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Abstract 9 

The vibroacoustic response of a structurally excited cylindrical shell submerged in water is 10 

presented. The shell is coated with a soft elastic material embedded with circumferential arrays of 11 

resonant inclusions. The coating is modelled as a multilayered equivalent fluid composed of 12 

homogeneous layers of the host soft material and homogenised layers comprising voids or hard 13 

inclusions. The radiated acoustic pressure is analytically derived by assembling and solving 14 

continuity and kinematic conditions at the interfaces between the cylindrical shell and the 15 

multilayered coating. Coating designs with different combinations of homogenised layers are 16 

examined. Physical mechanisms governing acoustic performance of the various coating designs 17 

are described. We show that the material of the inclusions, tuning the local resonances of the 18 

inclusions and the distribution of the homogenised layers within the coating have a significant 19 

effect on the shell vibroacoustic response.  20 

1. Introduction 21 

Cylindrical shells are found in a wide range of engineering applications such as an aircraft 22 

fuselage, pressure hull of an underwater vehicle, pressure vessels and pipelines. Prediction of the 23 

structural and acoustic responses of cylindrical shells is important for targeted noise and vibration 24 

mitigation strategies to reduce structural fatigue and structure-borne sound. Numerous approaches 25 

have been investigated to attenuate the vibroacoustic response of a cylindrical shell in air. Porous 26 

materials interlayered within the double walls of a cylindrical shell are commonly employed to 27 

enhance sound transmission loss through a shell structure subject to external flow conditions [1-28 

10]. A reduction in sound transmission has also been achieved using local resonators to target the 29 

ring frequency and mass-spring-mass resonance of a double-walled cylindrical shell [11-14]. 30 

Coatings composed of orthotropic layers [15-18] or constrained damping layers [19-21] have been 31 



2 
 

utilised to effectively suppress the vibroacoustic response of a cylindrical shell. Piezoelectric 32 

material has also been applied as patches [22-24] or as a full coating [25,26] to actively attenuate 33 

the sound radiation from a cylindrical shell.  34 

For underwater applications, a homogeneous viscoelastic coating applied to the wetted surface 35 

of a submerged shell has been shown to reduce acoustic scattering and radiation due to external 36 

acoustic sources [27-33]. Such coatings are generally made from a soft compliant material with an 37 

impedance match with water, which enhances its ability to absorb water-borne sound waves. A 38 

homogeneous viscoelastic coating has also been shown to attenuate the vibroacoustic response of 39 

a structurally excited submerged shell [33-35]. In addition to homogeneous materials, sound 40 

absorbing materials with resonant inclusions have been employed as acoustic coatings for 41 

reduction of underwater noise [36-69]. The main mechanism for sound attenuation arises from 42 

increased wave scattering and the associated strain field amplification near inclusions at 43 

frequencies around local resonance of the inclusions. This behaviour facilitates conversion of 44 

sound waves into shear waves which are efficiently absorbed due to high shear damping of the 45 

coating. Tailored noise control can be achieved by tuning the local resonance frequency of the 46 

inclusions, which in turn is achieved by varying the size, shape and proximity of the inclusions 47 

[36-40]. There is a plethora of literature on the acoustic performance of coatings with resonant 48 

inclusions spanning analytical approaches based on homogenisation theory [36-42], multiple 49 

scattering theory [43-46] and resonance scattering theory [47,48]. Numerical models developed 50 

using the finite element method [49-63], as well as numerous experimental studies on coatings for 51 

maritime applications have also been reported [64-69].  52 

Early works on acoustic coatings considered periodic voids for which the local resonance of 53 

the inclusions is monopolar [36-38,43,48]. Acoustic coatings comprising hard inclusions, for 54 

which the local resonance of the scatterers is dipolar, have shown consistent sound absorption 55 

performance under hydrostatic pressure [39,44,49,64]. While the majority of studies considered 56 

coatings embedded with inclusions of the same material, few papers have studied inclusions of 57 

different materials, namely voids and resonant scatterers [70,71]. Further, the aforementioned 58 

studies on resonant coatings submerged in water examined planar structures.  We recently showed 59 

that a coating composed of a layer of voids can reduce radiated sound from a coated cylindrical 60 

shell over a broad frequency range around monopole resonance of the voids [72]. In another recent 61 

study, Ke et al. [73] employed the finite element method to identify the effective parameters of a 62 

coating on the external surface of an elastic spherical shell. A reduction in target strength for the 63 

coated shell compared to an uncoated shell was observed.  64 

The current paper investigates the acoustic performance of a multilayered coated cylindrical 65 

shell with resonant inclusions of different materials. The coating is modelled as an equivalent fluid 66 

composed of alternating homogeneous and homogenised layers. The effective material and 67 
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geometric properties for the homogenised circumferential layer of resonant inclusions are 68 

approximated using the effective properties for a planar array of resonant inclusions in a square 69 

lattice. This approach is shown to be valid when the radius of the cylindrical shell is much greater 70 

than the diameter of the inclusions and spacing between adjacent inclusions. The vibroacoustic 71 

response of the coated cylindrical shell is obtained by assembling and solving continuity and 72 

kinematic boundary conditions at the interface between contacting layers. We first compare the 73 

acoustic performance of a coating with a single homogenised layer of voids or hard inclusions. We 74 

then investigate the acoustic performance of a coating with several homogenised layers composed 75 

of voids and/or hard inclusions. The material of the inclusions as well as the distribution of the 76 

homogenised layers within the coating have a large impact on the vibroacoustic response of a 77 

submerged coated shell. We show that the radiated sound can be significantly attenuated by tuning 78 

the local resonances of the inclusions to targeted frequencies by varying the geometric values of 79 

the resonant inclusions. 80 

2. Analytical formulation 81 

This section describes the analytical formulation to predict the vibroacoustic response of a 82 

coated cylindrical shell. Figure 1(a) schematically shows a cylindrical shell of infinite length with 83 

mean radius 𝑎  and thickness ℎ𝑠. The shell is submerged in a heavy fluid of density 𝜌ext and speed 84 

of sound 𝑐ext. The interior domain has density 𝜌int and speed of sound 𝑐int. The shell is coated 85 

with a soft elastic medium of density 𝜌𝑐, longitudinal modulus 𝜅𝑐 and thickness ℎ𝑐. Cylindrical-86 

shaped resonant inclusions are embedded in the centre of the coating and equispaced along the 87 

circumference by distance 𝑑. The layer of resonant inclusions can be represented as a homogenised 88 

layer with effective material and geometric properties, as shown in Fig. 1(b). The analytical 89 

methodology presents the equations of motion for the cylindrical shell, general solutions for the 90 

shell displacements, acoustic pressures in the multilayered coating and in the interior and exterior 91 

fluid domains, and continuity equations at interfaces between the fluid domains, shell surfaces and 92 

coating layers.  93 

 94 

 95 

 96 

 97 

 98 

 99 
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   (a) 103 

 104 

         105 

   (b) 106 

 107 

Figure 1 Schematic diagram of a cylindrical shell with a soft elastic coating embedded with (a) 108 

equispaced resonant inclusions and (b) a homogenised layer (not to scale). 109 

 110 

 111 

 112 
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2.1 Shell equations of motion 113 

The equations of motion for the cylindrical shell are based on Donnell-Mushtari theory with 114 

a modifying operator by Flügge-Byrne-Lur’ye. The geometric and material properties of the shell 115 

as well as the structural forcing are considered invariant along the axial direction and as such, the 116 

problem studied here is reduced to two dimensions. The shell is excited by a radial line force 117 

applied to the interior surface of the shell. Using the time-harmonic convention 𝑒−i𝜔𝑡 where i =118 

√−1 and 𝜔 is the angular frequency, the equations of motion of the shell are given by [74] 119 

 
𝐷

𝑎 4
(
𝑑4

𝑑𝜃4
+ 2

𝑑2

𝑑𝜃2
+ 1 + 𝛽2 −

𝜔2𝜌𝑠ℎ𝑠𝑎 
4

𝐷
)𝑤(𝜃) +

𝐷𝛽2

𝑎 4
𝑑𝑣

𝑑𝜃
(𝜃)

= 𝑝int(𝑎, 𝜃) − 𝑝1(𝑎, 𝜃) + 𝐹(𝜃) 

(1) 

 
𝐺

𝑎 2
𝑑𝑤

𝑑𝜃
(𝜃) +

𝐺

𝑎 2
(
𝑑2

𝑑𝜃2
+
𝜔2𝜌𝑠ℎ𝑠𝑎 

2

𝐺
)𝑣(𝜃) = 0, (2) 

where 𝑤 and 𝑣 are the shell radial and tangential displacements, respectively. 𝐷 =
 𝐸𝑠ℎ𝑠

3

12(1−𝜐𝑠
2)

 is the 120 

flexural stiffness of the shell, 𝐺 =
𝐸𝑠ℎ𝑠

(1−𝜐𝑠
2)

 is the shell extensional stiffness,  𝛽 =
√12𝑎 

ℎ𝑠
 is the 121 

dimensionless shell thickness parameter, 𝐸𝑠 is the complex Young’s modulus that incorporates the 122 

structural loss factor, 𝜌𝑠 is the density and 𝜐𝑠 is Poisson’s ratio of the shell. The right hand side of 123 

Eq. (1) represents the various loads acting on the shell surface, corresponding to the acoustic 124 

pressure of the interior field denoted by 𝑝int(𝑎, 𝜃), the acoustic pressure at the interface of the shell 125 

and the coating denoted by 𝑝1(𝑎, 𝜃), and the radial line force 𝐹(𝜃). 126 

2.2 General solutions 127 

Using a Fourier series expansion, general solutions for the radial and tangential shell 128 

displacements are given by 129 

 
𝑤(𝜃) = ∑ 𝑤𝑛

∞

𝑛=−∞

𝑒i𝑛𝜃, (3) 

 
𝑣(𝜃) = ∑ 𝑣𝑛

∞

𝑛=−∞

𝑒i𝑛𝜃, (4) 

where 𝑤𝑛 and 𝑣𝑛 are Fourier coefficients associated with the shell displacements. The interior and 130 

exterior acoustic pressure fields can also be expressed in terms of a Fourier series expansion as 131 

[75] 132 



6 
 

 
𝑝int(𝑟, 𝜃) = ∑ 𝑃𝑛,int𝐽𝑛(𝑘int𝑟)

∞

𝑛=−∞

𝑒i𝑛𝜃, 

  𝑝ext(𝑟, 𝜃) = ∑ 𝑃𝑛,ext𝐻𝑛
1(𝑘ext𝑟)

∞

𝑛=−∞

𝑒i𝑛𝜃, 

(5) 

(6) 

 133 

where 𝑃𝑛,int and 𝑃𝑛,ext are unknown scattering coefficients for the interior and exterior acoustic 134 

fields.  𝐽𝑛 and 𝐻𝑛
1 are the Bessel and Hankel functions of the first kind of order 𝑛. 𝑘int and  𝑘ext 135 

( 𝑘 = 𝜔/𝑐 ) denote the acoustic wave number in the interior and exterior acoustic fields, 136 

respectively.   137 

Representing the coating as a three-layered equivalent fluid, general solutions for the acoustic 138 

pressures in the inner layer, homogenised layer and outer layer of the coating are respectively 139 

given by 140 

 
𝑝1(𝑟, 𝜃) = ∑ (𝑎𝑛,1𝐽𝑛(𝑘𝑐𝑟) + 𝑏𝑛,1𝐻𝑛

1(𝑘𝑐𝑟))

∞

𝑛=−∞

𝑒i𝑛𝜃, 

    𝑝2(𝑟, 𝜃) = ∑ (𝑎𝑛,2𝐽𝑛(𝑘eff𝑟) + 𝑏𝑛,2𝐻𝑛
1(𝑘eff𝑟))

∞

𝑛=−∞

𝑒i𝑛𝜃, 

𝑝3(𝑟, 𝜃) = ∑ (𝑎𝑛,3𝐽𝑛(𝑘𝑐𝑟) + 𝑏𝑛,3𝐻𝑛
1(𝑘𝑐𝑟))

∞

𝑛=−∞

𝑒i𝑛𝜃, 

(7) 

(8) 

(9) 

 

where (𝑎𝑛,1 , 𝑏𝑛,1), (𝑎𝑛,2 , 𝑏𝑛,2), (𝑎𝑛,3 , 𝑏𝑛,3) are unknown scattering coefficients in the inner, 141 

homogenised and outer layers of the coating, respectively. 𝑘𝑐 = 𝜔/√𝜅𝑐/𝜌𝑐  and 𝑘eff = 𝜔/142 

√𝜅eff/𝜌eff  respectively correspond to the acoustic wave number in the homogeneous and 143 

homogenised layers. The effective material properties (𝜌eff , 𝜅eff ) in the homogenised layers 144 

composed of voids or hard inclusions are given in Appendix A. 145 

2.3 Shell excitation 146 

The shell is excited by a radial line force given by 147 

  𝐹(𝜃) = 𝐹𝑟𝛿(𝑎(𝜃 − 𝜃𝑟)),  (10) 

where 𝜃𝑟 is the angular location of the force, 𝐹𝑟 is the radial force amplitude and 𝛿(𝑎(𝜃 − 𝜃𝑟)) is 148 

the Dirac delta function. Using a Fourier series expansion and the identity given by 𝛿(𝑎𝜃) =149 

𝛿(𝜃)/|𝑎|, the Dirac delta function can be expressed as 150 

 
𝛿(𝑎(𝜃 − 𝜃𝑟)) = ∑ (

1

2𝜋𝑎
∫ 𝛿(𝜃 − 𝜃𝑟)𝑒

−i𝑛𝜃𝑑𝜃
2𝜋

0

)𝑒i𝑛𝜃
∞

𝑛=−∞

. (11) 
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Substituting Eq. (11) into Eq. (10) and simplifying yields the following expression for the radial 151 

line force 152 

 

𝐹(𝜃) = ∑
𝐹𝑟𝑒

−i𝑛𝜃𝑟

2𝜋𝑎
𝑒i𝑛𝜃

∞

𝑛=−∞

. 
(12) 

2.4 Continuity conditions 153 

The unknown coefficients are determined by satisfying continuity conditions at radial 154 

locations of 𝑎, 𝑅1, 𝑅2 and 𝑅3. At 𝑟 = 𝑎, the shell is coupled to both the interior acoustic pressure 155 

and inner surface of the coating by the following kinematic conditions 156 

         𝜕𝑝int
𝜕𝑟

= 𝜔2𝜌int𝑤, 

𝜕𝑝1
𝜕𝑟

= 𝜔2𝜌𝑐𝑤, 

𝑟 = 𝑎, 

𝑟 = 𝑎. 

(13) 

(14) 

It should be herein noted that both Eqs. (13) and (14) incorporate Eq. (12) arising from a radial 157 

force applied to the interior surface of the shell. Continuity of acoustic pressure at radial locations 158 

of 𝑅1, 𝑅2, 𝑅3 are given by 159 

 
𝑝1 = 𝑝2, 

𝑝2 = 𝑝3, 

𝑝3 = 𝑝ext,   

𝑟 = 𝑅1, 

𝑟 = 𝑅2, 

𝑟 = 𝑅3. 

(15) 

(16) 

(17) 

Continuity of normal velocity at radial locations of 𝑅1, 𝑅2, 𝑅3 are given by 160 

 
1

𝜌𝑐

𝜕𝑝1
𝜕𝑟
=

1

𝜌eff

𝜕𝑝2
𝜕𝑟
, 

1

𝜌eff

𝜕𝑝2
𝜕𝑟
=
1

𝜌𝑐

𝜕𝑝3
𝜕𝑟
, 

 
1

𝜌𝑐

𝜕𝑝3
𝜕𝑟
=

1

𝜌ext

𝜕𝑝ext
𝜕𝑟

, 

𝑟 = 𝑅1, 

𝑟 = 𝑅2, 

𝑟 = 𝑅3. 

(18) 

(19) 

(20) 

Equations (13)-(20) are assembled into a linear system of equations in matrix form expressed as 161 

𝐀𝐗 = 𝐅, where 𝐀 is an 8×8 matrix for which the non-zero terms are listed in Appendix B. 𝐗 and 162 

𝐅  are coefficient and force vectors given by 163 

𝐗 = [𝑎𝑛,1 𝑏𝑛,1 𝑎𝑛,2 𝑏𝑛,2 𝑎𝑛,3 𝑏𝑛,3 𝑃𝑛,int 𝑃𝑛,ext]T and  164 

𝐅 = [ 𝐹𝑟𝑒
−i𝑛𝜃𝑟

2𝜋𝑎

𝐹𝑟𝑒
−i𝑛𝜃𝑟

2𝜋𝑎
0 0 0 0 0 0]

T

 where T represents the vector transpose. 165 

Solutions to the unknown coefficients are obtained from 𝐗 = 𝐀−1𝐅.  166 
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2.5 Homogeneous coated shell 167 

For a cylindrical shell with a homogeneous coating (in the absence of resonant inclusions), 168 

Eqs. (7) to (9) are replaced by  169 

 
𝑝𝑐(𝑟, 𝜃) = ∑ (𝑎𝑛𝐽𝑛(𝑘𝑐𝑟) + 𝑏𝑛𝐻𝑛

1(𝑘𝑐𝑟))

∞

𝑛=−∞

𝑒i𝑛𝜃. (21) 

Similarly, Eqs. (14)-(20) are replaced by continuity equations on the inner surface (𝑟 = 𝑎) and 170 

outer surface (𝑟 = 𝑅) of the coating as follows 171 

 
 

𝜕𝑝𝑐
𝜕𝑟

= 𝜔2𝜌𝑐𝑤,      

𝑝𝑐 = 𝑝ext,    
 

1

𝜌𝑐

𝜕𝑝𝑐
𝜕𝑟
=

1

𝜌ext

𝜕𝑝ext
𝜕𝑟
,       

𝑟 = 𝑎, 

 

𝑟 = 𝑅, 

𝑟 = 𝑅. 

(22) 

(23) 

(24) 

Following a similar procedure described previously, solutions to the unknown coefficients 172 

corresponding to 𝑎𝑛, 𝑏𝑛, 𝑃𝑛,int, 𝑃𝑛,ext are obtained from assembling a linear system of equations 173 

(𝐀𝐗 = 𝐅) and calculating the coefficients using 𝐗 = 𝐀−1𝐅. 174 

3. Results and discussion 175 

To understand the physical mechanisms governing the vibroacoustic response of a coated shell 176 

for a given inclusion material, a single homogenised layer of voids or hard inclusions embedded 177 

in the coating is initially studied. Multilayered coating designs using different combinations of 178 

homogenised layers composed of voids and/or hard inclusions are then examined. 179 

3.1 Shell parameters 180 

We model an infinitely long cylindrical shell of mean radius 𝑎 = 1 m and thickness ℎ𝑠 = 0.01 181 

m. The shell material is steel with density 𝜌𝑠 = 7800 kg/m3, Young’s modulus 𝐸𝑠 = 210(1−0.02i) 182 

GPa and Poisson’s ratio 𝜐𝑠 = 0.3. The shell is submerged in water with density 𝜌ext = 1000 kg/m3 183 

and speed of sound 𝑐ext = 1500 m/s. The external surface of the shell is coated with an elastic 184 

rubber-like material of density 𝜌𝑐 = 1000 kg/m3, longitudinal modulus 𝜅𝑐 = 1(1-0.01i) GPa, and 185 

shear modulus (second Lamé constant) 𝜇𝑐 = 0.6(1-0.3i) MPa, in which the loss factor for the shear 186 

modulus is much larger than the loss factor for longitudinal modulus. The hard inclusions are steel 187 

with the same material properties as the shell. The voids are vacuous. The shell is excited by a 188 

radial line force with an amplitude of 𝐹𝑟 = 1 N/m applied to its interior surface at 𝜃𝑟 = 0. Results 189 
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for the radiated pressure are obtained at a location of (𝑟, 𝜃) = (5𝑎, 𝜋) downstream of the shell with 190 

respect to the force.  191 

For validation of our analytical approach, a finite element model was developed in COMSOL 192 

Multiphysics v5.5 using the aforementioned material and geometric parameters for the coated 193 

cylindrical shell. The elastic coating and hard inclusions were modelled using the Solid Mechanics 194 

module. The exterior water domain was modelled using the Pressure Acoustics module. A free 195 

boundary condition was applied at the interior surface of the shell. Free boundary conditions were 196 

also applied at the interfaces between the voids and the coating. Continuity boundary conditions 197 

were applied at the interfaces between the hard inclusions and the coating. An acoustic-structure 198 

boundary condition was applied at the exterior surface of the coating to account for the interaction 199 

between the coated cylindrical shell and surrounding water. A perfectly matched layer was applied 200 

at the outer boundary of the exterior acoustic domain to ensure anechoic termination of outgoing 201 

acoustic waves. The acoustic and structural domains were meshed using free triangular elements 202 

and the perfectly matched layer was meshed using mapped quadrilateral elements. A minimum of 203 

six elements per wavelength at the highest frequency of 2 kHz was considered.    204 

3.2 Single layer of resonant inclusions 205 

We consider a coating of thickness ℎ𝑐 = 0.1 m and embedded with a single layer of resonant 206 

inclusions. For the coating with voids, 50 equispaced voids of 5 cm diameter were modelled, which 207 

yields a monopole resonance frequency predicted using Eq. (A5) of 486 Hz. For the coating with 208 

steel inclusions, 110 equispaced scatterers of 5 cm diameter were modelled, which yields a dipole 209 

resonance frequency predicted using Eq. (A8) of 519 Hz. For the number and size of inclusions 210 

considered here, the effective thickness is 15.9 mm for the homogenised layer of voids and 51.7 211 

mm for the homogenised layer of hard inclusions. Figure 2 presents the radiated acoustic pressure 212 

from an uncoated shell and from a shell with a coating composed of a single layer of voids or hard 213 

inclusions, obtained analytically using the methodology presented in this work and numerically 214 

using the finite element method. The monopole and dipole resonances predicted analytically are 215 

indicated by circles. Discrepancies between analytical and numerical results for the locally 216 

resonant coated shells are attributed to the fact that effective material and geometric properties 217 

were used in the analytical model to characterise the homogenised layer (as per Fig. 1(b)), whereas 218 

the exact material properties and geometry of the inclusions was numerically modelled using 219 

COMSOL (as per Fig. 1(a)). The first peak at around 75 Hz for the voided coated shell is associated 220 

with a spring-mass resonance, whereby the shell acts as the mass and the compliant coating acts 221 

as the spring. Beyond the spring-mass resonance for the voided coated shell, global attenuation in 222 

the radiated acoustic pressure can be observed, attributed to the dramatic reduction in radiated 223 

sound at monopole resonance of the voids. Global attenuation for the coated shell with steel 224 
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inclusions is also observed, with the greatest attenuation occurring around dipole resonance of the 225 

scatterers. The greater reduction in sound pressure using a voided coating compared to a coating 226 

with hard inclusions is attributed to the fact that cavities in a soft medium effectively decouple the 227 

shell from the water, while the coating with hard inclusions is strongly coupled with the 228 

surrounding water. Contour plots at the spring-mass resonance, monopole resonance of the voids 229 

and dipole resonance of the steel scatterers are shown in Fig 2(a). The acoustic pressure 230 

distribution at the spring-mass resonance reveals that the coated shell is in translational motion in 231 

the same direction as the applied force, resulting in an acoustic dipole radiation pattern in the 232 

exterior domain. In Fig. 2(a), the shell has a vacuous interior. Figure 2(b) shows that when the 233 

interior cavity of the shell is air of density 𝜌int = 1.225 kg/m3 and sound speed 𝑐int= 343(1-0.001i) 234 

m/s, internal acoustic resonances occur. The internal acoustic resonances are denoted by (𝑝,𝑞) 235 

modes, where 𝑝 is the number of plane diametral nodal lines and 𝑞 is the number of cylindrical 236 

nodal lines concentric with the cylinder axis. Figure 2(b) displays the pressure distributions within 237 

the shell cavity at the (1,0), (0,1) and (1,1) internal acoustic resonances. As frequency increases, 238 

the peaks associated with the internal acoustic resonances decrease in amplitude and eventually 239 

disappear, attributed to increasing radiation damping of the acoustic radiation modes of the shell 240 

in water. Comparison of Figs. 2(a) and 2(b) reveals that the internal acoustic resonances have 241 

negligible effect on the vibroacoustic response of the coated shell. In subsequent results, air in the 242 

interior cavity is neglected.  243 

To analyse the acoustic responses for the coated shell in greater detail, the individual 244 

contributions to the radiated pressure for the lowest spectral orders are plotted in Fig. 3. For the 245 

voided coated shell in Fig. 3(a), the 𝑛 = 0 spectral order which corresponds to axisymmetric 246 

(breathing) motion of the shell has negligible contribution to the spring-mass resonance. 247 

Contributions by successive spectral orders 𝑛 ≥ 1 to the spring-mass resonance can be observed, 248 

with the greatest contribution by the 𝑛 = 1 spectral order associated with bending motion of the 249 

shell. Beyond the spring-mass resonance, distinct peaks in the structure-borne sound are associated 250 

with the circumferential modes of a coated shell in air. This is attributed to the fact that the voided 251 

coated shell becomes decoupled from the surrounding water. The decoupling mechanisms 252 

associated with the layer of voids are investigated in detail in the subsequent section. Beyond the 253 

peak for each spectral order, all contributions from the individual circumferential modes converge 254 

and as such, have similar contributions to the radiated sound. Figure 3(a) also shows that a trough 255 

in the radiated pressure at the monopole resonance of around 486 Hz occurs at all spectral orders. 256 

Figure 3(b) shows that the radiated pressure for a coated cylindrical shell with hard inclusions 257 

follows a similar trend to the response for an uncoated shell submerged in a heavy fluid. The 258 

contributions by the shell circumferential resonances to the radiated sound are less obvious due to 259 

strong coupling between the coated shell and the surrounding water. A sharp reduction in the 260 
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radiated pressure for a coated shell with voids or hard inclusions occurs at the ring frequency of 261 

the shell and its integer multiples. This is attributed to trapping of acoustic energy along the shell 262 

circumference which is subsequently dissipated due to structural damping of the shell [76]. The 263 

ring frequency of a cylindrical shell can be predicted using 𝑓𝑅 = 𝑐𝐿/2𝜋𝑎 , where 𝑐𝐿 =264 

√𝐸𝑠/𝜌𝑠(1 − 𝜐𝑠2) is the longitudinal wave speed of the shell. Table 1 lists the predicted ring 265 

frequency and integer multiples, as well as the frequencies obtained at the troughs for the uncoated 266 

shell submerged in water, the coated shell with voids and the coated shell with hard inclusions. 267 

Comparison of the predicted and observed ring frequencies for the uncoated and coated shells 268 

reveals that the effect of heavy fluid loading or the presence of a coating with different inclusion 269 

material does not have a significant influence on the ring frequency of a shell, as previously 270 

observed [12,17,76,77]. Above the ring frequency, the radiated pressure from all spectral orders 271 

for the coated cylindrical shell with hard inclusions converge. A similar finding has also been 272 

reported by Maxit et al. [78] for an uncoated shell submerged in a heavy fluid.  273 

 274 

Table 1 Predicted and observed ring frequencies for the uncoated and coated shells. 275 

Predicted ring 

frequency  

(Hz) 

Uncoated cylindrical 

shell in water     

(Hz) 

Coated cylindrical 

shell with voids 

 (Hz) 

Coated cylindrical 

shell with hard 

inclusions (Hz) 

865.7 865.6 865.3 865.6 

1731.4 1730.4 1729.1 1730.2 

2597.1 2594.0 2589.5 2596.2 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 
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 285 

 286 

(a) 287 

  288 

 (b) 289 

Figure 2 Radiated acoustic pressure (dB ref 1μPa) from an uncoated shell (black line), a shell with 290 

a coating embedded with 50 voids of 5 cm diameter (red line) or 110 hard inclusions of 5 cm 291 

diameter (blue line), obtained analytically (solid lines) and numerically (dashed lines). The shell 292 

has (a) a vacuous cavity or (b) an air filled cavity. The monopole and dipole resonances are 293 

respectively indicated by red and blue circles. Contour plots of the exterior pressure at the spring-294 

mass resonance, monopole resonance of the voids and dipole resonance of the hard inclusions are 295 

shown in (a). Contour plots of the pressure distribution within the shell cavity at the (1,0), (0,1) 296 

and (1,1) acoustic resonances are shown in (b). Maximum and minimum acoustic pressures are 297 

represented by red and blue, respectively. 298 

(1,0) 

(1,1) (0,1) 
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 299 

                300 

(a) 301 

                 302 

(b) 303 

Figure 3 Radiated acoustic pressure (dB ref 1μPa) from an uncoated shell (black line), a shell with 304 

a coating embedded with (a) 50 voids of 5 cm diameter (red line) and (b) 110 hard inclusions of 5 305 

cm diameter (blue line), as well as the individual contributions from the lowest spectral orders 306 

corresponding to 𝑛 = 0 (grey dashed lines), 𝑛 = 1 (grey solid lines), 𝑛 = 2 (grey dashed-dot lines) 307 

and 𝑛 = 3 (grey dotted lines). The monopole and dipole resonances are respectively indicated by 308 

red and blue circles. 309 

 310 

 311 
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3.2 Multiple layers of resonant inclusions  312 

The combined effects of voids and hard inclusions in a multilayered coating comprising 313 

alternating homogeneous and homogenised layers are now investigated. Figure 4 presents 314 

schematic diagrams of four coating designs considered in this study. Designs A and B correspond 315 

to coatings composed of two layers of inclusions of the same material. Designs C and D correspond 316 

to coatings composed of two layers of inclusions of different materials. The coatings have a 317 

thickness of ℎ𝑐 = 0.2 m, which is double the thickness of the coating with a single layer of resonant 318 

inclusions. The distance from the shell surface to the interior layer of inclusions is the same as for 319 

the coating with a single layer of inclusions. The circumferential location between two 320 

homogenised layers corresponds to half the total thickness of the coating. 321 

Figure 5 presents the radiated acoustic pressure for the different coating designs obtained 322 

analytically using the homogenisation approach presented here, and numerically using the finite 323 

element method. The same geometric properties of the inclusions in each layer as for a coating 324 

with a single layer of inclusions were used, corresponding to 50 voids and 110 hard inclusions of 325 

5 cm diameter. The effective thickness of the homogenised layers for the four coating designs are 326 

listed in Table 2. The effective thickness of the outer layers is reduced compared to that of the 327 

inner layers of the same inclusion material, due to the increase in lattice spacing of the equispaced 328 

inclusions. Close agreement between results obtained analytically and numerically can be 329 

observed for all four coating designs. For coatings comprising one or two layers of voids (designs 330 

A, C, D), the presence of the low frequency spring-mass resonance is observed. For two layers of 331 

voids (design A), the spring-mass resonance is lower than for one layer of voids in proximity to 332 

the shell surface (design C), due to a reduction in stiffness of the coating. A layer of hard inclusions 333 

in proximity to the shell surface (design D) results in an increase in overall mass of the system and 334 

a corresponding reduction in the spring-mass resonance. Similar to a coating with a single layer of 335 

hard inclusions, the spring-mass resonance does not exist for a coating with two layers of hard 336 

inclusions (design B).  337 

For coating designs A and C, sharp peaks in the radiated sound occurring at similar 338 

frequencies can be observed. We herein show that beyond the layer of voids in proximity to the 339 

shell surface, the coated shell is decoupled from the surrounding water. To investigate this 340 

decoupling effect, Fig. 6(a) compares the total acoustic response for the coated shells of designs 341 

A and C submerged in water, with the individual contributions to the radiated pressure from the 342 

lowest order circumferential modes of a uniformly coated shell in air. The thickness of the uniform 343 

coating for the shell in air is equal to the distance from the shell surface to the inner layer of voids 344 

for the coated shell in water. Results show that the peaks for each circumferential mode of a 345 

uniformly coated shell in air are in alignment with the corresponding circumferential resonances 346 

of the coated shells in water. The decoupling mechanism by the voids can be further verified by 347 
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examining the acoustic response for coating design D, corresponding to a layer of hard inclusions 348 

in proximity to the shell surface and an outer layer of voids. Figure 6(b) compares the acoustic 349 

performance for a coated shell of design D submerged in water with the individual contributions 350 

to the radiated sound from the circumferential resonances of a shell in air and coated with a single 351 

homogenised layer of hard inclusions. In this case, the total thickness of the coating for the shell 352 

in air is equal to the distance from the shell surface to the outer layer of voids for the coated shell 353 

in water.  Figure 6(b) shows that the circumferential resonances for the coated shells in air and in 354 

water align, which indicates that beyond the outer layer of voids, the coated shell of design D is 355 

decoupled from the surrounding water.  356 

Table 2 Effective thickness of homogenised layers for different coating designs. 357 

 Effective thickness (mm) 

Inner layer Outer layer 

Coating design A 15.9 14.3 

Coating design B 51.7 42.0 

Coating design C 15.9 42.0 

Coating design D 51.7 14.3 

 358 

Figure 7 presents the acoustic pressure for the four coating designs obtained analytically as a 359 

function of both frequency and distance from the shell surface. Regions of maximum and minimum 360 

radiated sound occur at the frequencies of the peaks and troughs in Fig. 5. For coatings comprising 361 

one or two layers of voids corresponding to designs A, C, D in Figs, 7(a), 7(c), 7(d), respectively, 362 

high sound pressure levels at low frequencies can be observed due to the introduction of a spring-363 

mass resonance. These figures also show strong blocking of sound transmission at each layer of 364 

voids. For a layer of voids in proximity to the shell surface (designs A and C) and for an outer 365 

layer of voids (design D), the coated shell becomes decoupled from the surrounding water, as 366 

discussed previously. As a result, distinct peaks of maximum pressure analogous to circumferential 367 

resonances of a coated shell in air can be observed. For coating design B composed of two layers 368 

of hard inclusions (Fig. 7(b)), the coated shell is strongly coupled with water. The lowest radiated 369 

sound occurs around the dipole resonance frequency.  370 

 371 

 372 

 373 
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 374 

 375 

                   (a)                               (b)                              (c)                                (d) 376 

Figure 4 Schematic diagrams for different coating designs (not to scale), corresponding to (a) 377 

design A (two layers of voids), (b) design B (two layers of hard inclusions), (c) design C (a layer 378 

of voids in proximity to the shell and an outer layer of hard inclusions) and (d) design D (a layer 379 

of hard inclusions in proximity to the shell and an outer layer of voids). 380 

 381 

 382 

Figure 5 Radiated acoustic pressure (dB ref 1μPa) from an uncoated shell (black line), a coated 383 

shell of design A (red line), design B (blue line), design C (green line) and design D (purple line). 384 

Results are obtained analytically (solid lines) and numerically (dashed lines). 385 

 386 

 387 

 388 

 389 
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 390 

 391 

(a) 392 

   393 

(b) 394 

Figure 6 (a) Radiated acoustic pressure (dB ref 1μPa) from a coated shell of design A (red line) 395 

and design C (green line). Radiated acoustic pressure (dB ref 20μPa ) from the individual 396 

circumferential modes 𝑛 = 0 (grey dashed line), 𝑛 = 1 (grey dotted line), 𝑛 = 2 (grey dashed-dot 397 

line) of a uniformly coated shell in air. (b) Radiated acoustic pressure (dB ref 1μPa) from a coated 398 

shell of design D (purple line). Radiated acoustic pressure (dB ref 20μPa) from the individual 399 

circumferential modes 𝑛 = 0 (grey dashed line), 𝑛 = 1 (grey dotted line), 𝑛 = 2 (grey dashed-dot 400 

line) of a coated shell with hard inclusions in air. 401 

 402 
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 403 

                                      (a)                                                                  (b) 404 

 405 

                                      (c)                                                                  (d) 406 

Figure 7 Acoustic pressure (dB ref 1μPa) as a function of distance from the shell surface measured 407 

at 𝜃 = 𝜋 for a coated shell of (a) design A, (b) design B, (c) design C and (d) design D. The 408 

homogenised layers of voids and hard inclusions are indicated by black dotted and dashed lines 409 

respectively. The exterior surface of the coating is indicated by a black solid line. 410 

 411 

3.3 Tuning of local resonances for single and multiple layers of resonant inclusions 412 

The effect of tuning the resonance frequencies of the voids and hard inclusions on the acoustic 413 

performance of the coating is now investigated by varying the size and number of the inclusions. 414 

The monopole and dipole resonances for a single layer of voids and hard inclusions in a coating 415 

are tuned to target a similar frequency. The local resonances are then tuned to target different 416 

frequencies. The physical insights observed from tuning the resonance frequency in a coating 417 

comprising a single layer of inclusions are then utilised to understand the effects of tuning the 418 

resonance frequencies in the multilayered coating designs. 419 

In Fig. 8(a), the local resonances of a single layer of voids (left column) and hard inclusions 420 

(right column) are tuned to a similar frequency of around 500 Hz using different combinations of 421 

the size and number of inclusions, ranging from a larger number of small sized scatterers to a 422 

smaller number of larger sized scatterers. Using a reduced number of larger sized inclusions results 423 

in greater reduction in the radiated pressure at the corresponding monopole and dipole resonances. 424 

Greater global reduction in the radiated sound beyond the monopole and dipole resonances occurs. 425 
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This is attributed to the fact that larger sized inclusions result in greater wave scattering, which in 426 

turn leads to strong blocking of sound waves by the coating composed of voids and greater 427 

conversion of sound waves to shear waves by the coating composed of hard inclusions. Figure 428 

8(a)(left) also shows that increasing the void diameter results in a decrease in the frequency of the 429 

spring-mass resonance. This is attributed to the fact that the effective stiffness of the coating 430 

decreases with an increase in void diameter while the effective mass contributed by the cylindrical 431 

shell remains unchanged.  432 

Figure 8(b) presents the radiated sound pressure for a single layer of voids and hard scatterers 433 

with a fixed diameter of 5 cm. The number of inclusions is varied to tune the monopole resonance 434 

of the voids (left column) and dipole resonance of the hard inclusions (right column) to different 435 

frequencies. Increasing the number of inclusions reduces the lattice spacing, resulting in 436 

resonances occurring at higher frequencies. Increasing the local resonance frequency of the 437 

inclusions results in greater reduction in the radiated pressure around and beyond the resonance 438 

frequency. This is attributed to increased resonance coupling as well as enhanced wave scattering 439 

by inclusions in proximity [37,42]. Similar results can also be obtained for a fixed number of 440 

inclusions and increasing the diameter of the voids or hard scatterers (results not shown here).  It 441 

is further shown in Fig. 8(b)(left) that a decrease in the frequency of the spring-mass resonance 442 

occurs when the number of voids is increased, attributed to a decrease in the effective stiffness of 443 

the coating. Comparison of the spring-mass resonances in Figs. 8(a)(left) and 8(b)(left) reveals 444 

that the frequency of the spring-mass resonance is significantly affected by the size of the voids, 445 

and to a lesser degree, by the number of voids. 446 

For the multilayered coating designs, the resonance frequency of the outer layer of inclusions 447 

is kept constant, while the resonance frequency of the inner layer is tuned by varying the size and 448 

number of the inclusions. Figure 8(c)(left) presents the radiated sound for coating designs A and 449 

C composed of an inner layer of voids, while Fig. 8(c)(right) presents the radiated sound for 450 

coating designs B and D composed of an inner layer of hard inclusions. Figure 8(c)(left) shows 451 

that when the inner layer is tuned to a similar monopole resonance of around 500 Hz using a 452 

smaller number of larger sized voids (dashed lines), greater reduction in radiated sound occurs 453 

around and beyond the resonance frequency, corroborating the results observed in Fig. 8(a)(left). 454 

Figure 8(c)(left) also reveals that when the inner layer of voids is tuned to a higher resonance 455 

frequency (dotted lines), greater reduction in radiated sound occurs beyond the resonance 456 

frequency, corroborating the trends observed in Fig. 8(b)(left). In Fig. 8(c)(right), the inner layer 457 

of hard inclusions is tuned to a similar dipole resonance of around 500 Hz using a smaller number 458 

of larger sized scatterers (dashed lines), or to a higher dipole resonance using a greater number of 459 

scatterers (dotted lines). Tuning the dipole resonance of the hard inclusions to a similar or higher 460 

frequency yields global reduction in the radiated sound for coating design B. In contrast, tuning 461 
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the dipole resonance of the hard inclusions to a similar or higher frequency in coating design D 462 

only yields an incremental reduction in radiated sound, attributed to decoupling of the coated shell 463 

from the surrounding water due to the outer layer of voids.  464 

 465 

4. Conclusions 466 

The radiated sound from a submerged cylindrical shell with a multilayered coating embedded 467 

with resonant inclusions has been presented. Coating designs composed of a soft compliant 468 

material with one or two layers of voids and/or hard inclusions were considered. The layers were 469 

homogenised using effective medium approximation theory, and the coatings were modelled as an 470 

equivalent fluid comprising alternating homogeneous and homogenised layers. The distribution of 471 

the homogenised layers was observed to significantly affect the radiated sound. For coating 472 

designs composed of voids only or both voids and hard inclusions, a low frequency spring-mass 473 

resonance was introduced. Beyond the spring-mass resonance, global attenuation in the radiated 474 

sound was achieved, attributed to effective decoupling of the shell from the water and significant 475 

reduction in the radiated sound around monopole resonance of the voids. A coating embedded with 476 

hard inclusions only was observed to be strongly coupled with the surrounding water, with the 477 

greatest reduction in radiated sound occurring around dipole resonance of the scatterers.  478 

The influence of tuning the resonance frequencies of the voids and hard inclusions was 479 

investigated by varying the size and number of inclusions. Increasing the size of the inclusions or 480 

shifting the local resonance to a higher frequency yielded greater reduction in the radiated pressure 481 

around and beyond the resonance frequency. The acoustic performance of a coating composed of 482 

both voids and hard inclusions is more sensitive to variation in the monopole resonance of the 483 

voids compared to variation in the dipole resonance of the hard inclusions.  484 

In this work, we have shown that a multilayered coating embedded with resonant inclusions 485 

can reduce sound radiation from a submerged cylindrical shell over a broad frequency range. Our 486 

future work will extend the current two-dimensional model to consider the vibroacoustic response 487 

of a coated cylindrical shell of finite length. A further focus of our future work is to investigate the 488 

radiated sound from a coated cylindrical shell excited by a turbulent boundary layer and examine 489 

the effectiveness of a resonant coating to absorb flow-induced noise.  490 

 491 

 492 
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 493 
(a) 494 

   495 
(b) 496 

 497 
(c) 498 

 499 

Figure 8 Radiated acoustic pressure (dB ref 1μPa) from an uncoated shell (black line), a shell with 500 

a coating embedded with (a)(left) 52 voids of 3 cm diameter (solid red line), 50 voids of 5 cm 501 

diameter (dashed red line) and 48 voids of 7 cm diameter (dotted red line); (a)(right) 154 hard 502 

inclusions of 3 cm diameter (solid blue line), 110 hard inclusions of 5 cm diameter (dashed blue 503 

line) and 84 hard inclusions of 7 cm diameter (dotted blue line); (b)(left) 30 (solid red line), 40 504 

(dashed red line), 50 (dotted red line) and 60 (dotted-dashed red line) voids of 5 cm diameter; 505 

(b)(right) 90 (solid blue line), 100 (dashed blue line), 110 (dotted blue line) and 120 (dotted-dashed 506 

blue line) hard inclusions of 5 cm diameter; (c)(left) a coated shell of designs A and C (solid lines), 507 

frequency tuning using 48 voids of 7 cm diameter (dashed lines) and 70 voids of 5 cm diameter 508 

(dotted lines); (c)(right) a coated shell of designs B and D (solid lines), frequency tuning using 84 509 

hard inclusions of 7 cm diameter (dashed lines) and 120 hard inclusions of 5 cm diameter (dotted 510 

lines). The tuned resonances of the inclusions are indicated by circles. 511 

 512 
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Appendix A Effective properties of a homogenised layer of resonant inclusions 513 

A 1.1 Effective properties of a homogenised layer of voids 514 

The effective geometric and material properties of a homogenised layer arising from a planar 515 

array of voids in a square lattice embedded in a soft material have been derived in our previous 516 

work and are given here for completeness of the current study. We herein employ the same 517 

effective geometric and material properties for the homogenised circumferential layer of voids. 518 

We show that this approach is valid when the radius of the cylindrical shell is much greater than 519 

the diameter of the inclusions and spacing between adjacent inclusions. The homogenisation 520 

models adopted in this work are suitable in the long wavelength limit, where the acoustic 521 

wavelength should be much larger than the size and spacing between the adjacent resonant 522 

inclusions [36,39]. The effective thickness is given by [36] 523 

 

ℎeff,𝑣 =
2𝑑𝑣
𝜋
ln sec (

𝜋𝑎𝑣
𝑑𝑣
), (A1) 

where 𝑎𝑣 is the radius of the voids and 𝑑𝑣 is the circumferential distance between adjacent voids. 524 

The effective density is given by [36] 525 

 

𝜌eff,𝑣 = 𝜌𝑐 (1 −
𝑓𝑣𝑑𝑣
ℎeff,𝑣

), (A2) 

where 𝑓𝑣 = 𝜋(𝑎𝑣/𝑑𝑣)
2 is the filling fraction associated with a planar array of voids in a square 526 

lattice. The effective longitudinal modulus for the homogenised layer of voids is dependent on the 527 

monopole resonance frequency of a single void in an infinite elastic medium 𝜔𝑣 and monopole 528 

resonance frequency of voids in an array Ω𝑣, given by [36]  529 

 
𝜅eff,𝑣 =

𝜅𝑐(1 − 𝑓𝑣)

(
𝑓𝑣𝑑𝑣
ℎeff,𝑣

)((
𝜆𝑐
𝜇𝑐
+ 2) / (1 − (

𝜔
Ω𝑣
)
2
) + 1) + (1 − 𝑓𝑣)

, (A3) 

where 𝜆𝑐 and 𝜇𝑐 are the first and second Lamé constants. The expressions for 𝜔𝑣 and Ω𝑣 are given 530 

by [37] 531 
 

𝜔𝑣 =
2𝑐𝑠

𝑎𝑣√0.23 + 2 ln (
𝑐𝑙
𝑐𝑠
)

, 

Ω𝑣 =
𝜔𝑣

√1 − (
2𝑎𝑣
𝑑𝑣
)
−0.06 ln(

2𝑎𝑣
𝑑𝑣
)

      

. 

(A4) 

(A5) 
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where 𝑐𝑙 = √𝜅𝑐/𝜌𝑐, 𝑐𝑠 = √𝜇𝑐/𝜌𝑐  are the longitudinal and shear wave speeds in the coating and 532 

𝑐𝑙 ≫ 𝑐𝑠 for a soft elastic material. 533 

 534 

A 1.2 Effective properties of a homogenised layer of hard inclusions 535 

Similar to the previous section, the effective properties of a homogenised layer composed of 536 

a planar array of hard scatterers in a square lattice embedded in a soft material are utilised as the 537 

effective geometric and material properties for the homogenised circumferential layer of hard 538 

scatterers.  The effective properties have been derived previously and are also given here for 539 

completeness of the current study.  The hard inclusions have radius 𝑎ℎ, density 𝜌ℎ and longitudinal 540 

modulus 𝜅ℎ, and are equispaced along the circumference by distance 𝑑ℎ. The effective thickness 541 

ℎeff,ℎ associated with the layer of hard inclusions is obtained using the same expression given by 542 

Eq. (A1), with 𝑎𝑣 replaced by 𝑎ℎ and 𝑑𝑣 replaced by 𝑑ℎ.  543 

The effective density of the homogenised layer comprising hard scatterers is a frequency 544 

dependent complex term denoted by 𝜌eff,ℎ = 𝜌eff,ℎ
′ − i𝜌eff,ℎ

′′ . The real and imaginary components 545 

are given by [79] 546 

𝜌eff,ℎ
′ =

𝜌𝑐𝑑ℎ

ℎeff,ℎ
(1 + 𝑓ℎ(𝛿ℎ − 1)

((
Ωℎ
𝜔
)
2
−
1+𝑚ℎ
𝛿ℎ+𝑚ℎ

)((
Ωℎ
𝜔
)
2
−1)+(

𝜓ℎ
𝜔
)
2

((
Ωℎ
𝜔
)
2
−1)

2

+(
𝜓ℎ
𝜔
)
2

+
ℎeff,ℎ−𝑑ℎ

𝑑ℎ
),  (A6) 

 547 

 

𝜌eff,ℎ
′′ =

𝜌𝑐𝑑ℎ
ℎeff,ℎ

(

  
 𝑓ℎ𝜓ℎ(𝛿ℎ − 1)

2

𝜔(𝛿ℎ + 𝛽ℎ) (((
Ωℎ
𝜔 )

2

− 1)

2

+ (
𝜓
ℎ
𝜔
)
2

)
)

  
 
,  (A7) 

where 𝑓ℎ = 𝜋(𝑎ℎ/𝑑ℎ)
2 is the filling fraction, 𝛿ℎ = 𝜌ℎ/𝜌𝑐 is the ratio of the density of the hard 548 

inclusions to that of the host elastic medium, 𝑚ℎ =
1+𝑓ℎ

1−𝑓ℎ
, 𝜓

ℎ
 is the effective damping for which 549 

an expression can be found in Ref. 39, and Ωℎ corresponds to the dipole resonance frequency for 550 

hard inclusions in an array given by [79] 551 

 

Ωℎ = √
𝐾eff,ℎ 

𝜌𝑐𝜋𝑎ℎ
2(𝛿ℎ +𝑚ℎ)

, (A8) 

where 𝐾eff is the effective stiffness coefficient given by [39] 552 
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𝐾eff,ℎ  =
8𝜋𝜇𝑐

′ (1 + 𝑓ℎ
2)

(1 + 𝑓ℎ
2) ln(1 𝑓ℎ⁄ ) + (𝑓ℎ

2 − 1)
, (A9) 

where 𝜇𝑐
′  is the real part of the shear modulus of the elastic coating. The effective longitudinal 553 

modulus of the homogenised layer composed of hard scatterers is given by [39] 554 

 

𝜅eff,ℎ =
𝜅𝑐𝜅ℎℎeff,ℎ

𝑓ℎ𝑑ℎ(𝜅𝑐 − 𝜅ℎ) + ℎeff,ℎ𝜅ℎ
. (A10) 

Appendix B Non-zero terms in matrix A 555 

The non-zero terms in matrix 𝐀 are given in what follows. The first number in the subscript 556 

of each element represents the matrix row and the second number in the subscript represents the 557 

matrix column. The non-zero terms in matrix A are normalised to prevent numerical underflow 558 

and overflow of Bessel and Hankel functions, respectively [80]. 559 

 𝑎11 = 𝐽𝑛(𝑘𝑐𝑎), (B1) 

 𝑎12 = 𝐻𝑛
1(𝑘𝑐𝑎), (B2) 

 
𝑎17 =

𝑘int

𝜔2𝜌
int

((𝐷𝑛4 + 𝐷𝛽2 − 𝜔2𝜌𝑠ℎ𝑠 + 𝐷(1 − 2𝑛
2))

−
𝐷𝛽2𝑛2𝐺

𝐺𝑛2 − 𝜔2𝜌𝑠ℎ𝑠
) 𝐽

𝑛
′ (𝑘int𝑎) − 𝐽𝑛(𝑘int𝑎), 

(B3) 

 
𝑎21 =

𝑘𝑐

𝜔2𝜌
𝑐

((𝐷𝑛4 + 𝐷𝛽2 − 𝜔2𝜌𝑠ℎ𝑠 + 𝐷(1 − 2𝑛
2))

−
𝐷𝛽2𝑛2𝐺

𝐺𝑛2 − 𝜔2𝜌𝑠ℎ𝑠
) 𝐽

𝑛
′ (𝑘𝑐𝑎) + 𝐽𝑛(𝑘𝑐𝑎), 

(B4) 

 
𝑎22 =

𝑘𝑐

𝜔2𝜌
𝑐

((𝐷𝑛4 + 𝐷𝛽2 − 𝜔2𝜌𝑠ℎ𝑠 + 𝐷(1 − 2𝑛
2))

−
𝐷𝛽2𝑛2𝐺

𝐺𝑛2 − 𝜔2𝜌𝑠ℎ𝑠
)𝐻𝑛

1′(𝑘𝑐𝑎) + 𝐻𝑛
1(𝑘𝑐𝑎), 

(B5) 

 𝑎27 = −𝐽𝑛(𝑘int𝑎), (B6) 

  𝑎31 = −𝐽𝑛(𝑘𝑐𝑅1), (B7) 

 𝑎32 = −𝐻𝑛
1(𝑘𝑐𝑅1), (B8) 

 𝑎33 = 𝐽𝑛(𝑘eff𝑅1), (B9) 

 𝑎34 = 𝐻𝑛
1(𝑘eff𝑅1), (B10) 

 
𝑎41 = −

𝑘𝑐𝐽𝑛
′ (𝑘𝑐𝑅1)

𝜌
𝑐

, (B11) 



25 
 

 
𝑎42 = −

𝑘𝑐𝐻𝑛
1′(𝑘𝑐𝑅1)

𝜌
𝑐

, (B12) 

 
𝑎43 =

𝑘eff𝐽𝑛
′ (𝑘eff𝑅1)

𝜌eff
, (B13) 

 
𝑎44 =

𝑘eff𝐻𝑛
1′(𝑘eff𝑅1)

𝜌eff
, (B14) 

 𝑎53 = −𝐽𝑛(𝑘eff𝑅2), (B15) 

 𝑎54 = −𝐻𝑛
1(𝑘eff𝑅2), (B16) 

 𝑎55 = 𝐽𝑛(𝑘𝑐𝑅2), (B17) 

 𝑎56 = 𝐻𝑛
1(𝑘𝑐𝑅2), (B18) 

 
𝑎63 = −

𝑘eff𝐽𝑛
′ (𝑘eff𝑅2)

𝜌eff
, (B19) 

 
𝑎64 = −

𝑘eff𝐻𝑛
1′(𝑘eff𝑅2)

𝜌eff
, (B20) 

 
𝑎65 =

𝑘𝑐𝐽𝑛
′ (𝑘𝑐𝑅2)

𝜌
𝑐

, (B21) 

 
𝑎66 =

𝑘𝑐𝐻𝑛
1′(𝑘𝑐𝑅2)

𝜌
𝑐

, (B22) 

 𝑎75 = −𝐽𝑛(𝑘𝑐𝑅3), (B23) 

 𝑎76 = −𝐻𝑛
1(𝑘𝑐𝑅3), (B24) 

 𝑎78 = 𝐻𝑛
1(𝑘ext𝑅3), (B25) 

 
𝑎85 = −

𝑘𝑐𝐽𝑛
′ (𝑘𝑐𝑅3)

𝜌
𝑐

, (B26) 

 
𝑎86 = −

𝑘𝑐𝐻𝑛
1′(𝑘𝑐𝑅3)

𝜌
𝑐

, (B27) 

 
𝑎88 =

𝑘ext𝐻𝑛
1′(𝑘ext𝑅3)

𝜌ext
. (B28) 
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