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Abstract: Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the
mechanical properties of polymer components. Given the recent interest in their mechanical perfor-
mance and failure mechanisms, this work aims to describe the principal failure mechanisms and
compare the prediction capabilities for the mechanical properties, stiffness constants, and strength
of cFRAM using two distinct predictive models. This work presents experimental tensile tests of
continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and
fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength
predicts their macroscopic response. In the second part, data-driven models using different machine
learning algorithms for regression are trained to predict stiffness and strength based on critical param-
eters. Both models are assessed regarding their accuracy, ease of implementation, and generalization
capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters
and their influence on the macroscopic response and failure surface topology. Finally, we conclude
that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a
Gaussian process regression and a micromechanical model, with good accuracy generalized onto
different process parameters specimens.

Keywords: additive manufacturing; thermoplastic composites; machine learning; micromechanics;
fractographic analysis

1. Introduction

Additive manufacturing (AM) technologies create an object from a 3D CAD model
by adding material layer to layer from information provided by a slicing software, thus,
allowing for the manufacture of high complexity parts with minor or no further postprocess-
ing [1]. Additionally, AM materials range continues to grow, from polymers to metals and
ceramics [2,3]. Due to their low fusion temperature, one of the first AM materials segments
was polymers, particularly thermoplastics. Some of the thermoplastic AM processes are
fused filament fabrication (FFF), laminated object manufacturing (LOM), and stereolithog-
raphy (SLA). Nonetheless, they have the disadvantage of producing not functional or stiff
parts, mainly for prototyping but not for structural applications. A solution for this issue
are fiber-reinforced additive manufacturing (FRAM) composites, which can improve the
material properties of polymeric AM by increasing the stiffness and strength [4]. Nowadays,
FRAM applications are in manufacturing fixture tooling, mold equipment, biomedicine,
and functional prototyping [5]. Fundamentally, FRAM parts can be of two types: short fiber-
reinforced AM composites or long fiber-reinforced, also called continuous-fiber composites.
Short fibers are usually shorter than 200 um. For example, commercially available nylon
reinforced with chopped carbon fiber can be printed in consumer desktop 3D printers,
such as Prusa i3. In contrast, the continuous fiber-reinforced fiber length goes from 30 mm
to even meters, depending on the layer configuration, and requires more specialized and
costly equipment [6].
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Early research works were focused on determining static mechanical properties of
FRAM, such as the stiffness, strength, and failure behavior of different structures sub-
jected to different load types, such as impact, flexural, tension, compression, and interlayer
strength [7-9]. FRAM significantly improves the stiffness and strength of the raw polymer
material, sometimes by a factor of three [10], depending on the fiber type and its config-
uration. As with traditional composite manufacturing, the load type affects the failure
mechanisms [11]. For example, the tension in fiber longitudinal direction is characterized
by fiber rupture, while tension in and out-of-plane direction usually causes interlayer
debonding. Ledn B. et al. [12] perform a state-of-the-art review of damage and failure
mechanisms for continuous fiber-reinforced AM. Diaz-Rodriguez et al. [13] critically review
the mechanical properties of FRAM in which the high range of mechanical properties and
process parameters are analyzed, revealing that the scattering of the mechanical prop-
erties is inherent to manufacturing process parameters, constituent material properties,
and environmental conditions. Justo et al. [14] have shown that stiffness and strength
depend on the process parameters, such as print direction, type of fiber, layer thickness,
and volumetric fiber fraction. The process parameters can be tuned to satisfy or optimize a
given mechanical property, as Ahmed et al. [15] show for the optimal variable to enhance
the interfacial bond strength.

Given the significant number of possible variations and the unmanageable number
of experiments it will take to characterize them fully, researchers are looking for mod-
els that accurately predict the mechanical properties and failure behavior of FRAM. We
can find models considering a physical interpretation of the stress state [16], numerical
experiments [17,18], or raw experimental data for data-driven models [19]. In addition,
some researchers are interested in knowing the physical and micromechanical composition
of continuous-FRAM for a better physical description of the 3D printed material. One
of the critical microstructural descriptors is the volumetric fiber fraction of as-received
filament, which is obtained through different methods. Thermogravimetric analysis (TGA)
gives the volumetric fiber fraction and thermal behavior of the composite by increasing
the temperature, leaving only the fibers, due to the lower fusion and evaporation point
of thermoplastics matrices. Moreover, calcination uses the same principle of separating
phases using temperature. Other methods involve using chemical acids for dissolving
the thermoplastic [20]. The characterization of the matrix chemical nature can be deter-
mined using differential scanning calorimetry (DSC). The methods for characterizing the
single fiber separate it from the matrix using chemical solvents, and then subject it to
mechanical traction. Other authors acknowledge the effects of process parameters and
environment on the FRAM properties, for instance, Chabaud et al. [20] investigate the effect
of environmental conditions on the stiffness and strength of the FRAM parts by performing
thermogravimetric and image processing analysis, showing that the carbon fiber filament
has a volumetric fraction of 35% and the fiberglass filament has 39%. The humidity plays
an important role, showing variations of 18% in stiffness or 25% in strength for the lon-
gitudinal direction, while other directional properties are more affected than in the fiber
direction. At the same time, microscopic and image analysis can be used to determine
the void fraction [21]. They can also help determine the fiber size, resin-rich or resin-poor
matrix regions, and other defects, which can reach values of 15.1% for continuous carbon
fiber polyamide cCF/PA parts and 12.3% for cGF/PA parts.

As more physic and microstructural based models appear, a complete description
of the behavior of the FRAM for the full characterization of an orthotropic composite 3D
printed lamina is needed for engineering calculations and designs. From a composite
materials design perspective, nine elastic constants should be given, implying numerous
experiments. A helpful approach requiring fewer experiments is obtaining the individual
matrix and fiber’s mechanical properties, and then obtaining the overall properties of the
composite lamina. For that task, micromechanics deals with the determination of all of the
composite properties based on the properties of the constituents. Research has been done in
the microstructural characterization of FRAM and micromechanical analysis. Some authors
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present the transverse area of the FRAM, employing imaging for measuring the volumetric
fiber fraction [21]. Moreover, in the work of Pascual-Gonzélez et al. [22], an extensive
experimental micromechanics characterization of AM manufacturing was performed for
the single fiber properties, the fiber distribution and content, and the polymer nature.
Micromechanics is also valuable for failure behavior, and failure prediction of additive
manufacturing composites is the subject of recent investigations. Dutra et al. [23] developed
an expanded Puck and Schiirmann (ExPan) interfiber fracture criterion, which considers
the semi-brittle nature of the thermoplastic matrix. Moreover, they present the failure
envelops of 3D-printed composites.

As the number of parameters on which the FRAM mechanical behavior and failure
mechanisms depend grows, the experimental work and even the employment of in silico
models, such as finite elements, are not feasible. One tool to resolve the problem is using
artificial intelligence and data-driven models to predict the properties or design the FRAM
architecture. Although machine learning is becoming a powerful tool to tackle challenging
problems, a lot of data are required to train a predictive model. Some authors use deep
learning to predict the strength of AM parts, while this approach can be used for FRAM
parts. Zhang et al. [24] perform a tensile strength prediction of FFF PLA thermoplastic, con-
sidering the temporal aspect of the manufacturing process and the time process variations
characterized by inter-layer interactions. The model is constructed using the layerwise
process signals (vibration and temperature) as inputs of a long short-term memory LSTM
network, a recurrent neural network (RNN). Later, Zhang et al. [25] performed the strength
prediction for a composite AM sample. This time, they develop an ensemble of different
types of machine learning algorithms, such as least absolute shrinkage and selection op-
erator (lasso), K-nearest neighbors, and support vector machines. The input parameters
are process-related parameters, such as fiber layers, polymer layers, fiber rings, and infill
patterns. Other deep learning applications optimize fiber paths and reverse engineering
AM parts [26]. Artificial neural networks (ANN) are also employed as an optimization
algorithm that can enhance the mechanical strength of FFF polymers by selecting the opti-
mum process parameters. A deep-learning algorithm proves highly competitive with other
optimization algorithms [27].

For connecting the microstructural characteristics with stiffness, strength, and failure
mechanisms, Young et al. [28] perform fractographical analysis in additive manufacturing
thermoplastic composites, where microstructural differences are found between ABS and
CF-ABS, presenting lower porosity values in the former, probably due to the thermal
conductivity enhancement of the carbon fiber. Chadha et al. [29] present fractographical
evidence of different breaking fracture modes for different infill patterns, such as brittle
fracture in a grid structure and ductile fracture in a honeycomb. Other authors could
identify fiber slippage, fiber waviness [30], fiber pull out, and interfacial debonding [31].
Furthermore, a counter-intuitive behavior was evident in the work of Seifans et al. [32],
where the strength of the 45° reinforced tensile sample was less than 90° angle. Fracto-
graphic analysis tools clarify that as the printer deposits a continuous strand of fiber, there
are areas in the turns with fiber at 0°, thus elevating the strength.

Given the numerous works in the mechanical characterization of FRAM and the
incremental research interest in modeling mechanical properties and failure, there is a
need to evaluate micromechanical and data-driven models on continuous FRAM data for
predicting the strength. Therefore, this work aims to fill this knowledge gap and elucidate
the best possible path by evaluating their accuracy and ease of implementation. First,
the micromechanical models are described based solely on constituent properties for the
stiffness calculation and in-situ experimental data and back-calculated parameters for the
strength prediction. Then, in the second approach, a deep-learning algorithm describes a
series of models to perform the stiffness and strength characterization. After establishing
the two methods, we introduce the data obtention and curation methodology and the
available data set. Finally, comparison and discussion of the results are made.
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2. Micromechanical Models
2.1. Micromechanics for Predicting Stiffness

One of the first attempts to determine the mechanical response of composite materials
was the Voigts and Reuss models, namely the rule of mixtures (ROM) and the inverse rule
of mixture (IROM), respectively. Those models can be derived from the assumptions of
strain equivalences in the axial lamina direction and stress equivalence in the transverse
direction. ROM and IROM are depicted in Equations (2) and (3):

Vit Vi =1 1)

P = VyPf + Vi Py ©)
1_Vu Vs )
P Py, P

In which Vf is the volumetric fiber fraction, V}; is the volumetric matrix fraction. The
subscripts f represent the fiber fraction property value, m is the matrix fraction property
value, and P is the calculated composite property. These two models provide upper and
lower bounds to the composite behavior.

Despite their simplicity, ROM and IROM help predict the longitudinal, E;, and trans-
verse, Ej, elastic moduli quite well, from the fiber, E r and matrix, E,;, elastic moduli.
Moreover, ROM approximates well the in-plane Poisson’s ratio (v17) [33]. Other microme-
chanical formulations are better suited for properties, such as out-of-plane Poisson’s ratios,
shear modulus, and out-of-plane behavior. The cylindrical assemblage model (CAM),
shown in Equation (4), proposed by Hashin and Rosen, gives better estimates [33] of the
in-plane modulus Gyy.

(14 vp) + (1= Vf)Gu/ Gy
(1=v) + (1+ ) Gu/ Gy

G12 = Gp (4)

where Gf and G, are the shear moduli of the fiber and matrix. Moreover, it is usual
to assume that the fiber shear modulus Gi;3 = Gjp;. The intralaminar shear modulus,
Gp3, was computed with the semi-empirical stress partitioning parameter technique as in
Equations (5) and (6).

Vf + 14 (1 -0 f)
M4 (1 — Uf) + Ume/Gf
=T o)
In which v¢ and vy, are the fiber and matrix Poisson’s ratio, respectively. Note that
more elaborated methods exist, such as homogenization schemes, which consider the
reinforced volumetric fraction and their spatial distribution to estimate the mechanical

properties of the whole composite. However, the above micromechanical models were
used to seek simplicity yet the goodness of fit.

©)

G23 = Gm

(6)

2.2. Micromechanics for Predicting Strength

Predicting the strength of a lamina is a more challenging task than a stiffness prediction,
despite some authors proposing simple equations that depend on the properties of the
constituents and a back-calculation parameter, thus, requiring some experimental data
to perform the adjustment. Current micromechanics equations for predicting strength
properties have questionable reliability [34]. Usually, they require apparent properties
of the constituents (fiber and matrix) obtained from experimental data and then back-
calculated using micromechanics formulas. One formula employed for the obtention of the
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longitudinal tensile strength Fy; is depicted in Equation (7). It relies on the assumption that
all fibers have the same strength, represented by the apparent fiber tensile strength Fy;, this
assumption is, to some extent, erroneous as the strength of the fibers presents a Weibull
distribution [22]. The second assumption is that both matrix and fibers have a linear
behavior up to failure, which is not valid, particularly for a polymeric matrix.

Fir = Fyr 7)

Vf+§’;(1—vf)

Moreover, the equation assumes that once the fibers break, the matrix cannot sustain
the load, and the composite fails, which is valid for almost all commercially available
composite laminae. However, this is not true for composites with a meager fiber volume
fraction. Thus, Equation (8) should be used in those cases.

Fir = Fur (1- V) (®)

where F, 1 is related to the matrix tensile strength. For the longitudinal compressive
strength Fjc, a simple equation is given by Barbero [35], here replicated in
Equations (9) and (10).

Fic = Gio(1+4.76x) % )
Gpag
= — 1
Fe (10)

In those equations Fg represent the in-plane shear strength value, «, is the standard
deviation of fiber misalignment, measured experimentally [36] or calculated from (10) in
terms of available experimental data for Fjc. Then, Equation (9) can be used to predict the
values of Fj¢ for materials with other properties.

The transverse tensile failure of a unidirectional lamina happens when a transverse
crack propagates along the fiber direction, splitting the lamina. Therefore, transverse
strength is a fracture mechanics problem. We can use Equation (11) to predict the transverse
tensile strength F1 of a unidirectional lamina.

Gic
Fyr = 11
2 \/1.1227r(tt/4) AL, ah

where Gjc is the fracture toughness in mode I. The transition thickness t; can be ap-
proximated as t; = 0.6 mm, 0.8 mm, for E-glass—epoxy and carbon-epoxy composites,
respectively. However, Gjc and t; are not well established for FRAM composites. Finally,

Ag2 is given by (12).
1 vi,E3
0 _ - 1272
Azz = (EZ E% > (12)

Older empirical formulas derived without considering fracture mechanics are also
available in [33]. For the transverse tensile, F,1, and compressive, F,c, strength, empirical
formulas are given in Equations (13) and (14):

Eyr = EnrCo [(1 v} ) (52)} (13)
Foc = F,cCo [1 + (vf - ﬁ) (1 - E’;’)] (14)
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where the apparent compressive strength of the matrix Fy,c is back-calculated from experi-
mental data on F,¢ using (14). C, is included to adjust, with another empirical factor, for
the presence of voids, and E7 is the transverse modulus of the fiber.

4Vy
m(1-v)

The in-plane shear strength Fg is also a fracture mechanics problem. However, it can
be approximated using Equation (16) if more experimental data is available for determining
the F,,s and C, factors. G, is the axial shear modulus of the fiber, which in the case of
isotropic fibers is equal to G.

Fs = FusCo [1 + (v =) (1 - g’:ﬂ (16)

The intralaminar shear strength Fy is a matrix-dominated property because the shear
acts on a plane parallel to the fiber direction. The fibers would have to be sheared off
by stress 713 to produce failure, which is unlikely to happen. Equation (17) depicts the
intralaminar shear strength in terms of the transverse compressive strength F,c and the
angle of the fracture plane «.

Co=1- (15)

Fy = Fyc cos g (sinag + cos ag cot 2ap) (17)

3. Machine-Learning Architectures

In this work, our interest is in predicting the mechanical properties of AM composites.
Therefore, it is a regression problem, a kind of supervised learning. Numerous regression
models include simple linear regression models, regression trees, support vector machines,
Gaussian process regression (GPR) models, and neural networks [37]. The models were
tested in the regression learner app from the machine learning and statistics toolbox of
MATLAB software 2021. The data set is partitioned into five cross-validations folds and
estimates the accuracy on each fold to avoid overfitting.

The [X] denotes the design matrix, also called the training matrix, data matrix, or
input matrix, and contains the complete input dataset. The columns correspond to each
point in the feature space (training sample) and the rows to each factor. Therefore, it is, in
a general way, a non-square matrix. The number of explanatory variables or factors p, is
the number of rows of [X], while the number of points m is the number of columns. The
variable {y} is the output, response, or predictor value. It is a column vector in which
each row is associated with the corresponding column or feature vector in the data matrix
[X]. {w} are the coefficients of the variables in the model, they are also called weights.
{e} represents the error associated with the model, and {b} is called bias, a constant value.

3.1. Decision Trees

Regression trees predict responses to data by following a series of decisions in the tree,
from the root (beginning) node down to a leaf. The leaf node contains the response [38].

3.2. Linear Regression

Linear regression models describe the relationship between the explanatory variables
and the p number of factors or features. The matrix [X| of observations is an m by p matrix,
with m the total number of data points. The response variable is called y; as each point
has an associated output value. In general, a linear regression model can be a model of the
form represented in Equation (18).

k

yi = wo + Z wkfk(xli/ X2i, - --,xpi) +g (18)
k=1
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where f( ) is a scalar-valued function of the independent variables x;;. The functions f(x)
might be in any form, including nonlinear functions and polynomials. The coefficients wy
are linear. That is, the response variable, y, is a linear function of the coefficients wy, [37].

3.3. Support Vector Machines

Support vector machines (SVM) is a nonparametric technique relying on kernel func-
tions. Matlab regressor app implements linear e-insensitive SVM (e-SVM) regression. The
goal is to find a function f(x) that deviates from y, by a value smaller than ¢ for each
training point x;, and at the same time, it is as flat as possible. So the path to follow is to
find a linear function:

{ f(0)} = {w}T[X] + {b} (19)

Find f(x) with the minimal norm value (w”w) formulating a convex optimization
problem that has to be minimized:

J(w) = 5 (w0} {w) 0)

Subject to the residuals being less than ¢, that is:

v [} — ({w} X+ {6})] < e @1)
where 7 is the predicted output.

3.4. Gaussian Process Regression

The available data set is in the form {(x;,y;);i =1, 2,...,n}, where x; e R9and y; € R
are drawn from an unknown distribution. A Gaussian process regression (GPR) model
predicts the value of a response variable, given the new input vector and the training data.
A linear Gaussian regression model is of the form

{9} = {w}"[X] + {e} (22)

wheree ~ N (0, (72) . The error variance o2 and the coefficients B are estimated from the data.
A GPR model explains the response by introducing latent variables, f(x;), i=1, 2,...,n,
from a Gaussian process (GP), and explicit basis functions . A GP is a set of random
variables, such that any finite number of them have a joint Gaussian distribution. If

{ f(x), x € Rd} is a GP, then given n observations {x1, X, ..., X, }, the joint distribution of
the random variables f(x1), f(x2),..., f(xn) is Gaussian.

3.5. Neural Networks

Artificial neural networks (ANN) get their name by the resemblance to a neuron,
a biological cell, in which usually more than one stimulus enters the neuron, and the
response output connects to other neurons in the network. Raw data can be used to train
and test an artificial neural network. In this case, the input layer consists of a vector of a
set of parameters with dimension n = 9, namely: {fiber stiffness, fiber angle, fiber strength,
fiber Poissons ratio, matrix stiffness, matrix strength, matrix Poissons ratio, print direction,
number of fiber layers}. The output is the stiffness or the tensile strength of such AM parts
(Figure 1). The proposed neural network has various hidden layers and a varying number
of neurons in each layer, using ReLu for the activation function.
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Figure 1. Schematic of the artificial neural network.

The data set is grouped in two matrices, in which x is the input matrix of dimensions
n x m and vy is the output matrix of dimension 2 x m. They have the form

x = {x(l) x@ ...x(m)] (23)

The error function employed to evaluate the ANN is the one employed in the gradient
descent formulation:

L(G,y) = —(ylogy + (1 —y)log(1 — 7)) (24)

While the cost function, which is the parameter to minimize, is given by
1 -
J(w,b) = — Z r yA(l),y(z) (25)
w 5 £(007)

4. Materials and Methods

Data were gathered from experiments for determining the tensile behavior performed
following ASTM D3039, as well as from datasets available in the literature. The raw
experimental data are available in Table A1l in Appendix A. The experimental design is
presented in Table 1. The experiment design was proposed with three factors, as shown in
the columns in Table 1, with various levels at each factor. Although a standardized design
of the experiment was not suitable due to the uneven distribution of levels in each factor
from manufacturing constraints, at least four specimens per point were tested, accounting
for 52 samples.

Table 1. DOE information using three factors.

Print Direction Fiber Fraction Fiber Angle Total Tests
Flat 3 levels (3.75%, 7.50%, 11.25%) 0°,45°,90° 9
On-edge 4 (2.60%, 3.90%, 5.22%, 6.53%) 0° 4
Total 13 x 4 replica

MarkTwo desktop printer fabricates the specimens of dimensions 150 mm x 15 mm
x 2 mm with a Nylon White matrix and a continuous carbon fiber reinforcement in an
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aligned arrangement (called “isotropic” in the slicer software Eiger v1.1, Markforged Inc.,
(Watertown, MA, USA)); Markforged® supplied all the above materials. The total number
of layers is 16 in the flat direction and 110 in the on-edge direction, see Figure 2. Each layer
has 1.25 mm in thickness. The fiber fraction levels are divided into levels corresponding to
2,4 and 6 reinforced layers in the flat printing direction; and 28, 42, 55, and 70 reinforced
layers in the on-edge printing direction.

Figure 2. Printing orientations for the tested samples.

Samples were visually inspected before testing, and some specimens had minor defects,
such as lack of adhesion in local points. However, no general or great-extent defects such
as warping, missing layers, or voids were found. Samples are then tested in an MTS Bionix
370.02 with a mechanical MTS 634.12F axial extensometer to accurately determine the
elastic response (Figure 3), and the extensometer length is calibrated at 25 mm. The chosen
gripping method was cloth, as Pyl et al. [39] show the low variance of the results. The
testing test speed was 2 mm/min.

Figure 3. Experimental setup of a tensile specimen.
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5. Results
5.1. Overall Results

The average results for Young’s modulus, the maximum stress, and the coefficient
of variation (COV) of our experimental data can be observed in Table 2. The data were
analyzed through the factorial design of experiments (DOE) analysis and analysis of
variance (ANOVA) in the MiniTab software. As a result, the following hypotheses are true:
in the flat printing direction, the fiber angle, fiber content, and their interaction affect the
average stiffness response (p-value 1.32 x107!1); in the on-edge printing direction, the
fiber content affects the average strength response (p-value 0.34) and stiffness response
(p-value 0.01). The higher p-value of the strength response indicates that the statistical
significance of the fiber content in the strength is not established, at least for 45° and 90°.

Table 2. Results for continuous carbon fiber reinforced Nylon White.

Reinforced Fiber Young’s Max.
Layers—Total Vs Angle Modulus COV (%) Stress COV (%)
Layers (MPa) (MPa)
Carbon fiber flat
2-16 3.75% 0° 7232.5 6.7 77.40 38.7
4-16 7.50% 0° 15204.0 0.5 198.83 11.9
6-16 11.25% 0° 21896.5 12.7 209.35 29.2
2-16 3.75% 45° 663.0 0.5 18.44 0.5
4-16 7.50% 45° 969.6 14.2 19.15 4.0
6-16 11.25% 45° 1789.0 24.3 19.08 18.4
2-16 3.75% 90° 503.5 8.3 16.67 4.0
4-16 7.50% 90° 727.3 19.3 15.39 1.8
6-16 11.25% 90° 1052.3 7.9 15.85 9.9
Carbon fiber on-edge

28-110 2.60% 0° 4893.3 1.7 47.61 274
42-110 3.90% 0° 7738.8 36.9 46.30 17.7
55-110 5.22% 0° 7855.8 38.1 57.14 25.7
70-110 6.53% 0° 13258.0 6.4 63.00 39.3

Figure 4 shows the Pareto diagrams of the effects of angle and fiber content on the
stiffness and strength, thus, finding that the critical effect in the stiffness is the fiber angle.
In contrast, fiber content is more determining for strength than fiber angle. The factor that
has the greatest significance in stiffness is the fiber angle, followed by the fiber content and
their interaction, being that the fiber angle is almost four times more important than the
fiber content. On the other hand, the fiber content is the most relevant factor in the strength,
followed by the fiber angle and their interaction. Nonetheless, the importance of the factors
is more even between them than in the stiffness case.
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Pareto Chart of the Standardized Effects Pareto Chart of the Standardized Effects
(response is Stiffness, alpha = 0.005) (response is Strength, alpha = 0.005)
5 7 Factor Name
- 6 A Angle
9 Factor ~ Name E B Fiber content
E 15 A Angle €5
. w
§ B Fiber content g4
e 10 T3
_g S 2.306
172} w
226 - = 1
0 0
A B AB A B AB
Term Term
(@) (b)
Figure 4. Pareto diagrams for the angle, fiber content, and interaction effects in the (a) stiffness and
(b) strength.

In the case of on-edge printing, the angle is not a factor because it is only possible
to print a 0-degree coupon. Figure 5 shows the stiffness and strength interval graphs,
while Figure 6 shows the residues plot. A clear increasing tendency of stiffness with fiber
fraction is identified in the stiffness plot (Figure 5a). On the contrary, no such tendency is
appreciable in the interval plot of strength (Figure 5b). Moreover, given the high dispersions
of the values (COV in the order of 25%, see Table 2), the 95% confidence interval is large,
thus giving the appearance of one range superposed over another.

Interval Plot of Stiffness vs Fiber fraction Interval Plot of Strength vs Fiber fraction
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Figure 5. Interval graphs for (a) stiffness and (b) strength of on-edge specimens.
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Figure 6. Normal residual plots for (a) stiffness and (b) strength.
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Residues plot (Figure 6) can accommodate well into a normal distribution, and this
could be seen by the good agreement between the blue experimental points and the red
gaussian line distribution. The agreement indicates the validity of the ANOVA analysis
and the Pareto charts mentioned before. If that was not the case, a transformation, such
as Box—Cox, could be handy. Furthermore, the flat direction is stronger than the on-edge
direction, given the same fiber angle and content.

Given the high dispersions of values, the hypothesis that the fiber content affects the
average strength response in the on-edge printing direction is not confirmed with 95%
confidence, instead only 66% confidence. Thus, more tests should be performed to conclude
firmly. Differences and errors could be due to local defects, such as points that do not
completely fuse in a portion of the layers, voids in the filament and voids resulting from
the printing process, and hygroscopic process in the nylon before and after printing the
part [20]. Despite the manufacturing defects, properties dispersion could be seen as regular
variations in the fabrication process, and their values do not affect the implications of the
results or reproducibility of the tests.

5.2. Micromechanics Predictions

First, the comparison of the micromechanical model for stiffness prediction is made
based on the analytical equations depicted in (1) to (17) and presented in Table 3, E; was
computed using Equation (2) and E, Equation (3). However, the structure of the 3d printed
samples is instead sandwich composites than truly fully composite structures because of the
top and bottom layers that are usually printed from raw thermoplastic. In those cases, the
volumetric average stiffness (VAS) method [40] is employed to predict the overall behavior.

Table 3. Longitudinal and transversal modulus comparison: experimental and micromechanics

formulation for various samples.

Fiber

E1(VAS) Model E1 (Exp.) Relative E;(VAS) Model E2 (Exp.)

Couponlnfo ¢ tion [%] (GPa) (GPa) Error (%) (GPa) (GPa) Source
cCf-PA 3.8% 8.60 7.23 16% 1.77 0.50 This work
cCf-PA 7.5% 15.67 15.20 3% 1.84 0.73 This work
cCf-PA 11.3% 22.73 21.90 4% 1.91 0.99 This work
cCf-PA @ 2.60% 6.856 489 29% 1.74 NA This work
cCf-PA @ 3.90% 9.434 7.74 18% 1.77 NA This work
cCf-PA @ 5.22% 12.05 7.86 35% 1.79 NA This work
cCf-PA? 6.53% 14.65 13.26 9% 1.82 NA This work
cCf-PLA 6.6% 22.44 19.50 13% 3.48 NA [4]
cJute-PLA 6.1% 472 5.11 —8% 343 NA [40]
cCf-PA 6.0% 15.02 14.00 7% 2.98 NA [41]
cCf-PA 18.0% 42.46 35.70 16% 341 NA [41]
cCf-PLA 34.0% 80.05 23.80 70% 422 NA [42]
cKv-PA 4.0% 4.09 1.77 57% 1.00 NA [43]
cKv-PA 8.0% 7.25 6.92 5% 1.02 NA [43]
cKv-PA 10.0% 8.83 9.02 —2% 1.04 NA [43]
cCf-PLA 8.9% 24.30 20.60 15% 46 NA [44]
cAramid- o o

LA 8.6% 9.52 9.34 2% 3.55 1.53 [45]
cCf-PA 27.0% 63.34 62.50 1% 444 NA [46]
cCf-PA 18.0% 42.79 45.20 —6% 3.00 NA [47]
cCf-PA 27.0% 63.34 NA NA 2.32 353 [47]
cCf-PLA 25.0% 60.12 38.60 36% 464 NA [48]
Cf-PA 24.0% 73.29 68.08 7% 2.32 1.22 [14]
Fg-PA 27.0% 21.76 25.86 —18% 1.28 1.22 [14]
cCf-PA 13.5% 41.97 37.00 12% 1.96 NA [4]
cCf-PA 41.0% 98.85 13.00 87% 1.56 NA [49]
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Table 3. Cont.
Coupon Info Fiber E1(VAS) Model E1 (Exp.) Relative E>(VAS) Model E2 (Exp.) Source
Fraction [%] (GPa) (GPa) Error (%) (GPa) (GPa)
Cf-PA 35.0% 81.10 7.20 91% 1.44 NA [49]
cCf-PA 30.0% 61.19 60.90 0% 242 3.97 [50]
cCf-PA D 30.0% 242 2.40 1% NA NA [50]
cCf-PA 21.3% 50.33 47.56 5% 2.16 NA [39]
cCf-PA 24.8% 58.32 57.09 2% 2.26 NA [39]
cCf-PA 7.2% 18.14 31.65 —74% 1.83 NA [39]
cFg-PA 9.8% 7.94 5.09 36% 1.04 0.58 [51]
CFg-PA 19.5% 14.87 8.92 40% 1.16 1.61 [51]
cCf-PA 11.0% 22.84 7.73 66% 1.06 NA [7]
cKv-PA 10.0% 8.45 4.37 48% 1.04 NA [7]
cFg-PA 10.0% 8.05 3.75 53% 1.04 NA [7]
Notes: 2: On-edge printed, b. upright printed.

The values of stiffness and strength for the matrices E;;, Sy, and the stiffness of the
fibers E; employed were obtained in the corresponding articles, or an informed guess
value if not available. The average relative error for the longitudinal modulus is 19%, with
typical values between —18% to 70%. There are some outliers with errors as —74% or
91%. Moreover, errors range from —38% to 71% for the transversal modulus with a 48%
average error, despite the poor data availability. As the suggested values for the rest of the
constants depend on the volumetric fiber fraction, we provide look-up values in in Table 4.
The micromechanical properties employed are depicted in the annexed table. For the
out-of-plane Poisson’s ratio v»3, a value between 0.28 and 0.35 for most FRAM is suitable
due to the low inference in the structural response. However, a periodic microstructural
model could be used to give a more precise approximation.

Table 4. Suggested values of the engineering constants in continuous FRAM composites.
Vf(%) E3(GPa) 012 013 G12(GPa) G13(GPa) G23(GPa)
Ccf-PA 27 2.32 0.336 0.336 1.24 1.24 115
Cfg-PA 27 231 0.336 0.336 1.22 1.22 1.13
Ckv-PA 10 1.88 0.351 0.351 0.87 0.87 0.846
cCf-PLA 9 3.84 0.352 0.352 1.77 1.77 1.717
cJute-PLA 6 3.45 0.35 0.352 1.32 1.32 1.28

The obtention of the strength data is cumbersome as various factors can significantly
influence the strength of additive manufacturing composites. Different authors enunciated
the effect of process parameters on the strength of the overall AM composites and poly-
mers [52-54]. Thus, the effect of printing direction in Table 5 shows the strength comparison
for our data.

Predicted strength data were obtained using Equation (8) for the 0° reinforced samples
and Equation (13) for the 90° reinforced samples. Notice that there is a more significant
amount of dispersion between each point. In addition, a counter-intuitive trend exists in
the on-edge printing direction, as the 28 layers version resisted a fair amount of stress,
reaching close to 42 layers. A possible explanation is the effect of layer-by-layer adhesion
on the composite. Thus, conducting to think that this damage mechanism is prevalent
with the low volumetric fiber fraction on-edge printed composite. For the strength data,
the retrieved back-calculated constants for use in Equations (8) and (13) are presented in
Table 6.
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Table 5. Processed data for strength comparison for FRAM.

Flat Printing Direction

L?e;?sﬁ)—r;zfal Fiber VA%) Max Stress Predicted Error (%)
y Angle £ Exp. (MPa) (MPa) ?
Layers
2-16 0° 3.75 77.40 92.34 19.30
4-16 0° 7.50 198.83 171.47 13.76
6-16 0° 11.25 209.35 250.59 19.70
2-16 90° 3.75 16.67 17.777 6.21
4-16 90° 7.50 15.39 15.952 3.50
6-16 90° 11.25 15.85 14.701 7.80
On-edge printing direction
28-110 0° 2.60 47.61 35.17 35.37
42-110 0° 3.90 46.30 49.34 6.16
55-110 0° 5.22 57.14 63.72 10.30
70-110 0° 6.53 63.00 78.00 19.20
Table 6. Retrieved back-calculated constants for continuous FRAM.
Material Fer (MPa) F,,,T (MPa)
Carbon-fiber Polyamide 2110; 10902 34.55
Fiberglass Polyamide 1185 49.10
Kevlar-Polyamide 891 NA
Carbon-fiber PLA 1749 NA

Note: 2 for on-edge printed direction.

Those equations permit the calculation of the longitudinal and transversal tension
strength for a given volumetric fiber fraction. However, there are limits to the practical
volumetric fiber fraction of the manufacturing method, with FFF AM of composite ther-
moplastic matrices employed, typically with an upper bound of 40% [22]. Furthermore,
the strength and the stiffness of a composite can be influenced by tabbing and grips of
the testing equipment. Wisnom et al. [55,56] studied this effect extensively for traditional
manufacturing composites, while Pyl et al. [39] show the influence of the architecture and
gripping system on the stiffness and strength determination for FRAM.

5.3. Machine Learning Output

In analyzing data, the response plots for the different factors help identify visual
patterns, filter data or identify outlier points. For example, Figure 7 shows the response
plot for the machine learning data. Clusters are identifiable in the E, consistent with
the discrete nature of fiber types, in the E;;, with matrix types, and the printing direction.
From this response plot, it is not possible to identify a single trend; this is due to the large
variation of the parameters and the interactive effect of variables. For instance, if tested
at a transversal angle (90°), low carbon-fiber AM could give response values similar to
fiberglass in longitudinal tension (0°).
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Figure 7. Response plots of the stiffness for five factors of the FRAM.

The models were evaluated according to four performance metrics: root mean square
error (RMSE), the coefficient of determination R-squared, the prediction speed, and the
training time. R-squared is a number always smaller than one and usually larger than zero,
comparing the constant average model with the trained model. Thus, the R-squared is
negative if the predicting model is worse than a constant model. Table 7 resumes the model

performance for the stiffness and strength response.
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Table 7. Comparative table for the predicting model performance.

Stiffness Strength
RMSE Prediction Training RMSE Prediction Training
MODEL (GPa) R-Squared Speed (ms) Time [S] (MPa) R-Squared Speed (ms) Time (s)
Fine tree 16.859 0.19 780 3.76 167.53 0.55 2400 0.835
Linear 14.984 0.36 630 3.95 183.31 0.46 1600 0.9456
regressmn
Linear 16.245 0.24 1200 3.02 176.24 05 1600 1.2923
SVM
Gé;‘if;/l[a“ 13.475 0.48 1500 0.59 162.92 0.57 2200 0.8316
Rational
quadratic 11.064 0.65 670 8.61 146.72 0.65 1800 1.377
Gaussian
Matggf /2 10.905 0.66 930 1.55 142.87 0.67 2500 1.2855
EngI‘g‘“al 11.092 0.65 1200 1.56 140.21 0.68 1600 1.1625
Narrow
Neural 46.228 ~5.12 1000 6.81 1014.8 ~15.58 1800 5.042
network
Medium
Neural 30.128 16 1600 3.60 445.59 22 1700 3.99
network
Wide
Neural 30.584 ~1.68 1900 434 481.14 273 2700 3.38
Network
Trilayered
Neural 18.622 0.01 1900 5.09 302.25 —0.47 2600 413
network
Micromechanics 6.81 0.74 NA NA 70.652 0.72 NA NA

Notice the better performance of the micromechanical-based method from the R-
Squared column, followed by the 5/2 Matern Gaussian process regression. The fastest
models in prediction capabilities are the linear regression with 630 milliseconds and the
rational quadratic gaussian with 670 milliseconds. However, they are not the fastest to train,
those are the Gaussian SVM and the Matern 5/2 GPR with 1.55 and 1.56 s, respectively. In
contrast, the neural networks models did not capture the stiffness or strength response accu-
rately, the best amongst them was the trilayered NN, and deeper NN could be employed to
enhance the prediction capabilities. Kernel-based (Matern 5/2) and gaussian-based models
(Gaussian SVM and GPR) showed the best performance. In comparing the micromechanics
model with the plots of the data-driven winning model, Figures 8 and 9 show a more
negligible scattering of experimental points in the micromechanical model is inferred.
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Figure 8. Predicted values of stiffness vs. true response.
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Figure 9. (a) Predicted values of strength vs. true response and (b) residuals of stiffness
vs. true response.

5.4. Failure Analysis and Microstructural Description

The macroscopic appearance of failed specimens depends on processing parameters,
such as volumetric fiber content and printing direction. Failure topologies could be resumed
in three categories for the flat specimens, as shown in Figure 10. In the first type depicted
in Figure 10a, a zero-degree tension failure is represented. All zero degrees coupons failed
translaminar, meaning a breakage of the fibers and splitting the specimen into two parts.
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(a) (b) (c)
Figure 10. Failure topologies of AM Composites: (a) 0° fiber alignment, (b) 45°, (c) 90°.

In the second and third types, Figure 10b,c, for types 45° and 90°, respectively, the
specimens did not break into separate pieces, and they suffered extensive deformation
that reached the end of the experiment. The failure sequence may be that the failure starts
in an intralaminar manner (through the thickness in which only matrix and fiber/matrix
interface are broken) and then, interlaminar. In multiple points of the reinforced region, the
damage progresses through the nylon, causing plastic deformation with high strains, thus,
forming shear bands.

We saw a mixture of the two modes for the on-edge printing specimens. In specimens
with low reinforcement content, the samples failed mainly by large deformation in the
nylon zone and, consequently, the intralaminar failure of the reinforced region. On the
other side of the spectrum, the specimens with higher reinforcement content failed by
breaking the specimen into two pieces, caused by the reinforced region translaminar failure
and the inability of the nylon to sustain the applied displacement.

Fractured specimens are dissected near the failure surface with a continuous saw using
slow cutting rates. Cross-sectional views are from failed specimens ground in increasing grit
paper numbers from 150 to 1500 grits, then stored in a dissector. Thermoplastic composite
preparation is a delicate issue despite the care taken because abrasive particles could cause
torn and rough surfaces [57], as shown in in Figure 11b. Figure 11 also shows in-plane fiber
misalignment and low severity waviness. SEM micrographs are taken in a Quanta FEG 650
and a Vega Tecscan.

Thermoplastic bottom
and top layers

L e
layers ‘i |

)

Fiber g
waviness  |[&

Fibrilations

Figure 11. SEM transversal cut of a 55/110 layers carbon fiber on-edge printed sample: (a) 50 %, (b) 267 x.

The on-edge printing specimens show extensive damage in the nylon region, which
can be concluded from the fibrillations in Figure 11a. In addition, other fractographic
features such as scarps and crazes are visible in the nylon region in Figure 12a,b.
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Figure 12. SEM transversal cut of a 55/110 layers carbon fiber on-edge printed sample: (a) 31 %, (b) 201 x.

It is interesting to note the microstructural mismatch between the nylon region present
at the bottom of the sample and the top surface for the flat specimens. This difference in
surfaces is due to a lack of compaction phase in the last layers of the additive manufacturing
process, thus, creating a rougher surface in which the raster print is more visible at the top
(Figure 13a). Intralaminar failure is the most common failure present in these specimens.
Figure 13b shows a crack in the reinforced region and Figure 13c in the vertical direction.
The local stress field influences the path of the propagating crack, causing it to deviate.

-

Top
surface

WD: 15.90 mm

SEM HV: 8.0kV wo: 1600mm | | veoas Tescan]  SEMHV: 80KV wostssomm | |0
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(a) (b) (c)

Figure 13. SEM transversal cut of a 4/16 carbon layers 45° flat printed sample: (a) 53, (b) 300 %,
(c) 124x.

The specimen in Figure 14 may have failed under intralaminar fracture followed by
interlaminar, as the detachment of the reinforced plies and the nylon indicates. Ply splitting
is one of the most common failure modes in laminated composites, sometimes called matrix
cracking. This fracture mode develops from tensile forces transverse to the fibers or shear
forces parallel to the fibers. In Figure 15, we can observe the extensive crack growth in a
90° sample consistent with an intralaminar failure and the crazes in the nylon bottom part.
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Figure 15. SEM transversal cut of a 4/16 carbon layers 90° flat printed sample.

In Figure 15, the fracture morphology was consistent with an intralaminar failure mode.
Due to its high toughness compared with other polymeric matrix systems, nylon presents a
rough surface in which the fracture is principally absorbed through void coalescence, so
large-scale ductile drawn and fibrillation occurs [57]. In addition, at slow speeds, such as
those presented in this test, the matrix has time for plastic deformation, and fibrillation of
the matrix develops. In Figure 16a, a serrated profile with planar surfaces is observable,
while Figure 16b shows bundles of fibers that failed in the same plane. In 90° specimens,
not all fiber sections are transverse to the load. Fibers make U-turns at the edges, as it
is printed continuously, making them more susceptible to longitudinal tensile failure at
the corners.



Polymers 2022, 14, 3546 21 of 27

7 Fiber \\

B
» R ) 3 ruptures
\ ‘J\N\ \ " = .

Figure 16. SEM fractography of a tensile test for a 90° reinforced specimen. (a) 100 x magnification,
(b) 400x magnification.

For the zero degrees flat printed specimen, the macroscopic tension appearance is
shown in Figures 17a and 18. Failure initiates at the location of small defects. The surface is
relatively flat at the points close to it. All the fibers in this zone fractured in the same plane,
parabolas in the nylon, and features that spread out of the possible failure zone are present.
The fibers in different heights are consistent with a high-energy fracture.

e

: Interbead voids k )
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Figure 17. Flat 0° 4/16. (a) Wide view at 161 x (b) Zoomed at fiber region.
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Figure 18. Fractography of a 0° 6/16 fiber-reinforced tensile test.
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Figure 18 shows a more significant amount of fiber debonding on the surface than
Figure 17 Thermoplastic matrices often exhibit increased fiber pullout, leading to fewer

bundles of failed fibers and “directly attributable fiber failure” (DAFFS).

For the microscopic features of unidirectional tension, in Figure 19, the fiber ends
exhibit a planar surface with a relatively perpendicular failure plane, indicating brittle
longitudinal failure. Moreover, fiber pullout voids are visible, indicating low matrix

attachment and, thus, poor fiber-matrix interphase strength.
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Figure 19. Flat 0° 2/16-11.
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6. Conclusions

The effect of the volumetric fiber fraction and printing direction on the mechanical
response and failure mechanisms of additive manufacturing composites was assessed.
This work tested different models to evaluate stiffness and strength prediction capabilities.
Micromechanical models outperformed machine learning with an RMSE of 7.66 GPa in
stiffness and 70.05 MPa in strength. In addition, they have the advantage of being physics-
based. However, the performance of the ML algorithms was not very good in part due to a
lack of consistent data, with a widespread range of materials, methods, and machines for the
production of continuous FRAM. Poor data amount derives from the difficulty in obtaining
data, and the lack of a standard for reporting the printing process and parameters. For
instance, the articles did not report most of the assumed flat printing direction. Moreover,
volumetric fiber fraction is not always reported. Among the ANNS, the trilayered NN
performed the best.

Considerable strength variations were observed, and there are many reasons for this
significant difference. First, is a lack of consistent definition of strength: the maximum
stress or the linear elastic stress, also known as yield. Moreover, intrinsic variability
and the effect of the manufacturing process means the provided materials could have a
microporous difference in the reinforcing fibers. The manufacturing process feed rate,
humidity, and the adhesion of the part into the building plate are variables that modify the
strength [58,59]. Moreover, poor test methods impact the results and, although this effect
was minimized with careful manipulation of the specimens, it was not possible to ensure
the same conditions in other experimental work. Such conditions include the use and type
of grip tabs. The results of stiffness and strength were independent of the stack-up order
(this holds for longitudinal testing, such as tension and compression). However, a flexural
model will give inaccurate results. One could then express the individual compliance
matrices of the laminate.

Failure mechanisms, macroscopic damage appearance, and microstructural differences
in specimens were observed. In specimens where fibers were aligned to zero degrees, there
is a tendency to fail in a translaminar manner. At the same time, the other tested angles
exhibited extensive intralaminar damage and plastic drawn out of the matrix.

The generalization capabilities of machine learning algorithms are good, giving reason-
able estimates of the longitudinal and transverse modulus and strength of AM composites.
However, the lack of an estimate of the other directions’ properties makes its generalization
relatively poor. A possible way to overcome this issue would be to perform a data augmen-
tation based on micromechanical formulations, preferably more accurate ones. Thus, the
two models will cooperate instead of competing.

The model assumes a perfect bonding between layers, which in AM components is
difficult to obtain. In addition, defects, such as bed level issues, thermal management of
the extruder, warping of the piece, and hygroscopic characteristics of the nylon, can affect
the interlayer bonding. Although, in reality, we have a composite sandwich in which forces
are applied to a laminate, thus, this work aimed at comparing a basic model in which the
mesoscale is not entirely depicted and instead gives an estimate of the mechanical properties.
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Appendix A

Table Al. Experimental data obtained following ASTM D3039.

Stiffness  Strength

E;(GPa)  S;(MPa) 7 E, (GPa) S, (MPa) vf Vi PrintDir Alfﬂl’:r(a) Output  Output
8 (GPa) (MPa)

294.0 5880 0.066 3.25 426 0.27 0.35 0 0 19.50 185.2
274 417 0.061 3.25 426 0.38 0.35 0 0 5.11 57.1
230.0 3530 0.060 2.80 50.0 0.27 0.39 0 0 14.00 140.0
230.0 3530 0.180 2.80 50.0 0.27 0.39 0 0 35.70 464.4
239.0 3965 0.340 3.00 28.0 0.27 0.35 0 0 23.80 91.0
79.8 3620 0.040 0.94 31.0 0.36 0.39 0 0 177 31.0
79.8 3620 0.080 0.94 310 0.36 0.39 0 0 6.92 60.0
79.8 3620 0.100 0.94 31.0 0.36 0.39 0 0 9.00 84.0
240.0 4100 0.089 3.25 426 0.27 0.35 0 0 20.60 256.0
75.0 3400 0.086 3.26 340 0.36 0.35 0 0 9.34 203.0
75.0 3400 0.086 3.26 340 0.36 0.35 0 90 153 3.0

190.0 3800 0.038 1.70 510 0.27 0.39 0 0 7.23 67.6
190.0 3800 0.075 1.70 51.0 0.27 0.39 0 0 15.20 198.0
190.0 3800 0.113 1.70 51.0 0.27 0.39 0 0 21.90 229.8
190.0 3800 0.038 1.70 51.0 0.27 0.39 0 45 0.66 18.4
190.0 3800 0.075 1.70 51.0 0.27 0.39 0 45 0.97 19.1
190.0 3800 0.113 1.70 510 0.27 0.39 0 45 134 19.2
190.0 3800 0.038 1.70 51.0 0.27 0.39 0 90 0.50 16.7
190.0 3800 0.075 1.70 510 0.27 0.39 0 90 0.73 154
190.0 3800 0.113 1.70 51.0 0.27 0.39 0 90 1.05 159
190.0 3800 0.026 1.70 510 0.27 0.39 1 0 481 50.1
190.0 3800 0.039 1.70 51.0 0.27 0.39 1 0 7.74 463
190.0 3800 0.052 1.70 51.0 0.27 0.39 1 0 7.86 57.1
190.0 3800 0.065 1.70 51.0 0.27 0.39 1 0 12.32 765
210.0 3800 0.270 0.94 31.0 0.27 0.39 0 0 62.50 968.0
230.0 3800 0.180 2.70 510 0.2 0.3 0 0 45.20 493.9
230.0 3800 0.270 2.70 51.0 0.2 0.3 0 90 3.53 135
190.0 3800 0.250 3.50 426 0.27 0.35 0 0 38.60 446.0
200.0 3800 0.240 2.70 31.0 0.27 0.39 0 0 68.08 588.0
72.0 3450 0.248 0.94 31.0 0.21 0.39 0 90 1.22 126
72.0 3450 0.270 0.94 31.0 0.21 0.39 0 0 25.86 545.4
72.0 3450 0.264 0.94 31.0 0.21 0.39 0 45 0.78 63.9
200.0 3800 0.135 0.94 310 0.27 0.39 0 0 37.00 365.0
200.0 3800 0.410 0.94 31.0 0.27 0.39 0 0 13.00 600.0
72.0 3450 0.350 0.94 310 0.21 0.39 0 0 7.20 450.0
200.0 3800 0.300 0.94 31.0 0.27 0.39 0 0 60.90 701.0
200.0 3800 0.300 0.94 310 0.27 0.39 0 90 3.97 19.0
200.0 3800 0.300 0.94 31.0 0.27 0.39 2 90 2.40 5.1

200.0 3800 0.213 0.94 57.0 0.27 0.39 0 0 47.56 672.5
200.0 3800 0.248 0.94 57.0 0.27 0.39 0 0 57.09 654.0
200.0 3800 0.072 0.94 57.0 0.27 0.39 0 0 31.65 365.0
72.0 3450 0.098 0.94 540 0.21 0.39 0 0 5.09 143.6
72.0 3450 0.098 0.94 540 0.21 0.39 0 45 1.02 24.8
72.0 3450 0.098 0.94 540 0.21 0.39 0 90 0.58 183
72.0 3450 0.195 0.94 540 0.21 0.39 0 0 8.92 283.5
72.0 3450 0.195 0.94 540 0.21 0.39 0 45 0.79 234
72.0 3450 0.195 0.94 540 0.21 0.39 0 90 1.61 18.4
200.0 3800 0.110 0.54 61.0 0.27 0.39 0 0 7.73 216.0
76.0 3620 0.100 0.54 61.0 0.36 0.39 0 0 4.37 164.0
72.0 3450 0.100 0.54 61.0 0.21 0.39 0 0 3.75 206.0
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