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Abstract. We extend the study [8] concerning the dynamic response of a thin linearly elastic plate in bilateral contact with a
rigid body along a part of its lateral boundary with Norton or Tresca friction to the case of a viscoelastic of non linear Kelvin-
Voigt type plate by still using the Trotter theory of convergence of semi-groups of operators acting on variable spaces [9, 15].
The limit system of equations has the same form as the original one but with the appearance of an additional state variable.

Keywords: Thin viscoelastic plates, Norton or Tresca friction, Transient problems, Multivalued operators, Non linear semi-
groups of operators, Trotter’s theory of convergence of semi-groups

1. Introduction

This study concerns the dynamic response, in the framework of small strains, of a thin plate made
of a viscoelastic material of non linear Kelvin-Voigt type in bilateral contact with a rigid body along a
part of its lateral boundary with Norton or Tresca friction subjected to a given load. On the one hand, it
follows [8] in which the transient response of a thin linearly elastic plate with Norton or Tresca friction
was investigated. On the other hand, it is an extension of the research presented in [14] and dealing
with the asymptotic modeling of linearly viscoelastic Kelvin-Voigt type plates via Trotter theory of
convergence of semi-groups of linear operators [15] ; we stress the fact that by means of an additional
state variable, both the limit system of equations and the genuine system of equations are similar. This
little-known tool for convergence is the crucial ingredient in our previous investigations [8, 14], and it
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may be used to find asymptotic modelings for a variety of problems in Physics of continuous media (see
examples in [9]) but also in Biology (see [3]).

First a precise statement of the problem of determining the dynamic response of the thin plate is
given in terms of an evolution equation in a Hilbert space of possible states with finite energy. Next by
considering some geometrical and mechanical data as parameters, the asymptotic behavior, when they
approach their natural limits, of the unique solution is then considered by bypassing the classical scaling
of the physical problem. This limit behavior, which is of the same type as the one of the genuine plate but
with an additional state variable, will allow us to provide a simplified but accurate enough framework
through a convergence to zero of a relative energy gap. Moreover, these equations are fairly easy to
implement numerically.

2. Problem setting

As is customary, we do not distinguish between R3 and the Euclidean physical space whose orthonor-
mal basis is denoted by {e1, e2, e3}. For all ξ = (ξ1, ξ2, ξ3) in R3, we write ξ̂ for (ξ1, ξ2). Throughout
the paper, the Latin indices run over {1, 2, 3} while the Greek ones run over {1, 2}. Like R3 and R2, the
space S3 of symmetric matrices of order 3 is endowed with the usual inner product and norm denoted
by · and | |. For each κ in S3, we define κ̂ and κ⊥ in S3 by κ̂αβ := καβ; κ̂i3 := 0 and κ⊥αβ := 0; κ⊥i3 := κi3,
respectively. A symmetric tensor product ξ ⊗s ζ in R3 is defined by (ξ ⊗s ζ)i j = (ξiζ j + ξ jζi)/2 for all
ξ, ζ ∈ R3. Let Lin(S3) denote the space of linear symmetric mappings from S3 into itself.

Here, within the context of small strains, we study the dynamic response of a thin viscoelastic of non
linear Kelvin-Voigt type plate subjected to a given load. The reference configuration of the plate is the
closure of Ωε := ω × (−ε, ε) whose thickness is 2ε and the middle surface of the plate ω is a bounded
domain in R2 with Lipschitz continuous boundary ∂ω. We refer to the lateral, upper and lower faces of
the plate as Γε

lat := ∂ω× [−ε, ε], Γε
+ := ω×{+ε}, and Γε

− := ω×{−ε} respectively. Given a partition
{γD, γN, γC} of the boundary ∂ω, the plate is clamped on a portion Γε

D := γD× [−ε, ε] withH1(γD) > 0,
where Hn is the n-dimensional Hausdorff measure. It is subjected to surface forces of density gε on
Γε

N := γN × [−ε, ε] ∪ Γε
+ ∪ Γε

− and body force of density f ε, while it is in bilateral contact with a rigid
body by Norton or Tresca friction on Γε

C := γC × [−ε, ε] with a "viscosity" coefficient µ (see Figure 1).

The density ρδε of the plate, where ρ is a positive number, and the elasticity tensor aε of the plate
satisfy:

(H0)

{
δε ∈ L∞(Ωε); ∃α > 0 s.t. δε(xε) > α a.e. xε ∈ Ωε,

aε ∈ L∞(Ωε; Lin(S3)); α|e|2 6 aε(xε) e · e , ∀e ∈ S3, a.e. xε ∈ Ωε.

The density of the global viscous pseudo-potential is denoted by bDε
v, where b is a positive number

and Dε
v is a measurable function on Ωε and convex on S3 satisfying:

∃q ∈ [1, 2], ∃β > 0 ; −α 6 Dε
v(xε, e) 6 β(1 + |e|q), ∀e ∈ S3, a.e. xε ∈ Ωε.
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x1

x2

x3

Fig. 1. Plate Ωε in three dimension with middle surface ω and thickness 2ε

Thus if s := (ε, ρ, µ, b) denotes the key data of the plate, the displacement and velocity fields
(us, vs) =: U s has to solve the following problem:

(Ps)



Find (us, vs = ∂us/∂t) sufficiently smooth in Ωε × [0,T] such that

us = 0 on Γε
D × [0,T], us

N = 0 on Γε
C × [0,T],

(us(·, 0), vs(·, 0)) = U s0 := (us0, vs0) in Ωε,

and there exists (ζ s, ξs) in ∂Dε
v(eε(vs))× ∂φp(vs

T ) satisfying∫
Ωε

ρδε
∂2us

∂t2
· v′ dxε +

∫
Ωε

aεeε(us) · eε(v′) dxε +

∫
Ωε

bζ s · eε(v′) dxε

+

∫
Γε

C

µξs · v′T dH2 =

∫
Ωε

f ε · v′ dxε +

∫
Γε

N

gε · v′ dH2,

for all v′ sufficiently smooth in Ωε and such that

v′ = 0 on Γε
D, v′N = 0 on Γε

C.

where t is the time, φp(ξ) = |ξ|p/p for all ξ in R3, 1 6 p 6 2, ∂J(v) consistently designates the
subdifferential at v of any lower semicontinuous convex function J, eε(u) is the linearized strain tensor
associated with the displacement field u (the symmetric part of∇εu, the gradient of u), and uN := u · nε,
uT := u − (u · nε)nε are the normal and tangential components of u on a part of ∂Ωε with outward unit
normal vector nε.
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3. Existence and uniqueness

To obtain the existence and uniqueness result, we make an assumption on the loading:

(H1) ( f ε, gε) ∈ BV1
(
0,T; L2(Ωε,R3)× L2(Γε

N,R3)
)
,

where for all Hilbert space H, BV1(0,T; H) comprises all elements of BV(0,T; H) with distributional
time derivative in BV(0,T; H) which is the space of all elements of L1(0,T; H) whose distributional
time derivative is a H-valued measure.

The field U s is split into U s = U se + U sr; the field U se(t) := (use(t), 0) is defined by:

use(t) ∈ U s; ϕs(use(t), u′) = Lε(t)(u′) ∀u′ ∈ U s, ∀t ∈ [0,T], (3.1)

where

U s := { u ∈ H1(Ωε,R3); u = 0 on Γε
D, uN = 0 on Γε

C },

ϕs(u, u′) :=
1

ε3

∫
Ωε

aεeε(u) · eε(u′) dxε ∀u, u′ ∈ U s, (3.2)

Lε(t)(u′) :=
1

ε3

(∫
Ωε

f ε(xε, t) · u′ dxε +

∫
Γε

N

gε(xε, t) · u′ dH2

)
∀u′ ∈ U s, ∀t ∈ [0,T].

Because of (H0) and (H1), the displacement field use is well-defined and belongs to BV1(0,T;U s).

The remaining part U sr of U s will be involved in an evolution equation in a Hilbert space Hs of
possible states with finite total mechanical energy governed by a maximal-monotone operator As. We
introduce ks the bilinear form associated with the kinetic energy:

ks(v, v′) :=
1

ε3

∫
Ωε

ρδεv · v′ dxε ∀v, v′ ∈ V s := L2(Ωε,R3), (3.3)

define the spaceHs := U s × V s and endow it with the following inner product and norm:

〈U,U ′〉s := ϕs(u, u′) + ks(v, v′) ∀U = (u, v), U ′ = (u′, v′) ∈ Hs,

|U|s := [〈U,U〉s]1/2.

The global pseudo-potential of dissipation Ds
f involved by friction is:

Ds
f (v) :=

µ

ε3

∫
Γε

C

φp(vT ) dH2, ∀v ∈ U s,

while the global viscous pseudo-potential of dissipation is:

Ds
v(v) :=

b
ε3

∫
Ωε

Dε
v

(
eε(v)

)
dxε, ∀v ∈ U s,
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where p = 1 refers to Tresca and p ∈ (1, 2] to Norton tangential friction with bilateral contact. The
rationale of the normalizing factor ε3 for energies and global pseudo-potential of dissipation will clearly
appear in the next section.

So the multi-valued operator As defined onHs by

D(As) :=

{
U = (u, v) ∈ Hs;

{
i) v ∈ U s

ii) ∃w ∈ V s s.t.

ϕs(u, v′) + ks(w, v′) +Ds
f (v + v′)−Ds

f (v)

+Ds
v(v + v′)−Ds

v(v) > 0 ∀v′ ∈ U s

}
,

−AsU = { (v,w); w satisfies ii) of definition of D(As) } ,

obviously satisfies:

Proposition 1. Operator As is maximal monotone and for all ψs = (ψs
u, ψ

s
v) inHs

{
Ū s = (ūs, v̄s) s.t.

Ū s + AsŪ s 3 ψs
⇐⇒



ūs = v̄s + ψs
u,

where v̄s is the unique minimizer on U s of J s;

J s(v) :=
1

2

[
|(v, v)|s

]2
+
〈
(ψs

u,−ψs
v), (v, v)

〉s

+Ds
f (v) +Ds

v(v) ∀v ∈ U s.

Finally, as the very definition of Ds
f and Ds

v imply that (Ps) is formally equivalent to:

(P s)


dU s

dt
+ As(U s − U se) 3 0,

U s(0) = U s0,

a result of [4] yields:

Theorem 1. Under assumptions (H1) and

(H2) U s0 ∈ U se(0) + D(As)

the problem (P s) has a unique solution U s belonging to W1,∞(0,T;Hs) and the first line of (P s) is
satisfied almost everywhere in (0,T].

4. Asymptotic behavior

Now we consider s as a quadruplet of parameters taking values in a countable subset S of (0,+∞)4

with a unique cluster point s̄ in {0} × [0,+∞) × [0,+∞]2. The study [8] leads us to speculate on the
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limit behavior in the current study and advises separating the limit model into twelve cases, each indexed
by I = (I1, I2, I3) in {1, 2} × {1, 2, 3} × {1, 2}. Let:

ρ∗I1 =

{
ρε−2 I1 = 1

ρ I1 = 2
, µ∗I2 =

{
µε−2 I2 = 1

µε−(2−p) I2 = 2, 3
, b∗I3 = bε−(2−q), I3 = 1, 2

we make the following assumption to account for the magnitudes of density, thickness and viscosity:

(H3)



there exists (ρ̄I1 , µ̄I2 , b̄I3) in (0,+∞)× [0,+∞]× [0,+∞] such that

ρ̄I1 = lim
s→s̄

ρ∗I1 ,

µ̄I2 = lim
s→s̄

µ∗I2 with µ̄1, µ̄2 ∈ [0,+∞) and µ̄3 = +∞,

b̄I3 = lim
s→s̄

b∗I3 with b̄2 = +∞.

Following [8] we introduce Ω, the closure of Ω := ω× (−1, 1), through a mapping πε:

x = (x̂, x3) ∈ Ω 7→ xε = πεx := (x̂, εx3) ∈ Ω
ε
.

In the sequel, xε and x are systematically connected through xε = πεx. Similarly to Ω, we discard index
ε from the inverse image of Γε

±,Γ
ε
D,Γ

ε
N,Γ

ε
C,Γ

ε
lat by (πε)−1. Let α and β be fixed positive real numbers,

we further make a due assumption (H4) on the density and the elasticity tensor of the plate, and on the
loading ( f ε, gε):

(H4)



∃ (δ, a) ∈ L∞(Ω,R× Lin(S3)) s.t

α 6 δ(x), α|e|2 6 a(x) e · e, ∀e ∈ S3, a.e. x ∈ Ω

δε(xε) = δ(x), aε(xε) = a(x), a.e. x ∈ Ω

∃Dv measurable in Ω, convex on S3 s.t.

∃q ∈ [1, 2], −α 6 Dv(x, e) 6 β(1 + |e|q)

Dε
v(xε, e) = Dv(x, e)

}
∀e ∈ S3, a.e. x ∈ Ω

∃ ( f , g) ∈ BV1(0,T; L2(Ω,R3)× L2(ΓN,R3)) s.t.

f̂ ε(xε) = ε f̂ (x), f ε3 (xε) = ε2 f3(x), ∀x ∈ Ω,

ĝε(xε) = ε2ĝ(x), gε3(xε) = ε3g3(x), ∀x ∈ ΓN ∩ Γ±,

ĝε(xε) = εĝ(x), gε3(xε) = ε2g3(x), ∀x ∈ ΓN ∩ Γlat.

From now on the letter c or C will denote various constants independent of s which may differ from line
to line.
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4.1. A candidate for the limit framework

To display the asymptotic behavior of U s, we use a simple scaling mapping S ε from L2(Ωε,R3) into
L2(Ω,R3) defined by:

S εw(x) :=

(
1

ε
ŵ(xε),w3(xε)

)
a.e. x ∈ Ω, ∀w ∈ L2(Ωε,R3). (4.1)

With this scaling, for all w in H1(Ωε,R3), we have eε(w)(xε) = εe(ε, S εw)(x), a.e. x ∈ Ω, where:

ei j(ε, z) :=


ei j(z) for 1 6 i 6 j 6 2

ε−1ei j(z) for 1 6 i 6 2, j = 3

e ji(ε, z) for 1 6 j < i 6 3

ε−2e33(z) for i = j = 3,

ei j(z) := 1
2(∂iz j + ∂ jzi)


∀z ∈ H1(Ω,R3). (4.2)

Therefore the bilinear forms ϕs in (3.2) and ks in (3.3) become:

ϕs(u, u′) =

∫
Ω

ae(ε, S εu) · e(ε, S εu′) dx ∀u, u′ ∈ U s, (4.3)

ks(v, v′) =

∫
Ω
ρδ
(

(Ŝ εv) · (Ŝ εv′) +
1

ε2
(S εv)3(S εv′)3

)
dx ∀v, v′ ∈ V s. (4.4)

Before introducing a suitable space for the limit fields, we recall some classical spaces useful in the
mathematical modeling of linearized elastic plates:

H1
ΓD

(Ω,R3) = {w ∈ H1(Ω,R3); w = 0 on ΓD}, (4.5)

VKL := {w ∈ H1
ΓD

(Ω,R3); ei3(w) = 0 }, (4.6)

and define:

U0 := {w ∈ VKL; wN = 0 on ΓC }, U1 := H1(−1, 1; L2(ω,R3))/L2(ω,R3),

U := U0 × U1, Eu := e(u0) + ∂3u1 ⊗s e3, ∀u = (u0, u1) ∈ U ,

V1 := L2(Ω), V2 := { v ∈ L2(Ω,R3) ; v3 = 0},

HI := U × V I1 , ∀I = (I1, I2, I3) ∈ {1, 2} × {1, 2, 3} × {1, 2},

ϕ(u, u′) :=

∫
Ω

a Eu · Eu′ dx, ∀u, u′ ∈ U

k1(v, v′) := ρ̄1

∫
Ω
δvv′ dx ∀v, v′ ∈ V1, k2(v, v′) := ρ̄2

∫
Ω
δv̂ · v̂′ dx ∀v, v′ ∈ V2,

〈U,U ′〉I := ϕ(u, u′) + kI1(v, v′), ∀U = (u, v), U ′ = (u′, v′) ∈ HI,

|U|I := [〈U,U〉I]1/2.

(4.7)
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Clearly HI equipped with the inner product 〈·, ·〉I is a Hilbert space and taking into account the funda-
mental link between velocity and displacement, we straightforwardly deduce:

Proposition 2. For every sequence X s = (X s
u ,X s

v ) in Hs such that |X s|s is uniformly bounded, there
exists a not relabeled subsequence and X I = (X I

u ,X I
v ) inHI such that:

i) (EX I
u
,X I

v ) is the weak limit in L2(Ω,S3 × R2I1−1) of
(
e(ε, S εX s

u ), (S εX s
v )3

)
when I1 = 1 or of(

e(ε, S εX s
u ), S εX s

v

)
when I1 = 2,

ii) |X I|I 6 lim
s→s̄
|X s|s.

Hence HI appears to be suitable for describing the asymptotic behavior. Moreover it is exactly the
appropriate space because any element U ofHI admits a representative PsIU inHs which is energetically
very close to U. By the way, the assertion ii) of Proposition 2 in [8] is of course asinine and even if the
results of the paper are left unaffected, it sets up a needlessly complicated framework that we simplify
here. We therefore have:

Proposition 3. For all s in S and all U = (u, v) inHI, let PsIU := (PsI
u u,PsI

v v) inHs defined by:

ϕs(PsI
u u, u′) :=

∫
Ω

a Eu · e(ε, S ε u′) dx, ∀u′ ∈ U s, (4.8)

ks(PsI
v v, v′) :=

{
k1(v,

(
S ε v′)3

)
, if I1 = 1

k2(v, S ε v′), if I1 = 2
, ∀v′ ∈ V s. (4.9)

We have:

(P1) ∃C > 0 s.t. |PsIU|s 6 C|U|I, ∀U ∈ HI, ∀s ∈ S,
(P2) lims→s̄ |PsIU|s = |U|I, ∀U ∈ HI,

(P3) i. lim
s→s̄

1

ε3

∫
Ωε

aε
[
eε
(
PsI

u u
)
− Eε

u

]
·
[
eε
(
PsI

u u
)
− Eε

u

]
dxε = 0,

with Eε
u(xε) := εEu(x) a.e. xε = πεx ∈ Ωε, ∀u ∈ U .

ii. PsI
v v = VεI

v :=


ρ∗I1

ρ̄I1
(S ε)

−1(0, v) if I1 = 1,

ρ∗I1

ρ̄I1
(S ε)

−1v if I1 = 2.

Proof. Choosing u′ = ξs := PsI
u u and v′ = PsI

v v in (4.8) and (4.9), respectively, Cauchy–Schwarz
inequality and (4.3) imply{

ϕs
(
PsI

u u,PsI
u u
)
6 ϕ(u, u)

ks(PsI
v v,PsI

v v) 6 kI1(v, v)
(4.10)

Combining these two inequalities gives (P1) straightforwardly.
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Because of (4.10), the sequence e(ε, S ε ξ
s) is bounded in L2(Ω,S3) so that Korn inequality and ε < 1

yield:

c|S ε ξ
s|2H1(Ω,R3) 6 |e(S ε ξ

s)|2L2(Ω,S3) 6 |e(ε, S ε ξ
s)|2L2(Ω,S3) 6 C.

Therefore there exist a not relabeled subsequence and (ξ̄0, κ̄) in U0 × L2(Ω,S3) such that:(
S ε ξ

s, e(ε, S ε ξ
s)
)

weakly converges in H1(Ω,R3)× L2(Ω,S3) toward (ξ̄0, κ̄),̂̄κ = e(ξ̄0).
(4.11)

Similarly to periodic homogenization problems treated by two-scale convergence [1, 12], we will show
that the limit in L2(Ω,S3) of the scaled strain e(ε, S εPsI

u u) will involve two fields of displacement: the
physical field 1

ε
eε(ξs) "3d-2d converges" toward Eu (see Appendix). There exists ξ̄1 in U1 such that

κ̄⊥ = ∂3ξ̄
1 ⊗s e3

where ξ̄1
i :=

∫ x3
−1(2 − δi3)κ̄i3(x̂, τ) dτ with δi j the Kronecker symbol. Hence κ̄ = ̂̄κ + κ̄⊥ = Eξ̄ with

ξ̄ = (ξ̄0, ξ̄1).

Now we choose u′ = ξ + ε(ξ̂1, εξ1
3) in (4.8), with ξ arbitrary in U0 and ξ1 arbitrary in (U1 ∩

H1(−1, 1; C∞0 (ω,R3))/L2(ω,R3)), which is obviously dense in U1, and obtain:

ξ̄ ∈ U ;

∫
Ω

a Eξ̄ · Eξ dx =

∫
Ω

a Eu · Eξ dx, ∀ξ ∈ U ,

which implies ξ̄ = u and the whole sequence satisfies (4.11).

Next choosing u′ = ξs in (4.8) yields:

lim
s→s̄

∫
Ω

ae(ε, S ε ξ
s) · e(ε, S ε ξ

s) dx =

∫
Ω

a Eu · Eu dx.

Therefore e(ε, S ε ξ
s) converges strongly in L2(Ω,S3) toward Eu, that is to say (P3)i and lim

s→s̄
ϕs(PsI

u u, PsI
u u) =

ϕ(u, u).

Lastly (P3)ii being obvious, one has ks(PsI
v v, PsI

v v) = kI1(v, v) by due account of (4.4).

2

Property (P2) states that any element U of HI has a representative PsIU in Hs whose energy
〈PsIU,PsIU〉s is arbitrarily close to the square of the norm of U in HI, ensuring that HI is appropri-
ate to describe the asymptotic behavior. Keep also in mind that through (4.7) the "abstract velocities"
living in the space V I1 involve their sole transverse component when I1 = 1.

To complete guessing the asymptotic behavior, according to Proposition 1, it remains to consider se-
quences zs with uniformly bounded global frictional and viscous pseudo-potentials of dissipationDs

f (zs),
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Ds
v(zs) and “total energy functional" [|(zs, zs)|s]2 which will permit to define the space Z I of "admissi-

ble virtual generalized velocities" and the limit global potentials of dissipation DI
f and DI

v. Note that
from a strictly mathematical point of view, such previous sequences stem from sequences X s such that
X s + AsX s are uniformly bounded inHs. We set:

Z I := {z ∈ U ; (z0)3 = 0 if I1 = 2, (4.12)

(z0)3 = 0 on ΓC if I2 = 2, z0 = 0 on ΓC if I2 = 3, z = 0 if I3 = 2}

DI
f(z) :=


2µ̄1

∫
γC
φp(z0

3) dH1, if I2 = 1,

2µ̄2
∫
γC
φp(ẑ0

T ) dH1, if I2 = 2, ∀z ∈ Z I,

0, if I2 = 3,

(4.13)

DI
v(z) :=

{
b̄1
∫

ΩDv(Ez) dx, if I3 = 1,

I{0}(z), if I3 = 2,
∀z ∈ Z I. (4.14)

Thus a simple argument of lower semicontinuity implies:

Proposition 4. For all sequence zs in U s such that [|(zs, zs)|s]2 +Ds
f (zs) +Ds

v(zs) 6 C, there exists a not
relabeled subsequence and z in Z I such that e(ε, S ε zs) weakly converges in L2(Ω,S3) toward Ez and

[∣∣(z, (̊z)I)
∣∣I]2

+DI
f(z) +DI

v(z) 6 lim
s→s̄

([∣∣(zs, zs)
∣∣s]2

+Ds
f (zs) +Ds

v(zs)

)
with

(̊z)I = (z0)3, if I1 = 1, (̊z)I = z0 if I1 = 2, for all z = (z0, z1) in U . (4.15)

We are now in a position to establish a convergence result for the solution U s to (P s) by using a non
linear version of Trotter theory of approximation of semi-groups acting on variable spaces, as developed
in the Appendix of [4], which is very efficient in many problems where the functional spaces have to
depend on physical parameter(s) as it is the case here (see [9]).

4.2. Trotter theory of operators acting on variable Hilbert spaces

Let Hn, H be Hilbert spaces with norms | · |Hn , | · |H respectively for each positive integer n and Pn a
sequence of linear operators from H into Hn satisfying:

(T1) ∃C > 0 such that |PnX|Hn 6 C|X|H ∀X ∈ H,∀n ∈ N,
(T2) limn→∞ |PnX|Hn = |X|H ∀X ∈ H.
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A sequence (Xn)n∈N with Xn in Hn for all n in N is said to converge in the sense of Trotter toward X in
H if

lim
n→∞

|PnX − Xn|Hn = 0.

One has the following convergence result (see [7]):

Theorem 2. Let An : Hn ⇒ Hn, A : H ⇒ H be multivalued maximal monotone operators, Fn ∈
L1(0,T; Hn), F ∈ L1(0,T; H), X0

n ∈ D(An), X0 ∈ D(A) and let Xn, X be the weak solution to
dXn

dt
+ AnXn 3 Fn,

Xn(0) = X0
n ,


dX
dt

+ AX 3 F,

X(0) = X0.

If

i) lim
n→∞

|(I− An)−1Pnz− Pn(I− A)−1z|Hn = 0 ∀z ∈ H,

ii) lim
n→∞

|PnX0 − X0
n |Hn = 0, lim

n→∞

∫ T

0
|PnF(t)− Fn(t)|Hn dt = 0,

where I denotes the identity operator in both spaces Hn and H, then Xn converges in the sense of Trotter
toward X uniformly on [0,T], namely:

lim
n→∞

sup
t∈[0,T]

|PnX(t)− Xn(t)|Hn = 0

with moreover:

lim
n→∞

sup
t∈[0,T]

∣∣|Xn(t)|Hn − |X(t)|H
∣∣ = 0.

4.3. Convergence results

We can now use the Trotter theory because of Propositions 2 and 3, and we get:

Proposition 5. The sequence X s = (X s
u ,X s

v ) in Hs converges in the sense of Trotter toward X =
(Xu,Xv) inHI if and only if both limits are satisfied:

i) lim
s→s̄

1

ε3

∫
Ωε

aε
(

eε(X s
u )− Eε

Xu

)
·
(

eε(X s
u )− Eε

Xu

)
dxε = 0,

ii) lim
s→s̄

ks(X s
v − VεI

Xv
,X s

v − VεI
Xv

) = 0.
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So this notion of convergence is the appropriate one from the mechanical point of view: a convergence
result of relative energetic gaps measured on the physical plate (the only one which has a meaning
because the total mechanical energies are going to zero!) between the state X s and the image on the
genuine physical configuration Ωε of the limit state X .

As for U s, we consider UIe := (uIe, 0) such that uIe is the solution to:

uIe ∈ U ; ϕ(uIe,w) = L(w) := Lε((S ε)
−1w0), ∀w = (w0,w1) ∈ U . (4.16)

Assumption (H4) therefore implies that UIe belongs to BV1(0,T;HI).

Taking advantage of the concept of multivalued operators, we introduce the following operator AI:

•When I3 = 1:

D(AI) :=

{
U = (u, v) ∈ HI ;


i)∃ ṽ ∈ Z I s.t. (̊ṽ)I = v,
ii)∃w ∈ V I1 s.t. 〈(u,w), (z, (̊z)I)〉I +DI

f(z + ṽ)−DI
f(ṽ)

+DI
v(z + ṽ)−DI

v(ṽ) > 0, ∀z ∈ Z I

}
,

−AIU = { (ṽ,w) satisfying i) and ii)}.

•When I3 = 2:{
D(AI) := U × {0},

−AIU = {0} × V I1 .

Regarding this operator AI, it is straightforward to check:

Proposition 6. Operator AI is maximal monotone and for all ψ = (ψu, ψv) inHI, when I3 = 1:

{
ŪI =

(
ūI, v̄I

)
s.t.

ŪI + AIŪI 3 ψ
⇐⇒



(
ūI, v̄I) =

(
z̄ + ψu, (̊z̄)I),

where z̄ is the unique minimizer on Z I of JI;

JI(z) :=
1

2

[∣∣(z, (̊z)I)∣∣I]2
+
〈
(ψu,−ψv) ,

(
z, (̊z)I)〉I

+DI
f(z) +DI

v(z), ∀z ∈ Z I

when I3 = 2: ŪI + AIŪI 3 ψ⇐⇒ (ūI, v̄I) = (ψu, 0).

So we have:

Theorem 3. Under assumptions (H1)–(H4) and
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(H5) UI0 ∈ UIe(0) + D(AI)

the differential inclusion

(P I)


dUI

dt
+ AI(UI − UIe) 3 0

UI(0) = UI0

has a unique solution UI belonging to W1,∞(0,T;HI) and the first line of (P I) is satisfied almost every-
where in (0,T].

Note that for the singular case (i.e. when I3 = 2) the problem (P I) reduces to

UI(t) = UI0, UI0 = (uI0, 0).

To affirm the Trotter convergence of U s(t) toward UI(t) uniformly on [0,T], according to Theorem 2,
the definitions (3.1) and (4.16) of use and uIe and their time regularities, it suffices to make the additional
assumption:

(H6) ∃UI0 ∈ UIe(0) + D(AI); lim
s→s̄
|PsIUI0 − U s0|s = 0

and to establish

Proposition 7. There hold:

i) lims→s̄ |PsI(I + AI)−1ψ− (I + As)−1PsIψ|s = 0 ∀ψ = (ψu, ψv) ∈ HI,
ii) lims→s̄ |PsIUIe(t)− U se(t)|s = 0 ∀t ∈ [0,T].

Proof. i) According to Proposition 1, Ū s = (ūs, v̄s) := (I + As)−1PsIψ is such that ūs = v̄s + PsI
u ψu and

v̄s is the unique minimizer on U s of J̃ s defined by:

J̃ s(v) =
1

2
[|(v, v)|s]2 +

∫
Ω

a Eψu · e(ε, S ε v) dx + kI1(−ψv, S ε v) +Ds
f (v) +Ds

v(v), ∀v ∈ U s.

Hence v̄s is bounded in U s and V s. According to Proposition 4, there exist v∗ in Z I and a not relabeled
subsequence such that e(ε, S ε v̄s) weakly converges in L2(Ω,S3) toward Ev∗ and:

JI(v∗) 6 lim
s→s̄

J̃ s(v̄s).

To prove that the entire sequence converges toward Ez̄ with z̄ the unique minimizer of JI on Z I and:

JI(z̄) = lim
s→s̄

J̃ s(v̄s),
∣∣(z̄, (̊z̄)I)∣∣I = lim

s→s̄

∣∣(v̄s, v̄s)
∣∣s, (4.17)
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it remains to show that for all z inZ I there exists zs in H1
ΓD

(Ω,R3) such that e(ε, S ε zs) weakly converges
in L2(Ω,S3) toward Ez with:

lim
s→s̄

∣∣(zs, zs)
∣∣s 6 ∣∣(z, (̊z)I)

∣∣I,
lim
s→s̄
Ds

f (zs) 6 DI
f(z),

lim
s→s̄
Ds

v(zs) 6 DI
v(z),

lim
s→s̄

J̃ s(zs) 6 JI(z).

(4.18)

To accomplish this, we use a classical construction in mathematical modeling of thin plates [5, 7] which

in fact consists in smoothing z1. As there exists qs in C∞0 (Ω,S3) such that
∫

Ω
a(qs−Ez) · (qs−Ez) dx 6

Cε2, the field defined by:

(ws)α = 2ε

∫ x3

0

(
(qs)α3(x̂, τ)− ε

2

∫ τ

0
∂α(qs)33(x̂, σ) dσ

)
dτ, (ws)3(x) = ε2

∫ x3

0
(qs)33(x̂, τ) dτ

(4.19)

belongs to H1
ΓD∪ΓC

(Ω,R3). Because |e(ε, z0 + ws) − qs|L2(Ω,S3) 6 Cε, we can see that e(ε, z0 + ws)

converges strongly in L2(Ω,S3) toward Ez and the four inequalities of (4.18) are satisfied with:

zs := (S ε)
−1(z0 + ws). (4.20)

Eventually, as

ϕs(PsI
u z̄− v̄s,PsI

u z̄− v̄s) = ϕs(PsI
u z̄,PsI

u z̄)− 2

∫
Ω

a Ez̄ · e(ε, S ε v̄s) dx + ϕs(v̄s, v̄s),

Propositions 2 and 3 and (4.17) imply that (ūs, v̄s) converges in the sense of Trotter toward
(
ūI, v̄I

)
.

ii) As U se(t) and UIe(t) are the unique minimizers of 1
2

[∣∣(·, ·)∣∣s]2− Lε(t) and 1
2

[∣∣((·, ·), ·)∣∣I]2
− L(t),

respectively, it suffices to use the preceding result i) by simply replacing the linear forms
∫

Ω
a Eψu ·

e(ε, S ε·) dx, ϕ(ψu, ·) by Lε(t), L(t), respectively, and make ρ = µ = 0, ψv = 0. 2

This leads us to our key convergence result:

Theorem 4. Under assumptions (H1)–(H6), the solution U s to (P s) converges to the solution UI to
(P I) in the sense that lims→s̄ |PsIUI(t)−U s(t)|s = 0 uniformly on [0,T]. In addition, lims→s̄ |U s(t)|s =
|UI(t)|I uniformly on [0,T].
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5. Conclusive remarks and proposal of an asymptotic model

First, according to each value of I in {1, 2}×{1, 2, 3}×{1, 2}, we give a more explicit way of writing
(P I) in the form of variational equations. We recall that Z I is defined in (4.12) for each I and introduce
〈δ〉 :=

∫ 1
−1 δ(x̂, x3)/2 dx3. For the sake of simplicity, we write (u0, u1) instead of (uI0, uI1). Denoting the

time derivative by an upper dot and considering the following initial conditions:

u(0) = u0 = (u0,0, u0,1), v(0) = v0, ∀I

the expression of the limit problem (PI) is as follows:

(PI)



I = (1, 1, 1) : ∃ζ ∈ ∂Dv (Eu̇) and ∃ξ ∈ ∂φp
(
u̇0

3

)
s.t.

2ρ̄1
∫
ω
〈δ〉ü0

3z0
3 dx̂ +

∫
Ω

[
a Eu + b̄1ζ

]
· Ez dx + 2µ̄1

∫
γC
ξz0

3 dH1 = L(t)(z0), ∀z = (z0, z1) ∈ Z I,

I = (1, 2, 1) : ∃ζ ∈ ∂Dv (Eu̇) and ∃ξ ∈ ∂φp

(
( ̂̇u0)T

)
s.t.

2ρ̄1
∫
ω
〈δ〉ü0

3z0
3 dx̂ +

∫
Ω

[
a Eu + b̄1ζ

]
· Ez dx + 2µ̄2

∫
γC
ξ · ẑ0 dH2 = L(t)(z0), ∀z ∈ Z I,

u0
3(t) = u0,0

3 on ΓC , ∀t ∈ [0,T ],

I = (1, 3, 1) : ∃ζ ∈ ∂Dv (Eu̇) s.t.
2ρ̄1

∫
ω
〈δ〉ü0

3z0
3 dx̂ +

∫
Ω

[
a Eu + b̄1ζ

]
· Ez dx = L(t)(z0), ∀z ∈ Z I,

u0(t) = u0,0 on ΓC , ∀t ∈ [0,T ],

I = (2, 1, 1) : ∃ζ ∈ ∂Dv (Eu̇) s.t.
2ρ̄2

∫
ω
〈δ〉 ̂̈u0 · ẑ0 dx̂ +

∫
Ω

[
a Eu + b̄1ζ

]
· Ez dx = L(t)(z0), ∀z ∈ Z I,

u0
3(t) = u0,0

3 , ∀t ∈ [0,T ],

I = (2, 2, 1) : ∃ζ ∈ ∂Dv (Eu̇) and ∃ξ ∈ ∂φp

(
( ̂̇u0)T

)
s.t.

2ρ̄2
∫
ω
〈δ〉 ̂̈u0 · ẑ0 dx̂ +

∫
Ω

[
a Eu + b̄1ζ

]
· Ez dx + 2µ̄2

∫
γC
ξ · ẑ0 dH2 = L(t)(z0), ∀z ∈ Z I,

u0
3(t) = u0,0

3 , ∀t ∈ [0,T ],

I = (2, 3, 1) : ∃ζ ∈ ∂Dv (Eu̇) s.t.
2ρ̄2

∫
ω
〈δ〉 ̂̈u0 · ẑ0 dx̂ +

∫
Ω

[
a Eu + b̄1ζ

]
· Ez dx = L(t)(z0), ∀z ∈ Z I,

û0(t) = û0,0 on ΓC , ∀t ∈ [0,T ],

u0
3(t) = u0,0

3 , ∀t ∈ [0,T ],

I3 = 2 : u(t) = u0, v(t) = 0.
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Even if (PI) involves abstract fields defined in an "abstract plate" occupying Ω, we will use the lan-
guage of Mechanics to comment (PI). Except in the case b̄2 =∞ (very high viscosity) where the motion
is frozen in the initial state, the feature of the evolution is the same as in the elastic case: a juxtaposition
of a dynamic evolution for a part of the displacement and of a quasi-static (possibly static) for the other
part, depending on the relative magnitudes of the density and the thickness. Dynamic evolution concerns
the transverse component of the displacement for ρ of order ε2 and the in-plane component for ρ of or-
der 1. As in the elastic case, the friction involves the in-plane or transverse component of the tangential
velocity according to the relative magnitudes of the "viscosity coefficient" µ and the thickness. As in
the case of a purely quasi-static evolution, Kelvin-Voigt viscosity highlights an additional state variable,
that we have chosen to be like a displacement, and allows to maintain this same short memory viscosity
character. Moreover, the viscosity prevents the decoupling between membrane and flexural motions and
problem (P I) is therefore three-dimensional.

Next we propose our simplified but accurate enough modeling not by considering (S ε)
−1uI0(t) but by

taking into account our convergence result (see Theorem 4) and the crucial Proposition 5 which leads to:

lim
s→s̄

1

ε3

∫
Ωε

aε
(
eε(us)− Eε

uI

)
·
(
eε(us)− Eε

uI

)
dxε = 0. (5.1)

Hence as denoted in [6, 9, 10, 14] Eε
uI is a good approximation of the strain tensor of us in the sense that

the relative error made by replacing eε(us) by Eε
uI tends to zero! This shows that eε(us) is not close to

eε
(
(S ε)

−1uI0
)

but close to Eε
uI , the terms eεi3(us) and those of eε

(
(S ε)

−1uI0
)∧

being of the same order of
magnitude.

As Eε
uI is not necessarily the strain tensor of a field of U s, we are led to use the construction (4.19)- (4.20)

which supplies a field uIs in U s such that:

lim
s→s̄

1

ε3

∫
Ωε

aε
(

eε(uIs)− Eε
uI

)
·
(

eε(uIs)− Eε
uI

)
dxε = 0. (5.2)

Thus uIs is our proposal of approximation for us. It is obtained by first solving (P I) which actually
corresponds to a three-dimensional problem yet set on a "reasonable" fixed domain Ω and second by
means of uIs which also involves the fixed domain Ω. It is therefore easy to implement a numerical
method of approximation.

Remark 1. Note, as mentioned in part ii) of the proof of Proposition 7, that this paper encompasses the
full treatment of a purely linearly elastic plate in the static case.

Remark 2. It is worthwhile to observe that in these problems concerning thin linearly elastic or non
linear Kelvin-Voigt viscoelastic plates, the field of displacement in the real plate which occupies Ωε is
far from a Kirchhoff-Love field and even from a Reissner-Mindlin one because (Eε

uI)i3 depends on xε3
even in the case of an homogeneous plate. It is the abstract field uI0 which does satisfy ei3(uI0) = 0 in
Ω!
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Remark 3. It is also possible to deal with the not too much realistic case 2 < p, q 6 +∞ by the same
method, the variant being that Ds

f , Ds
v, DI

f and DI
v are only lower semicontinuous functions and some

trivial approximation processes are in order.

Remark 4. A more practical approach is when two other physical data concerning the magnitudes of
the stiffness and of the loading are taken into account and we refer the reader to the Remark 3 in [8] for
its mathematical treatment.

Appendix A. 3d-2d convergence and asymptotic modeling of thin plates

Let H be a finite dimensional space.

Definition 1. A sequence of functions uε in L2(Ωε,H) is said to 3d-2d converge to a limit u0 belonging
to L2(Ω,H) if, for any ψ in L2(Ω,H), we have:

lim
ε→0

1

|Ωε|

∫
Ωε

uε(xε)ψ(xε) dxε =
1

|Ω|

∫
Ω

u0(x)ψ(x) dx (A.1)

where we recall xε = (x̂ε, xε3) = πεx := (x̂, εx3) a.e. x ∈ Ω.

Proposition 8. From each sequence uε in L2(Ωε,H) such that
1

|Ωε|
|uε|2L2(Ωε,H) is bounded we can extract

a subsequence, and there exists a limit u0 in L2(Ω,H) such that this subsequence 3d-2d converges to u0

and

1

|Ω|
|u0|2L2(Ω,H) 6 lim

ε→0

1

|Ωε|
|uε|2L2(Ωε,H). (A.2)

Proof. As uε defined by

uε(x) = uε(xε) a.e. x ∈ Ω (A.3)

satisfies

1

|Ωε|

∫
Ωε

|uε(xε)|2 dxε =
1

|Ω|

∫
Ω
|uε(x)|2 dx (A.4)

there exists a not relabeled subsequence such that uε weakly converges toward some u0 in L2(Ω,H)
with:

lim
ε→0

1

|Ωε|

∫
Ωε

uε(xε) · ψ(xε) dxε = lim
ε→0

1

|Ω|

∫
Ω

uε(x) · ψ(x) dx =
1

|Ω|

∫
Ω

u0(x) · ψ(x) dx (A.5)

and consequently (A.2). 2

This 3d-2d limit u0 may give accurate informations on the behavior of uε:



18 Y. Terapabkajornded et al. / Transient response of thin viscoelastic of non linear Kelvin-Voigt type plates

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proposition 9. Let uε be a sequence of functions in L2(Ωε,H) that 3d-2d converges to a limit u0 be-
longing to L2(Ω,H). Assume that

lim
ε→0

1

|Ωε|
|uε|2L2(Ωε,H) =

1

|Ω|
|u0|2L2(Ω,H). (A.6)

Then, for any sequence vε that 3d-2d converges to a limit v0 belonging to L2(Ω,H) we have:

1

|Ωε|

∫
Ωε

uε(xε) · vε(xε) dxε =
1

|Ω|

∫
Ω

u0(x) · v0(x) dx (A.7)

lim
ε→0

1

|Ωε|

∫
Ωε

|uε(xε)− uε0(xε)|2 dxε = 0 (A.8)

with uε0(xε) := u0(x) a.e. xε ∈ Ωε.

Proof. It is an obvious consequence of (A.3), which implies that uε converges strongly in L2(Ω,H), vε
weakly, toward u0, v0, respectively. 2

The relation (A.8) expresses that uε0 is a rather good approximation of uε in the sense that the relative

gap in L2(Ωε,H) tends to zero
(

i.e.
|uε − uε0|L2(Ωε,H)

|uε0|L2(Ωε,H)
−−→
ε→0

0
)

.

Application:

A standard problem of equilibrium of a linearly elastic thin plate occupying Ωε with elasticity tensor
aε submitted to a given loading represented by a continuous linear form Lε on H1

Γε
D
(Ωε,R3) can be

formulated as:Find uε in H1
Γε

D
(Ωε,R3) such that∫

Ωε

aε(xε)eε(uε) · eε(v) dxε = Lε(v), ∀v ∈ H1
Γε

D
(Ωε,R3).

(A.9)

Let S ε defined by (S ε v)(x) =
(
v̂(xε)/ε, v3(xε)

)
which implies:

eε(v)(xε) = εe(ε, S ε v)(x), e(ε, ·) =

[
êαβ 1

ε
eα3

1
ε
eα3

1
ε2

e33

]
(A.10)

and assuming
aε(xε) = a(x), etc.
∃ Lε ∈ H1

ΓD
(Ω,R3)′ s.t. Lε(v) = ε3Lε(S εv),

Lε strongly converges in H1
ΓD

(Ω,R3)′ toward L
(A.11)
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(which corresponds to assumption (H4) for both aε and the loading ( f ε, gε)), the field

uε := S ε(uε) (A.12)

does satisfy:Find uε in H1
ΓD

(Ω,R3) such that∫
Ω

a(x)e(ε, uε) · e(ε, v) dx = Lε(v), ∀v ∈ H1
ΓD

(Ω,R3)
(A.13)

We can replicate the proof of Proposition 3 to show that there exists some u = (u0, u1) in U such that
e(ε, uε) strongly converges toward Eu := e(u0) + ∂3u1 ⊗s e3, withu ∈ U ;∫

Ω
a Eu · Ev dx = L(u), ∀v ∈ U

lim
ε→0

1

ε3

∫
Ωε

a
(
eε(uε)− Eε

u

)
·
(
eε(uε)− Eε

u

)
dxε = 0, Eε

u(xε) := εEu(x)

that is to say
1

ε
eε(uε) 3d-2d converges toward Eu and the strain of the real field uε in the domain Ωε is

close to Eε
u in the sense that the relative energetic gap tends to zero which is the only significant notion

as the energy of uε tends to zero!

Eventually by replacing Ωε by εω× (−1, 1) and πε by xε = πεx := (εx̂, x3), we are in the situation of
slender beams so that in a forthcoming paper we will reproduce our present analysis in the framework of
the dynamics of viscoelastic slender beams in bilateral contact with Norton or Tresca friction. A crucial

point, which can be found in [6, 11, 13] will be the 3d-1d convergence of
1

ε
eε(uε) toward some Eu in

L2(Ω,S3) involving three fields of displacements...
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