder component. 135 



 

 

Abrupt changes were considered as break points when their uncertainty was found to be 136 

smaller than one year, consistent to a previous study in the south-western Alps (Filippa et al., 137 

2019). This led to discard around 5 % of the total number of pixels. We ended up with 138 

511,375 pixels of which 284,346 (55.6%) exhibited an average NDVImax below 0.65. Our 139 

main findings are based on this data subset to avoid the annoying saturation effect of 140 

NDVImax for closed canopies (see Introduction and Figure S2). Figure S3 and Table S1 give 141 

the spatial distribution of these pixels and their breakdown by administrative units using the 142 

Nomenclature of territorial units for statistics (NUTS) classification at level 3 143 

(https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-144 

statistical-units/). Figure S12 shows the distribution of pixels per elevation and DAH classes. 145 

We processed all spatial data using the raster, rgdal, sp and proj4 R packages (Venables & 146 

Ripley, 2002). We used the bfast R package to implement the BFAST analysis (Verbesselt, 147 

Hyndman, Newnham, & Culvenor, 2010). 148 

 149 

Estimates of MODIS-derived NDVI metrics 150 

We downloaded the 250-m resolution 8-day composite of MOD09Q1/Terra collection 151 

6 products that are available in hdf format at the Land Processes Distributed Active Archive 152 

Center (https://e4ftl01.cr.usgs.gov/). Acquired dates covered the period from 18 February 153 

2000 to 27 December 2020. We assembled the tiles h18.v4 and h19v04, to cover the entire 154 

massif and re-projected red and near-infrared (NIR) surface reflectance values (ρ) in the 155 

EPSG 3035 geometry. We retained reflectance values produced with high quality (according 156 

to the MOD09Q1 Quality Control flag) and calculated a NDVI according to (ρ NIR - ρ RED)/(ρ 157 

NIR + ρ RED), where ρ is reflectance. We did not to use the 500m-resolution 16-day composite 158 

BRDF-corrected MODIS products (MCD43A4) as we needed a higher temporal and spatial 159 

resolution to best capture the peakiness of NDVI changes during the short growing season 160 



 

 

above treeline. Raw NDVI time series were processed in two steps. First, we used the Best 161 

Index Slope Extraction (BISE) algorithm to reduce the noise of the NDVI time series (Viovy, 162 

Arino, & Belward, 1992) with the parameters: n=0.2 (i.e. a 20% acceptable difference in 163 

NDVI values within the sliding period) and p=3 (the length of the forward sliding period). 164 

Second, we applied a low-pass filter using the Savitzky-Golay algorithm (Savitzky & Golay, 165 

1964) with the following parameters: n=3 (the filter order) and p=7 (the filter length). Smaller 166 

values of p would allow keeping track of more rapid changes whereas higher values would 167 

increase the smoothing. We also estimated a green-up date as the first date of the year where 168 

the NDVI amounts 50% of the NDVImax. This was achieved using daily-interpolated time 169 

series of NDVI. This date is highly correlated to snow melting in the high-elevation mountain 170 

grasslands of the Alps (Choler, 2015; Fontana, Rixen, Jonas, Aberegg, & Wunderle, 2008). 171 

We used the non-parametric, rank based, Mann–Kendall (MK) monotonic test to assess the 172 

significance of NDVI time series trends. The significance was given by the approximately 173 

normally distributed z score with z values > 1.96 indicating a significant increase (P-value 174 

<0.05) and z values < -1.96 a significant decrease (at P-value <0.05). To quantify change over 175 

the period 2000-2020 we fitted linear models based on Theil-Sen single median slope. The 176 

Theil-Sen estimator of the linear trend is much less sensitive to outliers than the least-squares 177 

estimator. The distribution of NDVImax slopes for the different ranges of NDVImax values is 178 

shown in figure S2. The decrease of the slopes in the highest ranges of NDVImax was clearly 179 

indicative of a saturation effect. For further analyses, we retained pixels with a NDVImax 180 

value between 0.15 and 0.65. In this range, the pairwise mean difference of greenness slopes 181 

was below 0.005 (Figure S2). We randomly perturbed the RED and NIR raw reflectances by 182 

up to +/- 5% to and recalculated 1000 times the MK trends and the Theil-Sen slopes for all 183 

pixels. The uncertainty of MODIS reflectance, and therefore of vegetation indices, arises from 184 

sensor calibration and the different steps of atmospheric correction (Vermote & Vermeulen, 185 



 

 

1999). A perturbation of 5% lies in the upper range of the uncertainties associated with 186 

MODIS products(Miura, Huete, & Yoshioka, 2000). Our numerical simulation propagates 187 

this uncertainty into the estimates of NDVI trends and ensures a more robust analysis of the 188 

drivers of greening using random forest. We used the Kendall R package for estimating 189 

Mann-Kendall trends (McLeod, 2005) and the signal R package for the Savitzky-Golay 190 

function (signal developpers, 2013). 191 

 192 

Preparation of predictor datasets  193 

We estimated terrain indices from the 25 m resolution European Digital Elevation 194 

Model (EU-DEM, version 1.0, https://land.copernicus.eu/imagery-in-situ/eu-dem/). We 195 

resampled the EU DEM at a 250 m resolution and calculated the mean, range and standard 196 

deviation of elevation and the Diurnal Anisotropic Heating (DAH). The DAH index 197 

approximates the anisotropic heating of land surface to radiation (Böhner & Antonić, 2009). 198 

We computed DAH as cos(αmax − α) · arctan(β) where α is the aspect, β is the slope and the 199 

parameter αmax corresponds to the aspect with the maximum total heat surplus. We used αmax 200 

= 212° as we noticed that this SSW orientation corresponds on average to the earliest First 201 

Snow Free Day derived from Sentinel-2 products in the south-western Alps (unpublished 202 

results). Bedrock data were extracted from the 1:1 million OneGeology pan-European 203 

harmonized surface geological maps distributed by the European Geological Data 204 

Infrastructure (EGDI) portal (http://www.europe-geology.eu/). Surface geological units were 205 

aggregated into four categories: (i) igneous and metamorphic rocks including granite, gneiss 206 

etc., (ii) ferromagnesian rocks including serpentines, amphibolite, andesite, basalt etc., (iii) 207 

hard sedimentary rocks including dolomite, limestone etc. and (iv) clastic rocks including 208 

schist, mudstone, shale, flysch etc. For climate trends, we used the daily-based gridded 209 

datasets of E-OBS at a 0.1° resolution for the period 1995 onwards (version E-OBS v22.0e, 210 



 

 

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php) (Cornes, van der Schrier, 211 

van den Besselaar, & Jones, 2018). For each year, we calculated Growing Degree Days 212 

(GDD) as the cumulative sum of daily average air temperature above 0°C during the summer 213 

months (June, July and August). As a complementary estimate of summer warming, we also 214 

extracted the average of daily maximum temperatures in July (T07). We computed a climatic 215 

water balance as the difference between precipitation (P) and a reference crop 216 

evapotranspiration ET0. We summed the P-ET0 difference over the summer months to assess 217 

the dry–wet conditions of the growing season. ET0 was estimated on a daily basis using the 218 

equation λET0 = C (Δ/Δ+γ) Q, where Q is the global radiation (MJ m−2 day−1), Δ the slope of 219 

the vapour pressure-temperature curve (kPa °C−1), γ the psychometric constant (kPa °C−1), λ 220 

the latent heat of vaporization (MJ kg−1), and C an empirical coefficient (C=0.65). This is a 221 

simplified version of the Penman–Monteith equation originally proposed by Makkink and 222 

later modified by Hansen (Hansen, 1984). Maps of climate predictors are shown in figures S9 223 

and S10. For snow cover duration trends in the French Alps (Figure S11), we used the S2M 224 

meteorological and snow cover re-analysis for the period 1959-2019 (https://www.aeris-225 

data.fr/catalogue/) (Vernay et al., 2019). As for NDVI time series, we used the non-parametric 226 

Mann–Kendall (MK) monotonic test and the Theil-Sen median slope to assess the 227 

significance and the magnitude of decadal trends of all meteorological variables. 228 

 229 

Random forest analysis.  230 

We implemented a random forest analysis to identify the best predictors of the spatial 231 

variability of greening. Based on the Mann-Kendall significance tests, we classified the 232 

greenness trends into three categories: no significant greening (P-value > 0.05), moderate 233 

greening (0.001<P-value<0.05) and strong greening (P-value <0.001). There were not enough 234 

pixels exhibiting browning to include this response in the analysis. We randomly sampled 235 



 

 

15 000 pixels in each category to balance the sample size among the greening responses and 236 

partitioned the data set into a model training subset (two thirds of pixels) and a model 237 

evaluation subset (one third of pixels). We repeated this procedure 1000 times, meaning that 238 

we assembled one random dataset for each perturbed simulation of MODIS reflectance and 239 

implemented one Random Forest model for each dataset. Predictor variables included 240 

elevation, Diurnal Anisotropic Heating, bedrock, NDVImax anomaly and decadal trends for 241 

the green-up date and the climate variables GDD and P-ET0. We calculated pair-wise 242 

correlations between predictors and checked that they were not highly correlated, i.e. r <0.5 243 

(Figure S13). We also implemented a Random Forest model including NDVImax to check for 244 

its influence on the classification probability and to further document the saturation effect 245 

(Figure S6). We relied on the out-of-bag classification accuracy to select the best Random 246 

Forest model. We assessed predictor importance using the mean decrease in accuracy metric, 247 

which is indicative of suitability of predictor, and the mean decrease in Gini, which is 248 

indicative of the homogeneity of nodes and leaves. Predictor importance was based on a 249 

permutation-based importance measure where one measures the effect of reshuffling each 250 

predictor on model accuracy. Last, we examined how classification probabilities depend on 251 

the values taken by each predictor by computing partial dependence plots. We computed 252 

empirical cumulative distribution function to determine the range of values where 253 

interpretation of partial dependence plots needs caution due to small sample size. We used the 254 

randomForest, caret, and pdp R packages to implement Random Forest models and evaluate 255 

its performance (Greenwell, 2017; Kuhn, 2020; Liaw & Wiener, 2002). 256 

 257 

Land cover assessment using very high-resolution imagery.  258 

Using the high-resolution imagery of Google Earth, we characterized the land cover 259 

features of a selection of 300 500m x 500m cells. First, we aggregated NDVImax anomaly at 260 



 

 

a 500 m resolution. Then we performed a stratified random sampling of pixels using three 261 

classes of NDVImax anomaly - negative, around zero and positive values - and 100 pixels in 262 

each class (Figure S7). The visual photointerpretation of very high-resolution imagery from 263 

Google Earth allows us to distinguish 6 types of object: singular trees or tree patches, tall 264 

shrubs or shrublands (mainly composed of Pinus mugho), low shrublands (presumably 265 

Ericaceae-dominated), grasslands, screes and debris and finally outcrops. We assigned a 266 

percentage cover to these classes using the semi-quantitative ranges: <5%, 5%-25%, 25%-267 

50%, 50%75% and 75%-100%. Three authors of this paper (PC, EC, GF) conducted the 268 

photointerpretation independently and we retained the most frequent cover estimate for each 269 

land cover class. We did not try to standardize the year of satellite view, as there were no 270 

sufficient good quality images to do it. 271 

 272 

 273 

Results  

Over the 2000-2020 period, we found significant (P<0.05) positive temporal trends of 274 

NDVImax for 56% of the 284,346 analyzed pixels and significant negative trends for less 275 

than 0.1% of all pixels (Figure 1a and Table S1). Irrespective of significance, the ratio 276 

between positive and negative slopes was 26/1. These results were robust to uncertainty in 277 

MODIS data as more than two thirds of the pixels classified as fast (P<0.005) and non-278 

significant greening (P>0.05) remained in these two classes when reflectance values were 279 

randomly perturbed (Figure S1). Sparse and very sparse vegetation contributed to 23% and 280 

26% respectively of the 56% of significant greening compared to 7% for grasslands and 281 

heathlands (Figure 1b). Figure S2 shows that there was no strong effect of the average 282 

NDVImax on the magnitude of greening in the selected range (0.15-0.65). By contrast, there 283 

was a marked decline in greening for higher values of NDVImax suggesting a saturation 284 



 

 

effect (Figure S2 and Table S1). Only 31% of pixels exhibited a significant greening when the 285 

NDVImax value was above 0.65, the (Table S1). 286 

Although widely distributed, the greening trends are not spatially uniform (Figure 2). 287 

We found a regional-scale component of this spatial variability, with hotspots of greening 288 

corresponding to southern parts of the French Alps (e.g. Haute-Provence and Maritime Alps, 289 

France), the southern part of the Central Alps (e.g. Sondrio, Italy and Tiroler Oberland, 290 

Austria) and the Northeastern-most part of the Alps (e.g. Pinzgau-Pongau, Austria; Figure 2, 291 

S3 and Table S1). At the local scale, topographical factors also modulate the greening trends 292 

(Figure 3a). First, there is a general tendency for the greening to increase with elevation 293 

(Figure 3a). Second, and on top of that, the greening is more noticeable for north-facing steep 294 

slopes i.e. for the most negative values of diurnal anisotropic heating (DAH), a proxy of the 295 

heating of land surface to radiation (Figure 3a). Consequently, we observed an overall upward 296 

shift of the isolines of NDVImax, meaning that the elevation of given value of NDVImax has 297 

increased steadily over the last two decades (Figure 3b). We estimated the median of this shift 298 

at 45 m per decade with strong regional disparities (Figure S4). It is worth noting that the 299 

magnitude of this elevational shift is higher for the first deciles of the distribution than for the 300 

last, and this difference is particularly striking at negative DAH values (Figure 3b). These 301 

results point out that greening is enhanced when the NDVImax is below the median of the 302 

distribution for a given elevation and DAH, leading to a reduction of the interdecile 303 

differences in the distribution of NDVImax along topographical gradients (Figure 3b). 304 

These findings prompted us to quantify a per-pixel NDVImax anomaly and to assess 305 

its spatial distribution in the European Alps. The anomaly was calculated as the difference 306 

between the average NDVImax of a given pixel and the median NDVImax value of all pixels 307 

lying in the same class of DAH and elevation (Figure 4a). Negative anomalies are indicative 308 

of an “abnormally” low NDVImax value with respect to elevation and DAH. The mapping of 309 



 

 

this anomaly revealed a clear regional-scale variability that was partly congruent with that of 310 

greening (Figure 4b). For example, the southern part of the French Alps, part of the south 311 

Central Alps and the Northeastern-most Alps are regions that present a combination of fast 312 

greening (Figure 2), negative NDVImax anomalies (Figure 4b), and high upward shift of 313 

NDVImax (Figure S4).  314 

We evaluated the importance of this NDVImax anomaly in predicting the observed 315 

greening trends against two sets of predictors that are more widely used in greening studies, 316 

i.e. topographical predictors (elevation and DAH) and climate predictors pertaining to the 317 

growing season (summer). We used trends in the accumulation of growing degree-days 318 

(GDD) during summer as a proxy of temperature-related changes and trends in the difference 319 

between precipitation and potential evapotranspiration as a proxy of water balance-related 320 

changes (see Methods). We also estimated trends in the green-up date derived from the 321 

analysis of NDVI time series. Previous studies showed that the green-up date strongly 322 

depends on snow cover duration in high elevation temperate ecosystems (Choler, 2015). We 323 

built a random forest model to assess the usefulness of these variables for classifying pixels 324 

into three categories based on the Mann-Kendall significance test - no greening (P>0.05), 325 

moderate greening (P<0.05 ) and fast greening (P<0.005). The model classified the “no 326 

greening” and the “fast greening” classes with an accuracy of 61.5% and 62 % respectively 327 

corresponding to a kappa of 0.42 and 0.4 (Table S3). The values of the first and ninth deciles 328 

of the 1000 simulations differ by less than 2% from the mean. The performance of the random 329 

forest classifier for the “moderate greening” was low with an overall accuracy of 0.51 to be 330 

compared to a random accuracy of 0.33 (Table S3). The ranking of predictors shows that the 331 

NDVImax anomaly is as important as climate predictors (Figure 5a,b). Noticeably, its score is 332 

high for both the mean decrease accuracy and the mean decrease in Gini coefficient, 333 

indicating a high suitability as a predictor and a high contribution to the homogeneity of 334 



 

 

nodes and leaves. By contrast, climate predictors show high decrease in permutation tests but 335 

do not exhibit a high contribution to the purity of nodes (low mean decrease in Gini), while 336 

topographical predictors show the reverse trend (Figure 5b). The greening trends did not 337 

change between bedrock types (Figure S5) and bedrock exhibited a very low variable 338 

importance in random forest. For these reasons, it was not retained in further analysis. Partial 339 

dependence plots (Figure 5c) reveal that greening was mostly associated with negative 340 

NDVImax anomalies, negative DAH, elevation between 2300 m and 2700 m and increasing 341 

green-up dates, and was marginally enhanced by a more positive trend in GDD and water 342 

balance. The lack of greening occurs more often at low and very high elevation, where 343 

NDVImax anomaly was positive and green-up dates decrease and, to a lesser extent, where 344 

climate amelioration was weak (Figure 5c). Given the positive correlation between snow 345 

melting date and green-up date above treeline, our results indirectly pointed out to a positive 346 

effect of delayed snow melt on the recent greening trends. We also implemented 347 

complementary random forest models for subsets of pixels lying in narrower ranges of 348 

NDVImax (0.15-0.4 and 0.4-0.65) and by adding NDVImax as a supplementary predictor 349 

(Figure S6). The ranking of variable importance was consistent for all these simulations, 350 

which also confirmed the overwhelming importance of the NDVImax anomaly for predicting 351 

the greening response whatever the NDVImax value (Figure S6). They also pointed out that 352 

adding the NDVImax as a supplementary predictor tends to lower the importance of the 353 

NDVImax anomaly (Figure 5a and S6a), which is explainable by the positive correlation 354 

between these two variables. 355 

The strong link between negative NDVImax anomalies and significant greening trends 356 

led us to explore at a finer scale the land cover features associated with these contexts. Using 357 

very high-resolution satellite imagery from Google Earth, we performed a visual photo-358 

interpretation of 300 randomly selected sites across the Alps (Figure S7). First, this analysis 359 



 

 

indicated that NDVImax anomalies were consistently negative in the case of high cover of 360 

screes, debris and outcrops (Figure 6a). The reverse trend holds for grassland cover (Figure 361 

6c). Second, the magnitude of greening tend to increase with the cover of screes and debris 362 

and decreases with that of grasslands (Figure 6b,d). Last, we did not find evidence that the 363 

presence of nearby trees or tall shrubs was associated with more frequent greening, suggesting 364 

that the densification of non-woody vegetation is as important as the upward shit of trees to 365 

explain greening. This is illustrated by four examples of land cover dynamics using past and 366 

current very high-resolution color-infrared aerial photographs that are available for the French 367 

Alps (Figure S8).  368 

 369 

 

 

Discussion  

The main findings of our study are threefold. First, more than half of the land surface 370 

occupied by above-treeline ecosystems in the European Alps has experienced significant 371 

greening over the last two decades. By contrast, the number of pixels showing significant 372 

browning trends is less than 1%. Second, this widespread greening is spatially non-uniform, 373 

and fast greening responses can be explained by a combination of local-scale factors - i.e. 374 

elevation and exposure - and regional-scale factors pertaining to anomalies of NDVImax and 375 

trends in green-up dates. Third, we provided substantial evidence for the high responsiveness 376 

of north-facing and sparsely vegetated areas that have clearly benefited the most from recent 377 

climate changes in the European Alps. 378 

Our study investigated greening trends across a vast and highly heterogeneous 379 

landscape. Above-treeline ecosystems in the Alps include a wide range of geomorphological, 380 



 

 

topographical and ecological situations that lead to a high turnover of plant communities over 381 

short distances. This fine-scale heterogeneity in plant cover inevitably calls into question the 382 

appropriateness of using moderate resolution remote sensing products to assess greening 383 

trends in mountainous landscapes. For example, it is entirely possible that contrasting trends 384 

of greenness are occurring within a 250 m resolution pixel because of habitat-specific 385 

responses (Matteodo, Ammann, Verrecchia, & Vittoz, 2016). While the use of moderate 386 

resolution remote sensing products certainly limits our ability to assign specific NDVImax 387 

trajectories to particular plant communities or habitats, our approach nonetheless provides a 388 

very valuable and comprehensive picture of vegetation shifts at the mountain range scale, and 389 

enables broad-scale investigation of land cover dynamics as demonstrated in previous studies 390 

(Zhao & Running, 2010). We acknowledge the potential of using high-resolution products 391 

such as the Landsat archive to complement our study. However, this will raise other 392 

difficulties. The most critical is the low frequency of available images, which makes it 393 

difficult to capture the peak of growth in alpine environments, and leads to large uncertainties 394 

in the estimate of NDVImax. In addition, calculating a finer grained greening response would 395 

exacerbate the mismatch between the spatial scale of remote sensing products and that of 396 

drivers of changes, especially climate (Randin et al., 2020). For these reasons, we believe that 397 

high-resolution remote sensing data would be more appropriate to examine the response of 398 

specific habitats or sites for which ground-truthing data are available. Similarly, the utilization 399 

of aerial photograph archives has an enormous, yet largely unexplored, potential to relate very 400 

fine-grained land cover dynamics to observed greening trends (see illustrative examples in 401 

Figure S8) 402 

Another difficulty of our comparative analysis of greening trends pertains to the wide 403 

range of vegetation cover that is included. It is well known that NDVI exhibits a nonlinear 404 

response to aboveground biomass and plant cover, especially for planophilous canopies 405 



 

 

(Myneni & Williams, 1994). The sensitivity of NDVI to an incremental change in biomass or 406 

cover decreases for dense canopies, as does our capacity to detect a significant greenness 407 

trend in these contexts. Thus, one may run the risk that the spatial variability of greening 408 

partly reflects the different sensitivity of the method used to detect greening. We paid 409 

particular attention to this issue and removed from our analysis all pixels with high NDVImax 410 

values (> 0.65), as we had clear indications of a saturation effect on greening (Figure S2). The 411 

relationship between NDVImax and biomass or cover is linear in the NDVImax range we 412 

selected (Myneni & Williams, 1994). We also performed similar random forest analyses on 413 

subsets of pixels exhibiting very low NDVImax value and found similar conclusions (Figure 414 

S6). For these reasons, we are confident that the saturation of NDVImax with aboveground 415 

biomass did not blur our assessment of greening trends in the European Alps. 416 

Our report on widespread greening in above-treeline ecosystems of the Alps is 417 

consistent with previous studies on arctic and alpine ecosystems (Berner et al., 2020; Ju & 418 

Masek, 2016; Krakauer, Lakhankar, & Anadon, 2017; Xie et al., 2020). As in other cold parts 419 

of the earth, high elevation ecosystems of the Alps have experienced a more pronounced 420 

warming than lowlands (Palazzi, Mortarini, Terzago, & von Hardenberg, 2019; Pepin et al., 421 

2015) and, not surprisingly, these temperature-limited ecosystems are benefitting from this 422 

increased temperature. However, and by comparison to a recent report from the Arctic 423 

(Berner et al., 2020), we found very few significant browning trends. A plausible explanation 424 

is that all regions of the Alps have experienced warmer summers, albeit to varying degrees, 425 

over the last decades (Figure S9). This led us to consider that, at least for the Alps, the 426 

knowledge gap is less about the detection of significant greening trends than it is about the 427 

causes of its spatial variability in a warmer climate. Our study provides new perspectives on 428 

this matter, given that we unraveled the pivotal role of the anomaly of NDVImax to capture 429 

part of this greening complexity. Ecosystems exhibiting a lower NDVImax than expected 430 



 

 

given the topography, i.e. a negative anomaly, have been the most responsive over the last 431 

two decades, and this is the reason why we observe today a reduced dispersion of NDVImax 432 

values for a given elevation x DAH compared to the years 2000 (Figure 4b) as well as 433 

reduced regional heterogeneity (Figure 2). We can refer to this trend as a catching-up 434 

phenomenon and we assert that it is the most important facet of the ongoing greening in the 435 

Alps. 436 

To further understand this phenomenon, we paid particular attention to land cover 437 

properties using high-resolution images. Clearly, the presence of very sparsely vegetated 438 

surfaces - such as screes, talus and outcrops - is a predisposing factor to negative anomalies 439 

and greening (Figure 6). In this regard, our findings extend at a broader mountain range scale 440 

conclusions that were drawn from more localized studies (Carlson et al., 2017). The 441 

increasing vegetation cover in initially sparsely vegetated areas is being documented through 442 

long-term surveys (Rixen, Wipf, Frei, & Stoeckli, 2014; Steinbauer et al., 2018) and remote 443 

sensing (Carlson et al., 2017). Noticeably, several reports have underlined the preferential 444 

expansion of tall shrubs and trees on screes and debris compared to nearby grasslands. In 445 

addition to forest ingrowth caused by land-use abandonment, this upward shift of trees is the 446 

other dimension of tree expansion documented in the Alps (Gehrig-Fasel et al., 2007; Vittoz, 447 

Rulence, Largey, & Frelechoux, 2008), and diffuse treelines can be highly responsive to 448 

climate warming (Harsch, Hulme, McGlone, & Duncan, 2009). Forest dynamics at the 449 

treeline have also been influenced by the constant decline of pastoralism and the related 450 

human activities due to the land abandonment since the Industrial Revolution (1850), making 451 

it difficult to disentangle climate influence and human impacts (Motta & Nola, 2001). In the 452 

southern part of the Alps, these dynamics occur well above the treeline, which is mainly 453 

constituted by the European larch (Larix decidua L.) and the stone pine (Pinus cembra L.). 454 

For example, the systematic survey of alpine ridges and cliffs in the south-western Alps led to 455 



 

 

report on the occurrence of isolated individuals or stands of Pinus cembra at very high 456 

elevation (André, Lavergne, & Carcaillet, 2020). This is consistent with the hypothesis that 457 

the upward shift of the treeline may be more pronounced in the inner part of the Alps where 458 

trees take advantage of the more continental, warmer and drier, climate(Körner, 1999). Our 459 

study did not allow to precisely relate tree cover dynamics with greening because of the 460 

coarse resolution and the focus on high elevation sites. Nonetheless, we noticed that the 461 

greening trends are more accentuated on north-facing slopes that are generally more forested 462 

and more densely covered by heathlands than southern aspects. Further studies should 463 

associate the different magnitudes of increase in NDVImax to well-documented colonization 464 

of pioneer shrubs and trees. Our mapping of hotspots and coldspots of greening can provide 465 

the foundations for such an investigation coupling remote sensing and plant population 466 

models. 467 

Another ecological dynamic that is consistent with our findings is the increasing cover 468 

of dwarf shrub - mainly Ericaceous species - in north-facing grasslands. Expanding low shrub 469 

cover in recent decades has been reported in the central Italian Alps at elevations up to 2500 470 

m (Cannone, Sgorbati, & Guglielmin, 2007). Coupled with climate change, the transition 471 

from an agro-pastoral socio-economic model to an economy based on tourism and skiing has 472 

enabled a pronounced expansion of trees and shrubs into mountain grasslands in numerous 473 

locations throughout the Alps since the 1950s, including for example the Chamonix valley 474 

(unpublished data). In addition to the expansion of woody vegetation, increasing grass cover 475 

in sparsely vegetated areas is probably contributing to the observed trends, both in the context 476 

of screes and talus as well as glacier forelands in the wake of glacier retreat (Mainetti et al., 477 

2021).  478 

Our study allowed for distinction between external drivers of greening such as climate 479 

and predisposing factors that pertain to the initial state of the responding system. Overall, the 480 



 

 

regional-scale variability of the greenness response did not strongly reflect spatial variation in 481 

climate change. Several reasons may explain this phenomenon. First, the climate data we used 482 

may be poor predictors because they fall short to capture surface conditions in high elevation 483 

complex terrain. There are a limited number of weather stations above 2000 m in the Alps, 484 

and some variables like precipitation are notoriously difficult to model along topographical 485 

gradients (Frei & Isotta, 2019; Vionnet et al., 2019). Second, plant growth and community 486 

dynamics primarily respond to fine-scale thermal and moisture regimes that depend on 487 

landforms and soil factors (Giaccone et al., 2019; Liberati, Messerli, Matteodo, & Vittoz, 488 

2019; Matteodo et al., 2016; Suding, Farrer, King, Kueppers, & Spasojevic, 2015), and these 489 

factors are not accounted for in continental-scale gridded datasets. Third, high-elevation 490 

ecosystems may respond to different temporal scales of climate such as extreme events or past 491 

climate shifts. For example, previous studies have underlined the positive response of alpine 492 

primary productivity to heat waves (Corona-Lozada, Morin, & Choler, 2019; Jolly et al., 493 

2005). There is also strong evidence that the most significant rise of temperature in the Alps 494 

occurred in the late eighties (EEA, 2009), i.e. a decade before the start of the MODIS 495 

observations. It is possible that these particularly favorable years lead to massive plant 496 

recruitment and that we are tracking the consequences of these events years later.  497 

An example of a physical variable that we can track at the pixel scale is the green-up 498 

date, which strongly depends upon the first snow free date. At first glance, our findings are 499 

counter-intuitive as the likelihood of greening is predominantly associated with a delayed 500 

green-up date (Figure 4), as illustrated by the situation in the south-western Alps and the 501 

south-central Alps (Figure S10). Using the regional climate re-analysis available for the 502 

French Alps, we confirmed that the positive trend of the green-up date is consistent with 503 

delayed snow melt-out during the last 20 years especially in the southern-most ranges and 504 

above 2000 m (Figure S11). A significant decrease in snow-melt-out dates in the 1980s and 505 



 

 

1990s has been reported, mostly for sites below 2000 m (Durand et al., 2009; Klein, Vitasse, 506 

Rixen, Marty, & Rebetez, 2016; Matiu et al., 2021). Recent reports highlighted that these 507 

trends tend to vanish in the recent period, especially at high elevation (Matiu et al., 2021; 508 

Vorkauf, Marty, Kahmen, & Hiltbrunner, 2021). In line with these findings, there is evidence 509 

that high elevation sites in European Alps have experienced an increase in the precipitation 510 

over the last decades (Avanzi et al., 2020; Napoli, Crespi, Ragone, Maugeri, & Pasquero, 511 

2019). We hypothesize that the combination of snowy winters and warm summers may be 512 

particularly favorable for alpine vegetation, especially where vacant niches are available for 513 

recruitment. This was suggested by Corona et al. (2019) who showed that among the four 514 

main heat waves that hit the Alps in the last 20 years, the only one that did not translate into 515 

increased productivity was that of 2015 because a strong water deficit coincided with 516 

increased temperature. Recent work also indicated that earlier snowmelt can be detrimental to 517 

the growth of Rhododendron ferrugineum shrubs that preferentially occur on north-facing 518 

slopes (Francon et al., 2020). It is therefore plausible that a delayed snowmelt ameliorates the 519 

summer soil water balance and acts synergistically with warm summer temperatures to boost 520 

plant productivity and colonization, especially on north-facing slopes that may previously 521 

have been too cold to support dense vegetation cover. Further studies are needed to confirm 522 

that this association between prolonged snow cover and greening is not simply coincidental 523 

but is reflecting ecological mechanisms that are beneficial to plant recruitment and growth. 524 

Finally, our findings call into question whether changes in pastoral management may 525 

have contributed to the negative NDVImax anomalies and more generally to the contrasting 526 

regional greening trends. Unfortunately, consistent long-term data on mountain livestock 527 

systems are not available at the scale of the European Alps. A socio-economic analysis led 528 

Tappeiner & al. (2008) to identify regions of the European Alps where agriculture receded in 529 

recent years. Most of the Italian Alps and the North-easternmost Austrian Alps were 530 



 

 

described as “forgotten rural areas” experiencing sharp decline in agriculture, which 531 

demonstrates substantial spatial consistencies with our delineation of greening hotspots. 532 

However, the analysis aggregated many different socio-economic variables at the scale of 533 

administrative districts, and it was not possible to include it in our analysis of the drivers of 534 

greening. There is certainly no simple relation between greening trends and changes in 535 

agricultural practices. For example, there has been a remarkable resilience of mountain 536 

livestock farming systems in the southern part of the French Alps which is a greening hotspot, 537 

and this was observed despite many adverse factors such as demography, poor profitability, 538 

extreme events and return of the large predators (Hinojosa, Napoleone, Moulery, & Lambin, 539 

2016). Recent trends even point toward an increasing demand for high-elevation pastures to 540 

overcome the detrimental effects of droughts in lowlands and southernmost mountain ranges, 541 

leading shepherds to bring their flocks to high-elevation pastures for extended summer 542 

periods (Nettier, Dobremez, Coussy, & Romagny, 2010). The greening trends we have 543 

documented here may further encourage such practices. This highlights that livestock farming 544 

systems cannot be solely envisaged as potential drivers of greening trends but that pastoral 545 

practices will also have to adapt to the changing productivity and spatial distribution of 546 

mountain pastures (Jager, Peratoner, Tappeiner, & Tasser, 2020). 547 

 548 

Conclusion 

In summary, the uplands of the European Alps have undergone widespread albeit non-549 

uniform greening over the last two decades. High-elevation ecosystems have positively 550 

responded to ongoing summer warming with varying degrees of sensitivity. This conclusion 551 

is supported by the importance of predisposing factors such as the NDVImax anomaly, i.e. an 552 

abnormally low initial greenness, which explains a substantial portion of the spatial variability 553 

of greening. Sparsely vegetated ecosystems on north-facing slopes and experiencing 554 



 

 

prolonged snow cover duration are the most highly responsive to ongoing warming, possibly 555 

because the positive effect of increased temperature is not dampened by limiting water supply 556 

and density-dependent plant competition. Our findings call for further studies examining why 557 

certain areas of the European Alps exhibit negative NDVImax anomalies and whether this 558 

determines specific ecological mechanisms underpinning observed greening trends. 559 

 560 
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Figure legends  

Figure 1 Sign and magnitude of greenness trends in above-treeline ecosystems of 828 

European Alps. a Frequency distribution of linear trends of NDVImax over the period 2000-829 

2020. Slopes were estimated using the Theil–Sen median slope analysis. Levels of 830 

significance were assessed by a non-parametric, rank based, Mann–Kendall (MK) monotonic 831 

test. Positive [negative] values correspond to greening [browning] trends. The analysis was 832 

performed on 284 546 pixels at 250 m resolution. b Greenness trends by land cover class. The 833 

European-scale product Corine Land Cover (CLC) was utilized. Note that the CLC class 834 

“bare rocks” was renamed “very sparsely vegetated” as the average NDVImax of selected 835 

pixels was above 0.1. Note the different scale for positive and negative trends. 836 

 837 

Figure 2 Spatial distribution of greenness trends. To ease reading, we applied a 5x5 838 

pixels moving window to the original 250 m resolution map. The color scale represents the 839 

percentage of pixels showing significant greening (P < 0.05) over the period 2000-2020. The 840 

bold line delineates the European Alps whose location is shown in the upper left insert. The 841 

lower right insert allows visualizing regional hotspots of greening by aggregating the 250 m 842 

resolution map at 2.5 km and by coloring pixels for which more than 80% of the 250 m pixels 843 

exhibited fast greening (P < 0.005). 844 

 845 

Figure 3 Variation of greenness trends along gradients of elevation and diurnal 846 

anisotropic heating (DAH). a Heatmap of the mean value of NDVImax slopes per class of 847 

elevation and DAH. Only combinations representing more than 5% of the total number of 848 

pixels are shown. b Elevational distribution of three ranges of NDVImax along the gradient of 849 

DAH. Lines indicate the second decile, the median and the eighth decile of the distribution. 850 

Average NDVImax values are shown for three 10-year sliding windows. 851 



 

 

 852 

Figure 4 Anomalies of NDVImax. a An example of the variation of NDVImax along 853 

elevation for DAH values in the interval ]-0.25;-0.2]. NDVImax values are averages for the 854 

period 2000-2020. Black lines indicate the first, the fifth (median) and the ninth deciles of the 855 

distribution. The color palette from brown to green allows visualizing the NDVImax anomaly, 856 

i.e. the difference between NDVImax and the median value of the corresponding elevation x 857 

DAH combination. b Spatial distribution of the NDVImax anomaly in the European Alps. To 858 

ease reading, we applied a 5x5 moving window to the original 250 m resolution map. 859 

 860 

Figure 5 Predictors of greenness trends. We classified pixels into three categories - 861 

no greening, moderate greening (0.005<P<0.05) and fast greening (P<0.005) - and 862 

implemented a random forest model to assess the importance of predictors. a Usefulness of 863 

the predictor for classification measured by the mean accuracy decrease in classification 864 

following permutation of variables. b Contribution of a predictor to the purity of nodes 865 

measured by the decrease in the Gini coefficient. c Partial dependency analyses showing the 866 

classification probability as a function of the set of values taken by the predictors. We created 867 

1000 perturbed datasets of MODIS reflectances for the 284,346 pixels and then randomly 868 

selected 30,000 pixels in each dataset. These subsets of pixels were split into training (66%) 869 

and validation (33%) to implement the random forest model. Envelopes show the first and 870 

ninth deciles of the distribution. 871 

 872 

Figure 6 Relationships between land cover, NDVImax anomalies and greenness 873 

trends. We randomly selected 100 pixels (500 m resolution) in three data subsets exhibiting 874 

negative, null and positive NDVImax anomalies (see Figure S7) and visually photo-875 

interpreted land cover using very high resolution Google Earth imagery. Cover of 876 



 

 

screes/outcrops (a) and grasslands (c) per class of NDVImax anomaly. NDVImax slopes 877 

(mean +/- se) for each class of NDVImax anomaly distinguishing the cover of screes/outcrops 878 

(c) and grasslands (d). Results of a post-hoc Tukey tests are denoted with letters. Different 879 

lower case letters indicate a significant (P<0.05) difference within NDVImax anomaly class. 880 

Different upper case letters indicate a significant (P<0.05) difference between NDVImax 881 

anomaly class.   882 
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