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DISCRETE SPECTRUM OF THE MAGNETIC LAPLACIAN
ON PERTURBED HALF-PLANES

VIRGINIE BONNAILLIE-NOËL, SØREN FOURNAIS, AYMAN KACHMAR,
AND NICOLAS RAYMOND

Abstract. The existence of bound states for the magnetic Laplacian in un-
bounded domains can be quite challenging in the case of a homogeneous magnetic
field. We provide an affirmative answer for almost flat corners and slightly curved
half-planes when the total curvature of the boundary is positive.

1. Introduction

We consider the Neumann magnetic Laplacian with constant magnetic field B = 1
on an open set Ωδ, which is defined through the following (closed) quadratic form

∀ψ ∈ H1
A(Ωδ) , Qδ(ψ) =

∫
Ωδ

|(−i∇+ A)ψ|2dx .

Here A = (−x2, 0) is a vector potential associated with B = 1 in the sense that

∂1A2 − ∂2A1 = 1 .

Then, we consider the magnetic Laplacian as the self-adjoint operator Lδ associated
with Qδ. We denote by λ(δ) the bottom of its spectrum

λ(δ) = inf
ψ∈H1

A(Ωδ)
ψ 6≡0

‖(−i∇+ A)ψ‖2
L2(Ωδ)

‖ψ‖2
L2(Ωδ)

.

The study of the spectrum of such operators in different geometries has been the
focus of much interest in recent decades. Below, we will give a short overview of
results relevant for the present article. For more in depth coverage we refer to [7, 9].

In general, when Ωδ is unbounded, we do not know if λ(δ) is an eigenvalue. For
instance, in the case when Ωδ = Ω0 =: R×R+, it is well-known that the spectrum
is absolutely continuous and given by the half-line [Θ0,+∞), where Θ0 ≈ 0.59 is
a positive universal constant (see (2.2) below). In the present article Ωδ will be a
perturbation of the half-plane Ω0. Let us describe the two types of perturbations
that we consider. The first type is a singular perturbation when Ωδ is of the (corner)
form

(1.1) Ωδ = Cδ := {x = (x1, x2) ∈ R×R+ :
x2

tan δ
> −x1} , δ ∈ (0, π) .

The second type of perturbation under consideration is regular. Consider a bounded
continuous compactly supported function κ : R→ R and, for all δ > 0, a simple C 2

curve γδ : R→ R2, parametrized by arc-length and such that its algebraic curvature
κδ satisfies

κδ(s) = δκ(s) .

Note that γ′′δ (s) = δκ(s)nδ(s) where nδ(s) is the unit normal such that det(γ′δ,nδ) =
1. We also assume that γ0(s) = (s, 0), γδ(0) = (0, 0) and that δ 7→ γ′δ is continuous
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for the uniform topology at δ = 0. Let us now define our perturbed half-space.
We write R2 \ γδ = Γ+

δ t Γ−δ in such a way that nδ is the inward pointing normal
to ∂Γ+

δ . We let Ωδ = Γ+
δ . A typical example of such a configuration is given by

γδ(s) = (s, fδ(s)) where fδ(s) = δ
∫ s

0
g(σ)(1− δ2g(σ)2)−1/2dσ and g(σ) =

∫ σ
0
κ(x)dx,

with δ chosen in (0, δ0) for a sufficiently small δ0 to ensure that δg(σ) ∈ (−1, 1); in
which case Γ+

δ = {(x, y) ∈ R2 | y > fδ(x)}.
By the Persson’s theorem (see for instance [1]), it is well-known in both cases that

the essential spectrum of this operator Lδ is the same as the spectrum of L0, i.e.,
[Θ0,+∞). Let us now state our main two results, both establishing the existence of
a bound state.

Theorem 1.1 (Almost flat corner). We assume that Ωδ = Cδ. There exists δ0 ∈
(0, π) such that, for all δ ∈ (0, δ0),

λ(δ) 6 Θ0 −
C2

1

4
δ2 + o(δ2) < Θ0 ,

where C1 > 0 is a universal constant (defined below in (2.3)). In particular, the
bottom of the spectrum of Lδ belongs to the discrete spectrum.

In the corner setting, λ(δ) is only known to be an eigenvalue for the non-flat
situation when δ ∈ (π

2
− ε, π), for a sufficiently small ε > 0, see [1, 5]. The regime

δ → 0 considered in the present article tackles the subtle situation when we know
that the discrete spectrum tends to disappear. Let us also underline that it is still
an open question to know if δ 7→ λ(δ) is monotone non-increasing (as suggested by
the numerical simulations in [1]). If one were able to establish this monotonicity,
Theorem 1.1 would imply that λ(δ) < Θ0 for all δ ∈ (0, π), and thus the existence
of a bound state for all (non flat) convex corners.

We next state the result for the slightly curved half-plane.

Theorem 1.2 (Slightly curved half-plane). We assume Ωδ = Γ+
δ and

∫
R
κ(s)ds > 0.

There exists δ0 > 0 such that, for all δ ∈ (0, δ0), the discrete spectrum of Lδ is non-
empty. Moreover,

λ(δ) 6 Θ0 −
(
C1

2

∫
R

κ(s)ds

)2

δ2 + o(δ2) ,

where C1 is the same universal constant as in Theorem 1.1.

Our analysis suggests that there is only one simple eigenvalue below Θ0−Cδ
1
2 , for

some constant C > 0. This would follow from a dimensional reduction as in [6, 8] or
in the Grushin spirit (see [2]). The question of estimating the number of bound states
(below Θ0) remains open. This requires the derivation of a very precise operator
near the threshold of the essential spectrum, what is a quite interesting problem
sharing similar features as in [3].

Remark 1.3. Actually, Theorem 1.1 can be seen as a formal consequence of The-
orem 1.2. Indeed, it is possible to exhibit a normal parametrization of ∂Cδ by
considering

γδ(s) = (s1R+(s) + s cos δ1R−(s),−s sin δ1R−(s)) .

In the sense of distributions, we have

γ′′δ = (1− cos δ, sin δ)d0 = 2 sin

(
δ

2

)
nδd0 , nδ = (sin(δ/2), cos(δ/2)) ,
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where d0 is the Dirac distribution at 0 and nδ is the direction of the bisector of Cδ.
Formally, the curvature is κδ = 2 sin

(
δ
2

)
d0.

Organization of the article. In Section 2, we introduce the constants Θ0 and
C1, related to the de Gennes operator (2.1). Section 3 is devoted to the proof of
Theorem 1.1, whereas Section 4 deals with that of Theorem 1.2. In both situations,
the proof follows by construction of an appropriate trial state. In the corner case, the
phase of the trial state (see (3.5)) is reminiscent of the construction appearing in the
non-linear setting of [4], while the amplitude (see (3.11)) is obtained by minimizing
a new energy functional in (3.16). In the regular case, we use a tensorized trial
state in curvilinear coordinates (see (4.1)) involving the bound state of a 1D model
operator studied in [10] and revisited in Appendix A.

2. The deGennes operator and the constant C1

The material of this section is standard and only included for convenience and to
fix notation. We refer to [7] for more material and reference to earlier works. The
constants Θ0 and C1 in Theorems 1.1 and 1.2 are defined starting from a family of
1D harmonic oscillators on the half axis. For all ξ ∈ R, let us denote by µ(ξ) the
first eigenvalue of the operator

(2.1) Hξ = − d2

dt2
+ (t− ξ)2 in L2(R+),

with Neumann boundary condition at 0, u′(0) = 0.
We introduce the deGennes constant

(2.2) Θ0 = inf
ξ∈R

µ(ξ) .

We know that 1
2
< Θ0 < 1 and there exists a unique ξ0 such that

Θ0 = µ(ξ0) .

Furthermore, ξ0 =
√

Θ0 and µ′′(ξ0) > 0. Let us denote by f? the positive normalized
ground state of Θ0, i.e.

Hξ0f? = Θ0f?, f? > 0, f ′?(0) = 0,

∫
R+

|f?(t)|2dt = 1.

We introduce the constant C1 as follows

(2.3) C1 =
|f?(0)|2

3
.

The function f? belongs to S(R+) and decays exponentially at infinity. It satisfies
the additional property (Feynman-Hellmann)

(2.4)
∫
R+

(t− ξ0)|f?(t)|2dt = 0 .

Noticing that∫ +∞

0

t|f ′?(t)|2dt = −
∫ +∞

0

(tf ′?)
′f?dt =

∫ +∞

0

(t(−f ′′? )f? − f ′?f?)dt

=

∫ +∞

0

(Θ0t− t(ξ0 − t)2)|f?(t)|2dt+
f?(0)2

2
,
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we get, using (2.3), the interesting identity

(2.5)
∫
R+

(
|f ′?(t)|2 + (ξ0 − t)2|f?(t)|2 −Θ0|f?(t)|2

)
tdt =

3C1

2
.

Another interesting identity is

(2.6)
∫
R+

(t− ξ0)t(t− 2ξ0)|f?(t)|2dt =
C1

2
,

which follows by writing

(t− ξ0)(t− 2ξ0)t = (t− ξ0)3 − ξ2
0(t− ξ0) ,

using (2.4) and the formula (see [7, Lemma 3.2.7]):∫
R+

(t− ξ0)3|f?(t)|2dt =
C1

2
.

For a positive number `, let us introduce the function

(2.7) f`(t) = ζ

(
t

`

)
f?(t)

where ζ ∈ C∞0 (R) satisfies

(2.8) 0 6 ζ 6 1, supp ζ ⊂ [−1, 1], ζ = 1 on
[
− 1

2
,
1

2

]
.

Consequently, as `→ +∞, we have

(2.9)

∫
R+

|f`(t)|2dt = 1 +O(`−∞),

q(f`) :=

∫
R+

(
|f ′`(t)|2 + (t− ξ0)2|f`(t)|2

)
dt = Θ0 +O(`−∞) ,∫

R+

(t− ξ0)k|f`(t)|2dt =

∫
R+

(t− ξ0)k|f?(t)|2dt+O(`−∞) ,

where O(`−∞) denotes a quantity equal to O(`−N) for all N > 0.
Since f? ∈ S(R+), we deduce the following two identities from (2.5), which will
useful below in our proof of Theorem 1.1,

(2.10)

∫
R+

(
|f ′`(t)|2 + (ξ0 − t)2|f`(t)|2 −Θ0|f`(t)|2

)
tdt =

3C1

2
+O(`−∞) ,∫

R+

(t− ξ0)(t− 2ξ0)|f`(t)|2tdt =
C1

2
+O(`−∞) .

3. Almost flat sectors

This section is devoted to the proof of Theorem 1.1, so Ωδ = Cδ hereafter. The
proof is by construction of a quasi-mode having approximately the form (after trun-
cation)

Ψtr ≈ f?(t)e
iΦ(s,t)

where s denotes the tangential variable along ∂Cδ and t denotes the transversal
variable. For instance, (s, t) = (x1, x2) when δ = 0 (in which case Cδ is the half-
plane R×R+).
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The phase term Φ is, up to symmetry considerations, a perturbation of iξ0s. As
already mentionned, the idea of perturbing the phase term in an almost flat sector
was first introduced in the non-linear framework of the Ginzburg-Landau functional
[4]. We use the same construction and add to this by proving that the phase term
proposed in [4] is rather the optimal choice. Interestingly, we determine the best
truncation profile by minimizing a non-linear functional, which allows us to capture
the δ2-term of Theorem 1.1.

3.1. Geometric framework. We denote by T+ the following trapezoid:

T+ := {x ∈ (0,+∞)× (0, `) : x2 tan(δ/2) < x1} .

Consider the angle bisector

Dδ = {x ∈ R2 : x1 = x2 tan(δ/2)} .

We denote by Sδ the reflection in the line Dδ, whose matrix is

Sδ =

(
− cos δ sin δ
sin δ cos δ

)
.

We denote by T− the reflection of T+, i.e.,

T− := SδT
+.

δ π−δ−γ
2

γ
2

`

Dδ

T+
δ,γ

T−δ,γ
V +
δ,γ

V −δ,γ

Figure 1. Geometric setting: The figure illustrates the sector cut-off
at height `. Here T+ = T+

δ,γ∪V
+
δ,γ and similarly for T−. The symmetry

axis Dδ is drawn in blue.

3.2. Towards a test function. Let us try to define a test function compatible with
the symmetry and the magnetic field. Let us consider a function u+ such that

(3.1) E+ :=

∫
T+

|(−i∇+ A)u+|2dx < +∞ .

Now, we want to extend u+ by using the symmetry. We wish to do this in such a
way that the magnetic energy on T− coincides with the one on T+.
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Lemma 3.1. Considering

(3.2) φ(y) =
sin(2δ)

4
(y2

1 − y2
2)− y1y2 sin2 δ

and

(3.3) u−(x) = e−iφ(Sδx)u+(Sδx) ,

we have

(3.4)
∫
T+

|(−i∇+ A)u+|2dx =

∫
T−
|(−i∇+ A)u−|2dx .

Proof. For a given function u− on T−, we use the change of variable given by x = Sδy
(remember that Sδ = S−1

δ = S∗δ ) and notice that∫
T−
|(−i∇+ A)u−|2dx =

∫
T+

|(−i∇y + Ã(y))
◦
u−|2dy ,

with
Ã = Sδ(A ◦ Sδ) ,

◦
u− = u− ◦ Sδ(y) .

A straightforward computation gives

Ã(y) = Sδ

(
−y1 sin δ − y2 cos δ

0

)
=

(
y1
2

sin(2δ) + y2 cos2 δ
−y1 sin2 δ − y2

2
sin(2δ)

)
.

The magnetic field associated with Ã is

∂y1Ã2 − ∂y2Ã1 = −1 .

Let us consider the function φ defined in (3.2). It satisfies

Ã−
(
y2

0

)
= ∇φ .

Therefore,∫
T−
|(−i∇+ A)u−|2dx =

∫
T+

∣∣∣∣(−i∇y +

(
y2

0

))
eiφ(y) ◦u−(y)

∣∣∣∣2 dy

=

∫
T+

∣∣(−i∇y + A(y)) e−iφ(y)v−(y)
∣∣2 dy , with v− =

◦
u− ,

so that (3.4) holds if

e−iφ(y) ◦u−(y) = u+(y) ,

or, equivalently,
u−(x) = e−iφ(Sδx)u+(Sδx) .

�

Remark 3.2. If we choose

u+(x1, x2) = f(x2)eiξ0x1 ,

with a real-valued f in the Schwartz class, (3.3) gives

u−(x) = f(x1 sin δ + x2 cos δ)e−iξ0(−x1 cos δ+x2 sin δ)e−iφ(x) ,

since φ(Sδx) = φ(x). Of course, this choice of u+ is not appropriate since (3.1) is
not satisfied due to the lack of integrability with respect to x1. However, up to using
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a cutoff function with respect to x1, this gives a rather good idea of the shape of our
test function in T+. Now, if we consider

u(x) =

{
f(x2)eiξ0x1 , if x ∈ T+

f(x1 sin δ + x2 cos δ)eiξ0(x1 cos δ−x2 sin δ)e−iφ(x) , if x ∈ T− ,

we see that u does not belong to H1 near the symmetry axis Dδ due to the phase
shift, which does not vanish on Dδ. In the next section, we slightly modify this
function u to solve this inconvenience.

3.3. Smoothing the transition near Dδ. For the given δ, we let 0 < γ < π − δ
and define the following trial state (in polar coordinates)
(3.5)

Ψ(r cos θ, r sin θ) =


f(r sin θ)eiξ0r cos θ, if (r cos θ, r sin θ) ∈ T+

δ,γ,

f(r sin θ)eiα(r,θ), if (r cos θ, r sin θ) ∈ V +
δ,γ,

f(r sin(θ + δ))eiα(r,θ), if (r cos θ, r sin θ) ∈ V −δ,γ,
f(r sin(θ + δ))eiξ0r cos(θ+δ)−ir2φ(cos θ,sin θ), if (r cos θ, r sin θ) ∈ T−δ,γ,
0, else,

where (cf. Fig.1):
— V +

δ,γ is the sector defined in polar coordinates by 0 < r < r∗ := `

cos( δ+γ2 )
and

θ ∈
(
θδ − γ

2
, θδ
)
and V −δ,γ = SδV

+
δ,γ, with θδ = π−δ

2
.

— the trapezoids T+
δ,γ and T−δ,γ are given by

T+
δ,γ =

{
x ∈ (0,+∞)× (0, `) : x2 tan

(
δ − γ

2

)
< x1

}
and T−δ,γ = SδT

+
δ,γ.

The function f is given by f = f`, see (2.7), and the phase α is chosen so that the
function Ψ belongs to H1

loc(Cδ). Let us give an explicit choice of α. Note that

φ(cos θ, sin θ) =
sin δ

2
cos(2θ + δ) ,

and consider the two phases

α+(r, θ) = rξ0 cos(θ) , α−(r, θ) = rξ0 cos(θ + δ)− r2

2
sin δ cos(2θ + δ) .

Notice that the transition zone is simply given by θ ∈
(
θδ − γ

2
, θδ + γ

2

)
and that we

have

α+

(
r, θδ −

γ

2

)
= rξ0 sin

(
δ + γ

2

)
and

α−

(
r, θδ +

γ

2

)
= −rξ0 sin

(
δ + γ

2

)
+
r2

2
sin δ cos γ .

This leads to the choice

(3.6) α(r, θ) = br2 − χδ,γ(θ)
(
ar − br2

)
,

with

a = ξ0 sin

(
δ + γ

2

)
, b =

1

4
sin δ cos γ ,
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and

χδ,γ(θ) = χ

(
2(θ − θδ)

γ

)
,

where χ is a smooth odd function such that χ(t) = 1 for t > 1.

Remark 3.3. The function Ψ has no decay in the x1-direction, so it will be com-
plemented by a well-chosen cut-off in that variable.

3.4. Estimate of the energy. We consider a function η+ ∈ H1(R+) equal to 1 in
a fixed neighborhood of 0 (so that (x1, x2) 7→ η+(x1) equals 1 on V +

δ,γ as soon as δ
and γ are small enough). This function will be chosen later on in Section 3.5.

The aim of this section is to establish the following proposition valid in the regime
where `→ +∞ and (δ, γ)→ 0 provided that δ = o(γ).

Proposition 3.4. For small enough values of δ, γ, `−1 and under the assumption
that δ 6 γ, we have∫

T+

|η+(x1)|2|(−i∇+ A)Ψ|2dx 6 (Θ0 +O(`−∞))‖η+‖2
L2(R+) − J

δ

2

+O(γ−1δ2) +O(γ3) +O(`−∞) ,

with

(3.7) J =

∫ +∞

0

(
|f ′|2 + (t− ξ0)2|f(t)|2

)
tdt−

∫ +∞

0

(t− ξ0)(t− 2ξ0)t|f(t)|2dt .

The remainder terms O(γ−1δ2), O(`−∞) and O(γ3) are controlled uniformly w.r.t.
the function η+.

Proposition 3.4 is a consequence of Lemmas 3.5, Remark 3.6, and 3.7.

Lemma 3.5. We have the estimate∫
V +
δ,γ

|(−i∇+ A)Ψ|2dx =
γ

2
Jδ,γ +O(γ3 + γ`−∞)

where

Jδ,γ :=

∫ ∞
0

(
|f ′(t)|2 +

(
t−
(
ξ0(1 +

δ

γ
)− δ

2γ
t

))2

|f(t)|2
)
tdt .

Remark 3.6. Expanding Jδ,γ, we observe that

γ

2
Jδ,γ =

γ

2

∫ +∞

0

(
|f ′|2 + (t− ξ0)2|f(t)|2

)
tdt+

δ

2

∫ +∞

0

(t−ξ0)(t−2ξ0)t|f(t)|2dt+O(γ−1δ2) ,

where we used the exponential decay of f? to control the remainder.

Proof of Lemma 3.5. We have∫
V +
δ,γ

|(−i∇+ A)Ψ|2dx =

∫
V +
δ,γ

|(−i∇+ A0)Ψ̃|2dx , A0 =
1

2
(−x2, x1) ,

where Ψ̃ = e−ix1x2/2Ψ. We get∫
V +
δ,γ

|(−i∇+ A)Ψ|2dx =

∫ θδ

θδ− γ2

∫ r∗

0

(
|∂rΨ̃|2 + r−2

∣∣∣∣(−i∂θ +
r2

2

)
Ψ̃

∣∣∣∣2
)
rdrdθ .
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Then, we write

Ψ̃ = ei(−r
2 sin(2θ)/4+α(r,θ))f(r sin θ) ,

and, using that f is real-valued, we find

|∂rΨ̃|2 = sin2 θ|f ′(r sin θ)|2 + (−r sin(2θ)/2 + ∂rα)2|f(r sin θ)|2 ,

and

∣∣∣∣(−i∂θ +
r2

2

)
Ψ̃

∣∣∣∣2 = (−r
2

2
cos(2θ) + ∂θα +

r2

2
)2|f(r sin θ)|2 + r2 cos2 θ|f ′(r sin θ)|2

= (r2 sin2(θ) + ∂θα)2|f(r sin θ)|2 + r2 cos2 θ|f ′(r sin θ)|2 .

It follows that∫
V +
δ,γ

|(−i∇+ A)Ψ|2dx

=

∫ θδ

θδ− γ2

∫ r∗

0

(
|f ′(r sin θ)|2

+
(

(−r sin(2θ)/2 + ∂rα)2 + (r sin2(θ) + r−1∂θα)2
)
|f(r sin θ)|2

)
rdrdθ

=

∫ θδ

θδ− γ2

∫ r∗

0

(
|f ′(r sin θ)|2 + F (r, θ, χδ,γ)|f(r sin θ)|2

)
rdrdθ ,(3.8)

where

F (r, θ, χδ,γ) = (−r sin(2θ)/2− χδ,γ(θ)(a− 2br)− 2br)2+
(
r sin2(θ)− χ′δ,γ(θ)(a− br)

)2
.

Notice that the interval of integration in θ has length γ/2 � 1 and θ ∈ [θδ − γ
2
, θδ]

implies

1 > sin θ > 1− C(δ − γ)2, and 0 6 sin(2θ) 6 δ + γ.

Furthermore,

a = ξ0
γ + δ

2
+O(γ3) , b =

δ

4
+O(γ3)

and

χ′δ,γ(θ) =
2

γ
χ′
(

2(θ − θδ)
γ

)
.
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Therefore, the first part of F (r, θ, χδ,γ) is small, and we get, using the decay of f
and f ′,∫
V +
δ,γ

|(−i∇+ A)Ψ|2dx

=

∫ θδ

θδ− γ2

∫ r∗

0

(
|f ′(r sin θ)|2 +

(
r sin2(θ)− χ′δ,γ(θ)(a− br)

)2 |f(r sin θ)|2
)
rdrdθ +O(γ3)

=

∫ θδ

θδ− γ2

∫ +∞

0

(
|f ′(t)|2 +

(
t− χ′

(
2(θ − θδ)

γ

)(
ξ0(1 +

δ

γ
)− δ

2γ
t

))2

|f(t)|2
)
tdtdθ

+O(γ3 + γ`−∞)

=
γ

2

∫ +∞

0

(
|f ′(t)|2 + t2|f(t)|2

)
tdt− γ

∫ +∞

0

(
ξ0(1 +

δ

γ
)− δ

2γ
t

)
|f(t)|2t2dt

+
γ

2

(∫ 0

−1

χ′2dθ

)∫ +∞

0

(
ξ0(1 +

δ

γ
)− δ

2γ
t

)2

|f(t)|2tdt+O(γ3 + γ`−∞),

(3.9)

where we used that χ is odd with χ(−1) = −1, to get the last equality. Therefore,
the optimal choice is that χ(x) = x on [−1, 1] and the result follows. �

Lemma 3.7. We have∫
T+
δ,γ

η+(x1)2|(−i∇+ A)Ψ|2dx 6 (Θ0 +O(`−∞))‖η+‖2
L2(R+)

− γ + δ

2

∫ +∞

0

(
f ′(t)2 + (t− ξ0)2|f |2

)
tdt

+O(γ3) +O(`−∞).

Proof. We recall that Ψ(x) = u(x) = f(x2)eiξ0x1 , on T+
δ,γ and that η+ = 1 on [0, ε].

For small enough γ, δ we can therefore write∫
T+
δ,γ

η+(x1)2|(−i∇+ A)Ψ|2dx =

∫
R

η+(x1)2|(−i∇+ A)u|2dx− E ,

with R = (0,+∞)× (0, `) and

E =

∫
R\T+

δ,γ

|(−i∇+ A)u|2dx .

The calculation of E is similar to the beginning of the proof of Lemma 3.5. We have

E =

∫
R\T+

δ,γ

|(−i∇+ A0)ũ|2dx , ũ(x) = e−ix1x2/2u(x) ,

withA0(x) = 1
2
(−x2, x1). We let w(r, θ) = ũ(r cos θ, r sin θ) = f(r sin θ)ei(ξ0r cos θ− r

2

4
sin(2θ))

to get

E =

∫ π
2

θδ− γ2

∫ r∗(θ)

0

(
|∂rw|2 + r−2

∣∣∣∣(−i∂θ +
r2

2

)
w

∣∣∣∣2
)
rdrdθ , r∗(θ) =

`

sin θ
> ` .

Since f is real-valued,
|∂rw|2 = sin2 θ|f ′(r sin θ)|2 + (ξ0 cos θ − r sin θ cos θ)2|f(r sin θ)|2
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r−2

∣∣∣∣(−i∂θ +
r2

2
)w

∣∣∣∣2 = cos2 θ|f ′(r sin θ)|2 + (−ξ0 sin θ + r sin2(θ))2|f(r sin θ)|2 .

We get

E =

∫ π
2

θδ−γ/2

∫ `/ sin θ

0

(
|f ′(r sin θ)|2 + (ξ0 − r sin θ)2|f(r sin θ)|2

)
rdrdθ ,(3.10)

Thus, with the change of variable r = t/ sin θ, we get for all N > 0,

E >
γ + δ

2

∫ +∞

0

(tf ′(t)2 + t(ξ0 − t)2|f |2)dt− Cγ3 − Cγ`−N .

Moreover,∫
R

η+(x1)2|(−i∇+ A)u|2dx =

∫
R

η+(x1)2
(
|(−i∂1 − x2)u|2 + |∂x2u|2

)
dx

=

∫
R

η+(x1)2
(
|(ξ0 − x2)f(x2)|2 + |f ′(x2)|2

)
dx

= ‖η+‖2
L2(R+)

∫ `

0

(
|(ξ0 − x2)f(x2)|2 + |f ′(x2)|2

)
dx2

= (Θ0 +O(`−∞))‖η‖2
L2(R+) .

�

3.5. Proof of Theorem 1.1. We have now almost all the elements at hand to
establish Theorem 1.1. Let us first truncate the function Ψ to produce a test function
in H1

A(Cδ). We introduce the function

Ψtr = ηΨ

where

(3.11) η(x) =

{
η+(x1) if x ∈ T+

η+(−x1 cos δ + x2 sin δ) if x ∈ T− .

and η+ ∈ H1(R+) is equal to 1 on the interval (0, ε), for a fixed (and arbitrary) ε > 0.
The construction of η and Ψtr respects the symmetry considerations in Section 3.2
(since η ◦ Sδ = η). Notice that on T+,

Ψtr(x) = η+(x1)Ψ(x) .

Recall that our main (small) parameter is δ ∈ (0, π). We have also introduced
another small parameter γ with 0 < δ < γ and the large parameter ` in the definition
of Ψ. Below we will need the condition that

(3.12) `δ → 0.

We will make the choices

(3.13) γ = δ
1
2 , ` = δ−

1
2 ,

the first one ensuring that γ−1δ2 = γ3 (see the remainders in Proposition 3.4) and
the second one being rather arbitrary. The function η+ will be chosen to depend on
δ at the very end of the proof.
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3.5.1. Estimates of the L2-norm and of the energy of Ψtr. Let us estimate the L2-
norm of our test function Ψtr. For small enough δ, we have by (2.9), and using (3.12)
in the second term,∫

T+

|Ψtr|2dx =

∫
(0,+∞)×(0,`)

η+(x1)2|f`(x2)|2dx−
∫ π

2

π−δ
2

∫ `
sin θ

0

|f(r sin θ)|2rdrdθ

= (1 +O(`−∞))‖η+‖2
L2(R+) −

∫ π
2

π−δ
2

sin−2 θ

∫ `

0

|f(t)|2tdtdθ .

We deduce that

(3.14)
∫
T+

|Ψtr|2dx = (1 +O(`−∞))‖η+‖2
L2(R+) −

δ

2

∫ +∞

0

t|f(t)|2dt+O(δ3) .

Let us now estimate the energy of Ψtr. An integration by parts and a symmetry
consideration yield the following identity (‖ · ‖ denotes the norm in L2(Cδ)):

Qδ(Ψ
tr) =

∫
Cδ
|η|2|(−i∇+ A)Ψ|2dx−

∫
Cδ
η∆η |Ψ|2dx

= ‖η(−i∇+ A)Ψ‖2 − 2

∫
T+

η∆η |Ψ|2dx

= ‖η(−i∇+ A)Ψ‖2 − 2

∫
T+

η(x1)η′′(x1) |Ψ|2dx

= ‖η(−i∇+ A)Ψ‖2 + 2‖f‖2
L2(R+)

∫
R+

|η′+(x1)|2dx1 .

Notice, that for the integration by parts we needed η+ ∈ H2(R+), but a density
argument gives the identity for all η+ ∈ H1(R+), with η+ = 1 on the interval (0, ε).

3.5.2. Upper bound and proof of Theorem 1.1. Using the symmetry of our construc-
tion with respect to Dδ, we get (as in Lemma 3.1):

‖η(−i∇+ A)Ψ‖2 −Θ0‖Ψtr‖2 = 2(‖η+(−i∇+ A)Ψ‖2
L2(T+) −Θ0‖Ψtr‖2

L2(T+)) .

With (3.13), (3.14) and Proposition 3.4, we get

Qδ(Ψ
tr)−Θ0‖Ψtr‖2 6 −δ

(
J −Θ0

∫ +∞

0

t|f(t)|2dt

)
+ 2‖η′+‖2

L2(R+)

+O(δ
3
2 ) +O(δ∞)‖η+‖2

H1(R+) .

Recalling (3.7) and (2.10), we get

J −Θ0

∫ +∞

0

t|f(t)|2dt = C1 +O(δ∞) ,

so that

Qδ(Ψ
tr)−Θ0‖Ψtr‖2 6 −C1δ + 2‖η′+‖2

L2(R+) +O(δ
3
2 ) +O(δ∞)‖η+‖2

H1(R+) .

Therefore,

Qδ(Ψ
tr)

‖Ψtr‖2
6 Θ0 +

1

‖Ψtr‖2

(
−C1δ + 2‖η′+‖2

L2(R+) +O(δ
3
2 ) +O(δ∞)‖η+‖2

H1(R+)

)
,



DISCRETE SPECTRUM OF THE MAGNETIC LAPLACIAN 13

and by (3.14) and (2.4), we have

1

‖Ψtr‖2
=

1

2‖η+‖2

(
1 +

ξ0δ

2‖η+‖2
+O

(
δ2

‖η+‖4

)
+O(δ3)

)
,

where we used that ‖η+‖2 > ε. Then,

(3.15)
Qδ(Ψ

tr)

‖Ψtr‖2
6 Θ0 + Iδ(η+) +O(Rδ(η+)) +O(δ∞‖η+‖2

H1(R+)) ,

where

(3.16) Iδ(η+) =
1

‖η+‖2

(
−C1δ

2
+ ‖η′+‖2

L2(R+)

)
,

and

Rδ(η+) =
δ

3
2

‖η+‖2
+ δ
‖η′+‖2

‖η+‖4
+ δ3‖η′+‖2

‖η+‖2
.

The estimate (3.15) leads us to minimize the functional Iδ over the η+ ∈ H1(R+)
such that η+ = 1 on (0, ε), ε > 0 being fixed. For our purpose, namely to finish the
proof of Theorem 1.1, it suffices to come up with a sufficiently good trial η+, so we
will be brief. The Euler-Lagrange equation

−η′′+ = Iδ(η+)η+ , on [ε,+∞) ,

leads us to consider test functions η+ = ηα of the form

ηα(x) =

{
1 on (0, ε)

eαεe−αx x > ε ,

where α > 0. We notice that

Iδ(ηα) =
−C1δ

2
+ ‖η′α‖2

L2(ε,+∞)

ε+ ‖ηα‖2
L2(ε,+∞)

=
α2 − dα
1 + 2εα

, d = C1δ .

This last quantity is minimal for αδ = 1
2ε

(
−1 +

√
1 + 2εd

)
, and we have

αδ =
δ→0

C1δ

2
+O(δ2) .

Therefore, we choose α = C1δ
2

and we have

Iδ(ηα) = −C
2
1

4
δ2 +O(δ3) .

We notice that

‖ηα‖2
L2(R+) = ε+

1

C1δ
, ‖η′α‖2

L2(R+) =
C1δ

4
,

so that
Rδ(ηα) = O(δ

5
2 ) .

With the upper bound (3.15), this concludes the proof of Theorem 1.1.
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4. Regular perturbation

The purpose of this section is to prove Theorem 1.2, so Ωδ = Γ+
δ hereafter. We

construct a test function supported in a tubular neighborhood of ∂Ωδ where we can
use the Frenet coordinates.

We choose ` = δ−ρ with ρ ∈ (0, 1) and we let B` = R× (0, `). For δ small enough
the classical tubular coordinates,

Φδ : B` 3 (s, t) 7→ γδ(s) + tnδ(s) ,

are well-defined in the sense that Φδ is injective and induces a local (and then
global) C 1-diffeomorphism (the Jacobian of which being 1 − tδκ(s)). Indeed, by
using γ′0 = (1, 0), the continuity of δ 7→ γ′δ, and the Taylor formula, we can check
that there exist c, δ0 > 0 such that, for all δ ∈ (0, δ0) and all (s1, s2) ∈ R2,

|Φδ(s2, t2)− Φδ(s1, t1)| > c(|s2 − s1|+ |t2 − t1|) .

We let Ωδ,` = Φδ(B`). We consider a function of the form

(4.1) ψ(s, t) = ζ(`−1t)f?(t)g(s) ,

where ζ is a cutoff function (see (2.8)) and where g has to be determined and will
be chosen realvalued and normalised in L2(R). There exists a suitable phase ϕ such
that (see [7, Lemma F.1.1]) if we let

Ψ =
(
eiϕψ

)
◦ Φ−1

δ ,

which is supported in Ωδ,`, we have

Qδ(Ψ) = Q̃δ(ψ) ,

where (with κ = κ(s))

Q̃δ(ψ) =

∫
B`

(1− tδκ)|∂tψ|2dsdt

+

∫
B`

(1− tδκ)−1
∣∣∣(− i∂s + ξ0 − t+

δκt2

2

)
ψ
∣∣∣2dsdt .

By the exponential decay of f?, we have∫
B`

(1− tδκ)|∂tψ|2dsdt =

∫
B`

(1− tδκ)|g|2|`−1ζ ′(`−1t)f? + ζ(`−1t)f ′?|2dsdt

6 ‖f ′?‖2‖g‖2 − δ
(∫ ∞

0

t|f ′?|2dt

)∫
R
κ|g|2ds+O(`−∞)‖g‖2 .(4.2)

Also,

(4.3)
∫
B`

(1− tδκ)−1
∣∣∣(− i∂s + ξ0 − t+

δκt2

2

)
ψ
∣∣∣2dsdt 6 I +O(`−∞)(‖g‖2 + ‖g′‖2)
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where, using first that g is real-valued and then that (1 − tδκt)−1 = 1 + δκt +
O(δ2t2κ2),

I =

∫
R×R+

(1− tδκ)−1
∣∣∣− ig′f? +

(
ξ0 − t+

δκt2

2

)
f?g
∣∣∣2dsdt

=

∫
B`

(1− tδκ)−1

(
|g′|2f 2

? + |g|2
(
ξ0 − t+

δκt2

2

)2

f 2
?

)
dsdt .

6 (1 + Cδ)‖g′‖2 + ‖(t− ξ0)f?‖2‖g‖2

+

(∫
R
δκ|g|2ds

)∫ +∞

0

((ξ0 − t)t2 + t(t− ξ0)2)f 2
?dt+ C

∫
R
δ2κ2|g|2ds .(4.4)

Combining this with (4.2) and (4.3), we deduce that

Q̃δ(ψ) 6 Θ0‖g‖2 + (1 + Cδ)‖g′‖2

+

(∫ +∞

0

[
((ξ0 − t)t2 + t(t− ξ0)2)f 2

? − tf ′2?
]
dt

)(∫
R
δκ|g|2ds

)
+ C

∫
R
δ2κ2|g|2ds+O(δ∞)‖g‖2

H1(R) .

Using the decay of f? and (2.4), the norm of ψ is given by

(4.5)
‖ψ‖2 =

∫
B`

(1− δtκ)|g(s)|2|f?(t)2|2ζ(`−1t)2dtds

= ‖g‖2 − δξ0

∫
R+

κ|g(s)|2ds+O(δ∞)‖g‖2 .

It follows that

(4.6) Q̃δ(ψ)−Θ0‖ψ‖2 6 (1 + C̃δ)‖g′‖2

+ δ

∫ +∞

0

((
(ξ0 − t)t2 + t(t− ξ0)2)f 2

? − tf ′2? + tΘ0f
2
?

)
dt

(∫
R
κ|g|2ds

)
+O(δ2)

∫
R

κ2 |g(s)|2ds+O(δ∞)‖g‖2 .

We have to investigate the sign of

(1 + C̃δ)‖g′‖2 + A

∫
R
δκ|g|2ds+O(δ2)

∫
R

κ2 |g(s)|2ds+O(δ∞)‖g‖2 ,

with

A =

∫ +∞

0

(
(ξ0 − t)t2 + t(t− ξ0)2)f 2

? − tf ′2? + tΘ0f
2
?

)
dt .

By using (2.5) and (2.6), we have

A = −3C1

2
+

∫ +∞

0

t(t− ξ0)(t− 2ξ0)f 2
? (t)dt = −3C1

2
+
C1

2
= −C1 .

We choose g such that ‖g‖2 = 1 and observe that (4.5) yields for δ small enough,

1 + ξ0δ

∫
R+

κ|g(s)|2ds−O(δ∞) 6 ‖ψ‖−2 6 1 +O(δ) ,
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where the foregoing lower bound results from the fact that ξ0 > 0, δ > 0 and, for
every natural number N > 3,

‖ψ‖−2 = 1 + ξ0δG+ ξ2
0δ

2G2
[
1 +

N−2∑
j=1

(2ξ0δ)
jGj

︸ ︷︷ ︸
=1+O(δ)>0

]
+O(δN), G =

∫
R+

κ|g(s)|2ds .

By the min-max principle, we deduce from (4.6)

λ(δ) 6 Θ0 + Fδ(g) +O(δ∞) ,

where

(4.7) Fδ(g) = (1 + Ĉδ)‖g′‖2 + δ

∫
R

(
− C1κ+ Ĉδκ2

)
|g(s)|2ds .

Minimizing over g and using the analysis in Appendix A, we get if
∫
R
κ(s)ds > 0,

λ(δ) 6 Θ0 −
C2

1

4

(∫
R

κ(s)ds

)2

δ2 +O(δ3) .

More precisely, it is enough to consider the trial function

(4.8) g(s) =
√
δ|〈V 〉| exp

(
δ〈V 〉

2
|s|
)
, V (s) = −C1κ(s) , 〈V 〉 =

∫
R

V (s)ds < 0 .

Notice that, by dominated convergence,
∫
R
κ2|g(s)|2ds = O(δ)

∫
R
κ2ds.
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Appendix A. Weak perturbation limit

In this appendix, we explain where the choice (4.8) is coming from.
Let V ∈ C 0

0 (R) such that 〈V 〉 =
∫
R
V (x)dx < 0 and δ ∈ R. Let us consider the

self-adjoint operator Lδ associated with the following quadratic form

qδ(ψ) = ‖ψ′‖2 + δ

∫
R

V (x)|ψ(x)|2dx , ∀ψ ∈ H1(R) ,

which is the main term in (4.7), with V = −C1κ.
By the rescaling x = δ−1y, we see that Lδ is unitarily equivalent to δ2Mδ where

Mδ = −∂2
y + δ−1V (δ−1y) .

At a formal level, we see thatMδ converges toM eff := −∂2
y + 〈V 〉δ0, whose spectrum

is {
−〈V 〉

2

4

}
∪ [0,+∞) ,

and with grounstate exp( 〈V 〉
2
y).

Let us make this heuristics rigorous by comparing the quadratic forms. The
quadratic form associated with Mδ is

pδ(ψ) = ‖ψ′‖2 +

∫
R

δ−1V (δ−1y)|ψ|2dy , ∀ψ ∈ H1(R) .
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We denote by peff the quadratic form associated with M eff :

peff(ψ) = ‖ψ′‖2 + 〈V 〉|ψ(0)|2 , ∀ψ ∈ H1(R) .

Let us estimate the difference pδ − peff . For all ψ ∈ H1(R), we have

|pδ(ψ)− peff(ψ)| 6
∣∣∣∣∫

R

δ−1V (δ−1y)|ψ(y)|2dy − 〈V 〉|ψ(0)|2
∣∣∣∣

6

∣∣∣∣∫
R

V (y)|ψ(δy)|2dy − 〈V 〉|ψ(0)|2
∣∣∣∣

6
∫
R

|V (y)|
∣∣|ψ(δy)|2 − |ψ(0)|2

∣∣ dy .
It is well-known that∣∣|ψ(δy)|2 − |ψ(0)|2

∣∣ 6 δ
1
2‖(|ψ|2)′‖

√
|y| 6 2δ

1
2‖ψψ′‖

√
|y| ,

and also that, by the usual Sobolev embedding,

‖ψ‖L∞(R) 6 C‖ψ‖H1(R) .

Thus, ∣∣|ψ(δy)|2 − |ψ(0)|2
∣∣ 6 Cδ

1
2‖ψ‖2

H1(R)

√
|y| ,

so that
|pδ(ψ)− peff(ψ)| 6 Cδ

1
2‖ψ‖2

H1(R) .

Therefore,
p−δ (ψ) 6 pδ(ψ) 6 p+

δ (ψ) ,

where
p−δ (ψ) = (1− Cδ

1
2 )‖ψ′‖2 + 〈V 〉|ψ(0)|2 − Cδ

1
2‖ψ‖2 ,

p+
δ (ψ) = (1 + Cδ

1
2 )‖ψ′‖2 + 〈V 〉|ψ(0)|2 + Cδ

1
2‖ψ‖2 .

If ν(δ) is the bottom of the spectrum of Mδ, we have

ν(δ) = −〈V 〉
2

4
+O(δ

1
2 ) < 0 .
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