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Social Robot Navigation with Adaptive Proxemics
Based on Emotions

Baris Bilen1, Hasan Kivrak2, Pinar Uluer3, Hatice Kose1

Abstract—The primary aim of this paper is to investigate the
integration of emotions into the social navigation framework to
analyse its effect on both navigation and human physiological
safety and comfort. The proposed framework uses leg detection to
find the whereabouts of people and computes adaptive proxemic
zones based on their emotional state. We designed several case
studies in a simulated environment and examined 3 different
emotions; positive (happy), neutral and negative (angry). A
survey study was conducted with 70 participants to explore their
impressions about the navigation of the robot and compare the
human safety and comfort measurements results. Both survey
and simulation results showed that integrating emotions into
proxemic zones has a significant effect on the physical safety of
a human. The results revealed that when a person is angry, the
robot is expected to navigate further than the standard distance
to support his/her physiological comfort and safety. The results
also showed that reducing the navigation distance is not preferred
when a person is happy.

Index Terms—Social Robots, Socially Aware Robot Navigation,
Emotions, Affective Robot

I. INTRODUCTION

Socially aware navigation is an active and expanding topic
of study that brings together human-robot interaction, per-
ception, and motion planning topics. It is crucial for mobile
robots to be able to navigate in a social environment without
endangering humans’ physical safety. In order to perform
and navigate in human-inhabited areas, a mobile robot needs
to consider humans not only as an obstacle but as social
beings. For this reason, a socially-aware navigation approach
that integrates social norms and cues is needed. Most of the
state-of-the-art robot navigation algorithms perform inherently
in human-populated environments while assuming that all
humans are in the same state of mind. However, emotions
have a significant impact on our behaviours in our daily lives.
Different emotions changes our boundaries in the physical
movement space [1]. Therefore, emotion-aware navigation
strategies might play an important role for mobile robots to
improve their behaviours while considering human safety and
comfort.

In this paper, we designed and developed a social naviga-
tion framework for mobile robots to navigate in a human-
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inhabited environment while interpreting human emotions
and integrating them into the decision mechanism of human
proxemics. We evaluated the effect of this system and also
a survey is conducted with 70 participants. The results show
the significant effect of integrating emotions into the decision
mechanism of robot during its navigation.

II. RELATED WORK

Robot navigation with social awareness is beneficent for
assisting mobile robots in generating socially acceptable be-
haviours in social environments. To create socially acceptable
behaviours, one has to understand the behaviours of humans
in a social environment. Edward T. Hall, et al. proposed
proxemic criteria for humans defining 4 zones: (i) intimate,
(ii) personal, (iii) social and (iv) public [2]. For a robot to
have socially acceptable behaviours, it has to avoid entering
the personal space of a human. Robot navigation methods that
allow a mobile robot to approach people have been thoroughly
researched in past years. There are algorithms that widely used
for path planning on a static environment such as Dijkstra, A*,
D* [3], D* Lite [4] and RRT* [5]. Also, the aforementioned
methods are studied for the static and dynamic environment
but none of them manages to achieve social navigation. A
mobile robot may approach a person who is standing, moving,
or sitting using conventional human-approaching frameworks.
The dynamic window approach (DWA) [6] offers a collision
avoidance mechanism for mobile robots in dynamic environ-
ments. The DWA selects the best way to approach or pass
humans by deriving an approximation of the robots’ and hu-
mans’ trajectories. The researchers investigated the preference
of people on how to be approached while sitting and presented
a cost-based path planning strategy to mimic these preferences
[7]. In another study, the authors proposed a framework that
allows a mobile robot to use spatial information to establish
and sustain a dialogue with standing individuals [8]. These
frameworks are mostly designed to approach a single person.
Although they can be used to avoid obstacles and create
collision-free trajectories in human-inhabited environments,
they don’t offer a physical safety for humans.

One other way to approach humans is using proxemics
theory-based costmaps. Robot operating system (ROS) [9]
offers layered costmap plugins and allow users to work with
separate layers such as static map, obstacle, inflation, and other
user-specified layers (e.g., socially costmap, range sensor).
This plugin can subscribe to objects and people and then alters
the costmap by adding Gaussian costs around the subscribed
objects and people. By the use of these additional costs, robots



can navigate around people in collision-free trajectories by
respecting their personal zones [10]. The social force model
(SFM) [11] is another method to describe the motions of
pedestrians. SFM is not just used for foreseeing the behaviours
of pedestrians but also can be used as a local planner [12].

One other approach proposes a learning scheme that can
learn the navigational behaviours of people by observing
them. This approach has the benefit of adapting to different
conditions and increasing its efficiency over time simply by
learning on observations. This approach attempts to use human
behaviour model on the local planner. Deep reinforcement
learning is used in [13] for a mobile robot to learn human nav-
igational behaviour using DQN. [14] uses actor-critic method
for reinforcement learning to create a model for mobile robot.
[15] extents the time elastic band approach by predicting
human behaviours and using this information to create a
social navigation planner. Furthermore, people’s mood and
emotional status can affect their behaviours. For example, in
a negative mood, baseline walking speed of pedestrians is
likely to decrease [16]. This can also affect their preferred
distance in a proxemic zone depending on which mood they
are on, i.e., personal space of a person might decrease or
increase depending on their mood [1]. There are several
studies involving the use of human emotions into the robot’s
proxemics in social navigation literature. One of them [17]
uses emotion estimation from both faces and trajectories of
pedestrians to create a trajectory for a humanoid robot. [18]
proposes an adjustable proxemic zone depending on people’s
mood. Although this is a similar work to our work, we
also conducted a more comprehensive survey to investigate
the adaptive proxemic zones depending on emotions between
human-human and human-robot interaction, as well as the
expectations for children and the elderly in the same situations.

Fig. 1. Navigation framework scheme for mobile robots. Consists of 2
parts; 1) Social aware navigation framework and 2) conventional navigation
framework.

III. FRAMEWORK

This paper proposes a framework that can integrate adaptive
social proxemics and emotions into the navigation framework
to see the effects of emotions on a mobile robot’s movements
and also to analyse its effects on physical safety of humans.

For this to be achieved, the robot needs to locate humans
in the environment. Figure 1 shows the architecture of the
proposed navigation system. The system consists of two parts:
1) conventional navigation framework and 2) socially aware
navigation framework. In the first part, the framework consists
of perception, localization, planners (global and local) and
motion control function blocks. The second part consists of
leg detection, emotion and costmap layer (global and local)
function blocks.

A. Leg Detection

In this paper, a leg detection system [19] is used. The basic
idea of this system is to use laser scan info to determine if there
is a human leg nearby. The algorithm processes the laser scan
data with machine learning methods to inform about possible
legs.

B. Emotions

We use emotions to increase or reduce the diameter of social
proxemic zone depending on the people’s emotions. 3 different
emotions has been used: 1) Happy, 2) Angry and 3) Neutral.
First two emotions are selected from the far edges of valence
axis having high arousal components, to be able to observe the
clear effects that emotions have on the proxemics and human
safety. Selected personal proxemic zone distances for emotions
are as follows: for a person with happy emotions, it is 0.5 m,
for a person with neutral emotions, it is 1 m [2] and for a
person with angry emotions, it is 1.5 m.

C. Costmap Layers

In this study, 4 different layers have been used to generate
a costmap: 1) Static layer, 2) Obstacle layer, 3) Inflation layer,
and 4) Social layer. The static layer represents the unchanged
parts of the costmap. The obstacle layer is used to determine
and mark the obstacles as read by laser scan. The inflation
layer optimizes or adds costs to important or valuable objects
to represent a more realistic costmap for the robot to use.
And finally, the social layer tracks the whereabouts of the
pedestrians as a layer. This layer also represents the personal
space specifications of pedestrians i.e., the boundaries of the
proxemic zone that the robot should not cross over.

D. Global and Local Costmap

Global costmap uses static, obstacle, and inflation layers
to create a global costmap for the robot to navigate in. This
costmap is used by the global planner. Local costmap uses all
4 layers to create a local costmap. This costmap is generated
in the immediate vicinity of the robot and used by the local
planner.

E. Global and Local Planner

Global planner is used to generating a global path for the
robot to track. The global planner uses Dijkstra’s algorithm to
find the shortest path to the goal while considering the global
costmap values. Although the robot can follow the global
planner and reach its goal, the local planner ensures that the
movements of the robot are within the range of its motors and



wheels to prevent any collision or breakdown. Also, it reacts
to the new obstacles that might not be there when the global
planner generates the path. A good example would be while
the robot is following the global path, a new person is detected
on the path or near the path and the robot can react to this
situation with the help of local planner.

F. Human Safety and Comfort Indices

To validate our work, we used the social individual index
(SII) [20]. SII is based on Hall’s [2] proxemics. SII is
being used to measure the physical safety of each individual.
According to SII, physical safety of humans gets in danger if
the distance between a robot and a human is smaller than the
sum of the area they occupy in the space. Physiological safety
is violated if the distance between human and robot is lower
than the personal space distance.

IV. EXPERIMENTAL STUDIES AND RESULTS

In this paper, the proposed framework is simulated using
ROS [9] and Gazebo [21] simulation environments.

Fig. 2. From left to right movement paths of the robot when the person is
Happy (A), Neutral (B) or Angry (C)

A. Simulation Study and Results

In this study, we aim to examine the effect created by
knowing a person’s emotions and adapting proxemics accord-
ingly. A total of 4 different simulations were performed for
2 different emotions. 2 of the simulations were conducted
with a person that has known and unknown happy emotions
(see Figure 2 Robot A and B). Other 2 simulations were
conducted with a person that has known and unknown angry
emotions (see Figure 2 Robot C and B). SII metric that is
used to evaluate these different simulated actions the robot
takes according to the emotions of people, in terms of the
people’s safety and comfort. We also show the visuals of these
simulated actions to the participants and ask them to evaluate
the people’s safety and comfort subjectively, as reported in the
Section IV-B2.

Fig. 3. These plots show the physiological safety of a person within different
known and unknown emotions. Blue lines represent SII threshold value and
red lines represents measured SII value.

1) Happy Emotion Simulations: In happy emotion simula-
tions, we investigated the path created by the robot with known
and unknown happy emotion. In the first simulation (See
Figure 3.a) we decrease the personal proxemic zones diameter
of the pedestrian to 0.5 m to simulate happy emotion but did
not allow the robot to adjust its proxemic zone accordingly.
We observed that the robot passed through the person without
exceeding physiological safety. In the second simulation (See
Figure 3.b) we let the robot adjust its proxemic zone according
to the emotion of the person and observed that the robot still
did not exceed physiological safety. In the first simulation the
total path travelled by the robot was 6 m. and in the second
simulation the total path travelled by the robot was 5.5 m. We
observed that the detection of the emotion of happiness has a
positive effect on the path travelled by the robot.

2) Angry Emotion Simulations: In angry emotion simula-
tions, we investigated the approach distance of a robot passing
by a known and an unknown angry person and its effects on the
person’s physiological safety. To accomplish this, in the first
simulation (See Figure 3.c) we increase the personal proxemic
zone diameter of the pedestrian to simulate angry emotion but
did not allow the robot to adjust its proxemics and in the
second simulation (See Figure 3.d) we let the robot adjust its
proxemic zone according to a known angry person. After the
simulations, we observed that the detection of angry emotion
makes the robot navigate better in terms of physiological safety
of humans.

B. NARS and Post-Test Questionnaire Results

The survey study was conducted with 70 people (34 female,
36 male). The age distribution of the test participants as
follows, 12-18 is 4.2%, 18-30 is 47.9%, 30-45 is 14.1%, 45-
65 is 25.4%, 65+ is 8.5%. Also, 95,8% of the people has a
bachelor or a higher education degree.

1) Negative Attitudes Toward Robots Scale (NARS): We
used NARS to evaluate participants’ attitudes toward robots,
i.e. to find out if they have any prejudice towards robots
[22]. NARS is commonly used to evaluate the attitudes of
participants in human-robot interaction and to explain the



TABLE I
THE RESULTS OF ONE SAMPLE T-TEST BASED ON NARS

No. Subscale Mean (SD) t(69) p values
Q1 S2 3.36 (0.99) 3.01 0.003
Q3 S3 3.10 (1.02) 0.81 0.416
Q4 S1 2.07 (0.95) -8.02 <0.001
Q5 S3 3.26 (1.04) 2.05 0.043
Q6 S3 3.17 (0.97) 1.46 0.146
Q8 S1 2.51 (1.04) -3.89 <0.001
Q10 S1 2.98 (1.16) -0.10 0.918
Q11 S2 2.53 (1.02) -3.71 <0.001
Q12 S1 2.21 (0.97) -6.61 <0.001
Q13 S2 2.26 (1.00) -6.08 <0.001
Q14 S2 2.68 (1.06) -2.45 0.016

behavioural disparities between them. NARS has 14 items,
categorized in 3 sub-scales: S1 (6 items), S2 (5 items), S3
(3 items). S1 is to measure the negative attitude towards
interaction with robots, S2 is to measure the negative attitude
toward the social influence of robots and S3 is to measure the
negative attitude toward emotional interactions with robots.
Each item is scored based on a 5-point semantic differential
scale (1 being strongly disagree and 5 being strongly agree).

A one-sample t-test is performed for all items shown in
Table I based on the participants’ answers. Item numbers are
written to be equivalent to the item numbers specified in the
NARS test. The results showed that participants did not have
any priors about the robots, we conducted a one-tailed t-test
for each item to see the difference in the corresponding means.
Table I shows the items with their statistics.

The t-test results showed that all items from S1 sub-
scale were smaller means and all items from S3 were higher
means which was the expected outcome and showed us that
participants has positive tendency towards robots. The results
showed most of the S2 sub-scale questions means were smaller
which was also expected. Even though the average of the Q1
questions had higher means, in another question (“Do you
think our emotions affect interactions with robots?”) 62% of
the participants stated that their emotions are effective in robot
interaction.

2) Post-Test Form: It is a basic form that includes demo-
graphic questions and additional 7 inquiries (Table II) scored
on a same semantic differential scale with NARS. Simulated
robot behaviours in Figure 2 are also used in the questionnaire.
First 2 inquires (I1 and I2) are asked to see that whether
the theory presented was also valid among humans. The one
sample t-test showed (see Table III) that the theory presented
is valid for I2. Then, simulation videos and robot behaviours
in Figure 2 are shown to the participants and they were asked
to answer the remaining inquires according to this video and
picture. We also conducted a one sample t-test to the rest of
the inquires, which is also shown in Table III. The results of I3
showed that people find the movement of the robot acceptable
when a person is in neutral emotion. The I4 and I6 inquiries
results showed that participants prefer robots to pass further
away when they are angry but interestingly, there is uncertainty
among the participants for robots passing closer when a person

TABLE II
POST-TEST FORM QUESTIONS

No. Inquiries
I1 It doesn’t bother me when people I don’t know stand closer to me than usual when I’m happy.
I2 I prefer people to stay at a further distance from me than usual when I am angry.
I3 The distance between the human and the robot B was sufficient as the robot passed the human.
I4 In the picture, the human is disturbed by the distance the robot A has passed.
I5 Robot A’s behavior would be correct if the person in the picture was elder or a child.
I6 In the picture, the human is disturbed by the distance traveled by the robot C.
I7 Robot C’s behavior would be correct if the person in the picture was elder or a child

TABLE III
THE RESULTS OF ONE SAMPLE T-TEST BASED ON POST-TEST FORM

No. Mean (SD) t(69) p values
I1 3.14 (1.05) 1.13 0.260
I2 3.98 (0.75) 10.81 <0.001
I3 3.76 (0.80) 7.90 <0.001
I4 3.02 (1.10) 0.21 0.829
I5 2.44 (1.00) -4.53 <0.001
I6 2.18 (0.68) -9.75 <0.001
I7 3.42 (0.84) 4.12 <0.001

is happy. Another point, even though the NARS results showed
that the participants did not have any negative attitudes towards
robot, the results for the inquiries I5 and I7 showed that if the
person to be passed is a child or an old person, they preferred
the robot to pass from a further distance.

V. CONCLUSION

This paper presents a socially aware navigation framework
that can adjust its proxemic distance depending on a person’s
emotions to maintain people’s physical safety. In this work,
emotions of the pedestrians are used to change their personal
space during the social navigation task of the robot. This paper
investigates the effects of integrating emotions in robot’s social
navigation on the comfort and safety of humans. The SII met-
ric and questionnaires based on several simulated robot actions
are used to evaluate these effects. The results showed that
detecting emotions and adjusting personal space depending on
the human emotion can create a more comfortable and safer
environment for humans.

Although the proposed framework can navigate in a human-
inhabited environment while respecting human physical safety,
a few changes can be made to make the navigation process
more efficient, such as employing cameras to detect the
pedestrians and their emotions as well as the laser scan data
currently being in use.

This work is aimed at safe and comfortable navigation
of Pepper robot among children with hearing impairments
in hospitals and audiology centres. In the future, we will
further improve the proposed framework by adding a real-time
emotion detection module, and employ the whole framework
on a physical Pepper humanoid robot to be used in real world
human inhabited environments.
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The Magni Human Motion Dataset: Accurate, Complex,
Multi-Modal, Natural, Semantically-Rich and Contextualized
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Martin Magnusson1, Luigi Palmieri2, Kai O. Arras2, and Achim J. Lilienthal1

Abstract— Rapid development of social robots stimulates
active research in human motion modeling, interpretation and
prediction, proactive collision avoidance, human-robot interac-
tion and co-habitation in shared spaces. Modern approaches
to this end require high quality datasets for training and
evaluation. However, the majority of available datasets suffers
from either inaccurate tracking data or unnatural, scripted
behavior of the tracked people. This paper attempts to fill
this gap by providing high quality tracking information from
motion capture, eye-gaze trackers and on-board robot sensors
in a semantically-rich environment. To induce natural behavior
of the recorded participants, we utilise loosely scripted task
assignment, which induces the participants navigate through the
dynamic laboratory environment in a natural and purposeful
way. The motion dataset, presented in this paper, sets a
high quality standard, as the realistic and accurate data is
enhanced with semantic information, enabling development of
new algorithms which rely not only on the tracking information
but also on contextual cues of the moving agents, static and
dynamic environment.

I. INTRODUCTION

In recent years, the topics of human motion prediction and
human-robot interaction have been rapidly growing, driven
by the human-aware robotics research and industry interests.
Most approaches require plentiful motion data recorded in
diverse environments and settings to train on, as well as for
the evaluation [1]. Among the growing number of human
trajectory datasets, most focus on capturing interactions
between the moving agents in indoor [2], outdoor [3] and
automated driving [4] settings. These datasets are designed
to study the geometric and velocity aspects of human motion.

Human motion is influenced by a large amount of con-
textual cues, which include semantic attributes of the static
and dynamic environment, space topology and its activity
patterns, social roles, relations and preferences of the target
agents. Studies of these contextual aspects of human motion
are gaining traction, creating the need for new datasets
containing relevant cues.
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Fig. 1. Laboratory room layout including the floor markings (1) in
Scenario 1B. The environment contains various static obstacles, including a
narrow corridor (2) in the right with entry limited by a no-entry sign. The
table displays the motion capture helmets (3).

In this work, we follow on and further develop the protocol
for human motion data collection introduced in [5]. There we
proposed a weakly-scripted indoor scenario for generating
diverse, natural, and goal-driven human motion in crowded
social spaces with static obstacles and a moving robot. The
THÖR dataset1, recorded according to the proposed proce-
dure, includes 9 participants, moving alone and in groups,
whose positions and head orientations are tracked with a
motion capture system2. The THÖR dataset also includes
first-person gaze information for a subset of participants. To
diversify the recorded motion patterns, participants in THÖR
move between fixed goal positions in the environment,
receiving at each goal a random card with the next target. The
recording features over 60 minutes of motion and over 600
individual and group trajectories. THÖR is gaining attention
in the scientific community, for instance in robotics [6], [7]
and predictive motion modeling [8], and serves as a building
block for the Atlas motion prediction benchmark [9].

In this paper, we extend THÖR in many aspects. The new
recording includes 160 minutes of motion on 4 acquisition
days with a total of 30 unique participants. In addition to the
static obstacles in the room, we augment the environment
with semantic context, such as one-way passages and yellow
tape markings for caution areas, which are non-geometric
cues that influence motion patterns.

The introduction of the semantic context further enriches
the recorded data. Moreover, capturing semantic features en-
ables explainability of motion flow models [10] or enhances

1http://thor.oru.se/
2https://www.qualisys.com/

http://thor.oru.se/
https://www.qualisys.com/


the downstream tasks with semantics [11]. To further diver-
sify the recorded motion patterns, in addition to cards indi-
cating the next motion goal of the participants, we introduce
remote instructions via voice command (using Discord [12]).
In addition to the gaze directions in the 2D eye-tracker image
plane, we also provide 3D gaze vectors in the environment
reference frame. In addition to the motion capture and
eye-gaze data, we record on-board robot sensors (LiDAR,
RGB fish-eye, and RGB-D cameras). Lastly, we propose
two variations in the teleoperated robot motion, namely
the “differential drive” and “omnidirectional” motion, which
enables the study of human-robot collision avoidance under
varying conditions.

This paper presents the data collection procedure, de-
scribes sensors, scenarios, and the participants’ priming
(Sec. II), as well as highlights a portion of the recorded
data (Sec. III). We will make the full dataset available in
the near future. Once the post-processing is complete, we
will systematically describe the recorded data and analyze
its application in HRI research.

II. DATA COLLECTION

A. Scenarios Description
We designed three scenarios for data collection, which

differ in the room layout, motion mode of the robot and
the tasks executed by the participants. In all scenarios,
participants navigate in the room between 7 goal positions
(see Fig. 2).

Scenario 1 is designed as a baseline to capture “regular”
social behavior of walking people in a static environment. It
has two variations: 1A which only includes static obstacles,
and 1B which additionally includes floor markings and stop
signs in a one-way corridor. Scenario 1B is designed with the
focus on Maps of Dynamics (MoDs) [10]. MoDs are maps
that encode dynamics as a feature of the environment, con-
taining information about motion patterns in an environment.
MoDs can provide information for planning and navigation
in populated environments. The Scenario 1B provides motion
data affected by invisible obstacles (safety zones) and flow
controlling signs (one-way passages).

Scenario 2 features the same room layout as Scenario 1A
(i.e., without semantics). In addition to the basic goal-
driven navigation, this scenario introduces people performing
different tasks. These tasks aim to emulate regular activities
performed in industrial contexts, such as transporting stacks
of different objects between various goal locations. There-
fore, one participant carries small objects (i.e., a bucket),
while another participant carries medium objects (i.e., a box)
between two different goal points. Finally, a group of two
people moves a large object (i.e., a poster stand) instructed
over Discord [12].

In Scenario 3, the robot (which remained stationary in
the previous scenarios, see its position on the left in Fig. 2)
navigates in the room. Scenario 3 has two variations: 3A and
3B. In Scenario 3A, the teleoperated robot moves as a regular
differential drive robot. In Scenario 3B, the robot moves in
an omnidirectional way.

In all scenarios, we randomly divided the participants into
individuals or groups of two or three people who share the

Fig. 2. Layout for Scenario 1B with the focus on Maps of Dynamics.
For the other scenarios, we remove the black-yellow striped lane markings.
Also, in Scenario 3, the robot on the left becomes a moving obstacle.

Scenario Description Robot Duration
1A Baseline motion Static Obstacle 8 minutes
1B Semantic features Static Obstacle 8 minutes
2 People with tasks Static Obstacle 8 minutes

3A People with tasks Directional 8 minutes
3B People with tasks Omni-directional 8 minutes

TABLE I
SHORT DESCRIPTION OF THE CONDUCTED SCENARIOS, THE MOTION

MODE OF THE ROBOT, AND THE DURATION OF RECORDINGS IN ONE DAY

navigation goal. Except for the group carrying the larger
object, every group reaching the goal points takes a random
card, indicating the number of their next goal. Each group
takes one card at a time.

B. Room Setup
The room for data collection is the robot lab at Örebro

University – the same as in the THÖR dataset [5], which
creates continuity between the recordings, while allowing
to study human motion in the presence of varying contex-
tual factors and obstacle layouts. Fig. 2 depicts the room
layout. Seven goal positions are placed specifically to drive
purposeful navigation through the room, generating frequent
interactions between groups in the center. Several static
obstacles (robotic manipulators and tables) are placed in the
room to prevent walking between goals in a straight path.

Apart from static obstacles, two robots are placed in the
room. One is a static robotic arm placed near the podium,
as shown on the right in Fig. 2. The other one is on the left
in Fig. 2: an omnidirectional mobile robot with a robotic
arm on top (DARKO Robot). The mobile robot is static in
scenarios 1A, 1B and 2. In Scenario 3A, the mobile robot
navigates as a differential drive robot, while in Scenario 3B,
it navigates as an omnidirectional robot. In both cases, an
operator drives the mobile robot using a remote controller.
In Scenario 3A and 3B, the mobile robot is also used for data
collection. The robot base is RB-Kairos+ and the arm is the
Collaborative Robot Panda from Franka Emika. The robot
base dimensions are 760×665×690 mm. The maximum
reach height of the robot arm is 855mm. The robot has one
Ouster OS0-128 LiDAR, two Azure Kinect RGB-D cameras
(one used in these recordings), two Basler fish-eye RGB
cameras, and two Sick MicroScan 2D safety LiDARs. The
Azure Kinect camera has a 75-degree horizontal field of view
and a tracking range of up to 5m.



Fig. 3. Recorded trajectories for one run in Scenario 1A (left) and
Scenario 1B (right), which includes the environment semantics. In both
cases, the room contains various static obstacles, including a narrow corridor
in the top right area. Trajectories show that most people would instinctively
avoid the “dangerous areas” around the robots, marked with yellow tape
(see the layout in Fig. 2).

Fig. 4. Maps of dynamics created from Acquisition I - IV (40 minutes)
in Scenario 1A (top) and Scenario 1B (down). CLiFF-map [10] is used to
represent statistical information about flow patterns.

In Scenario 1B, floor markings and stop signs are added.
With black and yellow warning tapes, floor markings are
placed around the mobile robot and the robot arm, showing
the border of the dangerous zone. Two stop signs are placed
near the right permanent obstacle, indicating that the passage
from right to left is blocked.

C. Recording Procedure and Participants’ Priming
At the beginning of each session, participants filled out

a demographic questionnaire. We recorded in total three
different scenarios per session. Scenario 2 had one variation,
and Scenario 1 and 3 had two. For each variation, we
recorded two runs with a length of 4 minutes each. A
summary of the scenarios and duration is given in Tab. I.
We always started from Scenario 1B to avoid biasing the
participants’ motion by letting them observe how the lane
markings and the stop signs are prepared. After the two
runs of this scenario, we followed with Scenario 1A and
Scenario 2. Finally, we proceed with each variation from
Scenario 3 in no particular order across the recording days.

After each run, participants fill the Raw version of the
NASA-Task Load Index (RTLX) [13], [14]. The scale con-
sists of a 21-point set of sub-scales [1=Low; 21=High], each
of which assesses the mental demand, physical demand,
temporal demand, and frustration produced by the task as
reported by the participants, as well as their self-perceived

performance and frustration. By the end of the session, after
the last run of Scenario 3, participants fill out two extra
questionnaires with regard to the mobile robot. First, the
Godspeed Questionnaire Series [15], a semantic differential
set of subscales [5-points] that measures the participants’ per-
ception of the robot in terms of anthropomorphism, animacy,
likeability, perceived intelligence, and perceived safety, re-
spectively. Second, a 5-point likert scale [1=Strongly dis-
agree; 5=Strongly agree] to evaluate trust towards the robot
in industrial human-robot collaborations [16]. The partici-
pants filled out all the questionnaires on paper.

Before recording each run, an instructor calibrates the
three eye-trackers (Tobii Glasses 2 and 3) and adjusts the
gazes for the Pupil Invisible Glasses. The instructor then
returns to the stage and sets a 4-minute alarm. We check
with the participants if everyone is ready to begin the
measurements. If so, we start the recordings of the motion
capture system and the eye trackers simultaneously as the
instructor counts down to three to signal the participants the
start of a run. Additionally, we record rosbag files including
sensor data from the robot platform, like the image feed
of its onboard RGB and RGB-D cameras and the point
cloud recorded by the LiDAR, as well as topics regarding
people tracking. After 4 minutes, we simultaneously stop
all recordings and the ringing of the alarm signalizes the
participants the end of a run.

Between each run, while the participants fill out the
questionnaires, we prepare the next run; i.e., we remove the
floor markings (after the last run of 1A), set up a phone
for the Discord voice chat (before 2 and 3), check on the
batteries of the eye trackers and potentially change them and
finally prepare the robots for Scenario 3. As the participants
finish filling out the questionnaire, we shuffle the roles in
Scenario 2 and 3 and always assign new groups consisting
out of one to three participants for the next run, hereby we
always follow the rule, that for groups there can only be one
participant with an eye tracker. We assign each group a new
goal point to start from at the next run. For the scenarios
with roles (2 and 3) we also give a short recap on the task
connected with each role, if that participant has not been
assigned this role before.

III. RECORDED DATA

We recorded data on 4 acquisition days for a total of
30 unique participants (9 on Day I, 7 on Days II-IV).
As described in Sec. II-A, each acquisition day consists
of three different scenarios, and two of them have two
different variants. Furthermore, we recorded two 4-minute
runs per scenario. Therefore, each acquisition comprises ten
runs comprehending all scenarios and yielding 40 minutes of
multi-modal data: 3D motion patterns, eye-gaze data from 3
eye trackers, and robot sensor data.

Fig. 3 shows 2D motion trajectories, collected during one
4-minute run in Scenario 1A (left) and Scenario 1B (right).
It shows the difference between the two scenarios in areas
delimited by the lane markings (see Fig. 2 for the layout
reference). Specifically, participants in Scenario 1B tended
to navigate farther from the delimited static objects than
in Scenario 1A. In addition, Fig. 4 shows the maps of



Fig. 5. Eye-gaze vectors, recorded for the participants wearing eye-
tracking glasses. Top: gaze-vectors mapped into the 3D global map frame
for participants 2 (dark blue arrow) and 9 (light blue arrow). Bottom:
corresponding first-person views for participants 2 and 9. Red line displays
the gaze history in the past 2 seconds, and the red circle shows the gaze
point in the current frame.

dynamics [10] generated from the collected trajectories from
all runs in Scenario 1A and 1B. It shows that in Scenario 1B
the flow is less intensive near the “dangerous areas” around
the robots. Also, one-way passage flow pattern in the top
right corner from Scenario 1B is clearly visible.

Fig. 5 shows the example eye-gazes, recorded for two
participants wearing the tracking glasses in the same frame.
The 2D gaze direction is provided in the first-person video
frame, furthermore we calculate the 3D gaze coordinates in
global map frame. Finally, Fig. 6 provides an example of
the data recorded with the on-board robot sensors (LiDAR,
RGB and fish-eye cameras), displayed in RViz.

IV. CONCLUSION AND FUTURE WORK

In this paper we present a new contextually-rich recording
of human-robot co-navigation in an indoor environment.
The multi-modal data on human motion, collected from the
motion capture system, eye-gaze trackers and the on-board
sensors of a moving robot, aims to supply the research
on human motion prediction, obstacle avoidance, maps of
dynamics and human-robot interaction.

In future work we plan to extend the co-navigation sce-
narios with explicit forms of human-robot communication,
for instance by signalling the robot’s intentions, and collab-
oration, for instance in loading, transporting and unloading
the boxes.
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Experimental Design of An Approach for Active Data Collection Using a
Mobile Social Robotic Platform
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Abstract— The collection of patient reported measures is
extremely useful for both patients and health workers since the
feedback given by these data saves time, money and lives. For
these reasons this collection of data is being adapted to modern
technologies. Most of the times this is achieved through mobile
apps that although useful for a big portion of the population
leave the elderly at a disadvantage. Personal robots offer a more
convenient solution for this problem since they are capable of
performing these questionnaires actively and directly with the
patients. This work presents an active health data collection
approach via a mobile robot that autonomously seeks and
recognizes patients to perform health data collection through
voice and touch-screen based questionnaires.

I. INTRODUCTION

Consistent health data collection of patient reported mea-
sures is crucial for a high quality and close monitorization
of a patient’s condition or their stage of rehabilitation after
a treatment or surgery, and its use is becoming more and
more common [1]. These types of data are PROMs (Patient
Reported Outcome Measures) and PREMs (Patient Reported
Experience Measures) [2]. As the names indicate, the first
set of data represents the patient’s perception of their own
health condition while the second represents the patient’s
perception of some experience they have been through, be
it a surgery, some sort of treatment or even a consultation.
This consistent monitorization allows the health professionals
to follow a patient closely without the inconvenience of
constant check-ups and consultations. Furthermore, it can
be fundamental in catching irregularities early on a patient’s
state and thus prevent future health problems. The 2017 study
by Kingsley and Patel [3], shows how these types of data
are obtained and their practical importance. The constant
collation, interpretation and utilisation of these types of data
as a source of feedback also helps reaching an important
medium to long term improvement of patient care and general
medical services [4].

PROMs and PREMs are usually collected via question-
naires made directly to the patients. Simple statements about
the person’s health state are made and a set of defined multiple
answers is given. The patient, then, has to choose the answer
which they think better describes their current condition. In
the past, these questionnaires were normally conducted face-
to-face by nurses, caretakers or other health professionals.
Nowadays, in the digital era, other options have surfaced,
and, more and more, this collection of data is done through
mobile apps that frequently remind the patients to answer
their questionnaires and register their answers for evaluation.
These new options have very positive aspects but they still

lack some user friendliness. In this project another solution
is presented. With the current evolution in robotics, social
robots can be very helpful in this data collection. The main
goal is to have a personal robot capable of conducting these
questionnaires with a high level of social awareness in order
to make the interaction with the patients as smooth and
comfortable as possible. Through the rest of this article we
present our approaches for active collection of health data
using a social robot.

II. RELATED WORK

Collection of PROMs and PREMs has a wide variety
of applications in the medical area, not only for screening
and monitorization of patients but also for evaluations and
improvements of procedures. One study from 2013 [5] about
hernia surgery even shows how these measures can be used
to determine the cost-effectiveness of specific procedures
and treatments. The application of modern technology in
health data acquisition has been explored in many different
fronts for a number of years. In the specific case of PROM
data collection, most examples of that occur in the form of
mobile applications that take advantage of the technological
capabilities of smart phones and smart watches to closely
monitor patients. In 2016, a randomized study by Johnston
et al. [6] showed how a smartphone support App on drug
adherence for Myocardial Infartion patients significantly
improved their self reported drug adherance and was even
associated to an improved cardiovascular lifestyle when
compared to the ones not using the app. In a similar study,
Seto et al. [7], also proved how the quality of life of
patients with continuous monitoring of heart functions through
their mobile phones was significantly greater than the one
presented by the control group. Also, in 2017 Rudin et
al. [8] conducted a study with asthma patients using the
mHealthgm App to efficiently identify core components for
an mHealth-based asthma symptom–monitoring intervention
using patient-reported outcomes. Although this same mHealth
App together with a speech component was then studied
in 2019 by Welbie et al. [9]. That study was an Usability
Assessment and the results revealed that the level of usability
still needed improvements before its public launch and that
participants less used to using these types of technology had
to be taken into account more in the tests. As they were the
ones still showing difficulties in using the App. These were
normally older adults, i.e. people above 70 years old. For
that reason, this is the target population of this project. Not
only are they less knowledgeable of these technologies but
also, often times, struggle with memory loss problems and



general forgetfulness [10], which lessens the effectiveness of
these applications.

Although social robotics is still a relatively novel topic,
some examples of projects in this area are emerging as social
robots are a very popular tool to use in the medical area. In
2018, the Institute for Systems and Robotics in Lisbon [11],
experimented Vizzy, a Humanoid designed specifically for
assistive robotics [12], as an exercise coach for the elderly
with positive results. Also in 2018, Bauer et al. [13], studied
the idea of using a service robot, for the detection of falls
in older adults. Thus the application of social robots to the
collection of PROMs, specially when dealing with an older
demographic, becomes the logical next step.

III. METHODOLOGIES

This work proposes a solution in which the robot is aware
of which PROM questionnaires the user should answer and
when they should be answered. When that moment arrives the
robot should take the initiative to seek out the user, identify
and approach them to initiate the dialog (see Figure 1).

A. Robot Platform: Temi

The robot chosen for this work is Temi robot (see Figure
2a). Temi can be controlled through a tablet with a HD
touch screen placed in the face area of the robot. This tablet
runs java applications on an Android Operating System. The
manufacturer provides an SDK to allow developers to control
Temi and also to give access to some extra services in the
cloud. In terms of sensors, Temi uses a 360º LIDAR, an IMU
sensor, 6 time of flight linear sensors for accurate mapping
and navigation. And has 3 different cameras. One of this
cameras is a high resolution 13MP camera and the others are
a wide view camera used for remote navigation and a time
of flight depth camera up to 5 meters with a field of view
of 90 degrees. Temi has a very advanced voice interaction
system.

B. Person Localization

All PROM questionnaires have a determined frequency
with which they should be answered, thus every time the user
has to answer a questionnaire, the robot has to be able to
localize and approach the user. For this to happen, three steps
are needed, first the robot has to be able to find and approach
people, then it has to perform a simple user availability check,
which is described in the next section of this chapter, and
third of all it should use a face recognition system in order
to confirm that the right person is being approached. In case
the wrong person is approached, the robot should then go
back to the original state of looking for the user in question.

A solution like the one proposed by Song et al. [14]
represents a very interesting option for the problem at hands.
Although, it also presents some limitations. In this solution
the service provided by the robot is requested via a mobile
App and the indoor localization is made possible through
Bluetooth signals between the robot and the smart phone.

Temi’s ability to detect, recognise and follow specific faces
works particularly well for person localization. Furthermore,

Temi maps its user’s home, and saves the different rooms in
a database. Then, when the time to find the user comes, Temi
follows a certain path visiting each of the rooms looking for
the user. Once in the same room as the user Temi should be
able to detect its face and make the final approach.

Time for 
Questionnaire

(Trigger)

Localize and 
Identify User

Verify
Availability

Approach User
for Interaction

Perform 
Questionnaires

Return Home

Fig. 1: Block Diagram - Proposed Solution

C. Voice interaction

Voice interaction represents the final and most important
method of our active data collection solution as it is in this
part of the process that, not only the questions are answered
and the data is collected but also because this represents
the moment in which the Robot’s ability to interact with a
human is put to the test. A careful presence and approach in
the communication might prove to be crucial in the level of
acceptance by the users [15].

When first approaching the user, the robot has to greet the
user and confirm the availability for answering the question-
naire. Then, the robot should proceed to the questionnaire
in need of answering. The PROM questionnaires consist of
simple statements to which the user has to attribute a multiple
choice answer that better describes their feelings towards the
given statement. It is also believed that the Robot should
sometimes use reassuring words during these questionnaires
according to the answers given by the user.

The target population of this proposal are people in an
older demographic. People of this age group tend to be more
susceptible to hearing loss and have reduced comprehension
ability [16]. Thus it is imperative to present visual aids during
the questionnaires, i.e., both the questions and the answers
should be visually displayed.

IV. EXPERIMENTAL METHODS

In order to test Temi’s abilities within the context of this
work, a test application, called temi test dialog, was developed
(see Figure 2b).

A. Study Design

At first, Temi is trained to recognize the face of a new user.
The volunteers are asked to stay in a zone of the laboratory
floor of their choosing. After that, Temi is placed in a different
zone and asked to look around and find the volunteer in
order to start the interaction. The time this process takes and
the problems and mistakes made by the robot are closely



(a) Temi Robot

(b) Questionnaire prompt example

Fig. 2: Temi health assistant.

monitored. Once the robot finds and identifies the volunteer,
it begins the interaction, proceeding to perform a simple
example of a PROM-type questionnaire. Two versions of this
App were developed. A more complex one, in which the
interaction between user and robot is all done by voice and
a simpler one in which the robot will use voice to ask the
questions but the user will answer selecting answers in the
touch screen. The experiments will take place in two phases,
in which both versions are tested and a comparative study
between the two is done. Currently, our application provides a
simple dialog app, in which, prompts with questions appear on
the screen accompanied by a voice dialog, however, we intend
to gradually update the application with new functionalities
to test.

For now, the questionnaire used is just a simple example
used in the development and testing of the app. In the
future the focus will be on using real PROM questionnaires.
Specifically, the EQ-5D [17], a relatively general PROM
questionnaire which can be applied to a variety of illnesses
and conditions, and the INTERMED [18], a self-assessment
questionnaire, more focused on in-house patients.

B. Data Acquisition and Analysis

After the questionnaire is finalized and the process termi-
nated, the volunteer then has to answer a quality and usability
assessing questionnaire. For this the Post-Study System
Usability (PSSU) questionnaire is used alongside some
additional questions in order to assess the user acceptance
to this solution and to understand which version of the
interaction is preferred by users. After the usability assessing
experiments are done, an experiment in a more real scenario
should also be done. Here the robot is taken to users’ homes,
preferably users over 70 years old living in their own personal
home, as this represents the target audience for this project.
Temi is trained to recognize this user and a mapping of the
home is also done and then the robot stays in this user’s
home for a number of days. Temi is programmed to perform
a number of PROM questionnaires during each day, some of
these questionnaires are taken all in one sitting and for others
Temi would let the user take a break and resume the questions
later. Every day of the experiment the user is contacted and
interviewed about their experience with Temi. This would
serve not only to evaluate the general satisfaction of the user
with the system but also to understand how their opinion
about Temi and the system would develop throughout the
experiment (see Table I). The following videos illustrate the
robot behaviour when searching for the patients, and also
when it begins the interaction to collect the patient answers
to the questionnaires (see https://youtu.be/nXnx8s4TO8I,
https://youtu.be/wJtluPpsEyk).

V. CONCLUSIONS

In this work we have proposed to use a personal robot
assistant for health data collection via PROM and PREM
questionnaires, to make this interaction as comfortable and
smooth as possible, especially considering that the target
population of our active health data collection are elderly
people, a series of methods to allow for this interaction were
developed, and properly tested in order to guarantee the
system is usable and useful. Future work will be focused
on developing data collection and analysis tools in order
to continuously actively monitor the health of different
populations.
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Questions Answers
Never Rarely Sometimes Always

1. How often do you need help looking after yourself?
2. How about when performing household tasks? Do you
often need help?
3. Do you often feel challenged when getting around
your home or community?
4. Do you ever feel that your health affects negatively
your relationships with friends and family?
5. Regarding your vision, how often do you struggle
with seeing clearly?
6. Do you ever feel any difficulty hearing clearly?
7. How often do you have a hard time communicating
with others?
8. Do you ever feel difficulty when trying to sleep?
9. How often do you feel anxious, worried or depressed?
10. How often do you experience pain or discomfort?

TABLE I: Example questionnaire used in the experiments
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