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ABSTRACT:

The article presents two avionics applications of syn-
thetic image rendering for the development of image
processing algorithms and AI training for unmanned
aerial systems (UAS). First, the design of vision-based
navigation algorithms is explored and validated using a
6DOF simulator of a camera-equipped aircraft. Then,
a mixed database of synthetic and real images is used
to train new AI perception models dedicated to visual
recognition and passive ranging from videos. These
two applications show how simulation and synthetic
images can be useful throughout the development cy-
cle of image processing solutions, from optronic design
to performance validation.

1. INTRODUCTION

The growing number of unmanned aerial systems
(UAS) requires Detect & Avoid (DAA) and Navigation
capabilities, such as localization or path planning, to
prevent collisions in shared airspace. For manned avi-
ation, Airborne Collision Avoidance Systems (ACAS)
work by warning pilots of the presence of other air-
craft or obstacles that may present a threat of colli-
sion. Commonly used technology relies on airborne
radar or cooperative communications with other air-
craft’s transponders. In both cases, ACAS are bulky,
expensive, and require active sensors emitting electro-
magnetic waves. A challenge is to operate these func-
tions in a non-cooperative scenario i.e. without any in-
formation from other aircraft. Also, traditional nav-
igation systems based on inertial measurement unit
(IMU) and GPS hybridization are not always accurate
in GPS-denied environments or low altitude flights.
Camera sensors make it possible to explore new use
cases for airborne systems beyond the limits of conven-
tional navigation and perception methods while ben-
efiting from an excellent trade-off in terms of size,
weight, power, and cost.

A large database of images and video sequences is
needed to develop, validate, evaluate navigation or per-
ception algorithms, and ultimately assess whether they

Figure 1: 3D scene and trajectory simulators help de-
veloping Computer Vision functions.

meet system requirements. Ideally, the entire design
process is carried out using real data representative
of the domain of use. However, the volume and vari-
ety of real data are often limited due to the cost and
complexity of setting up acquisition campaigns. Ad-
ditionally, some flight scenarios, e.g. near midair col-
lisions [1] or certain geographical areas, are difficult,
dangerous, or even impossible to acquire in real con-
ditions. Thus, simulations are best suited to provide
the required quantity and diversity of scenarios. Par-
ticular attention must be paid to the realism of the
simulations. Depending on the algorithm, the require-
ments in terms of realism are not necessarily the same.
The main research question we consider is: can we use
the rich annotations and the amount of data provided
by simulation:

(a) to design vision-based navigation algorithms?
(b) to train new AI perception models?

To address this question, related work in the litera-
ture is reviewed in Section 2. The criteria for selecting
a simulator depend on the application and are detailed
in Section 3. Then, the design of vision-based Naviga-
tion functions is covered in Section 4. Finally, a neural
network is trained using synthetic images to solve a
perception task for Detect & Avoid in Section 5.

2. RELATED WORK

Recent works show the advantages of exploiting the
photo-realistic and the endless diversity of modern sim-
ulation software and game engines to generate train-
ing datasets of images, metadata, and annotations.



Gaidon et al. [2] use a game engine to make the Vir-
tual KITTI dataset, composed of non-photorealistic
synthetic clones from real driving scenarios, and then
explore challenging conditions. UnrealCV [3] and Air-
Sim [4] are plugins for game engines that enable specific
features such as communication protocoles [3], annota-
tion generation or physics simulation, and control of
a UAV with a flight controller [4]. Müller et al. [5]
have developed Sim4CV for generic computer vision
research, including object detection, object tracking,
camera localization, navigation, etc. It provides three
main features: automatic world generation, communi-
cation interfaces with common software, and applica-
tions for UAV target tracking and autonomous driving.
Alvey et al. [6] describe a workflow for collecting pho-
torealistic simulated data with associated metadata via
open source tools to assist deep learning computer vi-
sion research for UAVs. In particular, Alvey et al. [6]
introduce a data simulation workflow for monocular
depth estimation in autonomous driving applications.
First, the authors validate that a monocular depth es-
timation model trained on real-world KITTI dataset
performs well on simulated data from a game engine.
Then, a qualitative comparison assesses that the same
model architecture trained from a mix of KITTI and
Virtual KITTI datasets performs better than the for-
mer model.

In DAA systems, passive ranging is the process of
estimating the distance between a camera sensor and
detected targets aka. intruders. This task is often re-
lated to the ability to estimate the time before a col-
lision might occur, also called time-to-collision. Some
other works focus on the development of AI-based algo-
rithms to solve this perception task using neural net-
works [7, 8, 9]. These works also exploit simulated
data, but their objective is rather to optimize the neu-
ral network architecture, whilst we investigate the role
of simulated data in AI training. Additionally, previous
works usually refer to ideal scenarios such as clear sky,
no clouds, and short distance ranges, leading to a sim-
plified task for which the intruders are well contrasted
and extend over more than 10 pixels in the images.

For UAV navigation, several datasets exist and pro-
vide a set of sequences to benchmark vision solutions
on generic navigation scenarios. Fonder et al. present
Mid-Air [10] a multi-purpose synthetic dataset for low
altitude drone flight. Wang [11] present MineNav,
an expandable synthetic dataset based on Minecraft
for aircraft visual navigation taking advantage of the
open-source contributions of the large community of
the game in terms of features and plugins. Despite
the quality and diversity of these datasets, they do not
meet all our needs. In particular, the terrain overflown
or the UAV trajectory are not sufficiently representa-
tive of reality. For example, in the case of power lines
inspection mission, it is necessary to focus on scenar-
ios with power lines of different natures in different
configurations. Therefore, a simulator to generate the
custom dataset that fits the study needs is a practical
tool if not essential.

3. SIMULATORS

3.1. Simulation needs

Simulation benefits throughout the development of
computer vision functions. However, the use of syn-
thetic data varies across the process of technological
maturation.

At the beginning of the process, there is seldom rep-
resentative real data available to carry out the feasi-
bility study and the definition of requirements. Thus,
having a scene simulator is a real opportunity to cre-
ate synthetic scenes corresponding to the use cases
(flight speed and height, scene context, etc.). Only
a few samples are needed at this stage. These sam-
ples are not very accurate and may lack realism. In-
deed, it is mainly used for reducing the risk of the con-
cept under consideration. Therefore, synthetic data
can strongly contribute to establishing a fast proof-of-
concept (POC) in the early stages of the development
of a computer vision solution.

Once the concept is defined, the design stage can
start. It includes system design, functional design,
and optronic design. This covers the study of different
architecture choices and their comparison on a small
representative dataset. Compared to the POC stage,
the evaluation and comparison of the different archi-
tectures studied require a larger amount of data. If
the initial solution comes from a different domain, the
design task begins by evaluating its behavior in this
new domain. The simulation tool also contributes to
the optronic dimensioning phase by testing a variety of
sensor or lens parameters that are difficult to cover in
reality at a reasonable cost. In addition, it facilitates
the study of the optimal mechanical configuration of
the UAV e.g. position and tilt.

Figure 2: Development of technologies with simulation.

3.2. Task specifications

The democratization of small drones with compact on-
board cameras made it possible to achieve vision-based
navigation [12] as well as the perception of the sur-
rounding environment. We focus on four vision ap-
plications, namely visual odometry, map registration,
beacon registration, and passive ranging with different
needs in terms of simulation.

Visual odometry. Visual odometry aims at measur-
ing the relative pose of a vehicle thanks to the analysis
of the image content along the time. State-of-the-art
solutions [13] often rely on the strategy of detecting
and tracking keypoints, then estimating the displacing
by a bundle adjustment as described in Algorithm 1.
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Algorithm 1 Visual odometry

Inputs: images
Output: 3x4 pose matrix

1: Detect and extract 2D keypoints on each frame
2: Keypoint matching with previous frames
3: Bundle adjustment to estimate

a: The relative pose of the camera observing the
scene
b: The 3D position of the keypoints

Map registration. Map registration estimates the
geographic position of the vehicle (Algorithm 2).
Matching is performed between the current view of the
onboard camera and an area extracted from georefer-
enced cartographic data. Once both images are reg-
istered, the exact pose of the camera is estimated by
solving a Perspective-n-Point (PnP) problem.

Algorithm 2 Map registration

Inputs: images, camera poses, cartographic dataset
Output: camera pose

1: Extract the cartographic view from known (ap-
proximate) pose information (cartographic image)

2: Register current image and cartographic image:
a: Extract image features
b: Compute the geometric transformation between
both images
c: Estimate the camera pose using a PnP approach

Beacon registration. Beacon registration also pro-
vides an estimation of the geographic position of the
camera, but without resorting to a cartographic image
(Algorithm 3).

Algorithm 3 Beacon registration

Inputs: images, camera poses, beacons geodata
Output: camera pose

1: Detect beacons by image analysis
2: Project georeferenced beacons on the current image

using the estimated camera pose
3: Match detected and projected beacons
4: Estimate the camera pose using a PnP approach

Passive ranging. Passive ranging consists in esti-
mating the distance between an observer (camera) and
an object (intruders) by using passive sensors. The es-
timated distance in addition to azimuth and elevation
angle measurements allows 3D tracking capability of
targets for DAA system. Our method uses a neural
network trained for distance estimation using target
size observation and priors on target dimensions. For
a given forward-facing intruder, ignoring the sensor op-
tical aberrations, the observed wingspan ` in pixels is
defined as:

` ≈ L

Z · IFOV
(1)

where IFOV is the angle in radians subtended by a
single imaging cell, L is the wingspan of the intruder
in meters, and Z is the depth to the intruder in meters.
Tab. 1 calculates this size for different configurations.

Table 1: Evolution of the target size in pixels for vari-
ous imaging sensors and depth in range [1000m;5000m]

IFOV \Depth 1000 m 2000 m 3000 m 4000 m 5000 m

0.2 mrad 50 px 25 px 16 px 12 px 10 px
0.5 mrad 20 px 10 px 6 px 5 px 4 px
0.8 mrad 12 px 6 px 4 px 3 px 2 px

3.3. Simulator capabilities

Over the past few years, game rendering engines have
proven their supremacy when it comes to photoreal-
ism. However, they do not simulate images outside
of the visible spectrum, unlike the advanced physics-
based rendering engine. Environment modeling capa-
bilities (terrain, objects, light, sky) vary from simula-
tor to simulator in terms of implementation, diversity,
size, detail, and cost. For example, diversity is usually
improved using procedural generation.

Computer vision functions are known to be quite
sensitive to sensor modeling and after-effects such as
optical aberrations or motion blur. Exporting meta-
data (geolocation, optical flow, depth maps, segmenta-
tion labels) should be simple.

Our use of simulators requires simplified manage-
ment of scenarios (path following constraint, keyframe,
etc.) using existing tools or a scripting interface. Some
applications may also need to reproduce real envi-
ronments (road, beacon) or real conditions (sunshine,
weather). Some others have strong render speed or
real-time constraints.

3.4. Simulation implementation

Fig. 3 shows our simulation pipeline for a DAA sce-
nario. Some input data is provided to the simulator to
define the scenario: carrier and intruder trajectories,
intruder aircraft models, terrain models, atmosphere
and temperature models. The sensors are also explic-
itly defined in terms of resolution, field of view, and
spectral bands. The simulator then creates the sce-
nario and produces the simulated images. The output
data is a set of luminance images i.e. light intensity
received by the sensor on a specific spectral band. A
sensor model can also be applied to the final luminance
image to mimic the physical properties of the sensor
e.g. noise and point spread function.

Figure 3: Image simulation pipeline
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4. VISION-BASED NAVIGATION

The vision functions used for navigation are based on
the analysis of the acquired scene to calculate navi-
gation primitives such as position, speed, or attitude.
Features of interest are terrain and objects above the
ground such as roads, buildings, and trees. In this
section, we will look at how simulators are used to de-
velop a solution for visual odometry, map registration,
or beacon registration.

4.1. Method

4.1.1. Scene modeling

The modeled scene must meet several levels of realism
depending on the function considered. All functions
require at least the scene to be realistic.

Realistic modeling. A scene is realistic when it
looks like a real scene even if it does not exist in reality.
At the early stage of development, geometric modeling
of the terrain and some elements above the ground is a
good starting point for a quick proof of concept. Then,
a higher level of realism is achieved by taking into ac-
count physics and sensor performance for evaluation
and validation. Indeed, the image is a representation
of a scene acquired by a camera. The rendered im-
age is highly dependent on the camera properties. In
order to obtain a realistic image, it is necessary to re-
produce the parameters of the camera and apply the
reproduced processing chain (Fig. 3) before using the
image for high-level functions such as vision-based nav-
igation.
It is possible to use non-existing scenes (Fig. 4) to de-
termine the effectiveness of a function in challenging
conditions. Populating scenes with a collection of pho-
torealistic models of elements above the ground (trans-
mission towers, buildings, and trees) allows a variety
of scenes to be simulated, aligned to the use domain
but also covering more challenging conditions for stress
testing vision functions.

Figure 4: Example of non-existent scene that could be
used for beacon registration.

High-fidelity modeling. Having a realistic scene is
a requirement for all vision functions. However, this
is not enough for some specific tasks such as map reg-
istration. Not only must the scene be realistic, but it
must also be a high-fidelity reproduction of an actual
location on Earth.
For map registration, the main challenge is to match
the aerial image of the scene overflown with an ac-
tual georeferenced reference image. Thus, in the case

Figure 5: On the left, the real scene. On the right a
low-fidelity modeling of the same scene.

Figure 6: Real orthophoto used for a high-fidelity tex-
ture rendering.

of aerial image simulation, the image registration step
requires that the modeled scene be strictly faithful to
reality. Otherwise, experiments based on low-fidelity
scenes (Fig. 5) will lead to mismatches and erroneous
conclusions.
Therefore, vision functions involving real georeferenced
data require high-fidelity scene modeling in terms of ge-
ometric content and scene layout. A reasonable way to
get a high fidelity render is to overlay an orthophoto
instead of synthetic textures (Fig. 6).

4.1.2. Environment interaction

At this stage, the simulated image takes into account
the elements on the ground and the characteristics of
the camera. For aerial navigation, the carrier aircraft
has a strong impact on images due to vibrations. In-
deed, onboard the cameras undergo important vibra-
tions which might make the images blurry or shaky. In
addition, the weather is another source of image qual-
ity degradation. Indeed, haze, fog, or backlight reduce
the observability of the scene. Modeling the daylight,
the weather, and the season are key elements of any
scene simulator. It is important to test the robustness
of the vision function on simulated scenes that stick
as closely as possible to real conditions with respect to
physics.

4.1.3. Trajectory simulation

Besides the scene simulator, the path simulator is an-
other major component of a complete simulator for vi-
sion applications. The kinematics of a fixed-wing air-
craft or a multi-rotor aircraft are very different. More-
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over, translational and rotational speeds vary during
different phases of flight such as takeoff, maneuvering,
and landing. The trajectory simulators make it possi-
ble to create different trajectories to test the behavior
in all cases.

4.1.4. Generated data

The simulator offers the possibility to generate images
covering a wide range of scene parameters (terrain, tra-
jectories, weather, etc.) but it can also generate other
data that are helpful to develop and validate vision
applications.

Depth map. Generating the depth map correspond-
ing to the images (Fig. 7), is a good practice for de-
veloping visual odometry solutions. Indeed, monoc-
ular solutions require an additional sensor such as a
telemeter to address the scale estimation. This could
be achieved using the depth map and the telemeter
spot model. Additionally, the depth map is necessary
to validate the estimate of the distance to the scene.

Figure 7: A synthetic image and associated depth map.

Segmentation labels. For beacons registration
method, the ground truth of the beacons is needed to
learn and evaluate the algorithm. Semantic segmenta-
tion of the scene could be generated using a label map
corresponding to the scene elements of interest such as
beacons.

Navigation data. As seen in the registration algo-
rithms 2 and 3, the camera pose is an input. It is,
therefore, necessary to know the position and the atti-
tude of the aircraft as well as the relative position and
orientation of the onboard camera. Nevertheless, the
real pose differs from the pose estimated by the nav-
igation block. Indeed, the navigation simulator must
model the navigation sensors and their errors to create
position and attitude data representative of the real
sensor. An effective registration would compensate for
errors in the input navigation data as shown in Fig. 8.

4.2. Results

4.2.1. Optronic dimensioning and camera po-
sitioning

During the development of a new vision system, the
question of optronic dimensioning arises very early. It
is important to choose optronic parameters such as fo-
cal length, image resolution, camera mounting angle

Figure 8: Map registration correcting the estimated po-
sition and attitude of a UAV on synthetic data. The
image layout is a chessboard to compare the image gen-
erated from the navigation data with the ground truth.
The image on the left shows the error of the input nav-
igation data and on the right the registration result.

Figure 9: Camera oriented to the front (left) and to
the nadir on the same scene (right). The optimal pitch
depends on the application.

(Fig. 9), or baseline between cameras of a stereo sys-
tem, for optimal observation of the scene. Testing mul-
tiple cameras with different settings and benchmarking
these setups is extremely easy with the use of simula-
tors. Fig. 10 shows the position and angular errors
for different baselines and camera pitches for a visual
odometry task. Simulators greatly contribute to the
choice of the appropriate optronic configuration for a
given need.

4.2.2. Testing terrains

During its mission, the aircraft must follow certain
kinematic constraints. The trajectory simulator must
generate trajectories representative of the in-flight be-
havior of the aircraft as shown in Fig. 11. Subsequently,
these trajectories are used on different terrains to vali-
date the behavior of the vision function in urban, semi-
urban, or rural contexts.

4.2.3. Testing trajectories

The motion and trajectory of the aircraft are key pa-
rameters to generate representative sequences. If tra-
jectories recorded at real flights are available, they can
be used on different terrains. The scene simulator then
allows the generation of synthetic sequences from real
trajectories.

However, most of the time even the trajectories are
not available and have to be generated using a trajec-
tory simulator. This simulator must take into account
the motion model of the aircraft. For the early stages of
development, when the flight of the aircraft has not yet
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Figure 10: Benchmark of different baselines and camera pitches for a stereo vision system. BL designates the
baseline and AngleOV the pitch of the camera (−90◦ corresponds to the nadir).

Figure 11: Examples of generated trajectories.

been modeled, trivial trajectories, such as straight tra-
jectories at a constant speed, make it possible to start
the studies. Then, the complexity grows by adding
accelerations and attitude changes.

4.2.4. Testing the influence of ground elements

The behavior of all vision algorithms strongly depends
on the complexity of the observed scene. Indeed, all
rely on the extraction of features from the scene in
order to calculate navigation primitives. Simulators
allow controlling the scene components, in particular
artificial elements such as buildings, vehicles, or high
power poles which we consider as beacons. Each sim-
ulator’s community or publishers provide many mod-
els of common man-made components. For example,
we can add buildings and control their height to test
behavior with surfaces at different distances from the
camera. For beacon registration, it is important to test
several high power tower layouts as shown in Fig. 12.

4.2.5. Use domain

Determining the limits of the use domain takes a lot
of time and often cannot be completely carried out
in practice due to a lack of data for certain extreme
cases. Such a problem can be mitigated with a sim-

Figure 12: Pylons layout parameters for beacon regis-
tration.

Figure 13: Evaluation of the position error at different
configurations of speed and height of flight. The disk
size and color depict to the position error.

ulator where the user has full control of the most im-
pacting parameters. The main difficulty becomes the
analysis of a large number of evaluation results. Fig. 13
highlights the limits of the use domain for visual odom-
etry with respect to speed and flight height. The red
disks correspond to unacceptable values of the position
error while the green ones correspond to acceptable
flight speed/height pairs.
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5. DETECT & AVOID

This section describes our workflow for developing a
passive ranging function as part of a DAA system for
UAVs. Section 5.1 describes our engineering choices
through simulation, data processing, and the design
and training of deep neural networks. Section 5.2
and 5.3 present the performance evaluation of our algo-
rithm in the visible and infrared domain, respectively.

5.1. Method

5.1.1. Image simulation

To evaluate the distance estimation neural network, we
decided to simulate a large amount of synthetic images.
Two datasets with increasing simulation quality were
created.

Dataset Rev.1 contains images in the visible spec-
trum. The main concern for this dataset was to obtain
simulated data easily and quickly, in order to get a
first insight into the distance estimation problem un-
der ideal conditions. The main characteristics of this
dataset are: ideal atmospheric conditions (clear sky,
maximum visibility, no clouds), straight deterministic
forward-facing trajectories, a stationary camera, and
5 different types of intruders (including civil aircraft,
light aircraft, and hot air balloons). The generated
dataset is finally composed of approximately 750 dif-
ferent incoming trajectories for each type of intruder.

Dataset Rev.2 concerns both the infrared and the
visible spectrum and is noticeably more complex. In-
deed, it is composed of 7 different intruders with in-
coming, outgoing, and orthogonal trajectories. Seven
different types of intruders are simulated under three
different atmospheric conditions: good, average, and
bad weather with decreasing range of visibility. Also,
3D clouds are added in some scenarios in the surround-
ing environment, only for testing (not training) pur-
poses. Fig. 14 shows some examples of simulated IR
images for different intruders.

Finally, we also collected real data for the final val-
idation of our algorithms. The real data comes from
acquisitions that have been made in the field. They
were annotated with bounding boxes around the in-
truders for a preliminary detection task.

5.1.2. Sensor model

To make the simulated images more realistic, it is pos-
sible to add a sensor model. A sensor model applies
to perfect luminance images and aims to model sensor
properties and defects such as distortion, vignetting,
point spread function, noise, and automatic gain cor-
rection. For our study, we designed a sensor model that
consists of a succession of functions that model these
properties of the sensor. Real images were used to ad-
just the parameters of the different functions so that
they were representative of the real sensor used for the
acquisitions. Fig. 15 shows an example of a simulated
image before and after applying a sensor model.

Figure 14: Synthetic IR images simulated using a
physics based rendering engine.

Figure 15: Simulated infrared image before (left) and
after applying (right) sensor noise model.

5.1.3. Data preparation

Intruder detection is beyond the scope of this article.
We assume that the bounding boxes detected around
intruders are an input to our passive ranging algorithm.
An image time series (Fig. 16) is created for each de-
tected intruder and cut into short clips, denoted tubes,
of shape (T,H,W,C) where H, W are the spatial res-
olution of the crop around the intruder in height and
width respectively, T is the number of timestamps, C is
the number of channels. Data standardization is per-
formed as preprocessing step, along with basic data
augmentation operations.

Figure 16: Image time series of an intruder aircraft.

5.1.4. Neural network architecture

The neural network is fed by a preprocessed and aug-
mented tube. The neural network architecture is a
3D CNN that uses 3D convolutions to process spatio-
temporal input tensors, using both spatial and tem-
poral information simultaneously. The neural network
infers, for one or more images of the tube, the distance
from the onboard camera to the detected intruder air-
craft. The estimated distance value is then provided as
input to the collision avoidance algorithm. The evalu-
ation of the passive ranging function aims to assess the
quality of the predicted distance.
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5.1.5. Training & evaluation procedure

The dataset is divided into three different splits accord-
ing to the ratio 70:10:20 for the training, validation,
and test sets respectively. The splits are created so that
the different tubes extracted from a given sequence be-
long to the same set, in order to avoid overfitting and
bias. At the same time, random sampling encourages
diversity in appearance and trajectories within each
set. The model is trained to estimate the distance
d̂ ∈ R+, minimizing a mean squared error (MSE) loss
or an average relative distance (ARD) loss with the
ground truth distance d using stochastic gradient de-
scent. Two metrics (Eq. 2) are defined for the evalua-
tion to measure the quality of the distance regression:
mean absolute distance error (MADE) and mean rela-
tive ratio of the absolute distance error versus ground
truth distance (%errdist), over a specified range inter-
val D e.g. from 3000m to 3500m.

MADE =
1

|D|
∑

i|di∈D

∣∣∣di − d̂i∣∣∣
%errdist =

1

|D|
∑

i|di∈D

∣∣∣di − d̂i∣∣∣
di

(2)

5.2. Results in the visible domain

The method is first tested in the visible domain on
Dataset Rev.1 where imaging sensors generally ben-
efit from good pixel resolution.

5.2.1. Training on simulated images

The training was conducted for 100 epochs. The best-
performing model on the validation set is evaluated on
the test set. Since the dataset is carefully balanced
between the different aircraft types, global results are
presented for all classes at once. Fig. 17 shows the dis-
tribution of estimated distance versus the ground truth
distance. Most distance estimates are within 10% tol-
erance of the ground truth distance. Tab. 2 contains
both distance metrics averaged over 500m range incre-
ments in a range from 3000m to 6000m. The absolute
distance error is 63.9m on average and increases al-
most linearly with distance while remaining stable and
less than 1.58% in terms of %errdist. This result on
simulated RGB images shows the AI perception model
is able to infer the distance from the input tube with
sufficient accuracy in our simple simulation framework.

An independent experiment showed that incorrect
distance estimate is correlated with incorrect aircraft
class prediction using a distinct neural network, as
shown by the blue and red crosses in Fig. 17. This
result confirms the hypothesis that distinguishing be-
tween different aircraft classes helps the AI model to
predict an accurate distance.

5.2.2. Sensitivity to sensor model

The point spread function (PSF) describes the diffrac-
tion of light in the focal plane of the camera for a

Table 2: Absolute distance error on the set set of the
simulated RGB dataset.

Dist. range
3000 - 3500 - 4000 - 4500 - 5000 - 5500 -
3500m 4000m 4500m 5000m 5500m 6000m

MADE 46.4m 58.0m 67.0m 74.2m 82.4m 88.0m
%errdist 1.41% 1.54% 1.58% 1.58% 1.57% 1.54%

Figure 17: Plot of estimated distance versus actual dis-
tance. Blue and red cross marks indicate tubes where
the intruder class would have been correctly and incor-
rectly (resp.) predicted by a separately trained image
classifier. The green area represents an 10% error tol-
erance on the distance prediction.

point light source through a fine aperture. This func-
tion is strictly related to the resolution and blurring of
an optical device. Therefore, we expect this effect to
be non-negligible for the performance of the distance
regression module. In the case of a circular aperture,
the PSF kernel is a pill-box function (i.e. a cylindrical-
shaped function). However, it has been shown that
due to lens diffraction and other unmodelled charac-
teristics of the optical system, the blur kernel is simi-
lar to the Bessel function. Following [14], to simplify
our sensitivity study, we apply a Gaussian blur (Eq. 3)
to the simulated RGB images using a 11 × 11 Gaus-
sian kernel (Eq. 4) with variable standard deviation
σG=0.2:0.3:2.0. For example, σG=1.7 corresponds to a
full width at half maximum of 4 pixels. Then, an addi-
tive zero-mean Gaussian noise with standard deviation
σA∈{0, 0.005, 0.010} is applied.

The Gaussian blur is applied to an image I with
integer values in [0, 255] as follows:

I ′=I ~K + bne (3)

where ~ is the convolution operator, k=11 is
the kernel size, c=k−1

2 is the center of the ker-
nel, n∼N (0; 255 · σA) is Gaussian-distributed additive
noise, Kx,y are the Gaussian filter coefficients such
that:

Kx,y=
1

2πσ2
e−

(x−c)2+(y−c)2

2σ2 ;x, y∈[0, k − 1]
2

(4)
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Figure 18: Simulating sensor noise on a synthetic RGB
image of a Pilatus PC-9 at 4337m for IFOV=0.2mrad

Figure 19: Plot of classification accuracy (blue) and
MADE (orange) when Gaussian blur is applied to syn-
thetic RGB images with varying noise amplitudes. The
x-axis represents the standard deviation of the Gaus-
sian blur σG. The line styles correspond to different
values for the standard deviation σA of the Gaussian-
distributed additive noise. The experiments are carried
out on the entire test set and repeated 3 times.

Fig. 18 shows examples of a Gaussian blur with
varying parameters applied to a synthetic RGB im-
age. While the task is already difficult on its own, it
clearly becomes even more difficult when sensor noise
is applied, since the intruder aircraft loses most of its
details e.g. at σG=1.4. Fig. 19 plots the performance
impact when applying a simulated sensor noise model
to synthetic RGB images. The absolute distance error
slightly deteriorates from 63m to 159m with only ad-
ditive noise. This shows the sensitivity of the model
to sensor noise. For a not so improbable sensor noise
magnitude of σG=0.8 and σA=0.005, the classification
accuracy dropped to 88.9% and the MADE reached
232m. When the noise gets stronger, the neural net-
work fails to predict an accurate distance estimate.

This experiment shows our passive ranging model is
sensitive to the sensor noise model, which is identified
as one of the causes of the domain gap between our sim-
ulation and real-world images. This encourages us to
introduce sensor noise modeling in our data augmenta-
tion pipeline during training, as well as dig deeper into
domain adaptation techniques to become less sensitive
to the sim2real domain gap.

Figure 20: Estimated distance versus real distance and
a 10% tolerance area on the test set of Dataset Rev.2.

5.3. Results in infrared domain

The results presented in this section come from exper-
iments conducted on the IR part of Dataset Rev.2.
The training was conducted for a hundred epochs. A
few trials were done to optimize the training hyper-
parameters to get the best results on the validation
set. On the test set, the best results are around 15%
relative distance error across all seven intruder classes.
Figure 20 shows the distance estimate versus the real
distance. Distance estimation performance is not up to
par with results of Rev.1. Indeed, our neural network
is trained on IR data, not on visible data which ben-
efits from better resolution. Also, Dataset Rev.2 is
more challenging than Rev.1 in terms of weather and
context.

Our best model trained on simulated IR images was
then used as initialization for a fine-tuning experiment
on real IR images. The goal was to determine if it per-
forms better than random initialization. The results
are not obvious. There is a decrease in relative dis-
tance error of only a few percent for medium to long
distances. It seems that initializing on simulated im-
ages is irrelevant in our framework. The problem could
be that the simulated images are too different from the
real ones. Methods such as domain adaptation might
provide better results. They have not been tried in this
study but are planned for future work.

6. CONCLUSION

The use of simulation and synthetic images is a major
asset for the development of vision-based navigation
and perception functions. It can be used from the ini-
tial phase of the technology maturation process during
proof-of-concept through to the validation phase. It is
able to simulate edge scenarios that would be difficult
to acquire in reality, and it can also generate massive
amounts of data needed for AI training and perfor-
mance evaluation at a reduced cost. As the technology
matures, real data is always needed in addition to syn-
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thetic data. Several strategies can be implemented to
mix synthetic and real data to design image process-
ing and AI algorithms, such as fine-tuning. Depending
on the application, requirements for the similarity be-
tween synthetic and real data vary.

In our study, we have described several vision-based
navigation algorithms, some of which are sensitive to
the realism of the scene modeling, and others require a
particular scene layout that preserves geographic data.
For perception functions in Detect & Avoid systems,
we found that AI models are sensitive to the domain
gap between synthetic and real data, especially to the
sensor noise modeling of the camera.

In conclusion, we believe it is important to improve
the capabilities of the simulator as the technology ma-
tures in order to address the limitations identified by
the validation phase sensitivity tests.
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