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A model based on mass conservation properties is developed for shock wave boundary
layer interactions (SWBLIs), aimed at reconciling the observed great diversity in flow
organization documented in literature, induced by variations in interaction geometry
and aerodynamic conditions. It is the basis for a scaling approach for the interaction
length that is valid independent of the geometry of the flow (considering compression
corners and incident reflecting shock interactions). As part of the analysis, a scaling
argument is proposed for the imposed pressure jump that depends principally on the
free-stream Mach number and the flow deflection angle. Its interpretation as a separation
criterion leads to a successful classification of the separation states for turbulent SWBLIs
(attached, incipient or separated). In addition, dependencies of the interaction length on
the Reynolds number and the Mach numbers are accounted for. A large compilation of
available data provides support for the validity of the model. Some general properties
on the state of the flow are derived, independently of the geometry of the flow and for a
wide range of Mach numbers and Reynolds numbers.

1. Introduction

Shock Wave Boundary Layer Interactions (SWBLI) have been widely studied in the
last decades (see for example the following review papers: Délery & Marvin (1986);
Viswanath (1988); Dolling (2001); Smits & Dussauge (2006); Clemens & Narayanaswamy
(2009); Délery & Dussauge (2009)). The most commonly considered interactions concern
those with a turbulent boundary layer, although laminar or transitional interactions have
also been investigated in literature. Cases under consideration covered a large range of
geometric configurations (amongst others normal shock interactions (Atkin & Squire
(1992); Bruce & Babinsky (2008); Bur et al. (2008)), blunt fin interactions (Brusniak &
Dolling (1994); Ünalmis & Dolling (1996); Bueno (2006)), over-expanded nozzles (Frey &
Hagemann (1998, 2000); Bourgoing & Reijasse (2005)), compression ramp interactions

(Thomke & Roshko (1969); Spaid & Frishett (1972); Settles et al. (1979); Debiève (1983);
Ardonceau (1984); Dolling & Or (1985); Smits & Muck (1987); Kuntz et al. (1987); Selig
et al. (1989); Erengil & Dolling (1991a,b); Thomas et al. (1994); Beresh et al. (2002);
Hou (2003); Ganapathisubramani et al. (2007a); Wu & Martin (2008); Ringuette et al.

(2008)) and incident reflecting shock interactions (Green (1970); Dupont et al. (2006);
Pirozzoli & Grasso (2006); Touber & Sandham (2008); Piponniau et al. (2009); Humble
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et al. (2009a); Souverein et al. (2009); Polivanov et al. (2009); Garnier (2009); Touber &
Sandham (2009a); Pirozzoli et al. (2009); Souverein et al. (2010); Souverein (2010)); the
list is evidently not exhaustive). In addition, the considered flow conditions cover a large
range of Mach numbers (from transonic to hypersonic values) and of Reynolds numbers
(spanning at least two orders of magnitude depending on the experimental facilities).
Despite these large variations in aerodynamic and geometric parameters, several gen-

eral properties have been highlighted for this family of flows. The qualitative mean orga-
nization of the flow is currently quite well understood, see Délery & Marvin (1986). Good
quantitative agreement has been obtained in the particular case where the shock strength
is large enough for the boundary layer to separate. In those cases, the free interaction
theory proposed by Chapman et al. (1957), suggests that the separation shock proper-
ties become independent of the original cause of the separation (i.e. the flow deflection
angle). Therefore, notwithstanding the difference in flow geometry, the wall pressure dis-
tributions for sufficiently separated shock reflections and compression ramps are nearly
coincident (see Délery & Marvin (1986)). However, no satisfactory description has yet
been found that relates the extent of the interaction to the combined effect of varia-
tions in the Mach number, the Reynolds number, the state of the incoming boundary
layer (including non-adiabatic wall conditions and upstream control) and the imposed
adverse pressure gradient. Results are even worse when the geometry is also included as
a parameter.
More recently, evidence of low frequency unsteadiness of the separation shock has

been reported (Dolling & Murphy (1983); Dolling & Brusniak (1989); Erengil & Dolling
(1991b); Thomas et al. (1994)). These frequencies are about two orders of magnitude
below the energetic scales of the upstream boundary layer and their origin has been a
subject of studies for nearly two decades.
Although the precise sources of the separation shock motions are still under debate,

it has been shown recently that in separated cases, the low frequency unsteadiness of
the separation shock is also rather independent of the particular geometry of the flow
(Dussauge et al. (2006); Dupont et al. (2006); Wu & Martin (2008); Touber & Sandham
(2009b)). For example, a dimensionless frequency of the separation shock oscillations
can be defined with a nearly constant value, whatever the particular shock induced
separation that is considered (see Erengil & Dolling (1991b); Dussauge et al. (2006)).
This dimensionless frequency, or Strouhal number, is defined as:

SL =
fL

U1
(1.1)

where f is the characteristic shock motion frequency, L the characteristic length of the
interaction and U1 the velocity downstream the separated shock. The Strouhal number
SL, originally proposed for a Mach 3 compression ramp case (Erengil & Dolling (1991b)),
is similar to its counterpart for incompressible separated flows (Kiya & Sasaki (1983);
Cherry et al. (1984)). Typical values of 0.12 are obtained in subsonic separated flows,
compared to the nearly constant value of about 0.03 for supersonic cases at a Mach
number larger than 2.
The characteristic length L used in the Strouhal number represents the effects of the

presence of the boundary layer in comparison to a purely inviscid flow (see the scheme
in figure 1). It is defined as the observed upstream shift of the shock wave CS due to the
thickening of the boundary layer, subject to the imposed pressure jump (or equivalently
the angle of deviation of the flow). When the boundary layer is sufficiently decelerated
to separate, the shock wave CS is called the separation shock. For simplicity, we will
keep this nomenclature for this shock wave, whatever the separation state of the flow.
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Figure 1. Definition of the interaction length L for reflection and compression ramp cases.

Hence, in the case of reflecting waves, L is defined as the distance between the foot of
the separation shock and the the extrapolated wall impact point of the incident shock.
Similarly, in cases of for example compression corners and blunt fins, L is defined as
the distance between the foot of the separation shock and the corner, respectively the
obstacle. It has to be noted that the derivation of the location of the foot of the separation
shock can differ depending on the authors and the published data. It has sometimes been
derived from Schlieren visualizations, from particle image velocimetry data, from the
mean wall pressure distribution, or it is associated with the peak in the wall pressure
fluctuations, p′w. This, of course, will introduce some discrepancies in the estimation of L.
It will however been shown that these are significantly less than the observed aerodynamic
and geometrical effects. In cases with large separation, L can be considered as a rough
estimate of the length of separation Lsep which is poorly documented in literature.
Several attempts have been made to relate the low frequency shock motions to up-

stream or downstream unsteadiness. In high Reynolds compression corner or shock re-
flection configurations (Reθ ≃ 5 × 104, where Reθ is the Reynolds number of the up-
stream boundary layer based on the momentum thickness), several experimental studies
suggested to relate the separation shock motions to unsteady very large structures de-
veloped in the upstream boundary layer (Ganapathisubramani et al. (2007a); Humble
et al. (2009a)). On the contrary, experimental and numerical studies performed at low
Reynolds (Reθ ≃ 5 × 103) indicate that the low frequency shock motions are related to
the dynamics of the separated bubble which forms downstream of the separation shock
(Dupont et al. (2006); Touber & Sandham (2008); Wu & Martin (2008); Piponniau et al.

(2009)).
Recently a simple model has been proposed relating the value of the Strouhal number

to the entrainment properties of the mixing layer which develops over this separated
region (Piponniau et al. (2009)). This model suggest a major influence of the compress-
ibility effects on the decrease of this Strouhal number from its subsonic value (≈ 0.12)
to its asymptotic value (≈ 0.03) for free stream Mach numbers larger than 2. Taking
into account these compressibility effects and the classical effects of the velocity and den-
sity ratios across the mixing layer, this model successfully describes the behavior of the
Strouhal number for a large number of separated flows, ranging from subsonic to hyper-
sonic flows, and for a wide range of Reynolds numbers. Other works propose to consider
the whole interaction as a dynamic system with its own transfer function. Initially sug-
gested in Plotkin (1975), this approach has been recently re-considered in the case of a
Mach 2.3 shock reflection in Touber & Sandham (2011), where the interaction is proposed
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to act as a low pass filter for the upstream perturbations. This analysis, based on the
similitude properties of the flow inside the first part of the interaction, estimated with
success the characteristic time scale of shock unsteadiness in the IUSTI (Institut Uni-
versitaire des Systèmes Thermiques Industriels) 8° interaction. These two models differ
mainly on the nature of the low frequency unsteadiness: Touber & Sandham’s model sug-
gests a broad band mechanism without a particular time scale, limited by the equivalent
cut-off frequency of the system. On the contrary, the model of Piponniau et al suggests
the existence of a characteristic frequency, eventually with some time fluctuations, due
to the turbulence and/or some harmonics in the entrainment time scales. Both types of
unsteadiness could even cohabit, as suggested in Touber & Sandham (2011).
In these two last models, the basic driving mechanism for the unsteadiness is derived

from the analysis of the mixing layer which is observed downstream the separation point
in all flows with shock induced mean separation. The model of Piponniau et al considers
the entrainement influence of the mixing layer whereas the model of Touber & Sandham is
based on its similarity properties. Nevertheless, the mechanisms driving the unsteadiness
in the case without mean separation are not intuitively evident. Recent experiments on
incipiently separated shock reflection interactions were carried out in the low Reynolds
supersonic wind tunnel of the IUSTI and in the high Reynolds number one of the TU
Delft (Souverein et al. (2009, 2010)) to shed light on this issue. A large Reynolds number
range has been considered (4000 < Reθ < 50000). In these cases, no mean separation is
obtained, but instantaneous reverse flow regions can be observed. These experiments show
that incipient cases display large similarities and that the Reynolds number effects on the
global properties of the interaction are rather limited. For example, a large resemblance
was found in the turbulent fields. Moreover, in both incipient cases, evidence of the
development of a mixing layer region downstream the reflected shock has been given,
with a spatial development that resembles the separated cases, with indications for the
existence of low frequency shock motions. However, notwithstanding the presence of the
mixing layer, unsteadiness in the upstream boundary layer was also shown to play a role
in flows without mean separation.
Despite the successful scaling of the low frequencies unsteadiness based on the charac-

teristic length L, no satisfactory scaling of L itself has been derived so far for turbulent
SWBLIs. For example, despite a similar geometry, no direct comparison of the length
of the interactions could be made for the two reflection cases with incipient separation
previously mentioned. It will be shown that this is even worse when different geometries
are considered.
Given the discussion above, it seems desirable to obtain a better description of the

characteristic length L, both for the quantitative comparison of different interaction
geometries under varying flow conditions, and due to its role as a scaling parameter for
the low frequency unsteadiness. In this article, it is proposed to compare the characteristic
length scales of shock wave boundary layer interactions for various flow conditions and
separation states. Of particular interest is the dependence of the characteristic length on
the upstream boundary layer and the imposed pressure jump. A simple analysis is made
based on a global mass budget along the interaction to derive the parametric dependencies
for this sort of flows, whatever the geometric conditions (compression corner, incident
shock wave....) and Mach and Reynolds number. The model will be presented in section
2, and then compared with experimental and numerical results obtained for a wide range
of Mach and Reynolds numbers, for compression corners and incident shock reflections.
The parametric dependence will be discussed and verified against the data available in
the literature in section 3. Finally, the possibility of using the new length scaling for the
analysis of turbulence fields will be considered in two oblique shock wave / turbulent
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boundary layer interactions. The first interaction concerns the low Reynolds number,
Mach 2.3 flow case of the IUSTI and the second one the large Reynolds number, Mach
1.7 flow case of the TU Delft.

2. Scaling arguments for shock wave boundary layer interactions

2.1. Length of interactions in various SWBLIs

Shock wave boundary layer interactions (SWBLIs) present large qualitative similari-
ties whatever the aerodynamic and geometric parameters. Nevertheless, despite their
large resemblance and the successful scaling of the unsteadiness time scales based on
the Strouhal number, it remains quite difficult to compare the length scales of these in-
teractions. Several scaling approaches have been attempted for the interaction length L
and the shock intensity ∆p. An example is given in figure 2. It proposes that L

δ∗ ∼ ∆p
τw

,
where δ∗ is the displacement thickness of the upstream boundary layer and τw the wall
shear stress: a reasoning that finds its origins in the Free-Interaction concept, see Délery
& Marvin (1986). The figure encompasses two flow cases (reflecting shock interactions
and compression ramp interactions) for a wide range of flow conditions (Mach number,
Reynolds number, flow deflection angle) and flow facilities. Direct Numerical Simulation
and Large Eddy Simulations are also included. Finally, the state of the interaction, when
documented, is used to define the color of the symbol: black for attached flows, gray for
incipient and white for separated ones. Cases where the separation state is unknown, or
where uncertainty exists concerning its determination, are indicated with closed symbols
(e.g. the asterisks). Some points of interest have been highlighted to illustrate the data
range covered by the figure. To be able to compare the ramp flow and reflected shock
cases, the pressure rise is defined over the complete interaction. The literature sources
and the short names used in this and all subsequent figures are summarised in tables 1
and 3. It is noted that the interaction geometry is included as a parameter, since it is
believed that the relation between the pressure jump and the interaction length should be
properly captured, independent of the particular geometry imposing the pressure jump.
This seems to be a reasonable point of view, given the previously recalled observations in
literature (notably the Free-Interaction concept) that notwithstanding the difference in
flow geometry, the wall pressure distributions are nearly coincident, at least in the case
of compression ramps and incident shock reflections.
The scaling collapses shock reflection data from the IUSTI S8-facility and data from

a similar facility at ONERA taken under close measurement conditions. Both also incor-
porate the effect of a heated wall, with Tw/Taw = 2, where Tw and Taw are respectively
the heated wall and the adiabatic wall temperature (see Laurent (1996), Benkemoun &
Salaun (1988)). The resulting curve shows a monotonically increasing dependence be-
tween L and ∆P .
The data overview shown in figure 2 is subject to the accuracy of several flow parame-

ters, where the principal uncertainty is expected in the determination of the length scales
and the boundary layer state: the upstream displacement thickness δ∗, the wall friction
τw and the length of interaction L (it is supposed that the the free stream Mach num-
ber and the flow deflection angle are setting parameters that are known with sufficient
accuracy). For example, the University of Princeton high Reynolds ramp flow (exclud-
ing the Settles et al. (1976) data) exhibit variations in the specified incoming boundary
layer properties from one reference to the other. As stated by Selig et al. (1989), these
variations do not correspond to physically different boundary layer states, but are due to
differences in definitions and determination methods. The scatter in the reported values
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ences in table 1 on page 7 and table 3 on page 20 for a complete list of the included data sets.
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of δ∗ amounts to ±15%. The uncertainty in the determination of the interaction length
is reasonably no less than 5%. In addition, the interaction length for attached flows is
non-zero, even though the separation length vanishes: in compression ramp cases, where
L is often derived from the separation point, an offset near 0 will hence appear. Given
these uncertainties and the wide range of measurement techniques, it should therefore
be expected that any attempt to collapse data onto a single curve will be faced with an
experimental disparity that could amount up to ±20%.
Nevertheless, considering interactions with the same separation state (attached / sep-

arated), the values of L
δ∗ and ∆p

2τw
show a disparity amounting up to 500%. Moreover, it is

remarked that there is a general Reynolds number trend in the figures from top left (low
Reynolds cases) towards bottom right (high Reynolds cases). In addition, there seems
to be a Mach number dependence, with the highest Mach number cases located towards
the extreme right. The scaling clearly does not correctly take into account the Reynolds
number effects, the Mach number effects and the different interaction geometries (in-
cident reflecting shock and compression ramp). It is noted that comparable results are
obtained when scaling L with the upstream boundary layer thickness δ0, an approach
that was applied with some success in Dupont et al. (2006).
Given the above results it is concluded that there exists a dependence between the

interaction length L and the shock intensity ∆p, but that the scaling with respectively
δ0 or δ∗ and τw is not satisfactory. Data taken under the same reference conditions do
indeed collapse onto a single curve, but the scaling breaks down when changing the Mach
number, the Reynolds number or the interaction geometry.
This might indicate that the physical cause for the upstream displacement of the

reflected shock is not properly captured, and that the origin of this displacement is not
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Table 1. Interactions considered in subsequent figures.

Short Institute Literature

Incident shock reflections

IUSTI IUSTI, Marseille Laurent (1996), Dupont et al. (2006), Pipon-
niau et al. (2009), Piponniau (2009), Sou-
verein et al. (2010), Souverein & Debiève
(2010), Souverein (2010)

Compression ramps

UP University of Princeton Settles et al. (1979), Dolling & Or (1985),
Selig et al. (1989), Settles et al. (1976)

UND University of Notre Dame Thomas et al. (1994)
UI University of Illinois Kuntz et al. (1987)

Incident shock reflections:
▽ IUSTI: Reθ = 5.0 × 103, Me = 2.3

Compressions ramps:
⋄ ,UND: Reθ = 17.5 × 103, Me = 1.5
△, UI: Reθ = 21 × 103, Me = 2.9
⋆ UP: Reθ = 70 × 103, Me = 2.9
◦ UP: Reθ = 18 − 300 × 103, Me = 2.3, Settles

limited to an upstream reference scale. Redefining only one of the axes in figure 2 cannot
make the curves collapse in a way that makes physical sense: only redefining the scaling
for either ∆p or L may make all data collapse, but in the best case, the most separated
compression ramp interactions will collapse with the attached incident reflecting shock
cases. A new scaling must therefore be defined for both ∆p and L: this is the core of the
present work.
As a starting point, it is assumed that L is some function F1 of the reference flow

conditions, see equation 2.1.

L = F1(Me, Reθ, ϕ,
Tw

Taw
, geometry, ...) (2.1)

where ϕ is the flow deviation (the corner angle for compression ramps and the deviation
angle across the incident shock in flow reflection cases).
It is now attempted to reformulate the expression in equation 2.1 in such a way as to ob-

tain a relation between a non-dimensional interaction length (L∗) and a non-dimensional
interaction strength parameter that represents the tendency of the flow to separate (S∗),
in other words:

L∗ = F2(S
∗) (2.2)

where F2 is a still to be defined function. It is proposed to define the non-dimensional
interaction strength parameter S∗ as:

S∗ =
∆P

∆Psep
(2.3)

where ∆Psep is the shock intensity needed to make the boundary layer to separate. It
was shown in the previous section that an evaluation of the separation criteria based
on the viscous scales of the boundary layer failed to classify the different interactions.
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Consequently, the difficulty is: how to define the shock intensity ∆Psep for the different
interactions presented in the previous section. For the numerical simulations often only a
single flow deviation angle is considered, with a focus on separated cases; no information
on the onset of flow separation is available. Similarly, in several experimental works,
only one flow deviation is considered. Therefore, for the moment, only experiments will
be taken into account where several flow deviations have been considered (covering all
cases from attached to separated conditions) and where the separation state has been
determined. This enables the direct evaluation of the separation criteria S∗ defined by
2.3. The result is illustrated in figure 3, with corresponding references given in Table 1.
It is clear that, notwithstanding the fact that the different interactions are now clas-

sified according to their separation state, no satisfying collapse has been obtained for
the two geometries: shock reflection and compression corner: the reflection case exhibits
a non-dimensional length of about 2 to 4 times larger than the compression corner for
equivalent separation states. Moreover, apart from the limited (low) Reynolds number
range covered by the subset of shock reflection interactions shown in figure 3, all data
has been obtained at a Mach number of 2.3; hence, a certain effectiveness of the data
collapse for this geometry case should come as no surprise. Things are different for the
subset of compression corner experiments, which cover a wider range of Mach numbers
(from 2 to 5) and Reynolds numbers (from 2 × 103 to 3 × 105), although for this geom-
etry case most of the experiments were performed at Mach numbers in close vicinity of
3. Nevertheless, the experiments from UND clearly diverge from the general trend: these
experiments involve lower Mach numbers (M = 1.5), suggesting that both the geometry
and the Mach number have to be involved in the derivation of L∗.
In the sections below, it will therefore be attempted to define a more suitable scaling for

the interaction length that represents the relation between L and the change in boundary
layer state induced by ∆p for use as L∗ in equation 2.2. This will be done by considering
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the integral form of the mass and momentum balance for two interaction cases (incident
reflecting shock and compression ramp). The new scaling will then be formalised by
verifying whether it makes all data fall onto a single curve when plotted against ∆p

∆Psep
,

representing relation 2.2. Finally, the possibility to derive an efficient separation state
criteria will be considered in section 2.3 and the analysis will be extended to the whole
set of data, including the numerical results.

2.2. Interaction length scaling

Several investigations have been performed concerning the Mach and Reynolds number
effects on the interaction length (see for example Thomke & Roshko (1969); Spaid &
Frishett (1972); Settles et al. (1976)), putting in evidence a dependence on the Reynolds
number. Intuitively, it would seem that δ∗ could play this role. Nevertheless, it is clear
from figure 3 that scaling with δ∗ alone does not succeed in collapsing the different
geometric configurations, nor does it correctly take into account the Reynolds number
and Mach numbers effects. It will therefore be attempted to define a more suitable scaling
that represents the relation between L and the state of the boundary layer for use as L∗

in equation 2.2.

2.2.1. Model definition and assumptions

To develop this reasoning further, an inviscid model is defined based on the integral
form of the conservation laws. The presence of the boundary layer is taken into account
through the integral of the upstream and downstream velocity and density profiles (in
other words: δ∗ and θ). Furthermore, it is assumed that at the exit plane, the pressure
jump imposed by the shock system (∆p) equals the inviscid value, and that the fluid is
parallel to the wall. One may visualise this in terms of the inviscid flow field representation
mentioned in Délery & Marvin (1986), see figure 4, with the difference that a displacement
thickness is added at the wall. The physical cause of the interaction length may now be
interpreted as a change in displacement thickness between the upstream and downstream
states, creating a kind of ‘equivalent’ step at the wall. In the current model, it is attempted
to define a scaling that links the interaction length to the change in boundary layer state
induced by the processes within the interaction resulting from the imposed pressure jump.
The downstream evolution of the length scales (due to a recovery of the boundary layer
and boundary layer growth) are therefore by definition not relevant to the formulation
of the scaling. The model is based on a quasi-steady state assumption and only considers
the mean flow. Temporal variations are for the moment not included, but could prove an
interesting extension of the model.
To concretise these ideas, a control volume approach is defined, enclosing the interac-

tion region. It is assumed that the flow is two dimensional and steady in the mean. In the
formulation of the inviscid flow model, the viscous terms are inherently neglected with
respect to the pressure force and the inertial terms in the deduction of the momentum
conservation based formulation.
For the definition of the control volume, a thought experiment is made. It is imagined

that we are looking at the interaction from far away, such that δ0
Lcv

, δ0
Hcv

→ 0, where Lcv

and Hcv are the length and the height of the control volume respectively. In that case, the
interaction is reduced to almost a single point and the flow is essentially the same as for
the inviscid case. Now let us image that we zoom in again, putting ourselves close enough
to see the complexities of the interaction, but far away enough such that the reflected
shock, the expansion fan and the successive recompression waves have all coalesced to
form the single shock prescribed by the inviscid flow solution. Putting ourselves in this
position, we can model the interaction as a black box that modifies the state of the
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Figure 4. Inviscid flow model for the shock-reflection interaction with separation, from Délery
& Marvin (1986).

boundary layer. The flow conditions on all sides of the control volume are prescribed
by the free-stream conditions and the inviscid oblique shock relations. The presence of
the boundary layer can be taken into account through the definition of the displacement
thickness.
In the proposed model, the edge conditions must adhere to the inviscid shock reflection

conditions. The pressure gradient imposed by the shock system will lead to a deceleration
of the boundary layer and therefore to an increase of the displacement thickness through
the interaction as compared with the upstream thickness. Consequently, the only way
for the flow to assure mass and momentum conservation in the presence of the boundary
layer is to translate the reflected shock, see figure 5(a) for the reflection case and figure
5(b) for the compression corner. This translation can be cast into an algebraic equation
by considering the difference between the inviscid case (the perfect fluid solution without
boundary layer and interaction) and the viscous case (with interaction, the viscous effects
being modeled as discussed above).
It is reiterated that the basic assumptions are that the shock intensity is the same

as in the perfect fluid flow reflection, and that at the outflow plane, the flow conditions
outside the boundary layer become uniform and approach the perfect fluid solution.
Indeed, in reality one is confronted with deviations from the model assumptions. One
may think of the presence of the expansion fan and velocity gradients that curve the path
of the shock within the control volume, inducing for instance a discrepancy between the
measured shock position (by means of wall pressure distributions) and the position as
defined by the model. In addition, this curving causes entropy gradients, leading to a non-
homogeneous velocity and density distribution downstream of the interaction. Although
the conservation laws must inherently be satisfied, difficulties are hence to be expected,
particularly when modeling the outflow conditions by an integral boundary layer length
scale in combination with a uniform velocity and density. All these effects will play a
role when one would want to employ the model for predictive purposes. However, the
current aim is to determine the most dominant mechanisms that govern the interaction
length rather than to make precise length estimations. In this context, the deviations
are thought to be only of secondary importance. The basic assumptions are therefore
believed to be reasonable approximations for the purpose of this work.
It is remarked that both the mass balance and the momentum balance can be con-

sidered individually to derive a physical relation between the upstream and downstream
boundary layer length scales and the interaction length. This has indeed been done, yield-
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Figure 5. Control volume: (a) incident shock reflection case; (b) compression ramp case.

ing complementary scaling relations because both quantities must be conserved across
the interaction. Since the procedure for deriving both formulations is similar, details will
be given here for the mass balance only. The deduction of the momentum balance based
formulation is reported in the Appendix. It is also investigated whether a commonality
may be expected in the scaling for the incident reflecting shock interactions and the
compression ramp flows.
Both principal geometrical cases are first considered separately: the incident shock

reflection and the compression ramp. Then it will be shown that a common formulation
can be derived.

Incident shock reflection

The control volume for the incident reflecting shock interaction is shown in figure 5(a).
Writing the mass flow balance for the inviscid flow case (without interaction, as indicated
by the dashed reflecting shock) the following equality is obtained:

ρ1U1Hcv + ρ2V2Lcv − ρ3U3Hcv = 0 (2.4)
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where Hcv and Lcv are the height and length of the control volume respectively. At
the same time, the following relation is obtained for the viscous case (with interaction,
as indicated by the solid reflecting shock):

ρ1U1 (Hcv − δ∗1) + ρ2V2 (Lcv − L)− ρ3U3 (Hcv − δ∗3) = 0 (2.5)

Subtracting equation 2.4 from 2.5, the following algebraic relation for the interaction
length is obtained for the shock reflection case:

L =
ρ3U3δ

∗
3 − ρ1U1δ

∗
1

ρ2V2
(2.6)

The interaction length is hence completely determined through the upstream and
downstream boundary layer displacement thickness, since the densities and velocities are
specified by oblique shock wave theory (depending only on Me and ϕ). The expression
is independent of the height and length of the control volume as long as the interaction
is included.

Compression ramp

The compression ramp case is now considered. The control volume is shown in figure
5(b). Writing again the mass flow balance for the inviscid flow case, the following equality
is obtained:

ρ1U1Hcv1 − ρ2U2Hcv2 = 0 (2.7)

At the same time, the following relation is obtained for the case with interaction:

ρ1U1 (Hcv1 − δ∗1)− sin(ϕ)ρ2U2L− ρ2U2 (Hcv2 − δ∗2) = 0 (2.8)

Subtracting equation 2.7 from 2.8, the following algebraic relations is obtained for the
interaction length for the compression ramp case:

L =
ρ2U2δ

∗
2 − ρ1U1δ

∗
1

sin(ϕ)ρ2U2
(2.9)

The interaction length is again completely determined through the upstream and down-
stream boundary layer displacement thickness, since the densities and velocities are spec-
ified by oblique shock wave theory (depending only on Me and ϕ). Again, the expression
is independent of the height and length of the control volume as long as the interaction
is included.

2.2.2. Common formulation

Given the great resemblance between relations 2.6 and 2.9, it is tempting to see whether
both equations can be cast into a common form. To this aim, the denominator of each
equation is reformulated in terms of the upstream conditions by means of the oblique
shock wave relations. The shock angle β and the flow deflection angle ϕ are defined
positive for both interaction cases. Invoking mass conservation across the incident shock
for the shock reflection case, the following equality is obtained:

ρ1U1 sin(β) = ρ2V2
sin(β − ϕ)

sin(ϕ)
(2.10)

Similarly, considering mass conservation across the shock for the compression ramp
case gives:
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ρ1U1 sin(β) = ρ2U2 sin(β − ϕ) (2.11)

Rewriting each of the equations above and substituting in their respective relations
(equation 2.6 for the incident shock interaction and 2.9 for the compression corner) gives
the same final equation, which can be cast into the following common form, when using
the subscripts in and out for the inflow and outflow conditions respectively:

L

δ∗in
=

sin(β − ϕ)

sin(β) sin(ϕ)

(

ρoutUoutδ
∗
out

ρinUinδ∗in
− 1

)

(2.12)

The shock angle β is an algebraic relation in terms of the flow deflection angle ϕ and
the upstream Mach number Me. The interaction length is therefore a direct algebraic
function of the Me, ϕ and the mass flow deficit ratio between the incoming boundary
layer and the outgoing boundary layer. Defining the mass flow deficit as ṁ∗ = ρUδ∗ we
can hence write:

L

δ∗in
= g3(Me, ϕ)

(

ṁ∗
out

ṁ∗
in

− 1

)

(2.13)

With g3(Me, ϕ) the ratio of sine functions:

g3(Me, ϕ) =
sin(β − ϕ)

sin(β) sin(ϕ)
(2.14)

Based on this relation, it can be concluded that the interaction length is a direct result
of the mass flow deficit ratio between the incoming and outgoing boundary layer, and
that it can be estimated algebraically when all quantities in the equation are known.
The analysis above based on the mass conservation consideration leads to a physical

insight concerning the scaling parameters for the interaction length (the vertical axis of
figure 2). Relation 2.13 seems to indicate that the proper scaling of L is indeed with
δ∗, but that a trigonometrical correction factor is required in the form of function g3.
In fact, the non-dimensional interaction length represents the change of state between
the incoming boundary layer and the outgoing boundary layer. It should be interpreted
in terms of the mass flow deficit ratio. This explains why a simple scaling by a single
boundary layer length scale did not manage to collapse the data. The proper scaling,
with L∗ the non-dimensional interaction length, would hence be:

L∗ =
L

δ∗in
G3(Me, ϕ) (2.15)

=
ṁ∗

out

ṁ∗
in

− 1

With:

G3(Me, ϕ) = g−1
3 (Me, ϕ) =

sin(β) sin(ϕ)

sin(β − ϕ)
(2.16)

Hence, L∗ becomes a function of the mass flow deficit ratio across the interaction
which depends on the adverse pressure gradient imposed on the upstream boundary
layer, independently of the geometry and the upstream boundary layer scales. In order
to formalise this dependence between L∗ and the (non-dimensional) pressure gradient
S∗ , L∗ should therefore classify the different states of the interaction, from attached to
separated cases. As a verification, both scaling options, the original L

δ∗ and the new scaling
L∗ defined by equation 2.15, are compared by plotting them against the documented
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Figure 6. Interaction length scaling and documented separation states of the reference interac-
tions: (a) original scaling with δ∗; (b) new scaling based on mass conservation. Symbols according
to table 1 on page 7, colours represent the two flow geometries (white: shock reflection; grey:
compression ramp).

separation state, as was done for the separation criterion in the previous section. The
result is shown in figure 6, with symbols corresponding to table 1 and colours representing
the two interaction cases (white: incident reflecting shock; grey: compression ramp).
It is clear that the first choice does not classify the flows. Moreover, the results are
largely dependent on the geometry of the flow: shock reflections produce significantly
larger interactions whatever the separation state of the flow. On the contrary, the new
scaling leads to a better classification of the known separation states, and there is a
larger consistency between the ramp flow cases and the shock reflection cases, since
data corresponding to both geometries are no longer clearly distinct. The attached flow
cases take on the value close to zero, as is to be expected from the definition of the
scaling: the interaction length becomes small and consequently, the mass flow deficit is
only slightly altered. It is noted that due to the previously mentioned limitations of the
compilation concerning the determination of L, a value of L ≡ 0 is obtained for some of
the attached interactions. Particularly for compression ramp interactions the obtained
value of L depends strongly on the measurement technique and resolution for (almost)
attached flows, and therefore the interaction length vanishes for small flow deflections.
This is not true strictly speaking, however L will be very small and hence the attached
flow cases will indeed approach L∗ ↓ 0, with a value identical to zero for vanishing
shock intensity. The incipient interactions have a non-dimensional interaction length
with a value centered around one. The separated interactions take on a value larger than
two. These properties are summarised in table 2. Therefore, the proposed scaling seems
efficient to compare the characteristic length scales of the interactions.
The new scaling for L is put to the test in figure 7. The same symbols are used as

in figure 3. The data fall onto a single trend line. In addition, there is a classification
of separation states along the curve (attached, incipient, separated), with a progressive
increase in the extent of flow separation when moving from left to right along the trend
line. The new scaling hence appears to satisfy the desired properties concerning the
separation state, while producing a curve that represents the function F2, as defined by
equation 2.2.
The only point not collapsing onto the curve is the ϕ = 12° ramp of Thomas et al.

(1994). However, it is difficult to set correctly the onset of separation for this configura-
tion, as the discretisation of the flow deviations is quite large: for example, a change of
one degree for the onset of separation would place this point in the set of data. Moreover,
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Figure 7. New scaling of the interaction length, mass balance based. Symbols according to table
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Table 2. L∗ versus the separation states.

Value Separation state

L∗ ↓ 0 Attached flow
1 < L∗ < 2 Incipient separation
L∗ > 2 Separated flow

this ramp configuration is on the very limit between two distinct flow solutions (oblique
shock and normal shock), and the post shock flow has in either case surpassed the sonic
limit (the flow behind the shock is hence completely subsonic), raising questions as to the
stability of this particular measurement point. It may be expected that the actual flow
organisation for this interaction is particularly sensitive to small variations in the exper-
imental conditions (upstream and downstream of the interaction), resulting possibly in
large deviations from the modeled flow organisation.
The effectiveness of the new scaling becomes clear when comparing figure 7 to the

scaling from figure 3. Initially, the data points for similar separated states showed a
disparity of up to 300%, with an even larger difference for the attached cases. The new
scaling makes all points follow the same trend, within a scatter of about the same order
as the expected measurement uncertainty, see section 2.1.
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2.3. Separation state criteria

In previous section, we used the separation criteria S∗ = ∆P/∆Psep to classify the
states of separation of the interactions. Unfortunately, as stated in part 2.1, this criteria
requires a priori knowledge of the onset of separation for a given flow case. This makes
it impractical for application since one always needs to have information covering a large
range of flow deflection angles to be able to derive the scaling for a single SWBLI flow case.
Hence, only experiments which provided this information were included so far, omitting
a number of other experimental data sets as well several recent numerical simulations
where ∆Psep cannot be determined. To remediate this limitation and to facilitate the
application of the scaling to new data points, in this part it is attempted to define
an effective separation criteria which is valid for the wide range of Mach numbers and
Reynolds numbers under consideration, and which is common to the different interaction
geometries. This is done on the basis of the experimental data described in the previous
section, subsequently investigating its applicability to the other flow cases where the
separation onset is unknown.
Considering first the tendency of the flow to separate, it is noted that flow separation

is necessarily initiated close to the wall where ∂p
∂x ≃ ∂τ

∂y (in the viscous sub-layer). This

being said, outside the viscous sub-layer one has ∂p
∂x ≫ ∂τ

∂y . An order of magnitude analysis

yields ∆p
L ≫ τw

δ0
, or equivalently ∆p

τw
≫ L

δ0
, a condition that is indeed satisfied by the

current experiments, see figure 2. It is therefore justified to consider only the effects of
pressure and inertia forces, even though viscous effects exist, remaining however confined
to a region very close to the wall. From another point of view, τw = ρwu

2
τ , where uτ is

a measure of the velocity defect in the outer part of the turbulent boundary layer. It is
known that uτ decreases for increasing Reynolds numbers, reducing the velocity defect
while increasing ∆p

τw
for given Mach number, flow deviation and stagnation temperature.

It should be expected that a smaller velocity defect reduces the tendency of the flow
to separate. This is in contradiction with the trend indicated by figure 2, which implies
that the flow should be more separated for larger ∆p

τw
. Considering these two elements,

it seems that the wall shear stress is not the correct scaling parameter to describe the
tendency of the flow to separate, at least not for the Reynolds number range under
consideration, corresponding to fully developed turbulent upstream boundary layers: .
laminar or transitional interactions are not considered in the current investigation.
Given the above observations, the occurrence of flow separation is expected to be

mostly governed by the inertial forces in the incoming flow, at least at sufficiently high
Reynolds numbers. To elaborate this, it is attempted to define a scaling for ∆p based
on the Euler equations. Hence, the one-dimensional, steady, inviscid momentum balance
will be invoked in its differential form to analyse whether the occurrence of separation
can be linked to a ratio between the pressure force and the inertia forces in the incoming
flow. This with the aim of defining a scaling for ∆p for use as separation criterion in
equation 2.2. Of course, this simplified approach has several limitations in applying it
to the inherently more complicated flow occurring within the interaction. It is done
under the hypothesis that it does indeed enable to capture the principal expected driving
mechanism for the flow separation state (the balance between pressure and inertia forces)
into a simple scaling parameter. Therefore, to evaluate if this simplified approach is indeed
in agreement with observations, it will subsequently be verified against the experimental
data base.
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Under the assumptions stated above, the momentum flux will be related to the pressure
gradient as in equation 2.17:

−
∂p

∂x
=

∂(ρU2)

∂x
(2.17)

It is observed that the adverse pressure gradient ∆p imposed by the shock system acts
approximately over the length of the interaction, decelerating the incoming fluid over
the same length. Therefore, the length of interaction L is interpreted as the length scale
related to the pressure jump across the interaction. Based on these observations, it is
proposed to relate the pressure jump across the interaction to the momentum decrease
as follows:

−
∆p

L
∼

∆(ρU2)

L
(2.18)

Recalling the objective of defining a criterion for flow separation. It is therefore assumed
that the flow separates when the incoming streamwise momentum ρU2 vanishes, in other
words, when ∆(ρU2) = ρU2. Consequently, at separation, the following relation can be
written:

∆psep ∼ ρcU
2
c (2.19)

Where Uc and ρc are a reference velocity and density respectively for the incoming
momentum flux. Given the previous arguments indicating that the flow is governed by
pressure and inertia forces in most of the boundary layer, it is expected that ρc and Uc

are of the order of ρe and Ue respectively, where the subscript e is used to refer to the
free-stream based value. Inserting the upstream dynamic pressure qe =

1
2ρeU

2
e , this leads

to the following separation criterion:

S∗
e = k

∆p

qe
(2.20)

Where k is a constant of order 1 that will be chosen such as to obtain a value of approx-
imately 1 at the onset of separation.
As stated previously, this analysis constitutes a simplification of the actual flow with

the specific aim of defining a separation criterion under the hypothesis of capturing the
main driving mechanism. To verify whether this approach is justifiable, we will first
compare the separation criteria proposed by the equation 2.20 to the original criteria
S∗ = ∆P/∆Psep used in the previous section for the subset of the data where the onset of
separation was documented. The results are plotted versus the Reynolds number figure 8.
The results indicate that, despite the large simplifications used to derive the relation 2.20,
an efficient estimation of ∆Psep can be derived from the upstream dynamic pressure qe.
First, no remaining influence of the Mach number appears, which means that its influence
is accurately taken into account through the dynamic pressure. The ratio is about 3 for the
whole set of Reynolds numbers, covering nearly three decades, with a slight decrease over
the range of Reynolds numbers from 3 to 2.5, corresponding to 17%. It is remarked that
other authors (see Ginoux (1973)) have considered with some success the ratio ∆p

qe
to scale

the shock intensity. They remark that for turbulent boundary layers at sufficient Reynolds
numbers, the occurrence of flow separation is Reynolds number independent. The effect
of the Reynolds number seems indeed to depend on its magnitude and consequently the
flow regime (laminar, transitional, turbulent). In addition, some of the commonly use
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separation criteria (see Summerfield et al. (1954); Zukoski (1967); Schmucker (1973)) are
a function of the Mach number and the flow deflection only, implying that the occurrence
of separation is Reynolds number independent, at least for high Reynolds numbers, in
accordance with Ginoux (1973).
Therefore, based on these data we will used the relation 2.20 with k defined as:

k = 3.0 if Reθ 6 1× 104 (2.21)

= 2.5 if Reθ > 1× 104

Although this definition of k is based on a limited sub-set of data, including all data
from the full compilation shows a good consistency with this behavior, providing further
support for the proposed values of k (as will be shown in figure 9). Using the ideal gas
law and the definition of the speed of sound, equation 2.20 can be rewritten as:

S∗
e =

2k

γ

ppost

ppre
− 1

M2
e

(2.22)

where
ppost

ppre
is the ratio of the pressure before (ppre) and after (ppost) the shock system. For

a particular flow organisation (for example compression ramp, incident reflecting shock)
and using oblique shock wave theory (see for example Anderson Jr. (1991)), it can be
written analytically as a function of the free-stream Mach number Me, the imposed flow
deflection angle ϕ and the specific heat ratio γ:

ppost
ppre

− 1 = f (Me, ϕ, γ) (2.23)
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The following final expression is obtained for the separation criterion (assuming a con-
stant specific heat ratio γ):

S∗
e =

2k

γ

f (Me, ϕ, γ)

M2
e

= kg1 (Me, ϕ) (2.24)

with k given by the relation 2.21 It is reiterated that g1 is a function that depends on
the particular shock system (for example compression ramp, incident reflecting shock).
In conclusion, it is proposed that, when turbulent flows are considered, the separation

criterion can be represented by an analytic relation depending only on the free-stream
Mach number, on the flow deflection angle and on the particular shock system. According
to the current formulation, the scaling of the shock intensity and the occurrence of sepa-
ration for turbulent cases are nearly Reynolds number independent, in accordance with
the observations from Ginoux (1973). It should therefore be expected that the Reynolds
number effects appear mainly through the scaling of the interaction length through the
displacement thickness of the upstream flow (see figure 7). It is noted that other effects
could also influence the onset of separation, such as for example wall effects (roughness,
cooling or heating), as compared to the smooth wall adiabatic cases considered in the
present compilation.
The separation criterion S∗

e seems to correctly represent the state of the occurrence
of flow separation. This makes it a good candidate for S∗ in equation 2.2. As it is only
based on external quantities, it can be evaluated for the whole set of available exper-
imental and numerical SWBLI. Results are shown in figure 9. In order to clarify the
picture, experiments used in figure 3 are homogeneously represented by a cross symbol,
whereas for the new data the symbols given are given according to table 3. In this new
compilation, NASA-AMES results have been included, see Thomke & Roshko (1969).
These experiments documented the onset of separation for a wide range of Mach num-
bers (2 6 M 6 5) at high Reynolds numbers. They have however been omitted from
the previous compilation (see figure 7). The reason for this is that the criteria to qualify
the separation state in these experiments was biased towards too high angles of devi-
ations (the measurement methods employed in their study are relatively insensitive to
small regions of separation), as has been reported by Settles et al. (1976). As this bias
is confirmed by our current compilation, we have not considered them previously in the
evaluation of ∆Psep and their state of separation is not reported on the figures. Neverthe-
less, as shown figure 9, they follow well the general trend whatever the separation state
or the Mach number considered, confirming that the data is coherent with the proposed
scaling. Similarly, the state of separation of the heated wall experiments from IUSTI
were not documented. They are reported on the figure, with the state of separation of
the adiabatic interaction considered at the same flow deviation. Despite the uncertainty
of the effect of wall heating on the separation state, and of the applicability of the ap-
proximation given by the relations 2.20 and 2.21 for non-adiabatic wall conditions (which
could not be verified so far), this set of experiments follows the same general trend.
A best fit of a power law (see the equation in the figure legend) is reported on the

figure 9. It corresponds to a R square value of 0.9428. A good collapse of the whole set of
data is obtained. Only the data from Polivanov et al. (2009) differ from the compilation.
Despite no significant effects has been found in these experiments on the dimensionless
frequency (or Strouhal number) for the unsteady properties, it can be remarked from their
Schlieren visualisations that the reflected shock is relatively thick: this can be interpreted
as significative three dimensional effects as well as important shock dynamics. It is not
known whether the mean shock trace or the most upstream shock position has been used
to determine the interaction length. The latter case would be in accordance with the
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Table 3. Interactions considered in figure 9.

Short Institute Literature

Incident shock reflections

IUSTI IUSTI, Marseille Laurent (1996)
ITAM ITAM, Novosibirsk Polivanov et al. (2009)
TUD Delft University of Technology Souverein et al. (2009), Humble (2009),

Humble et al. (2009b), Souverein et al.

(2010), Souverein (2010)

Compression ramps

IUSTI IUSTI, Marseille Debiève (1983)
UP University of Princeton Ringuette et al. (2009)(experiment), Wu &

Martin (2008) (DNS)
UA University of Texas at Austin Erengil & Dolling (1991a), Erengil & Dolling

(1991b), Hou (2003), Ganapathisubramani
et al. (2007b)

NA NASA Ames Research Center Thomke & Roshko (1969)
US University of Southampton Touber & Sandham (2009a) (LES)

Incident shock reflections:

△ IUSTI: Reθ = 5 × 103, Me = 2.3, Tp/Tf = 2.0
© ITAM: Reθ = 2.8 × 103, Me = 2.0
⋆ TUD: Reθ = 50 × 103, Me = 1.7 and 2.1
� US: Reθ = 5 × 103, Me = 2.3

Compressions ramps:
▽ IUSTI: Reθ = 5 × 103, Me = 2.3
⋄ UP: Reθ = 2.3 × 103, Me = 2.9, experiment and DNS
⊲ UA: Reθ = 26 × 103, Me = 5.0
⊳ UA: Reθ = 35 × 103, Me = 2.0
∗ NA: Reθ = 18 − 300 × 103, 2 6 Me 6 5

approximate magnitude of the overestimation. In addition, this interaction appears to
be of the transitional type (Rex ≈ 2 − 3 × 106). This regime likely requires a specific
Reynolds number dependent scaling for ∆Psep ). The other data follow the same trend
as data used in figure 7, notwithstanding the fact that the data set now covers the full
range from large Reynolds number experimental data (for example the TUD , UA, or
NA experiments) down to low Reynolds number numerical results (respectively the US
Mach 2.3 reflection interaction case and the UP Mach 3 compression corner case). Using
the new scaling, all points follow the best fit curve to within a disparity that is a least
an order of magnitude smaller than the initial one (see figure 2) and about the same
order as the expected measurement uncertainty, see section 2.1. As a remark, it is noted
that apart from measurement uncertainties, part of the scatter on the rescaled data will
certainly also have physical causes, i.e. effects that are not taken into account by the
model (for instance effects induced by differences in the experimental setups, the flow
facilities, etc.).
Given the scaling proposed in figure 9, at least two options for controlling the inter-

action can be suggested. To suppress flow separation, the trend line indicates that one
should either act on S∗

e , imposing ∆p → 0, or on L
δ∗
in
, imposing δ∗in → 0. The first option

(∆p → 0) actually modifies the physical separation state of the flow. In the case of the
second option, keeping the value of S∗

e fixed (in other words, ϕ = cst and Me = cst)
means that the separation state is inherently prescribed, while L

δ∗
in

is a constant deter-
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Figure 9. New scaling of the interaction length, mass balance based. Colours represent the
separation state (black: attached; grey: incipient; white: separated). ×: experiments used in
figure 3 other symbols given by table 3. Dashed line: best fit line (a ∗ xb, with a = 1.3 and
b = 3).

mined by the trend line. The second option hence implies that to reattach the flow, one
should make L vanish, which is achieved when δ∗in → 0, in other words when Reδ∗ → 0.
For upstream control, this appear to be the only option when the interaction geometry
and free-stream conditions are fixed. It is reiterated that this approach does not alter the
flow separation state, but that it diminishes the separation bubble size by a reduction
in the interaction size. Of course, these observation are subject to the assumptions used
in the derivation of the scaling. For example, things might look differently locally if the
flow becomes subject to significant spanwise modulations (3D-effects). Nevertheless, in
a global (spanwise averaged) sense they might however retain a certain validity also in
these cases.
Finally, some comments can be derived concerning the three dimensional effects in

the SWTBLI experiments. It is well known that wind tunnel experiments can develop
significant three dimensional organisation in such flows, due to the lateral interactions
developing on the side walls. In cases of separated interactions, large spanwise structures
can develop in the separated region, despite the mean head shock remains qualitatively
two dimensional. (see Dupont et al. (2005); Garnier (2009)). In general, the reflection
geometry is considered as more sensitive to such lateral effects than the compression
corner configurations. Nevertheless, the figure 9 does not highlight any discrepancies
between these two families of SWTBLI, even for massive separated interactions, except
perhaps for the Polivanov data (see previous comments). Therefore, it is suggested that
if the the present results can be influenced by three dimensional effects, in a global
(spanwise averaged) sense they might however retain a certain validity



22 L.J. Souverein, P.G. Bakker and P. Dupont

3. Discussion

3.1. Mach Reynolds dependencies

The separation state criteria S∗
e depends only slightly on the Reynolds number of the

upstream boundary layer through the coefficient k (see relations 2.21 and 2.24), a depen-
dance that seems to vanish in the limit of large Reynolds numbers (Reθ > 104). On the
contrary, there is a direct dependence on the Mach number and the imposed flow deflec-
tion angle (see eq. 2.24). It enables the graphical determination of the Mach-deflection
angle combination leading to a particular tendency of the flow to separate. An average
value of k of 2.8 has been used in this case. As can be observed from figure 10(b), for
small Mach numbers, the incident shock deflection angle can be multiplied by two to
obtain the equivalent ramp angle that yields the same value of S∗

e . From the figure it
can be read that, for example, the same flow separation state should be expected for the
Mach=5, ϕ = 28° compression ramp as for the Mach=3, ϕ = 24° ramp.
It is observed that due to the Mach number effect, the flow over a ϕ = 20° ramp

at Mach=2 should be more separated than a ramp at Mach=3 for the same deflection
angle. This is clearly illustrated by figure 10(a), confirming the well known property that
an increase in Mach number tends to postpone the onset of flow separation at constant
deflection angle (see also Ginoux (1973)). It is noted that the current results equally
indicate that an increase in Me leads to a reduction of the interaction length at constant
ϕ (S∗

e decreases and G3(Me, ϕ) increases; figure 9 and equation 2.15 now show that L∗

must decrease and consequently also L for constant δ∗in). In addition, it is remarked
that for a Mach=3 interaction, the flow will always be separated for ramp angles larger
than ϕ = 16 − 18° (incident shock deflections of ϕ = 8 − 9°). Alternatively, a ramp of
approximately ϕ = 6° (an incident shock deflection of ϕ = 3°) will be attached for any
Mach number that does not involve a normal shock solution.

3.2. A new spatial scaling for turbulent fields in SWBLI

The common choice for the longitudinal length scale is the interaction length L. For the
scaling of the wall normal length scale, one might intuitively choose a characteristic length
related to the upstream boundary layer (for example δ0 or δ∗). However, such quantities
can by definition not take into account the variations in interaction properties due to
different imposed flow deflection angles. The question of the scaling of the wall normal
length scale will be addressed in the following, using data obtained in two supersonic
facilities, respectively the TST-27 wind tunnel at the Delft University of Technology and
the S8 wind tunnel at the Institut Universitaire des Systèmes Thermiques Industriels
(IUSTI) to verify the results.
The most important parameter discriminating both facilities is the momentum thick-

ness based Reynolds number, which is a factor 10 higher for the TST-27 as compared
to the S8. The current investigation has taken advantage of the combined use of both
facilities to obtain measurements of the same flow phenomenon over a range of measure-
ment conditions (Reynolds number, Mach number, shock strength, interaction control),
using different measurement systems, enabling a thorough comparison and validation
of the observations. The flow cases under consideration have already been extensively
documented (Dupont et al. (2005); Dussauge et al. (2006); Dupont et al. (2006, 2008);
Souverein et al. (2009, 2010); Souverein & Debiève (2010)). The incoming boundary lay-
ers are turbulent and fully developed. The main aerodynamic parameters are listed in
table 4, where the boundary layer thickness δ0 was based on 99% of the external velocity
Ue, δ

∗ is the displacement thickness, θ is the momentum thickness and H the shape
factor.
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Figure 10. Dependence of S∗

e on the Mach number and the flow deflection: (a) Mach dependence
Me (ϕ-discretisation [2:2:28]deg) ; (b) Flow deflection dependence ϕ [deg] (Me-discretisation [1.5
1.75 2.0 2.5 3 4 5]). Figures include the theoretical dependence of S∗

e on Me and ϕ for both the
incident reflection and the compression ramp.

The full field quantitative velocity data used in this investigation, including the mean
and turbulent velocity fields, were obtained by means of PIV. The data acquisition and
post processing were done using the systems and software that were available in each
respective laboratory:
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Table 4. Measurement conditions

Me ϕ δ0[mm] δ∗[mm] θ[mm] H Reθ

TST-27 1.69 6.0 17.2 3.3 1.4 2.4 50, 000
S8 2.28 5.5; 8.0; 9.5 10.2 3.0 0.9 3.5 5, 000

• At the TU Delft, a La Vision Davis 7.2 acquisition system was used with a PTU
9 timing unit. Data processing was done with in house developed WIDIM software em-
ploying an iterative multi-grid deforming window correlation scheme (see Scarano &
Riethmuller (1999)).
• At the IUSTI, a Dantec Dynamics system was used for the data acquisition, timing,

and data processing
In both cases, a dimensionless spatial resolution of y/δ ≈ 2 − 2.9 × 10−2 has been used
to define the PIV interrogation window size. The seeding systems were also different:
Di*2-ethylhexyl sebacate (DEHS) droplets at TU-Delft, whereas incense smoke was used
at IUSTI. See previous references for detailed description of the experiments. In both
facilities, the inflow conditions comprise a canonical zero pressure gradient supersonic
(M < 5) turbulent boundary layer.
As detailed in table 4, four cases have been considered:
• two incipient cases in both facilities, with Mach numbers of Me = 1.7 and 2.3

respectively
• two low Reynolds numbers separated interactions for Me = 2.3

The incipient cases have been ajusted to present similar probability of reverse flow, with
a 50% probability near the wall (see Souverein et al. (2010)).
The turbulent velocity fields obtained within the interaction regions were shown in

Souverein et al. (2010). In all four cases, the turbulent fields exhibit a resemblance: a
highly turbulent region develops downstream of the foot of the reflected shock, related to
the formation of large coherent scales in the mixing layer which develops downstream of
this point (Dupont et al. (2006, 2008); Souverein et al. (2009)). Nevertheless, the extent
of the development of this region was found to depend on the state of the interactions
(incipient or separated), see figure 6 in Souverein et al. (2010).
The question of the physically correct scaling of the wall normal length scale will now

be re-addressed. This will be done using the scaling analysis of the section 2.2. Indeed,
it has been shown that only one length scale (δ∗ or other) cannot suffice to describe the
spatial extent of the interaction. Therefore, the non-dimensional length scale L∗ defined
by equation 2.15 will be introduced. Using this equation one can scale the wall normal
coordinate by L as follows:

Y ∗ =
y

LG3(Me, ϕ)
=

y

δ∗inL
∗

(3.1)

where G3(Me, ϕ) is an analytical function, see equation 2.16.
Figure 11 shows the result obtained when scaling the wall normal coordinate using

equation 3.1. The extent of the vertical axis is the same for the four cases. The unity
value for the y-axis, indicated by the black dashed line, corresponds to the approximate
extent of the highly turbulent region developing downstream of the head shock. In all
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Figure 11. U -component fluctuations (RMS) normalized by the free-stream velocity using the
L∗ scaling option: (a) high Reynolds number incipient, 6.0°; (b) low Reynolds number incipient,
5.5°; low Reynolds number separated cases, (c) 8.0° and (d) 9.5°. Fluctuation values are nor-
malised by the free-stream velocity. The black horizontal dashed line indicates the unit-value for
the y-axis. The horizontal and vertical scale on the top and right axis represent the coordinates
normalised by δ0 for reference.

cases, the interactions are included in a 1 ×1 box, which shows that the scaling defined
by equation 2.15 is relevant to compare turbulent fields of different interactions.

4. Conclusions

A scaling analysis was made, aimed at reconciling the observed discrepancies between
interactions documented in literature (geometry, Reynolds number effects, Mach num-
ber effects, shock intensity, ...). As part of this analysis, a separation criterion has been
formulated that depends on the free-stream Mach number and the flow deflection angle
only. It successfully classifies the separation states for a large scope of documented inter-
actions (compression ramp and incident reflecting shock) over a large Reynolds number
and Mach number range:

S∗
e = k

∆p

qe
= kg1 (Me, ϕ) (4.1)

S∗
e < 1 Attached flow

S∗
e > 1 Separated flow
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where k is a constant which depends slightly on the Reynolds number, see eq. 2.21. In
addition, a scaling approach has been derived for the interaction length based on the
mass balance:

L∗ =
L

δ∗in
G3(Me, ϕ) (4.2)

with: G3(Me, ϕ) =
sin(β) sin(ϕ)

sin(β − ϕ)

The separation criterion S∗
e in combination with the normalised L∗ represents a single

trend line onto which all data for a large scope of documented interactions over a large
Reynolds and Mach range fall together with a moderate scatter of approximately ±15%,
which is of the same order as the measurement uncertainty. This curve is valid both for
compression ramp interactions and for incident reflecting shock interactions. A similar
formulation has been obtained from the momentum balance. Both results are equivalent.
A scaling for the wall normal coordinate has been defined based on this scaling ap-

proach for the interaction length: Y ∗ = y
LG3(Me,ϕ) . It produces a large resemblance in

the geometric organisation of the turbulent flow fields within the interactions for the
considered flow cases, independent of the Mach number and Reynolds number and of the
separation state.
Concerning the Reynolds number and Mach number effects, it can be concluded that

for turbulent boundary layers, the onset of flow separation is nearly Reynolds number
independent. It seems to be governed principally by the Mach number and the imposed
flow deflection angle; an increase in Mach number tends to reduce the deflection angle for
the onset of flow separation. The Reynolds number effects appear implicitly through the
scaling of the interaction length by the displacement thickness of the incoming boundary
layer. However, the interaction length is also governed by the Mach number through a
correction factor that also involved the imposed flow deflection angle.
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Appendix

In analogy to the mass conservation approach in section 2.2, the same analysis has
been applied for the momentum conservation. This is done for both the incident shock
reflection and the compression ramp case. In the end, a common formulation is derived.
For completion, it is noted that the length scale for the momentum deficit is obtained
by integrating the momentum flux within the boundary layer profile (with H the shape
factor) as follows:

1

ρeU2
e

∫ ∞

0

(

ρeU
2
e − ρU2

)

dy =

∫ ∞

0

ρU

ρeUe

(

1−
U

Ue

)

dy (4.1)

+

∫ ∞

0

(

1−
ρU

ρeUe

)

dy

= θ + δ∗ = θ(1 +H)

Incident shock reflection

First, the incident shock reflection case is analysed. Evaluating the X-momentum
equation over the control volume shown in figure 5(a) the following equality is obtained
for the inviscid flow case:

ρ1U
2
1Hcv + ρ2U2V2Lcv − ρ3U

2
3Hcv = (p3 − p1)Hcv (4.2)

At the same time, the following equality is obtained for the case with interaction:

ρ1U
2
1 (Hcv − θ1(1 +H1)) +

ρ2U2V2 (Lcv − L) − (4.3)

ρ3U
2
3 (Hcv − θ3(1 +H3)) = (p3 − p1)Hcv

Eliminating the pressure term, the following equation is obtained for the interaction
length for the shock reflection case:

L =
ρ3U

2
3 θ3(1 +H3)− ρ1U

2
1 θ1(1 +H1)

ρ2U2V2
(4.4)

In analogy to the result from the mass conservation approach, the interaction length
obtained from the momentum conservation approach is completely determined by the
upstream and downstream boundary layer momentum thickness and shape factor, the
densities and velocities being specified by oblique shock wave theory. The equation is
independent of the height and length of the control volume as long as the interaction is
included.

Compression ramp

Next, the compression ramp case is analysed. Evaluating the X-momentum equation
over the control volume shown in figure 5(b) the following equality is obtained for the
inviscid flow case:

ρ1U
2
1Hcv1 − ρ2U

2
2Hcv2 cos(ϕ) = (p2 − p1)Hcv1 (4.5)

At the same time, the following equality is obtained for the case with interaction:



28 L.J. Souverein, P.G. Bakker and P. Dupont

ρ1U
2
1 (Hcv − θ1(1 +H1)) −

ρ2U
2
2L sin(ϕ) cos(ϕ) − (4.6)

ρ2U
2
2 (Hcv2 − θ2(1 +H2)) cos(ϕ) = (p2 − p1)Hcv1

Eliminating the pressure term, the following equation is obtained for the interaction
length for the compression ramp case:

L =
ρ2U

2
2 θ2(1 +H2) cos(ϕ) − ρ1U

2
1 θ1(1 +H1)

ρ2U2
2 sin(ϕ) cos(ϕ)

(4.7)

Again, the interaction length obtained from the momentum conservation approach
is completely determined by the upstream and downstream boundary layer momentum
thickness and shape factor, the densities and velocities being specified by oblique shock
wave theory. The equation is independent of the height and length of the control volume
as long as the interaction is included.

Common formulation

In analogy to the mass conservation approach, it is attempted to find a common
formulation for equations 4.4 and 4.7. To this aim, the denominator of each equation is
reformulated in terms of the upstream conditions by means of the oblique shock wave
relations. Using the fact that the velocity tangent to the shock is conserved, the following
equality is obtained:

U1 cos(β) = U2
cos(β − ϕ)

cos(ϕ)
(4.8)

Similarly, considering mass conservation across the shock for the compression ramp
case gives:

U1 cos(β) = U2 cos(β − ϕ) (4.9)

Using equations 2.10 and 2.11, rewriting each of the equalities above and substituting
all in their respective relations (equation 4.4 for the incident shock interaction and 4.7
for the compression corner) gives an equation of the same form, which can be written
as follows when using the subscripts in and out for the inflow and outflow conditions
respectively and when defining the momentum deficit as I∗ = ρU2θ(1 +H):

L

θin(1 +Hin)
= g3(Me, ϕ)g4(Me, ϕ)

(

I∗outC(ϕ)

I∗in
− 1

)

(4.10)

Where:

Shock reflection: C(ϕ) = 1

Compression ramp: C(ϕ) = cos(ϕ)

And with g3(Me, ϕ) a ratio of sine functions, and g4(Me, ϕ) a ratio of cosine functions:

g3(Me, ϕ) =
sin(β − ϕ)

sin(β) sin(ϕ)
; g4(Me, ϕ) =

cos(β − ϕ)

cos(β) cos(ϕ)
(4.11)

The factor C(ϕ) appears in the compression ramp equation due to the definition of
Uout: the X-momentum is considered, while the outgoing velocity is aligned with the
ramp. The equation gives an alternative algebraic relation for the interaction length as
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a function of Me, ϕ, the incoming boundary layer fullness, and the momentum deficit
ratio between the incoming boundary layer and the outgoing boundary layer. In analogy
to the mass conservation result, it can be concluded that the interaction length is also
a direct consequence of the momentum deficit ratio between the incoming and outgoing
boundary layer. The proper scaling for the vertical axis in terms of the momentum deficit
ratio, with L̂ the non-dimensional interaction length and with C(ϕ) defined by equation
4.10, would hence be:

L̂ =
L

θin(1 +Hin)
G3(Me, ϕ)G4(Me, ϕ) =

I∗out
I∗in

C(ϕ) − 1 (4.12)

With:

G3(Me, ϕ) = g3(Me, ϕ)
−1 = sin(β) sin(ϕ)

sin(β−ϕ)

G4(Me, ϕ) = g4(Me, ϕ)
−1 = cos(β) cos(ϕ)

cos(β−ϕ)
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