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The g factor of the isomeric I = 9+ bandhead of the yrast states in 128Cs is obtained from the
Time Di�erential Perturbed Angular Distribution measurement performed with the electromagnet
at IPN Orsay. External magnetic �eld of 2.146 T at the target position has been attained with
GAMIPE reaction chamber surrounded by four HPGe detectors from which two were of LEPS type.
The results are in accordance with πh11/2 ⊗ νh−1

11/2 I = 9+ bandhead assignment and are discussed

in the context of chiral interpretation of the 128Cs nucleus as a composition of the odd proton, odd
neutron and even-even core with their angular momentum vectors. The obtained g-factor value has
been compared with predictions of particle-rotor model. The experimental g factor corresponds to
the non-chiral geometry of the isomeric bandhead. This observation indicates the existence of the
chiral critical frequency in 128Cs and may explain the absence of the chiral doublet members for
I < 13~.
December 24, 2021

I. INTRODUCTION

The 128Cs nucleus studied in this paper belongs to a
group of nuclei around A ≈ 130 in which the phenomenon
of nuclear chirality [1] has been reported through the ob-
servation of chiral doublet states [2] and a speci�c se-
lection rules for the gamma transitions between these
states [3�6].

The chiral partner bands in 128Cs nucleus are de-
scribed as coupling of three components: an even-even
core with angular momentum jR and two odd nucleons
in πh11/2⊗νh−1

11/2 con�guration with angular momentum

jp and jn, respectively. The reported observables serve
as an indirect sign of the chiral geometry formed in 128Cs
nucleus where the three angular momentum vectors span
the three dimensional space.

In the ideal geometry the jR, jp, and jn vectors are
mutually perpendicular and build either right- or left-
handed reference frame corresponding to left |L〉 and
right-handed |R〉 intrinsic nuclear states. The mechanism
of the spontaneous chiral symmetry breaking in nuclear

∗deceased

system occurs when an excited nucleus cools down and at
some point chooses spontaneously one of the two intrinsic
states. The nucleus does not stay in the chosen intrin-
sic con�guration since it is not its eigenstate. Tunneling
between |L〉 and |R〉 con�gurations takes place with pe-
riod much shorter than the time required for the gamma
quantum emission to occur from the excited states of the
nucleus. This is why the intrinsic states with speci�ed
handedness cannot directly be observed in gamma spec-
troscopy experiments. Instead of the |L〉 and |R〉 intrin-
sic con�gurations their projections onto the eigenstates of
the nucleus, i.e. chiral doublets, are seen through obser-
vation of the emitted gamma rays. Therefore, the hand-
edness of the three angular momentum vectors is funda-
mentally hidden for nuclear spectroscopy investigations
where chiral doublets and other associated observables
indicate the existence of spontaneous chiral symmetry
breaking.

Even though the handedness cannot be observed di-
rectly, the magnetic dipole moment allows to study the
nuclear chirality regardless of the handedness in which
the nucleus actually is. It turns out that the value of
the magnetic dipole moment and the corresponding value
of the g factor is a function of the geometry formed by
the three angular momentum vectors through their scalar
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products. These products are symmetric with respect
to handedness giving non-zero values in the symmetric
eigenstates with mixed handedness. Therefore, the value
of the g factor may give information whether the three
angular momentum vectors span a three-dimensional
space (chiral con�guration) or lie in one plane (planar
or non-chiral con�guration) regardless of the handedness
in which the intrinsic dynamical state actually is.
In this paper, the g-factor value of the isomeric I = 9+

bandhead of the yrast states in 128Cs has been measured
with classical Time Dependent Perturbed Angular Distri-
bution (TDPAD) method. It is the lowest lying state in
the rotational yrast band being one of the chiral partners
built on πh11/2 ⊗ νh−1

11/2 con�guration. The chiral char-

acter of the partner bands in 128Cs has been observed in
states with signi�cant nuclear rotation corresponding to
spins higher than 13~ [3]. With decreasing nuclear rota-
tion the yrare band is not observed leaving room for two
hypotheses, one of which assumes that the nuclear chiral-
ity persists at low rotational frequency although low spins
of the yrare band are not fed by fusion reaction mecha-
nism. In such a case the g-factor value of the bandhead
should correspond to a chiral geometry of the three com-
ponent system. The other hypothesis states that there is
a phase transition suppressing the chiral geometry at low
rotational frequency. This may happen below the chiral
critical frequency [7] predicted by titled axis cranking
model. Existence of this critical frequency may prevent
the chiral geometry to develop in energy favored nuclear
states. Thus a non-chiral or planar character of the band-
head is expected. This article details the experimental as
well as the theoretical methods for the magnetic moment
measurement and its interpretation, the results of which
were brie�y published in [8]. The principle of the mea-
surement and methods of the data analysis are described
in chapters II and III. Chapter IV and V contains ana-
lytical considerations of the magnetic moment as formed
by single coupling schemes of two or of three angular
momentum vectors, while chapters VI and VII presents
detailed calculation and interpretation in the frame of
many-particle-many-hole particle rotor model.

II. EXPERIMENTAL SETUP

The 128Cs nucleus has been produced in 122Sn(10B,
4n)128Cs fusion-evaporation reaction at 55 MeV beam
energy. Pulsed 10B beam with 1 ns bursts and 400 ns
repetition period has been developed by the Tandem ac-
celerator at IPN Orsay. Single gamma quanta were reg-
istered by two LEPS detectors placed at ±45 degrees
with respect to beam axis. The decay of the I = 9+

isomeric state has been studied using o�-beam sorted
coincidences of gamma quanta registered between beam
pulses [9]. Relevant part of the level scheme is shown
in Fig. 1 where 14 prompt gamma transitions follow the
I = 9+ isomeric state decay.
These transitions were subject of the TDPAD mea-

Figure 1: Relevant part of the level scheme of 128Cs obtained
in Ref. [9]. Decay of the isomeric state reconstructed from
coincidences collected between beam pulses and from prompt-
delayed gamma coincidences.The two transitions represented
by dashed lines, 18 keV and 5 keV, are below the sensitivity
threshold of the experiment due to high electron-conversion
decay mode.

surement with external magnetic �eld produced by an
electromagnet at IPN Orsay. Interaction of the external
magnetic �eld and the magnetic moment associated with
a nuclear state leads to precession of the nuclear angular
momentum vector. To get the g-factor value with high
precession at least half circumvolution of the nuclear spin
should occur in the period of the isomeric level lifetime.
The Larmor frequency of precession ωL = −gBµN/~
is proportional to the nuclear g factor and the exter-
nal magnetic �eld. The half-life of the isomeric state
T1/2=56 ns [9] together with theoretical estimates of its
g factor g ≈ 0.5 [10] gave the required magnetic �eld to
be B ≈ 2 T for a half circumvolution within 50 ns period.
The magnetic �eld of around 0.7 T attainable at the elec-
tromagnet was magni�ed with help of the GAMIPE re-
action chamber of NIPNE (National Institute for Physics
and Nuclear Engineering, Romania), see Fig. 2.

The GAMIPE chamber equipped with cone-shaped
iron poles allowed to focus the magnetic �eld that reached
2.146 T in the target position. In Fig. 2 the uniformity
of the magnetic �eld is presented as a plot of the B-�eld
vs. horizontal distance from the center of the chamber.
One can see that the magnetic �eld changes about 1.2%
within the ±5 mm distance being the target diameter.
This change had to be taken into account since the pro-
jectiles were de�ected from the center point of the target
by the applied magnetic �eld. The �nal position of the
1 mm2 beam spot in the target plane was determined
by burning a beam �eck in a paper layer placed instead
of the target foil (cf. Fig. 2). This allows precise mea-
surement of the magnetic �eld B = 2.146 T at the beam
spot before and after the experiment. Fig. 3 shows the
geometry of the experimental setup.

The 122Sn(10B, 4n)128Cs reaction populated the
aligned states of 128Cs recoils that stopped in the Sn
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Figure 2: GAMIPE reaction chamber, B �eld uniformity,
beam spot.
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Figure 3: Experimental geometry, timing resolution.

target of 22 mg/cm2 thickness. Small initial velocity
v ≈ 0.01c [3] as well as short stopping time tstop ≈ 1 ps of
recoils ensures the decay of the isomeric state to happen
mostly from 128Cs nuclei at rest. Therefore, both the spin
alignment and the distribution of the gamma radiation
had a mirror symmetry with respect to the plane perpen-
dicular to the beam direction, which is shown schemati-
cally in Fig. 4. Precession of the angular distribution with
a frequency ωL was observed by an intensity modulation
which frequency was twice higher as a result of the mir-
ror symmetry. The modulation period of around 50 ns
was registered by two low energy photon spectrometer
(LEPS) of Laboratori Nazionali di Legnaro. As shown
in Fig. 4, the two LEPS detectors were placed at angles
±45◦ with respect to the beam axis forming a beam-
detection plane and the magnetic �eld perpendicular to
it.
The excellent time resolution of LEPS detectors vs. γ-

quanta energy, shown in Fig. 3, is gained at the expense

Figure 4: Experimental setup arrangement.

of registration e�ciency of high-energy electromagnetic
radiation. Therefore two other Ge-spectrometers � stan-
dard HPGe (High Purity Ge) detectors with beryllium
window and 35% relative e�ciency � were placed at an-
gles ±135◦ with respect to the beam axis in order to in-
crease the registration e�ciency for high-energy gammas.
Neither of the four Ge detectors was equipped with ACS
(Anti Compton Shield) shielding. Fig. 3 shows that time
resolution of LEPS detectors in the present experiment is
around 8 ns for Eγ ≈ 120 keV and drops to around 6 ns
for Eγ ≈ 1700 keV. Electronic appliances i.e. spectro-
scopic ampli�ers, TAC (Time-to-Amplitude Converter),
CFD (Constant Fraction Discriminator), TFA (Timing
Filter Ampli�er) and two HPGe detectors with 35% ef-
�ciency were delivered by Heavy Ion Laboratory of the
University of Warsaw while events signals readout in a
single gamma mode was done with Orsay data acquisi-
tion system.
For a single gamma quantum information on its energy

(taken from the spectroscopic ampli�ers) and registration
time with respect to beam pulse (taken from TAC) were
collected. Each Ge detector had the start socket of the
TAC connected with the logic output signal from the
associated CFD, whereas the stop socket of the TAC was
connected with the signal from TANDEM accelerator.
Single gamma quanta were collected during 5 days of

the beam time. The energy gated time spectra for the g-
factor evaluation were then constructed in o�-beam mode
using HIL (Heavy Ion Laboratory) sorting software.

III. DATA ANALYSIS AND RESULTS

The I = 9+ isomeric state decays via 167 and 159 keV
transitions which are followed by emission of another 12
gamma quanta [9]. Modulated intensity has been ob-
served for all transitions below the isomer except 18 keV
and 5 keV lines which are below the sensitivity thresh-
old of the experiment due to high electron-conversion
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Figure 5: Background subtraction from the time spectrum of
152 keV peak.

decay mode. The intensity modulation of the Comp-
ton background can mimic the modulation e�ect for the
given transition. Therefore, background subtracted time
spectra were produced where a time spectrum gated on
gamma peak was subtracted by a time spectrum gated
on the background.
Fig. 5 illustrates the time spectrum gated on the

E = 152 keV peak with and without background sub-
traction together with the time spectrum of the Compton
background. The modulated intensity follows a straight
line in the logarithmic scale indicating proper background
subtraction. Background subtracted oscillation spectra
have been found for 11 gamma lines associated with the
isomeric state decay.
Rotating angular distribution inherits the symmetry of

the rotating spin alignment giving intensity modulations
of opposite phase observed by the LEPS detectors placed
at the right angle in the beam-detection plane. All os-
cillation spectra observed in the present experiment are
shown in Fig. 6 where the spectra have been normalized
by multiplying the −45◦ LEPS spectra by a factor of 2.4.
One can see that oscillation of 114 keV transition in

the �rst 70 ns after the beam pulse is disturbed by an
overlapping unidenti�ed 115 keV peak. The 115 keV line
is observed in coincidence with 122 keV gamma which
presents much shorter half-life than 56 ns half-life of the
I = 9+ isomeric state. Therefore, the analysis of the
114 keV oscillations has been performed for gammas reg-
istered after the 70 ns decay of the overlapping transition.
Rotation of the angular distribution leads to the modu-
lation of the gamma intensity observed by a detector in
the beam detection plane according to the formula

I(θ, t) = I0 · e−t/τ [1 + α2(t)Q2A2P2(cos(θ − ωLt))
+ α4(t)Q4A4P4(cos(θ − ωLt))], (1)

where A2, A4 are the gamma angular distribution coef-
�cients, Q, α(t) the attenuation factors due to the �nite
detector size and time dependent spin alignment, τ the
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Figure 6: Intensity oscillation spectra registered by LEPS de-
tectors. Dotted line shows the intensity registered at +45◦

with respect to beam axis while solid line the intensity seen
at −45◦. The intensity curves have been normalized by mul-
tiplying the −45◦ spectrum by factor of 2.4.

I = 9+ isomeric state lifetime, and ωL being the Larmor
frequency of precession. Only even Legendre polynomi-
als P2 and P4 are present in the formula (1) as a result of
the mirror symmetry of the initial gamma angular distri-
bution. With an assumption of identical detector prop-
erties one gets the same Q attenuation factors for both
detectors. This allows to get precise value of the Larmor
frequency by constructing a modulation ratio spectra. A
modulation ratio of the detectors placed at the right an-
gle is de�ned as

R(t) =
I(−45◦, t)− I(+45◦, t)

I(−45◦, t) + I(+45◦, t)
, (2)

where the numerator becomes

I(−45◦, t)− I(+45◦, t)

= I0 · e−t/τ
[3

2
α2(t)Q2A2

+
10

16
α4(t)Q4A4

]
cos(2(−45◦ − ωLt)), (3)

while the denominator simpli�es to

I(−45◦, t) + I(+45◦, t)
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= I0 · e−t/τ
[
2 +

1

2
α2(t)Q2A2

+
1

16
α4(t)Q4A4(35 cos2(2(−45◦ − ωLt))− 13)

]
. (4)
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Figure 7: Observed oscillating ratios R(t).

For the assumption of identical detectors and small A4

coe�cients, one gets approximate modulation ratio of the
form

R(t) ≈ −3α2(t)Q2A2 sin(2ωLt− φ)

4 + α2(t)Q2A2
, (5)

where additional parameter the phase φ has been intro-
duced to account for possible timing o�sets of the de-
tectors. Fig. 7 shows modulation spectra constructed by
means of Eq. (2) with least-squares �ts of formula (5)
shown as solid lines. The approximate modulation for-
mula describes the experimental data very well indicating
that the assumption of small A4 coe�cients and identi-
cal detectors is a su�cient approximation for the Larmor
frequency to be measured. However, this approximation
may not be correct for gamma angular distribution co-
e�cients determination that may be sensitive to spectra
normalization and summation.
One can see in Fig. 7 an attenuated oscillation ampli-

tudes, which may come from the hyper�ne interaction
between the nuclear magnetic moment of Cs recoils and
the magnetic moments of the electronic shells in Sn target
causing spin deorientation e�ect. The relaxation time of
the spin deorientation and the corresponding oscillations
attenuation is around τrel ≈ 300 ns. The deorientation

e�ect has been included in the �tted formula by the spin
alignment coe�cients α(t) taken as exponential function
of time α2(t) = α2 exp(−t/τrel). Thus the �nal approxi-
mate function for the observed modulation ratio becomes

R(t) ≈ −3 exp(−t/τrel)A sin(2ωLt− φ)

4 +A exp(−t/τrel)
, (6)

whereA = α2Q2A2 has been assigned as the value related
to initial modulation amplitude.

Table I: Parameters of the oscillation function given by the
Eq. (6) resulted from the �tting procedure.

Eγ [keV] A ωL [109s−1] φ [◦] τrel [ns]
114 −0.243(9) 0.0625(1) 7.9± 2.0 334± 34
152 −0.296(4) 0.0622(1) 19.7± 0.7 279± 12
159 −0.172(3) 0.0620(1) 23.6± 1.0 255± 15
167 −0.35(2) 0.0618(4) 20.7± 3.4 360± 101
169 +0.193(6) 0.0631(2) −3.7± 1.6 373± 53
188 −0.153(7) 0.0625(2) 3.3± 2.5 277± 36
230 −0.51(7) 0.062(1) 25.6± 9.5 123± 31
266 −0.12(1) 0.061(2) 24.2± 14.7 300a

495 +0.19(3) 0.062(2) 28.1± 23.3 300a

a�xed during �tting.

The A, τrel, ωL, and φ parameters were kept free for
the least-squares �ts of the formula (6) giving the re-
sults listed in Table I. One can see that the Larmor
frequency ωL in all of the oscillation functions is nearly
the same. This suggests that the intensity ratios R(t)
come from fast γ-transitions below the I = 9+ isomer.
All excited states above the isomer belong to collective
bands with picosecond lifetimes [3] and do not contribute
to the modulation of the intensity ratio. This is partic-
ularly important information, since the experiment dis-
cussed here is a γ-distribution and not the γ-correlation
measurement. The oscillation frequency observed in all
transitions can therefore be attributed to the g factor of
the I = 9+ bandhead, leading to precise values of the g
factor g = 0.59(1) as well as of the deorientation relax-
ation time τ=3.43(8)·10−7s [8]. The obtained g-factor
value is about 20% larger than expected theoretically in
frame of CPHC calculations with γ-rigid as well as γ-soft
core [10, 11].

IV. πh11/2 ⊗ νh−1
11/2 I = 9+ BANDHEAD

CONFIGURATION

The obtained value of the g factor for I = 9+ bandhead
allows to verify whether the total angular momentum
vector of 9+ bandhead is build chie�y by the two angular
momentum vectors of the odd πh11/2 ⊗ νh−1

11/2 nucleons

or a third component coming from signi�cant even-even
core rotation is required to reproduce the value observed
experimentally.
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Table II: Estimation of the g-factor value of I = 9+ in 128Cs based on pure theoretical calculations (�rst raw) and on experimental
data taken from neighboring nuclei (second and third raw) with comparison to experimentally obtained g factor. Column 1:
orbitals from which the input values are taken. Column 2: Isotopes from which the input data are taken. Column 3 and 4:
values of single particle proton and neutron g factors being the input data [12]. Column 5 and 6: values of spin gyromagnetic
factors of proton and of neutron calculated from proton and neutron single-particle g factors. Column 7 and 8: Single particle
g factor for proton and neutron expected in h11/2 orbital from corresponding spin gyromagnetic factors. Column 9: values of

the g factor in πh11/2 ⊗ ν−1h11/2 I = 9+ state of 128Cs expected for two component model (no core rotation). Column 10:
value of the g factor obtained experimentally.

orbital isotope gj gj gs gs gp gn g gexperiment

proton neutron proton neutron
h11/2

128Cs 1.21 −0.21 3.31 −2.31 1.21a −0.21a 0.50a 0.59(1)
theoretical (experimental)

h11/2
129Cs(proton)/ 1.191(18) -0.1619(2) 3.10(2) -1.781(2) 1.191(18) −0.1619(2) 0.515(9)
129Xe(neutron)

s1/2
127Cs(proton)/ 2.98(2) -1.555953(15) 2.98(2) -1.555953(15) 1.1802(15) −0.1414502(15) 0.519(2)
129Xe(neutron)

agyromagnetic factors of proton gp and neutron gn taken from
theoretical estimates [14�16].

In case where only two angular momentum vectors of
the two odd nucleons contribute to the total spin of the
isomeric state (no core rotation) there is only one cou-
pling scheme giving the required total angular momen-
tum J = 9~. The g factor of such two-component state
can be calculated using the additivity formula [13]

g =
1

2J(J + 1)

{
gp [J(J + 1) + jp(jp + 1)− jn(jn + 1)]

+ gn [J(J + 1)− jp(jp + 1) + jn(jn + 1)]
}
, (7)

where gp and gn are g factors of the odd proton and odd-
neutron, respectively.
For the πh11/2⊗νh−1

11/2 con�guration, the angular mo-

mentum of the proton jp and the neutron jn equals to
11/2~ and the above formula simpli�es to

g =
1

2
(gp + gn). (8)

To �nd the value of gp and gn one can use theoretical
estimations [14�16] or adopt it from experimental data of
magnetic moments measured in the neighboring single-
odd nuclei. For a single nucleon occupying the j = l ± s
orbital its g-factor value can be written as

gj =
(2j − 1)gl + gs

2j
, for j = l +

1

2
, (9)

gj =
(2j + 3)gl − gs

2(j + 1)
, for j = l − 1

2
. (10)

These two equations allow to express the gp and gn
values for any nuclear orbital provided that the spin-
gyromagnetic factors gs of these particles are known, or

in opposite, for the known g-factor value of speci�ed or-
bital it is possible to get the gs values. By taking the
orbital gyromagnetic factor gl = 1 for the proton and
gl = 0 for the neutron together with the measured mag-
netic moments of states in neighboring nuclei, one can
get an estimation of the associated gs values.
The 128Cs is a doubly-odd nucleus with 73 neutrons

and 55 protons. In a single-odd neighbors, one can get
either the features of the proton states from 129Cs data
(74 neutrons, 55 protons) or the features of the neutron
states from 129Xe data (75 neutrons, 54 protons). In
both neighboring nuclei, the magnetic moment (that is
g factor) in the h11/2 as well as in s1/2 states has been
measured [17]. The measured magnetic moments of these
speci�ed states allow, by using Eq. (9), to get the exper-
imental values of the spin gyromagnetic factor gs asso-
ciated with odd proton and odd neutron. The obtained
theoretical and experimental gs values for proton and
neutron are summarized in Table II and are used in fur-
ther calculations for other orbitals. The gs values listed
in Table II have been used to calculate gp and gn values
for particle con�gurations possibly involved in the struc-
ture of the I = 9+ isomeric state. The obtained gp and
gn values have then been used to calculate the expected
g factor of the isomeric bandhead for πh11/2 ⊗ νh−1

11/2

con�guration, see Eq.(8) . All those values are listed in
Table II.
By taking the gp and gn from theoretical estimates

for h11/2 orbitals in 128Cs one gets purely theoretical ex-

pectation of the g-factor value for the I = 9+ isomeric
state. Another possibility is to take the gp and gn val-
ues from magnetic moments measured for h11/2 states
in single-odd neighbors. Since the same orbitals are in-
volved in πh11/2 ⊗ νh−1

11/2 chiral con�guration in 128Cs
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the expected g-factor value should have the best corre-
spondence to g = 0.59(1) reported here. Finally one
can use the gp and gn values taken from magnetic mo-
ments measured for s1/2 states in single-odd neighbors
excluding the possible involvement of collective rotation
on single particle gp and gn values estimation. The three
discussed scenarios give three expectation values of the g
factor around 0.51 for each tested particle con�guration
within the simplest two-component model where the core
rotation is excluded.
The discrepancy of the g-factor value g = 0.51 ex-

pected theoretically and the experimental value g =
0.59(1), see Table II, shows that the total spin of the
I = 9+ isomeric state cannot be built chie�y by two an-
gular momentum vectors of the odd nucleons. Signi�cant
core rotation component needs to be present in order to
drive the g factor from g = 0.51 towards the experimental
value g = 0.59(1). Thus, in the following we introduce
a 3-component model which is appropriate for chiral ge-
ometry analysis.

V. CHIRAL GEOMETRY IN A

THREE-COMPONENT MODEL OF THE g
FACTOR

In the chiral scenario the odd-odd 128Cs nucleus stud-
ied here is built of three components contributing to the
total magnetic moment of the isomeric state: the even-
even core, the odd proton, and the odd neutron with
angular momentum vectors jR, jp, and jn respectively.
For the sake of simplicity, we calculate �rst the g-factor

value using an additivity formula for the nuclear mag-
netic moment generalized to the 3-component system. In
such a system, the total angular momentum vector of an
excited state J is a sum of angular momentum vectors of
the components, which in case of 128Cs nucleus are the
angular momentum of odd proton jp, odd neutron hole
jn, and even-even core jR,

jp + jn + jR = J. (11)

Thus the magnetic moment of a 3-component system be-
comes

µ = gJµN = 〈JJ |gJZ |JJ〉µN
= 〈JJ |gpjpZ + gnJnZ + gRJRZ |JJ〉µN , (12)

where JZ , jpZ , jnZ , and jRZ are the angular momentum
projection operators on the quantization axis of the total
spin, spin of the proton, neutron, and core, respectively.
With the use of the generalized Landé formula [13], the
above equation can be expressed by the scalar product
operators jp · J, jn · J, and jR · J,

µ =
〈JJ |gpjp · J + gnjn · J + gRjR · J|JJ〉

J(J + 1)

× 〈JJ |JZ |JJ〉µN . (13)

The g factor is thus given by the following formula

g =
〈JJ |gpjp · J + gnjn · J + gRjR · J|JJ〉

J(J + 1)
. (14)

By using the relation

J2 = j2
p + j2

n + j2
R + 2jp · jn + 2jp · jR + 2jn · jR, (15)

one can write the �nal form of the g-factor expression,
where only the scalar product operators of components
are used,

g =
1

2
(gp + gn + gR)

+
1

J(J + 1)
· 1

2
jp(jp + 1)(gp − gn − gR)

+
1

J(J + 1)
· 1

2
jn(jn + 1)(gn − gp − gR)

+
1

J(J + 1)
· 1

2
jR(jR + 1)(gR − gp − gn)

− 1

J(J + 1)

(
gp〈jn · jR〉+ gn〈jp · jR〉+ gR〈jp · jn〉

)
.

(16)

Comparing the above generalized equation with the one
derived from the coupling of only two angular momen-
tum vectors (the additivity formula (7)), one can see that
apart of the combinations of j2

p , j
2
n, and j2

R quantities
related to lengths of angular momentum vectors, an ad-
ditional part that contains scalar products of the angular
momentum vector pairs has appeared and thus is sensi-
tive on their mutual orientation. The occurrence of this
part has a geometrical physical explanation.
In case of the coupling of only two angular momen-

tum vectors, the value of the total spin determines un-
ambiguously their mutual orientation and the resulting
magnetic moment. This does not hold for the coupling of
three angular momentum vectors, where the same value
of the total spin J can be attained at di�erent angles be-
tween each pair of them giving di�erent g factors. The
last part of Eq. (16) vanishes for the ideal chiral geom-
etry with all the vectors being mutually perpendicular,
therefore the �rst four parts correspond to the g-factor
value with maximum chirality gchiral and Eq. (16) takes
the simple form

g = gchiral

− 1

J(J + 1)

(
gp〈jn · jR〉+ gn〈jp · jR〉+ gR〈jp · jn〉

)
.

(17)

Semiclassical sequential coupling of the three angular mo-
mentum vectors explains the dependence of the g-factor
value on their mutual angles.
Fig. 8 shows the angular momentum of the proton jp

and of the neutron jn coupled to their resultant spin jpn.
The angular momentum of the core jR may then be cou-
pled to the jpn at various precession angles to get the
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chiral geometry
planar
minimum g-factor

j

j

j

j j

pn

p

n

R

planar
maximum g-factor

Figure 8: Core angular momentum jR may be coupled at dif-
ferent precession angles about the resultant jpn of proton and
neutron angular momentum to form the speci�ed spin of the
isomeric state. The planar geometry where jR tends toward jp
gives the highest possible value of the g factor. Second planar
geometry where jR tends toward jn gives the lowest possi-
ble value of the g factor. Aplanar geometry corresponding to
chiral con�guration gives the g-factor value in between.

desired total spin J . In general, there are three charac-
teristic cases given by this precession degree of freedom.
The �rst case is the maximum aplanarity of the three
angular momentum vectors, where the jR vector goes as
far as possible o� the plane spanned by jp and jn giving
a g-factor value corresponding to the maximum chirality.
In the ideal chiral geometry, the g factor takes the value
gchiral. Next characteristic case is the planar geometry,
where the angle between jR and jp attains a minimum
value while the angle between jR and jn is the highest.
Then, the scalar product jp · jR has its maximum and
the jn · jR product its minimum. These scalar products
are multiplied in Eq. (16) by gn and gp factors of op-
posite sign. Thus, in this scenario the part sensitive to
the orientation of the three angular momentum vectors
becomes maximally positive giving the highest g-factor
value. The last characteristic case is an opposite pla-
nar geometry where jR and jn vectors become closest
and the angle between jR and jp is highest leading to
the maximum negative value of the part sensitive to an-
gular momentum vectors geometry in Eq. (16). Such a
geometry leads to the lowest value of the g factor. The
two planar cases determine the limits of possible g-factor
values for a given jp and jn coupling.

By making a plot of possible g-factor values versus the
angle between proton and neutron angular momentum
vectors one gets a drop-like shape containing all possible
coupling schemes of the three components jp, jn, and jR
to the total spin J . Fig. 9 shows two such plots for the
coupling of πh11/2 ⊗ νh−1

11/2 con�guration with two main

non-zero core angular momentum values jR = 2~ and
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Figure 9: The g-factor value expected for coupling of πh11/2⊗
νh−1

11/2 and core angular momentum jR = 2~ (upper panel)

and jR = 4~ (lower panel) to the total spin I = 9~ of the
isomeric state. Experimental values of gp and gn estimated
from h11/2 orbital in single-odd neighboring nuclei have been
used.

jR = 4~ to the total spin I = 9~ of the isomeric state.
Contours shown in the plots present the absolute value
of the normalized orientation parameter [18]

o =
(jp × jn) · jR
|jp||jn||jR|

, (18)

calculated for each coupling scheme inside of the drop-
like shape. The values of this parameter which are close
to the zero correspond to planar |P 〉 con�guration where
all three angular momentum are in one plane. One can
see that the planar con�guration gives the outer border
of the plot. In opposite, the values located in the middle
of the plot which are close to unity correspond to the
ideal chiral con�gurations |L〉 and |R〉, where the three
spins are perpendicular to each other.
According to Ref. [19], the existence of the chiral criti-

cal frequency would result in the planar orientation of the
three angular momentum vectors for the I = 9~ isomeric
bandhead. From the two opposite planar geometries, the
one with proton angular momentum jp tending towards
the momentum of the core jR is energy favored by Corio-
lis interaction. Therefore, the expected planar geometry
should have the highest g-factor value for a given angle
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θpn between jp and jn. This may lead to the g-factor
values g ≈ 0.5, g ≈ 0.7, and g ≈ 0.9 for the proton and
the neutron coupled to the core state with jR = 0~ (2-
component model), jR = 2~, and jR = 4~ (3-component
model), respectively. The wave function of the isomeric
state is a composition of several core rotational states.
Contributions of jR = 2~, jR = 4~, and higher (not dis-
cussed here) core rotations may drive the g factor from
g = 0.51 expected for jR = 0~ to the experimental value
g = 0.59(1) provided planar geometry in the isomeric
bandhead.
The above analysis shows that the two-component

model where the total spin of the isomeric state is built
chie�y by the angular momentum vectors of the two
odd nucleons cannot reproduce the experimental g-factor
value. The composition of the wave function with the
non-zero core rotation (the three-component model) is
needed to reproduce the measured g factor within pure
πh11/2 ⊗ νh−1

11/2 con�guration where a non-chiral geome-

try of the isomeric bandhead is expected. The wave func-
tion composition is discussed in a quantum-mechanical
approach in the following sections.

VI. QUANTUM MECHANICAL CALCULATION

OF THE g FACTOR OF THREE-BODY SYSTEM

In the semi-classical models discussed above, the an-
gular momentum vectors j were taken as classical vectors
with three spatial components well de�ned and the length
j(j + 1). Except triangularity, these models do not im-
pose any condition on the mutual angles between these

three coupled vectors. In general, the idea of the nuclear
chirality requires that all three spatial components of the
coupled spins are well de�ned, which seems to contradict
with quantum approach, where only the length and the
projection on the quantization axis are de�ned for an an-
gular momentum vector. It is therefore essential to begin
with principles of the chiral geometry emerging in quan-
tum systems.

The nuclear state of a de�nite spin, |JM〉 can be ex-
pressed as a product of the states of proton |jp〉, neu-
tron |jn〉, and core |jR〉, respectively, coupled to the total
angular momentum as follows: jp, jn coupled to a vec-
tor jpn = jp + jn which, in turn, is coupled with jR to
J = jpn + jR,

|(jpjn)jpnjR; JM〉

=
∑

mp,mn,mpn,mR

〈jpmpjnmn|jpnmpn〉

× 〈jpnmpnjRmR|JM〉|jpmp〉|jnmn〉|jRmR〉. (19)

There are several possible jpn quantum numbers in-
dicating that the total spin state |JM〉 may be formed
in several ways, here called coupling schemes. A single
coupling scheme given by Eq. (19) de�nes a unique set of
expected mutual angles between each pair of the angular
momentum vectors. For the total spin state |JM〉 re-
sulting from a single coupling scheme, its g factor can be
calculated analytically using angular momentum algebra.
The matrix elements of the squares and scalar products
in Eq. (16) for a single coupling scheme are given by

〈(j′pj′n)j′pnj
′
R; J ′M ′|j2p|(jpjn)jpnjR; JM〉 = δJ′JδM ′Mδj′pjpδj′njnδj′RjRδj′pnjpnjp(jp + 1), (20)

〈(j′pj′n)j′pnj
′
R; J ′M ′|j2n|(jpjn)jpnjR; JM〉 = δJ′JδM ′Mδj′pjpδj′njnδj′RjRδj′pnjpnjn(jn + 1), (21)

〈(j′pj′n)j′pnj
′
R; J ′M ′|j2R|(jpjn)jpnjR; JM〉 = δJ′JδM ′Mδj′pjpδj′njnδj′RjRδj′pnjpnjR(jR + 1), (22)

〈(j′pj′n)j′pnj
′
R; J ′M ′|jp · jn|(jpjn)jpnjR; JM〉 = δJ′JδM ′Mδj′pjpδj′njnδj′RjRδj′pnjpn(−1)jp+jn+jpn

×
√
jp(jp + 1)(2jp + 1)jn(jn + 1)(2jn + 1)

{
jp jn jpn
jn jp 1

}
, (23)

〈(j′pj′n)j′pnj
′
R; J ′M ′|jp · jR|(jpjn)jpnjR; JM〉 = δJ′JδM ′Mδj′pjpδj′njnδj′RjR(−1)jR+jp+jn+J+1

×
√

(2jpn + 1)(2j′pn + 1)
√
jp(jp + 1)(2jp + 1)

√
jR(jR + 1)(2jR + 1)

×
{
jp jpn jn
j′pn jp 1

}{
jpn jR J
jR j′pn 1

}
, (24)

〈(j′pj′n)j′pnj
′
R; J ′M ′|jn · jR|(jpjn)jpnjR; JM〉 = δJ′JδM ′Mδj′pjpδj′njnδj′RjR(−1)jR+jp+jn+J+1+jpn+j′pn

×
√

(2jpn + 1)(2j′pn + 1)
√
jn(jn + 1)(2jn + 1)

√
jR(jR + 1)(2jR + 1)

×
{
jn jpn jp
j′pn jn 1

}{
jpn jR J
jR j′pn 1

}
, (25)

where non-zero values of the six-j symbols give all possi- ble coupling schemes. One can calculate the set of the g-
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factor values corresponding to possible coupling schemes
by substituting the matrix elements (20)-(25) together
with the values of gp, gn, and gR into Eq. (16). Two
such sets, one for jR = 2~ and one for jR = 4~, are pre-
sented in Fig.9 as small crosses connected with dotted
lines. This analytical approach shows that the idea of
the nuclear chirality, with three well de�ned angles be-
tween the pairs of three spins does not contradict to the
quantum angular momentum algebra.
In general, the state with de�nite spin |JM〉 is a su-

perposition of many coupling schemes (only the angular

momentum quantum numbers are exposed)

|JM〉 =
∑

jp,jn,jpn,jR

cJ(jp, jn, jpn, jR)|(jpjn)jpnjR; JM〉.

(26)
Then, the geometry de�ned by the mean values of the
squares and scalar products of the three angular momen-
tum vectors is also given by the superposition coe�cients
cJ(jp, jn, jpn, jR). Indeed, the expectation values in ques-
tion takes for the wave packet the following form

〈JM |j2p|JM〉 =
∑

jp,jn,jpn,jR

|cJ(jp, jn, jpn, jR)|2jp(jp + 1), (27)

〈JM |j2n|JM〉 =
∑

jp,jn,jpn,jR

|cJ(jp, jn, jpn, jR)|2jn(jn + 1), (28)

〈JM |j2R|JM〉 =
∑

jp,jn,jpn,jR

|cJ(jp, jn, jpn, jR)|2jR(jR + 1), (29)

〈JM |jp · jn|JM〉 =
∑

jp,jn,jpn,jR

|cJ(jp, jn, jpn, jR)|2

×〈(jpjn)jpnjR; JM |jp · jn|(jpjn)jpnjR; JM〉, (30)

〈JM |jp · jR|JM〉 =
∑

jp,jn,jpnj′pn,jR

c∗J(jp, jn, j
′
pn, jR)cJ(jp, jn, jpn, jR)

×〈(jpjn)j′pnjR; JM |jp · jR|(jpjn)jpnjR; JM〉, (31)

〈JM |jn · jR|JM〉 =
∑

jp,jn,jpnj′pn,jR

c∗J(jp, jn, j
′
pn, jR)cJ(jp, jn, jpn, jR)

×〈(jpjn)j′pnjR; JM |jn · jR|(jpjn)jpnjR; JM〉. (32)

Such superpositions can be analyzed with available nu-
clear models which give the superposition coe�cients
cJ(jp, jn, jpn, jR).

VII. PARTICLE ROTOR MODEL

CALCULATIONS

In the present section, the g factor is calculated in the
framework of the triaxial particle rotor model (PRM),
whose formalism in detail can be found in Refs. [1, 20�
27].
In the present work, a many-particle-many-hole

PRM [22, 23] is used. The total Hamiltonian of PRM
is expressed as

ĤPRM = Ĥcoll + Ĥintr, (33)

with the collective rotor Hamiltonian

Ĥcoll =

3∑
k=1

ĵ2
Rk

2Jk
=

3∑
k=1

(Ĵk − ĵpk − ĵnk)2

2Jk
, (34)

where the indices k = 1, 2, and 3 refer to the three prin-
cipal axes of the body-�xed frame. The ĵRk and Ĵk de-
note the angular momentum operators of the core and of
the total nucleus, respectively, and the ĵpk and ĵnk the
angular momentum operator of the valence protons and
neutrons. The moments of inertia of the irrotational �ow
type are adopted, i.e., Jk = J0 sin2(γ − 2kπ/3), with γ
the triaxial deformation parameter. In addition, the in-
trinsic Hamiltonian is written as

Hintr =
∑
i=p,n

∑
ν

εi,νa
†
i,νai,ν , (35)

where εp,ν and εn,ν are the single particle energies pro-
vided by single-j shell

hsp = ±1

2
C
{

cos γ
(
j2
3 −

j(j + 1)

3

)
+

sin γ

2
√

3

(
j2
+ + j2

−
)}
.

(36)

Here, the plus or minus sign refers to particle or hole,
and the coe�cient C is proportional to the quadrupole
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deformation β [28]

C =
(123

8

√
5

π

) 2N + 3

j(j + 1)
A−1/3β. (37)

The single particle state and its time reversal state are
expressed as

a†ν |0〉 =
∑
αΩ

cναΩ|α, jΩ〉, (38)

a†ν̄ |0〉 =
∑
αΩ

(−1)j−ΩcναΩ|α, j − Ω〉, (39)

where Ω is the projection of the single-particle angular
momentum j along the 3-axis of the intrinsic frame and
restricted to . . . , −3/2, 1/2, 5/2, . . . due to the time-
reversal degeneracy, and α denotes the other quantum
numbers. For a system with

∑
i=p,nNi valence nucleons

(Ni denotes the number of the protons or neutrons in the
valence shell), the intrinsic wave function is given as

|ϕ〉 =
∏
i=p,n

( ni∏
l=1

a†i,νl

)( n′
i∏

l=1

a†i,µ̄l

)
|0〉, (40)

with ni + n′i = Ni and 0 ≤ ni ≤ Ni.
The total wave function can be expanded into the

strong coupling basis

|JM〉 =
∑
Kϕ

cKϕ|JMKϕ〉, (41)

with

|JMKϕ〉 =
1√

2(1 + δK0δϕ,ϕ̄)

(
|JMK〉|ϕ〉

+ (−1)I−K |JM −K〉|ϕ̄〉
)
, (42)

where |JMK〉 is the Wigner function
√

2J+1
8π2 D

J
MK . The

basis states are symmetrized under the point group D2,
which leads to K− 1

2

∑4
i=1(ni−n′i) being an even integer.

After obtaining the wave functions of PRM, the re-
duced transition probabilities B(M1) and B(E2), and
the expectation values of the angular momentum of the
system can be calculated [22, 23]. For the g-factor calcu-
lation, one uses Eq. (14) [8, 25, 26].
In the PRM calculation, the con�guration πh11/2 ⊗

νh−5
11/2 with the corresponding deformation parameters

β = 0.23 and γ = 24◦, according to the adiabatic and
con�guration-�xed constrained covariant density func-
tional theory (CDFT) calculations [8, 29], are used with
the PC-PK1 density functional [30]. The moment of
inertia J0 = 20 ~2/MeV is adjusted to �t the energy
spectra of yrast band. For the electromagnetic transi-
tions, the empirical intrinsic quadrupole moment Q0 =
(3/
√

5π)R2
0Zβ, and the g factors of proton gp and neu-

tron gn given in Table IIa have been adopted along with
the core g-factor value gR = 0.41 taken from 128Xe 2+

experimental data [31].
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Figure 10: (a) The energy spectra, (b) the intraband B(E2),
(c) the intraband B(M1), and (d) the interband B(M1) of
the doublet bands in 128Cs calculated by the PRM approach
in comparison with the experimental data available [3].

In Fig. 10, the energy spectra, the intraband B(E2)
and B(M1), and the interband B(M1) of the doublet
bands in 128Cs calculated by PRM in comparison with
the experimental data available [3] are shown. The ob-
served energy spectra are reproduced well as shown in
Fig. 10(a), including the energy di�erence between the
partner bands. The trend of the calculated B(E2) re-
sults deviates from the data due to the frozen nuclear
shape. The staggering of the intraband and the inter-
band B(M1) can be seen in both the data and the cal-
culated results as shown in Figs. 10(c) and 10(d). Their
strengths are reproduced reasonably. All of these agree-
ments support the correct assignment for the valence nu-
cleon con�guration.
The g factor is sensitive to the con�guration and the

triaxial deformation parameter. To further check the
con�guration assignment, we display in Fig. 11 the g-
factor values for 9+ yrast bandhead as a function of tri-
axial deformation calculated by PRM with con�gurations
πh11/2⊗νh−5

11/2, πh11/2⊗νh−3
11/2, and πh11/2⊗νh−1

11/2. In

these calculations, the triaxial deformation parameter is
varied. For the neutron con�guration, −5 denotes that
there are �ve holes located in the h11/2 shell and four
of them are paired. One notices that if the triaxial de-
formation parameter is equal to that obtained from the
constrained CDFT calculations, the calculated g factor
with the con�guration πh11/2⊗νh−5

11/2, which is also pre-

dicted by the constrained CDFT calculations, is closest
to the experimental value.
By keeping the quadrupole deformation and decreas-

ing the parameter γ → 0◦ the nuclear shape becomes
axially symmetric with prolate deformation. This is the
second characteristic case of the nuclear orientation as
discussed above, i.e., planar geometry with the angle be-
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Figure 11: The g-factor values for 9+ yrast bandhead as a
function of triaxial deformation calculated by PRM with con-
�gurations πh11/2 ⊗ νh−5

11/2, πh11/2 ⊗ νh−3
11/2, and πh11/2 ⊗

νh−1
11/2.

tween jR and jp attaining a minimum value while the
angle between jR and jn being the highest, and gives
the highest g-factor value. The non-chiral g-factor value
obtained with axially symmetric core for con�gurations
πh11/2⊗νh−5

11/2 (g ≈ 0.60) and πh11/2⊗νh−3
11/2 (g ≈ 0.59)

agree very well with the experimental g factor g=0.59(1).
When increasing the parameter γ → 60◦, the nuclear
shape becomes oblately deformed. For the con�gurations
πh11/2 ⊗ νh−3

11/2 and πh11/2 ⊗ νh−1
11/2, the neutron angu-

lar momentum jn aligns mainly along the long-axis and
becomes closed to the jR, while the angle between jR
and jp is highest. This is the third characteristic case of
the nuclear orientation and leads to the lowest g-factor
value. For the con�guration πh11/2 ⊗ νh−5

11/2 with lower

neutron Fermi surface, the situation become complicated.
The lowest g-factor value does not appear at γ ≈ 60◦,
but γ ≈ 38◦. This might be due to the neutron angu-
lar momentum has large intermediate axis component at
γ ≈ 38◦ and becomes close to the core angular momen-
tum jR.
Fig. 12 presents g-factor values as functions of spin

expected for πh11/2 ⊗ νh−5
11/2 yrast band levels with tri-

axial deformation parameters γ = 0◦ (axial symmetric
limit), 24◦ (obtained from constrained CDFT), 30◦ (max-
imal asymmetric deformation), and 38◦ (gives lowest g-
factor value at bandhead) in comparison with the avail-
able experimental data. For the triaxially deformed core
γ = 24◦ the g-factor value g = 0.57 is obtained for the
calculated 9+ bandhead. This value decreases with spin
and reaches g ≈ 0.42 for spin I = 20~.
One can see in Fig. 12 that the g factor of the yrast

states for the triaxial shapes of the nucleus are systemat-
ically smaller than the corresponding values for the axial
deformation γ = 0◦. It indicates that the geometry of the
three angular momentum vectors evolves from the planar
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Figure 12: The g-factor values as functions of spin expected
for πh11/2⊗νh−5

11/2 yrast band levels with triaxial deformation

parameters γ = 0◦, 24◦, 30◦, and 38◦.

limit toward the chiral one.
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Figure 13: The absolute values of angular momentum of pro-
ton jp, neutron jn, and core jR as functions of spin expected
for πh11/2⊗νh−5

11/2 yrast band levels with triaxial deformation

parameters γ = 24◦.

As mentioned above, a 2-component model without
including the core angular momentum contribution gives
large discrepancy in comparison with the experimental
data. To check this in the framework of PRM, we plot in
Fig. 13 the absolute values of angular momentum of core
jR together with proton jp and neutron jn as functions of

spin for πh11/2⊗νh−5
11/2 yrast band levels with the triaxial

deformation parameter γ = 24◦. In the calculations, a
quantal correction 1/2 has been taken into account, i.e.,

j =
√
〈j2

1〉+ 〈j2
2〉+ 〈j2

3〉 − 1/2. (43)

Note that the proton angular momentum is a good quan-
tum number, while the angular momentum of �ve neu-
tron holes and core are not. One can see that jn does not
change much with increasing spin. However, jR increases
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from jR ≈ 4.2~ at I = 9~ to jR ≈ 11.3~ at I = 20~, which
indicates that the angular momentum of the rotor plays
gradually more important roles than those of the proton
particle and neutron holes. Thus, although the rotor an-
gular momentum at the bandhead of 128Cs yrast band is
smaller than those of proton and neutron, it cannot be
overlooked.

VIII. SUMMARY

Spontaneous chiral symmetry breaking in the 128Cs nu-
cleus has been previously reported through observation
of two nearly degenerated rotational bands with speci�c
selection rules of the gamma transitions. These features
have been observed for signi�cant nuclear rotation cor-
responding to I > 13~ of the excited states. For lower
spins the rotational band which is partner to the yrast
band is not seen experimentally suggesting the existence
of the critical frequency of the chiral rotation. Below
the critical frequency the chiral geometry of the three
angular momentum vectors is prevented possibly can-
celing the degeneration of the yrast and yrare bands.
The hypothesis of the critical frequency has been ex-
plored through g-factor measurement of the yrast band-

head within TDAPD method. The experimental results
have been discussed in frame of quantum angular mo-
mentum algebra, semi-classical calculations, and in the
framework of PRM.
The experimental g-factor value of the isomeric I = 9+

bandhead of the yrast states is well reproduced by PRM
with the planar geometry of the three spins obtained in
the limit of axially symmetric deformation. This result
may explain the absence of the low spin yrare states and
is the �rst indication of the existence of the chiral critical
frequency.
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