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Many computer vision applications rely on feature detection and description, hence the need for computationally efficient and robust 4D light field (LF) feature detectors and descriptors. In this paper, we propose a novel light field feature descriptor based on the Fourier disparity layer representation, for light field imaging applications. After the Harris feature detection in a scale-disparity space, the proposed feature descriptor is then extracted using a circular neighborhood rather than a square neighborhood. It is shown to yield more accurate feature matching, compared with the LiFF LF feature, with a lower computational complexity. In order to evaluate the feature matching performance with the proposed descriptor, we generated a synthetic stereo LF dataset with ground truth matching points. Experimental results with synthetic and real-world dataset show that our solution outperforms existing methods in terms of both feature detection robustness and feature matching accuracy.

I. INTRODUCTION

M ANY computer vision applications heavily rely on im- age feature detection, description and matching. Image feature detection refers to the problem of identifying and localizing interest points, blobs and regions. Classic 2D image feature detection methods include Harris [START_REF] Harris | A combined corner and edge detector[END_REF], SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], SURF [START_REF] Bay | SURF: Speeded up robust features[END_REF], FAST [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF], ORB [START_REF] Rublee | ORB: An efficient alternative to SIFT or SURF[END_REF], LBP [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF], PCA-SIFT [START_REF] Ke | PCA-SIFT: A more distinctive representation for local image descriptors[END_REF], GLOH [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF], etc. These methods have been widely employed in various computer vision applications, such as target tracking, 3D reconstruction and industry inspection etc [START_REF] Wu | Research on feature point extraction and matching machine learning method based on light field imaging[END_REF], [START_REF] Zhao | Image feature correspondence selection: A comparative study and a new contribution[END_REF]. These feature detectors are mainly based on specific image gradient distributions, which have local or global invariance to possible image translation, rotation, or to scale or affine transformation. Therefore, the identifiability and invariance of features description are critical in feature matching. For instance, the SIFT feature [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] is widely used because of its invariance to rotation and scale transformations. However, the matching precision and robustness with 2D image features remains a difficult problem in presence of occlusions, non-Lambertian surfaces, illumination changes etc.

In order to overcome limitations of 2D image features, higher dimensional data such as 3D point cloud [START_REF] Zhong | Intrinsic shape signatures: A shape descriptor for 3D object recognition[END_REF], RGB-D images [START_REF] Gupta | Perceptual organization and recognition of indoor scenes from RGB-D images[END_REF], [START_REF] Gao | Robust RGB-D simultaneous localization and mapping using planar point features[END_REF], and 4D light fields, [START_REF] Tošić | 3D keypoint detection by light field scaledepth space analysis[END_REF], [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] have been considered in object recognition and tracking applications. Features extracted from higher dimensional data have shown a great potential for improving both matching accuracy and robustness. For example, the authors in [START_REF] Zhong | Intrinsic shape signatures: A shape descriptor for 3D object recognition[END_REF], [START_REF] Rao | Extreme feature regions detection and accurate quality assessment for point-cloud 3D reconstruction[END_REF] and [START_REF] Xian | A fast registration algorithm of rock point cloud based on spherical projection and feature extraction[END_REF] introduce methods for extracting features from 3D point cloud data in order to have a more precise 3D object modeling and recognition. Gao et al. [START_REF] Gao | Robust RGB-D simultaneous localization and mapping using planar point features[END_REF] propose a planar point feature detection for improving the reconstruction precision of a RGB-D SLAM system, in presence of noise. Gupta et al. [START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF] suggest to encode height above ground and angle with gravity information for each pixel of RGB-D images, which enables more accurate object detection and semantic segmentation than only using raw depth images. However, 3D point clouds and RGB-D images still do not preserve the incident light rays orientation, which can bring useful information for 3D object recognition and reconstruction in particular in presence of occlusions and non-Lambertian surfaces.

Light fields, unlike 2D images and RGB-D images, by recording the flow of rays emitted by the scene along different directions, yield a 4D spatio-angular representation of the scene, from which one can extract information about the parallax and depth of the scene. 4D LF features therefore hold promises to solve limitations of 2D image features in presence of occlusions and non-Lambertian scenes. This is investigated in [START_REF] Ghasemi | Scale-invariant representation of light field images for object recognition and tracking[END_REF] and [START_REF] Tošić | 3D keypoint detection by light field scaledepth space analysis[END_REF] where the authors exploit depth information in the LF to build scale-depth descriptors. Another category of approaches builds upon 2D descriptors, by computing 2D detectors on the different sub-aperture images, and then imposing angular consistency using epipolar geometry [START_REF] Teixeira | Epipolar based light field key-location detector[END_REF], [START_REF] Johannsen | On linear structure from motion for light field cameras[END_REF] or using optical flows [START_REF] Maeno | Light field distortion feature for transparent object recognition[END_REF], [START_REF] Xu | Transcut: Transparent object segmentation from a light-field image[END_REF]. The authors in [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] instead simultaneously consider all sub-aperture images and extend the SIFT descriptor to 4D LF by searching for features in a joint 4D scale-slope space. More precisely, the feature called LIFF proposed in [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] is computed in the scale space like SIFT, but at different depths, or for different slopes of structures in epipolar plane images (EPI).

LF features have already been considered for a variety of applications. Ghasemi et al. [START_REF] Ghasemi | Scale-invariant representation of light field images for object recognition and tracking[END_REF] propose a scale-invariant feature vector computed by applying a Hough or Radon transformation to epipolar plane images, for fast and accurate building scene classification. Raghavendra et al. [START_REF] Raghavendra | Presentation attack detection for face recognition using light field camera[END_REF] propose a face presentation attack detection by exploring the feature variation of the focus between multiple depth (or focus) images. Tsai et al. [START_REF] Tsai | Distinguishing refracted features using light field cameras with application to structure from motion[END_REF] instead proposed a method to distinguish between refracted and Lambertian image features using a LF camera, based on textural cross-correlation to characterize apparent feature motion across the LF. Ji et al. [START_REF] Ji | LFHOG: A discriminative descriptor for live face detection from light field image[END_REF] propose a LF directional gradient histogram (LFHoG) feature to achieve high precision live face detection, while a LF local binary patterns (LFLBP) is introduced in [START_REF] Sepas-Moghaddam | Light field local binary patterns description for face recognition[END_REF], which enhances the LF based face recognition. The authors in [START_REF] Alain | A spatio-angular binary descriptor for fast light field inter view matching[END_REF] propose a solution of accurate and fast disparity estimation by introducing a binary descriptor, which exploits the light field gradient over both the spatial and the angular dimensions.

Despite the above work, defining robust and computationally efficient 4D LF feature extractors and descriptors is still a widely open problem. One question inherent to the LiFF feature [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] is the discretization of the depth space, which has obvious implications on computational complexity. The depth space discretization corresponds to a finite list of possible slope values for the EPI line structures. A higher number of slope values gives a better performance, but a higher computational complexity. The optimal list of slope values is not easy to determine. The authors recommend using as many slopes as there are samples in the LF angular dimension.

In this paper, we propose a novel 4D LF feature, called FDL-HCGH feature, based on the multi-scale Harris detector and circular gradient histogram descriptor computed on the Fourier disparity layer representation [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF]. The Fourier disparity layer (FDL) is a compact representation, which samples the LF in the depth (or equivalently the disparity) dimension by decomposing the scene as a discrete sum of layers. The proposed feature is therefore defined in the 4D LF scaledisparity space, the disparity being discretized thanks to the FDL construction. This compact representation leads to a reduced computational complexity without loosing in terms of performance.

We then propose a new descriptor that extends the descriptor we introduced in [START_REF] Xiao | A light field FDL-HSIFT feature in scale-disparity space[END_REF] by replacing the SIFT-like descriptor with a novel circular gradient histogram (CGH) based descriptor, exploiting the scale-disparity space constructed using the FDL-based LF representation [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF]. We consider both an annular gradient histogram (AGH) and a sector gradient histogram (SGH). The annular gradient and sector gradient histograms are both referred to as circular gradient histograms (CGH). Note that a sector-ring histogram of gradients has already been considered in [START_REF] Liu | Sector-ring HOG for rotationinvariant human detection[END_REF] for rotation-invariant human detection. However, here, the Harris detector and the CGH descriptor are combined in the FDL domain to form a novel FDL-HCGH feature, the performance of which outperforms [START_REF] Xiao | A light field FDL-HSIFT feature in scale-disparity space[END_REF] in terms of both precision and computational complexity. We show an overview of the proposed FDL-HCGH feature in figure 1. The contributions of this work can be summarized as follows:

• We introduce a light field descriptor based on circular gradient histograms computed on the FDL light field representation. This descriptor is shown to greatly improve the precision of feature matching compared with the classic SIFT and LiFF [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] descriptors. • By combining the Harris detector and the CGH descriptor, the computational complexity is significantly reduced compared with LiFF [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] and FDL-HSIFT [START_REF] Xiao | A light field FDL-HSIFT feature in scale-disparity space[END_REF]. • We extended the feature matching dataset1 of [START_REF] Xiao | A light field FDL-HSIFT feature in scale-disparity space[END_REF] to real-world scenes, so that the proposed feature can be evaluated in presence of real noise.

II. FDL-HCGH FEATURE DETECTION AND DESCRIPTION

A. Light field parameterization

A light field, as proposed in [START_REF] Levoy | Light field rendering[END_REF] and [START_REF] Gortler | The lumigraph[END_REF], can be represented by a 4D function LF (x, y, u, v) which describes the radiance along light rays. This representation is based on the parameterization of the radiance along rays by their intersection with two-parallel-planes, with the parameters (x, y) and (u, v) describing the intersection points of the ray with the two planes. The pairs (x, y) and (u, v) represent the spatial and angular coordinates of light rays respectively. In the past two decades, many acquisition devices have been designed to capture LF, ranging from camera arrays [START_REF] Wilburn | High performance imaging using large camera arrays[END_REF], to single cameras mounted on moving gantries, and plenoptic cameras [START_REF] Ng | Light field photography with a hand-held plenoptic camera[END_REF]. Overviews of these devices can be found in [START_REF] Wu | Light field image processing: An overview[END_REF], [START_REF] Ihrke | Principles of light field imaging: Briefly revisiting 25 years of research[END_REF].

B. Construction of FDL-based scale-disparity space 1) Fourier disparity layer representation of Light fields: A 4D LF can be represented by a set of layers, each one corresponding to a different disparity value, and computed using a regularized least square regression in the frequency domain, hence the name Fourier Disparity Layers (FDL).

For simplicity of notation, let us consider only one 2D slice of the LF with only one spatial and one angular dimension. We assume that the scene is Lambertian, without occlusions, and that the scene can be divided into K spatial regions Ω k with constant disparity {d k } k∈ [1,K] . The Fourier transform of the LF can be computed as [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF].

L(w x , w u ) = k δ(w u -d k w x ) Lk (w x ) (1) 
where w x and w u are spatial and angular frequencies. δ(w ud k w x ) is a Dirac delta function, which simulates the aperture function with infinitely small aperture size. Each function Lk can be derived as,

Lk (w x ) = Ω k e -2iπxwx L(x, 0)dx (2) 
and interpreted as the Fourier transform of the central view L(x, 0) only considering a spatial region Ω k of disparity d k .

More generally, the Fourier Transform Lu0 of L u0 (a LF view at angular coordinate u 0 defined by L u0 (x) = L(x, u 0 )), given a set of K disparity values {d k } k∈ [1,K] , can be decomposed as [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF] Lu0 (ω

x ) = k e +2iπu0d k ωx Lk (ω x ) (3) 
The FDL representation is therefore composed of the set of layers {L k (x)} (for a 2D slice) which can be derived from the inverse Fourier transform of Lk (w x ). The FDL representation is constructed using linear regression which automatically finds the correct discretization in the depth or disparity space, leading to a more compact representation, compared to a focal stack. The FDL representation has been shown efficient for various processing applications, e.g., rendering, view synthesis or varying aperture size and shape. Note that, although the FDL model design principles are first introduced in [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF], by assuming that the scene is Lambertian, without occlusions, a relaxation of the FDL model construction is also proposed in [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF] in order to better cope with these limitations, and to allow a better representation of non-Lambertian effects and occlusions. The proposed light field descriptor constructed from this generalized FDL model will hence naturally benefit from its capacity to handle non-Lambertian surfaces and occlusions.

2) Construction of scale-disparity space: The FDL representation with the 3D notation, i.e., the set of layers {L k (x, y)}, is derived by computing the inverse Fourier transform of Lk (w x , w y ), as

L k (x, y) = Lk (w x , w y )dw x dw y (4)
Therefore, the different layers of the FDL representation define a discretization of the disparity space. Figure 2 shows an example of disparity space with 3 different disparity layers. Assuming that the features of an object only exist over a certain scale range [START_REF] Lindeberg | Scale-space theory in computer vision[END_REF], a multi-scale representation is constructed using a Gaussian kernel. To ensure that the proposed feature is robust to scale variations, we construct a scaledisparity space (SDS), as

Ψ k,σ (x, y) = L k (x, y) G(x, y, σ) (5) 
where G(•) is a Gaussian kernel function used to vary the scale. We construct the representation Ψ k,σ (x, y) in the SDS for each given input LF, and for a given number K of disparity layers and scale factor σ. For each FDL-layer, we construct a multi-scale representation by using Equation ( 5). Specifically, suppose the initial scale is σ 0 , the discretization of a continuous scale can be derived as

σ(o i , s j ) = 2 oi+sj /3 σ 0 (6)
where o i is the i-th octave, and s j is the j-th slice in the current octave according to [START_REF] Lindeberg | Scale-space theory in computer vision[END_REF]. In this paper, both the number of octaves and the number of slices in each octave are set to 3, i.e., O = {o i |i = 1, 2, 3}, and S = {s j |j = 1, 2, 3}. As in [START_REF] Lindeberg | Scale-space theory in computer vision[END_REF], the initial scale factor σ 0 = 1.6. Let Ψ L be the set of all possible Ψ k,σ of the left LF, and Ψ R be the corresponding one of the right LF. In the SDS space, considering a specific feature point (x 0 , y 0 ), it will be only valid on a subset of K disparity layers. This means that the feature point (x 0 , y 0 ) is located only on the disparity layers where the object resides. As a result, the FDL-based space partitioning can filter out a large number of matching candidates that do not belong to the object. The feature points matching will only involve a subset of both Ψ L and Ψ R (indexed by k in Ψ k,σ ), which are marked as the blue boxes in the figure 3. Therefore, the computational complexity and false correspondences can be reduced by narrowing the set of matching candidates. Another reason for the computational complexity being lower than [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] is that, the FDL representation usually needs less layers than the number of images in a focal stack. As shown in figure 3, to enhance both matching robustness and precision, we conduct a cross scale-disparity features matching to deal with variations in scale and depth. 

C. FDL-HCGH feature detection

To ensure rapidity and sensitivity of the proposed FDL-HCGH feature detection, we use a Harris detector [START_REF] Harris | A combined corner and edge detector[END_REF] in the SDS representation. Let Ψ k,σ (x, y) be a layer corresponding to the disparity d k in the scale corresponding to the σ value, and (x, y) represent a pixel in the layer Ψ k,σ (x, y). Then, a displacement (∆x, ∆y) in the spatial dimension of the SDS can be represented as

Ψ k,σ (∆x, ∆y) = x,y η(x, y)[Ψ k,σ (x + ∆x, y + ∆y) -Ψ k,σ (x, y)] 2 (7)
where η(x, y) is a window function. By applying the Taylor expansion to Equation [START_REF] Ke | PCA-SIFT: A more distinctive representation for local image descriptors[END_REF], the displacement can be derived as,

Ψ k,σ (∆x, ∆y) = x,y η(x, y)[Ψ x ∆x + Ψ y ∆y] 2 = [∆x, ∆y] x,y η(x, y) Ψ 2 x Ψ x Ψ y Ψ x Ψ y Ψ 2 y ∆x ∆y (8) 
where Ψ x and Ψ y are 1st-order partial derivatives of Ψ in the x and y directions respectively. The matrix M is the Harris matrix or structure tensor, which is defined as

M = x,y η(x, y) Ψ 2 x Ψ x Ψ y Ψ x Ψ y Ψ 2 y = A C C B ( 9 
)
By following [START_REF] Harris | A combined corner and edge detector[END_REF], we compute the response function R(x, y) at each pixel of coordinates (x, y) as

R(x, y) = det(M ) -λ • T r 2 (M ) ( 10 
)
where λ is the empirical coefficient within [0.04, 0.06]. By calculating the relation between the determinant and trace of the matrix M , the calculation of the response R(x, y) avoids the computation of the eigenvalues of the matrix M , which is usually a computationally expensive process. To keep the sensitivity of the feature detection, we simply select the top percentages of the maximum response of each possible Ψ k,σ in the SDS space. Therefore, our detection will produce more feature points than LiFF [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF], which detects the SIFT feature on the focal stack. Another advantage of the proposed detector is its robustness to scale variations. With a variable σ, the detected feature points are distributed on different scales, which enables cross-scale feature matching.

D. Feature description and matching

The SIFT feature descriptor proposed in [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], and based on gradients along different orientations, has been widely used in computer vision applications due to its invariance to rotation, translation and scale transformation. However, it suffers from a pretty high computational complexity. Its computation proceeds in two steps: feature main direction calculation and correction, feature descriptor generation. Firstly, the gradient magnitude and orientation of all pixels in the neighborhood of the feature are calculated and counted as a gradient histogram, in which the direction with the largest gradient magnitude corresponds to the main direction of the feature. The coordinate axis of the feature neighborhood is then rotated to be consistent with the main direction of the feature to ensure invariance to rotation. Then, a feature neighborhood is selected, and the gradient magnitude and orientation of pixels in the feature neighborhood are calculated again to generate feature descriptors. We propose using a circular neighborhood rather than a square neighborhood, and to compute an annular gradient histogram (AGH) and a sector gradient histogram (SGH). The annular gradient and sector gradient histograms are both referred to as circular gradient histograms (CGH) in the sequel.

1) Annular gradient histogram computation: We divide the feature neighborhood into five annular regions (see in figure 4), each annular region having the same area, i.e., the same number of pixels. Then, we calculate a gradient histogram with 18 bins in each annular region, i.e., covering the 360 degrees. The calculation of the gradient histogram includes the computation of the gradient magnitude m(x, y) and the orientation θ(x, y) as m(x, y) = (Dx) 2 + (Dy) 2 θ(x, y) = arctan Dy Dx [START_REF] Zhong | Intrinsic shape signatures: A shape descriptor for 3D object recognition[END_REF] in which, As shown in figure 4, the gradient histograms in the five annular regions are denoted {D i,j |i ∈ [1, 5], j ∈ [START_REF] Harris | A combined corner and edge detector[END_REF][START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF]} where i represents the index of the annular region and j represents the index of the bins in the gradient histogram. In order to ensure rotation invariance of the feature descriptors, it is necessary to calculate the dominant direction τ of the feature neighborhood, that is, the direction of the peak of the gradient. The gradient histograms of five annular regions are multiplied by weights and accumulated to generate the gradient histograms of the whole feature neighborhood, as shown in figure 4(middle). The weights of the five annular regions are empirically set to [0.5, 0.2, 0.1, 0.1, 0.1] from inside to outside. The closer the annular region to the feature point, the greater the influence on the feature descriptor. Then, the gradient histograms of the five annular regions are permuted to align the dominant orientation of the feature with the coordinate axes, to ensure rotation invariance. Finally, the feature histograms of the five annular regions are concatenated from the inside area to the outside area to construct a 5 * 18D feature descriptor, as shown in figure 4(right).

Dx = Ψ k,σ (x + 1, y) -Ψ k,σ (x -1, y) Dy = Ψ k,σ (x, y + 1) -Ψ k,σ (x, y -1) (12) 
For a single Ψ k,σ (x, y), the 90D descriptor f (Ψ k,σ (x, y)) consists of 5 annular regions with 18 directions in each. In this way, we calculate the descriptor F (x, y) from an annular neighborhood with the radius of 11 pixels. F (x, y) can be represented as 2) Sector gradient histogram: As shown in figure 6, we propose a feature descriptor based on the sector gradient histogram (SGH) and a circular neighborhood. Different from the AGH descriptor, in SGH descriptor, the circular feature neighborhood is evenly divided into 12 sector regions, each with an angle of 30 degrees, and the sector regions are numbered according to the order shown in figure 6(a). Equations ( 11) and ( 12) are used to calculate a gradient histogram with 12 bins in each sector region. Then, the gradient histograms of the 12 sector regions are concatenated to obtain the gradient histogram of the whole circular feature neighborhood, in which the bin with the largest gradient magnitude corresponds to the main feature direction. For the 12 * 12D SGH descriptor, its sector division makes it easier to describe the changing structure in the circumferential direction. It ignores the the weights of gradient that vary along the radius of the circle, which is important in the AGH descriptor.

F (x, y) = {f |f (Ψ k,σ (x, y)), (k, σ) ∈ SDS} (13) 
Figure 5 shows the difference between the SIFT and the CGH feature descriptors. As shown in figure 5(a) and 5(b), the SIFT feature neighborhood is square, and the pixels in the feature neighborhood change when aligning the dominant feature direction with the coordinate axes. So it is necessary to calculate the gradient histogram of the feature neighborhood twice. In contrast, to compute both the AGH and SGH descriptors, we need to calculate the gradient histogram of the feature neighborhood only once. With the AGH descriptor we perform the main direction alignment by shifting the feature descriptors of the five annular regions, while with the SGH descriptor we simply update the indices of the sector regions (hence of the local histograms, as shown in figure 6).

3) The distance metric in feature matching: To compute FDL-HCGH feature based matches, we measure the distance f 1 (p), f 2 (q) between two feature vectors at two pixel positions in LF 1 and LF 2 respectively, using a cosine based metric. The variables p and q denote the candidate matching coordinates in the candidate sets of two different LFs, i.e.F 1 and F 2 . This distance can be expressed as dist(p, q) = max (k1,σ1),(k2,σ2)

(cos(f k1,σ1

1 (p), f k2,σ2 2 (q))),
where

f 1 ∈ F 1 , f 2 ∈ F 2 (14) 
Since the feature correspondence is searched across different scales and disparity layers, it may lead one-to-multiple mapping from F 1 to F 2 . Therefore, we take only the maximum matching for each f 1 ∈ F 1 . To ensure the significance of features, we take the final matching decision by using a principal curvature ratio r = dist(p, q max )/dist(p, q 2nd ). It is a positive matching only when r < 0.75, which means that the distance p to the nearest point q max is clearly less than the distance p to the second nearest point q 2nd . In the experiments, we set the number of FDL layers k = 9 and use 3 scale level (σ 0 = 1.6). These parameter settings may need to be adjusted for complex scene with large disparities. For clarity, We summarize the FDL-HCGH feature detection and matching algorithm in Algorithm 1.

III. FEATURE MATCHING DATASET AND EXPERIMENT

A. Synthetic dataset and real-world dataset

Given that no LF dataset is available with ground truth matching points, the authors in [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] evaluate their LiFF feature in the context of a SfM algorithm. We instead created a LF dataset with ground truth matching points using the opensource Blender [START_REF] Honauer | A dataset and evaluation methodology for depth estimation on 4D light fields[END_REF] software. For each test data, we have generated a pair of LF images with known translation, rotation and camera settings. The LF includes 9 * 9 views, each view is 512 * 512 in spatial resolution, with a disparity range within the interval [-2, 2] pixels. (x, y) for each LF indexed by n (n = 1, 2) by Equation( 7); apply the Harris corner detector using Equation 10; descriptor f (Ψ k,σ (x, y)) is computed via AGH or SGH; for each pixel f (Ψ k,σ (x, y)) do compute the curvature ratio r by calculating Equation ( 14) between the features f 1 and f The central views of a pair of LFs are shown in figure 7(a). Using Blender, we can do a pixel-wise cross-checking for the pairs of pixels with inconsistent parallax (i.e.the occluded pixels) (see figure 7(c)) and compute matching points (see figure 7(d)) using ground truth depth (figure 7(b)).

To test the robustness of the proposed light field descriptor, we also captured real-world LFs, using both a first generation and a Illum Lytro camera. We capture multiple pairs of realworld LFs, in which the illumination and noise are more complex. With the Lytro camera, one LF of each pair has 11 * 13 views, and each view has a 378 * 328 spatial resolution. With the Illum camera, the angular resolution and spatial resolution are 15 * 17 and 541 * 434 respectively. Due to the limited aperture (or angular baseline) the disparity range of all real-world dataset is within [-2, 2] pixels. Although the ground truth matches are not available using the LF Lytro cameras, the matching results can still be evaluated by computing the epipolar constraint and checking homography of coplanar points, as shown in figure 8. 

B. Evaluation on feature matching results

First, we evaluate the detection and matching performance of the two FDL-HAGH and FDL-HSGH variants of the proposed circular neighborhood FDL-HCGH descriptor, in comparison with the application of the SIFT feature descriptor [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] to the central views of the two light fields, and in comparison with LiFF [START_REF] Dansereau | LiFF: Light field features in scale and depth[END_REF] and the FDL-HSIFT descriptor [START_REF] Xiao | A light field FDL-HSIFT feature in scale-disparity space[END_REF]. Since pixel-wise matching ground truth is available with the synthetic LF dataset, we calculate both the precision and recall on the created synthetic LF dataset. However, the ground truth matching points of the real-world LF dataset are unknown, so we use homography matrix to check the matching correctness. Feature detection and matching results of each LF pair in figure 9, 11 are divided into three columns, the first and the third column give the feature detection results of the left and right LFs respectively, and the second column gives the matching results.

Figure 9, 10 and figure 11 are the feature detection and matching results on the real-world LF dataset and synthetic LF dataset, respectively. One can see visually that the features detected and matched by the proposed algorithm are more precise than the traditional SIFT and LiFF methods. Readers are encouraged to zoom in and to observe the false positive matches and true positive matches, which are marked as red lines and green lines respectively. In figure 10, the scenes are more complex and include objects with more continuous depth variation. According to the objective numerical results in Tab. I and Tab. II, the FDL-HCGH feature has higher precision than the other features on most real-world and synthetic LF dataset. From the numerical results, the precision of the proposed FDL-HCGH feature, i.e. of both FDL-HAGH and FDL-HSGH variants of the proposed FDL-HCGH, is significantly higher than that of the SIFT and LIFF features. In addition, the numerical results also show that the precision of the feature descriptor based on circular neighborhood is better than that based on square neighborhood in most cases. The AGH and SGH are comparable in percentage of true positive matches. Although sharing the same circular neighborhood, the AGH and SGH are sensitive to different variations, which are in radial direction and angular orientation respectively. The AGH usually has a shorter feature descriptor, while SGH generates more matching pairs. Unfortunately, the proposed algorithm will generate less matches in the presence of occlusion, e.g. please see the results of the F lowers dataset in figure 10.

For the F lowers dataset, attentive readers will also find a significant performance drop with the AGH. According to our analysis, this is because the radial variations will be less perceivable after FDL decomposition, especially when the foreground object is similar to its background. Due to the trade-off problem between the matching precision and recall, a larger value of parameters K and a reasonable small value of r are suggested as handling scenes including complex textural objects within a large disparity range.

In order to verify the local invariance (such as translation, rotation and scale invariance) of FDL-HCGH feature, we use blender to make a synthetic LF dataset with only translation, or rotation, or scale transformation. The feature detecting and matching results are shown in figure 12, in which the translation, rotation and scale transformation are ideally using So, the AGH and SGH feature descriptors based on circular neighborhood are robust to scale, translation and rotation variation, and the precision and recall of feature detection and matching are the best in most cases. Although the proposed algorithm can benefit from the non-Lambertian surfaces and occlusions handling capacity of the FDL representation, the matching process still relies heavily on the angular consistency of feature extraction. Besides, the angular covering capability of a LF camera will be relative decreased as increasing the baseline of a stereo LFs. Therefore, it is still challenging to deal with those pairs of LFs with a relative large translation, rotation and scale variation. 

C. Computational complexity

The runtime of the proposed FDL-HCGH feature matching method is divided into three parts: scale-disparity space construction, feature detection and description, and feature matching. let us assume a 4D LF (x, y, u, v), which is constructed as a SDS Ψ(x, y, k, σ). Comparing complexity, FDL-HCGH is at least (u × v)/k times faster than repeated SIFT. For LiFF descriptor, one question inherent is the discretization of the depth space, which has significant impact on computational complexity. The depth space discretization corresponds to a list of slopes, a higher number of slopes giving a better performance, but a higher computational complexity.

As for feature detection and description, LIFF descriptor is an extension of SIFT in the 4D space, and its computational complexity is the same. The proposed FDL-HCGH feature is a combination of Harris feature detection and circular gradient histogram description. Harris detection is more efficient than SIFT, while we also show that the CGH feature description method using circular neighborhood is more efficient than the SIFT feature descriptor using a square neighborhood.

For feature matching, the three methods are the same. On the whole, the computational complexity of the proposed FDL-HCGH feature is very low. Tab. IV give the runtime values for the the three methods using real-world and synthetic LF pairs. Experiment show that the computational complexity of the matching process using the FDL-HCGH feature is the lowest. Furthermore, in order to verify the efficiency of each part of the proposed AGH and SGH descriptor based matching methods, in addition to the construction of scale-disparity space, the algorithm can be divided into three parts: detection, description and matching. We therefore measure the average runtime of these three parts in different FDL disparity layers using both the real-world and synthetic LF dataset. Tab V, shows that the runtime values of each part of the AGH and SGH algorithms, which demonstrates the efficiency of our FDL-HCGH feature. Moreover, the runtime values obtained with the real-world LF dataset are lower than when using the synthetic LF dataset. The reason is that the spatial resolution of the synthetic LF (512 * 512) is larger than that of the realworld LF (378 * 328). In addition, we can see that with the increase of the number of FDL disparity layers, the runtime of each part of AGH and SGH methods basically increases by less than 2 seconds. Therefore, if the scene is complex and the number of FDL disparity layers needs to be increased, our AGH and SGH descriptors remain very efficient.

D. Limitations

The proposed FDL-HCGH feature matching still suffers from the trade-off between the matching precision and recall. The FDL-HCGH feature matching can be vulnerable when dealing with a pairs of LFs with a wide baseline, which Unfortunately, the angular covering capability of a LF camera may not be sufficient to handle scenes with Non-lambertian objects and a large disparity range. Besides, some important parameters have been empirically selected, e.g. the numbers of Fourier disparity layers K and the matching threshold r, thus potential applications will benefit from further study on adaptive selection or optimization of parameters K and r.

IV. CONCLUSION In this paper, we propose a FDL-HCGH feature for 4D LF. To make the proposed feature robust to scale variance, based on the Fourier disparity layer representation, we construct a scale-disparity space, in which we perform Harris corner detection. In addition, in order to ensure rotation invariance and to reduce computational complexity, we propose a novel CGH feature descriptor using either annular gradient histograms or sector gradient histograms. The proposed descriptors are proved to be robust to translation, rotation and scale transformation. Moreover, we use the open-source software Blender to create a synthetic LF dataset with ground truth matching points, which enable to perform a better quantitative analysis. Experimental results show that the proposed feature has better precision and lower computational complexity compared to the state-of-the-art LiFF feature.
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 1 Fig. 1. Overview of FDL-HCGH feature matching. The LF pairs are first converted into Scale-disparity space using FDL decomposition. Then, the feature points are extracted by Harris detector, and are quantified with the proposed CGH based descriptor. The proposed FDL-HCGH feature matching outperforms the state-of-art algorithms in terms of matching precision and computational complexity.

Fig. 2 .

 2 Fig. 2. Disparity space and corresponding Fourier disparity layer representation. The magnitude spectrum of each layer is shown in the red box.

Fig. 3 .

 3 Fig. 3. Cross layer feature matching of two different LFs in the scale-disparity space. For example, the green lines are showing two pairs of correspondences that have been matched in different disparity layers (horizontal axis) and different scales (vertical axis).
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 45 Fig. 4. Feature descriptor based on the annular gradient histogram. The feature neighborhood is divided into five annular regions with the same area. We calculate a gradient histogram on each annular region. The color of the annular region corresponds to the gradient histogram on the right. The gradient histograms of the five annular regions are permuted to align the dominant orientation of the feature with the coordinate axes, to ensure rotation invariance.

Fig. 6 .

 6 Fig. 6. Sector gradient histogram. (a) The feature neighborhood is divided into 12 sector regions, and on each sector region we calculate a gradient histogram. (b) The red arrow represents the main direction of the feature, and the index of the sector corresponding to the main direction is set to 1.
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 7 Fig. 7. Example of Blender synthetic LF matching dataset. (a) Central views of two LFs, with translation and rotation between the two; (b) Corresponding depth maps of (a); (c) Matching binary masks (black means that a matching point does not exist); (d) Pixel-wise matching ground truth of two LFs.

Fig. 8 .

 8 Fig. 8. Example of real-world LF matching dataset. (a) Central views of two LFs; (b) By calculating the homography of coplanar points, we obtain some reference matching points on a plane; (c) Reference matching point on another plane in the scene; (d) The union of reference matching points between the two LFs.
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 9 Fig. 9. Feature detection and matching results on real-world LFs. FDL-HAGH and FDL-HSGH are the two particular cases of the proposed FDL-HCGH, depending on the area on which the histograms of gradients are computed. For each dataset, the left and right columns show detection results, the middle column shows matching results. The size of the circle indicates the scale of the feature, and the color of the circle indicates that the feature is detected in different disparity layers.

Fig. 10 .

 10 Fig. 10. Feature detection and matching results with extra real-world indoor and outdoor scenes, which include objects with more continuous depth variation.

Fig. 11 .

 11 Fig.11. Feature detection and matching results with synthetic LF pairs. FDL-HAGH and FDL-HSGH are the two particular cases of the proposed FDL-HCGH, depending on the area on which the histograms of gradients are computed. One can see that the proposed FDL-HCGH feature can generate more precise results in correspondences, i.e.a less percentage red lines, compared with the matching ground truth.

Fig. 12 .

 12 Fig. 12. Feature detection and matching results with synthetic LFs. (a) with scale transformation. (b) with translation. (c) with rotation.

  Algorithm 1 FDL-HCGH matching algorithm Input: LF 1 , LF 2 . Output: Matching point set (p 1 , p 2 )|p 1 ∈ LF 1 , P 2 ∈ LF 2 . Construct the FDL of each LF (LF 1 and LF 2 ) by inverse Fourier transform of Equation (3); Construct the SDS Ψ

	(k,σ)
	n

  2 at feature points p ∈ LF 1 and p 2 ∈ LF 2 in the two LFs if r < 0.75 then output [p 1 , p 2 ] as matching between LF 1 and LF 2 .

	end if
	end for

TABLE I COMPARISON

 I OF FEATURE MATCHING ON REAL-WORLD LFS(TOTAL MATCHES, MISMATCHES, PRECISION IN EACH GRID)

	method	SIFT LIFF	FDL-HSIFT	FDL-HAGH	FDL-HSGH
		78	166	571	190	302
	Book sewer	12	22	50	10	28
		0.85	0.87	0.91	0.95	0.91
	Bracket and plants	101 11 0.89	232 28 0.88	739 43 0.94	200 5 0.98	300 17 0.94
		104	208	419	146	272
	Plush toys	7	20	31	4	8
		0.93	0.90	0.93	0.97	0.97
		66	683	1945	1307	1731
	Bottled drinks	19	101	139	62	123
		0.71	0.85	0.93	0.95	0.93
	stone arch bridge	184 10 0.95	757 30 0.96	418 10 0.98	787 17 0.98	1073 21 0.98
		89	534	238	328	791
	Two bicycles	6	51	17	16	31
		0.93	0.90	0.93	0.95	0.96
		18	334	297	128	368
	Flowers	3	70	22	30	18
		0.83	0.79	0.93	0.77	0.95
			TABLE II		
	COMPARISON OF FEATURE MATCHING ON SYNTHETIC LFS (TOTAL
	NUMBER OF MATCHES, OF MISMATCHES, PRECISION, RECALL IN EACH
			GRID)		
	method	SIFT LIFF	FDL-HSIFT	FDL-HAGH	FDL-HSGH
		215	324	141	182	318
	Bicycles	15 0.94	21 0.94	2 0.99	5 0.97	8 0.98
		0.10	0.15	0.07	0.09	0.15
		45	106	166	79	216
	Chess	7	15	15	9	7
	and shelf	0.87	0.88	0.92	0.90	0.97
		0.03	0.07	0.11	0.05	0.14
		59	89	157	42	76
	Office	9 0.87	17 0.84	2 0.98	2 0.96	2 0.97
		0.02	0.03	0.06	0.02	0.03

TABLE V RUNTIME

 V OF DETECTION, DESCRIPTION AND MATCHING OF AGH AND SGH METHODS ON DIFFERENT FDL DISPARITY LAYERS. to relative large translation, rotation, scale variation and severe occlusions. The matching process of FDL-HCGH still relies heavily on the angular consistency of feature extraction.

	runtime(s)	layers detection description matching
	AGH (real-world)	5 7 9	1.78 2.29 2.65	2.64 3.52 4.38	1.97 2.42 2.81
	SGH (real-world)	5 7 9	1.78 2.24 2.66	2.86 3.76 4.67	2.07 2.52 2.97
	AGH (synthetic)	5 7 9	3.19 4.28 4.81	5.92 7.18 8.45	3.43 3.87 4.25
	SGH (synthetic)	5 7 9	3.22 4.39 4.87	5.85 7.03 8.39	3.49 3.86 4.27

leads

Both the synthetic and real-world LF matching dataset can be downloaded from https://github.com/MengZhang-XAUT/light-field-matching-datasets
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