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Abstract

The Statistical modal Energy distribution Analysis (SmEdA) method predicts the power flow between

coupled subsystems excited by random excitations from a deterministic modal description of the uncoupled

subsystems. As the modes can be computed by Finite Element Method (FEM) for complex subsystems, it

can be seen as an extension of FEM to the mid frequency range where the modal densities of subsystems are

not too high. Conversely, the Statistical Energy Analysis (SEA) method is a statistical approach predicting

the mean power flow of a population of similar structures presenting manufacturing uncertainties. Assuming

a diffuse field within each subsystem, it is dedicated to the high frequency range where modal densities of

subsystems are high. However, in many applications, subsystems with low and high modal densities can

coexist in the mid frequency range and in that case neither SmEdA nor SEA is well adapted. The purpose of

this article is then to propose a hybrid SmEdA/SEA formulation allowing some subsystems with low modal

densities to be described by SmEdA and other ones by SEA. For the SEA-described subsystems, the vibratory

field of the statistical population is supposed to be diffuse. These subsystems are then characterized by sets

of natural frequencies and mode shapes constructed from the Gaussian Orthogonal Ensemble matrix and the

cross-spectrum density of a diffuse field, respectively. In another hand, the SmEdA-described subsystems

are represented by their modes that can be extracted by usual computer codes. In order to couple the

two models, Monte Carlo simulations are used for generating samples of the stochastic modes of the SEA-

described subsystems. From the distribution of the estimated energy response of the coupled subsystems,

the ensemble average and the confidence interval can finally be estimated. For validation purpose, the results

of the proposed hybrid SmEdA/SEA approach are compared to the numerical results computed with the

finite element method (FEM) on a population of plate-cavity systems having similar properties. A good

agreement is observed whereas the computation time of the proposed approach is much less important than

the one of the FEM which can be up to several days for each element of the population.

Keywords: statistical vibro-acoustic modeling; hybrid SmEdA/SEA; ensemble-averaged response; diffuse

field.
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1. Introduction1

The vibroacoustic response of complex engineering systems under broadband sources of noise and vibra-2

tion is of interest in many applications. Several methods have been developed including deterministic and3

statistical approaches. In the low frequency domain, methods such as Finite Element Method (FEM) [1] and4

Boundary Element Method (BEM) [2] are well adapted for deterministic systems under pure tone excitation.5

In the high frequency domain, uncertainties and randomnesses introduced by manufacturing and material6

imperfections that widely exist in engineering structures can highly affect the vibration field [3], which makes7

the deterministic modeling difficult and in some cases meaningless. Consequently, describing the vibrational8

behavior of each subsystem statistically with averaged energy variables becomes more appropriate (e.g. the9

averaged interior noise for a fleet of cars manufactured on the same production line). The most widely used10

energy-based approach is the Statistical Energy Analysis (SEA).11

SEA was developed for predicting the vibration and noise transmission in complex systems at high fre-12

quency [4, 5, 6]. In classical SEA, a complex system is divided into subsystems and the power flow exchanged13

between two coupled subsystems is related to the vibration energy of each subsystem via the Coupling Loss14

Factor (CLF). The response is described in terms of the "mean" energy level in each subsystem. Strictly15

speaking, the system is considered to have random properties and the output "mean" energy is interpreted16

as the average taken over a population of systems which share similar characteristics but differ in details17

to have randomly distributed parameters [7]. Sometimes, the "mean" energy can also be interpreted as a18

frequency-averaged value taken on one particular deterministic realization of the system. In this case, the19

output can be affected by its specific mode shapes and natural frequency distribution [8]. If the vibration20

field is diffuse (constant energy density) and the studied frequency band is wide enough to encompass a21

sufficient number of resonant modes in each subsystem, a frequency average taken on any particular de-22

terministic realization of the system yields the same result as an ensemble average. The application of23

energy power flow balance for one individual deterministic system is often termed as SEA-like [9] and this24

terminology will be used in the present article.25

To deal with the mid frequency range where neither SEA nor deterministic approaches are applicable,26

alternative methods are developed over the past years, for example, the Statistical modal Energy distribution27

Analysis (SmEdA)[10, 11, 12]. SmEdA is developed as an extension of the classical SEA [13, 14]. It extends28

the validity domain of SEA to lower frequency by removing the modal energy equipartition assumption29

[15, 16]. In SmEdA, the vibration field of each coupled subsystem is characterized by uncoupled modes and30

the power exchanged between two modes of the coupled subsystem is proportional to the difference of their31

modal energies. Writing the power balance equation for all the modes in each subsystem produces a system32
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of linear equations where the unknowns are the modal energies of subsystems. SmEdA is well adapted to the33

mid frequency range where the studied subsystems are having low modal density so diffuse vibration field34

is difficult to achieve. In addition, it requires much less computation time and resources than finite element35

method. However, it only delivers a frequency averaged response of one particular realization, which is not36

necessarily the same as an ensemble average. For a complex vibro-acoustic system that contains both low37

modal density and high modal density subsystems (e.g. a structure/cavity system), the frequency averaged38

responses show a large variability (demonstrated in sec 4.3) as the frequency average of one specific realization39

is affected by the mode shapes and natural frequency distribution, which is sensitive to the uncertainty and40

randomness in the subsystems. In that case, the prediction of ensemble averaged response seems more41

meaningful.42

To study the vibro-acoustic system having different dynamic behavior in different subsystems, hybrid43

approaches which use deterministic method to study the low modal density subsystem and SEA to study44

the high modal density subsystem are developed. The hybrid finite element-statistical analysis is one of the45

most representative ones which allows modeling small components (compared to a wavelength) using FEM46

and large ones statistically by SEA (FE-SEA) [17, 18]. In FE-SEA, the coupling between the deterministic47

and statistical subsystems is established by using the "diffuse field reciprocity relation", and the ensemble48

averaged response of the system is solved at each frequency [19]. Benefit from the FE, the hybrid FE-49

SEA approach has strong applicability especially when the deterministic subsystems have complex shapes.50

However, it should also be noted that FE-SEA can be time-consuming as it requires computing the inverse51

of the total dynamic stiffness matrix at each frequency [20].52

In this context, the present work proposes a hybrid SmEdA/SEA method for predicting the energy53

response of a complex vibro-acoustic system that contains both low modal density subsystems and high54

modal density subsystems. It allows computing the energy response of the system by describing low modal55

density subsystems by their deterministic modes (as in SmEdA) and the high modal density subsystems56

with a stochastic diffuse field (as in SEA). A stochastic diffuse field can be considered as a random field, with57

which the effect of uncertainty and randomness induced by local scattering is considered without explicitly58

indicating their source and detailed parameters. As frequency goes up, the probability distribution of the59

normalized eigenvalue spacing for any diffuse vibro-acoustic subsystem conforms to that of the Gaussian60

Orthogonal Ensemble (GOE), and its acoustic mode shapes are a zero-mean Gaussian random field [21, 22].61

Then the modal frequencies of the subsystem exhibiting a diffused field can be estimated from the GOE62

matrix whereas the mode shapes can be constructed in order to comply with the cross-spectrum density63

of a diffuse field. Realizations of these modes shapes can be obtained by a spatial approach based on a64

Cholesky decomposition [21] or a wavenumber approach based on the UWPW (Uncorrelated wall plane65

waves) decomposition [23]. A Monte Carlo simulation can be established with a set of hybrid SmEdA/SEA-66

Like models. Each sample consists of one realization of the stochastic subsystem that is represented by a67
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SEA-Like model whereas the deterministic subsystem is represented by SmEdA with its deterministic modes.68

The proposed hybrid SmEdA/SEA formulation permits not only the computation of the ensemble-averaged69

energy response but also the confidence interval generated by the uncertainties and randomness without70

bringing in much computation.71

The outline of this paper is as follows. For sake of conciseness and simplification, it is assumed in the72

following that the low modal density deterministic subsystem is a thin structure whereas the high modal den-73

sity stochastic subsystem is an uncertain acoustic cavity although the proposed approach can be generalized74

to any type of system containing deterministic and stochastic subsystems. In section 2, the governing equa-75

tions for a SmEdA model of a structure/cavity system are reminded before deriving the SmEdA/SEA-Like76

model by relaxing the modal energy equipartition assumption. The relations between SmEdA, SEA-Like,77

and hybrid SmEA-SEA are discussed. Section 3 describes the statistical model characterizing the stochastic78

subsystem, namely the Gaussian Orthogonal Ensemble (GOE) and the Cross Spectral Density (CSD) of79

a diffuse field. The process for generating realizations of the modal frequencies and the mode shapes are80

then described as well as the Monte Carlo process leading to the hybrid SmEdA/SEA model. In section 4,81

the accuracy of the proposed approach is studied by comparing its results with the ones obtained by finite82

element simulations on an ensemble of plate-cavity systems.83

2. Governing equations of SmEdA and SEA-Like methods84

2.1. SmEdA description of subsystems85

SmEdA was derived by Maxit and Guyader [24] from a Dual Modal Formulation (DMF). This latter86

permits to represent the coupling between two subsystems from the uncoupled subsystem modes. Details87

on the fundaments of DMF can be found in the section 3 of [15] as well as in the appendix A of [25].88

One of the subsystems has to be described in term of displacements with its uncoupled-free modes whereas89

the other one has to be described in term of stress with its uncoupled-blocked modes on the coupling90

area. Moreover, when a mechanical impedance mismatch occurs at the coupling interface between the two91

subsystems, the stiffer subsystem should be described by the uncoupled-free modes whereas the softer one92

should be described by the uncoupled-blocked modes to ensure that the resonant subsystem modes are able93

to represent the behaviour of the coupled subsystem in the considered frequency band of excitation (see the94

numerical results of DMF in [16]).95

Let us consider a plate - air cavity system. The plate being the stiffer part of the system, it should96

be described in the DMF by its normal displacements and its (in-vacuo) modes (which correspond to the97

uncoupled-free modes, the modes of the plate with null stresses applied on the coupling boundary with the98

cavity) whereas the cavity is described in term of pressure (i.e. normal stress) and its modes with rigid99

walls (which correspond to the uncoupled-blocked modes, the modes of the cavity with null displacements100
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applied on the coupling boundary with the plate). Details on the DMF on this case can be found in [26].101

The coupling between the plate and the cavity can then be described by the interaction between two set of102

modes as illustrated in Fig. 1103

Figure 1: Illustration of the modal interactions between the plate (subsystem 1) and the cavity (subsystem 2)

Assuming the coupling between subsystems is weak and that the external excitations are uncorrelated

white noises, the frequency average power flow Πpq between mode p of subsystem 1 and mode q of subsystem

2 is proportional to the difference in their frequency average modal energies as

Πpq = βpq (Ep − Eq) , (1)

where Ep and Eq are the modal energies of mode p of subsystem 1 and mode q of subsystem 2. The coupling

coefficient between mode p and mode q, βpq, can be expressed in terms of the modal information as [27]

βpq =
(Wpq)

2

MpMq

[
ηpωpω

2
q + ηqωqω

2
p(

ω2
p − ω2

q

)2
+ (ηpωp + ηqωq)(ηpωpω2

q + ηqωqω2
p)

]
, (2)

where Mp, ωp, ηp and Mq, ωq, ηq are respectively the modal mass, natural frequency, and modal damping

loss factor of mode p of subsystem 1 and mode q of subsystem 2. Wpq is the interaction modal works between

the pth displacement mode shape wp of the plate (with free boundary condition of the coupling area Σ) and

the qth pressure mode shape σq of the cavity (with rigid walls),

Wpq =

∫
Σ

wp σqdS. (3)

For each mode of each subsystem, the principle of energy conservation yields the power balance as

Πp
inj = Πp

diss +

N2∑
q=1

Πpq, ∀p ∈ [1, N1],

Πq
inj = Πq

diss −
N1∑
p=1

Πpq, ∀q ∈ [1, N2],

(4)
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in which Πp
inj (resp.Πq

inj) represents the frequency average power injected in the pth (resp. qth) mode of

subsystem 1 (resp. subsystem 2). For a white noise point force applied on the plate at point Me, the

injected powers in the cavity modes are null (i.e. Piqinj = 0) whereas the injected powers in the plate modes

are obtained by

Πp
inj =

π

4Mp
w2
p(Me)SFF , (5)

where SFF is the power spectral density of the generalized force expressed in N2/rad/s and wp(Me) is the104

pth displacement mode shape at the excitation point Me. Πp
diss = ηpωpEp and Πq

diss = ηqωqEq are the105

powers dissipated by the pth mode of subsystem 1 and qth mode of subsystem 2.
∑N2

q=1 Πpq is the power106

flow exchanged between the pth mode of subsystem 1 and all the modes of subsystem 2, and
∑N1

p=1 Πpq is107

the power flow exchanged between the qth mode of subsystem 2 and all the modes of subsystem 1.108

Substitution of Eq. (1) into Eq. (4) gives a system of linear equations

Πp
inj =

(
ηpωp +

N2∑
q=1

βpq

)
Ep −

N2∑
q=1

βpqEq, ∀p ∈ [1, N1],

Πq
inj = −

N1∑
p=1

βpqEp +

(
N1∑
p=1

ηqωq + βpq

)
Eq, ∀q ∈ [1, N2].

(6)

Finally, solving this system of equations gives modal energies Ep and Eq of both subsystems. The total

energy of each subsystem can be obtained by summing all the modal energies in the studied frequency band

as

E1 =

N1∑
p=1

Ep, E2 =

N2∑
q=1

Eq, (7)

where E1 and E2 are the total energies of subsystems 1 and 2 averaged in the frequency band of interest.109

One should also notice that the system of equations (6) contains N1 +N2 modes. Consequently, in the high110

frequency range and for some kind of subsystems (for example acoustic cavities), the system of equations to111

solve can become time consuming as the number of modes quickly increases. For this kind of subsystems, a112

SEA-like approach can become more adapted.113

2.2. SEA-like description of subsystems114

A SEA-like description of deterministic subsystems can be derived from SmEdA under the assumption of

modal energy equipartition. With this hypothesis, all the modes of a subsystem have an equal value defined

as,

Ep =
E1

N1
, Eq =

E2

N2
. (8)
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Introducing this relation into Eq. (6) and summing the modal energy conservation equation for each sub-

system yields the energy balance equations of a SEA-like method

Π1
inj = ωcη1E1 + ωc (η12E1 − η21E2) ,

Π2
inj = ωcη2E2 + ωc (η21E2 − η12E1) ,

(9)

where Π1
inj =

∑N1

p=1 Πp
inj, Π2

inj =
∑N2

q=1 Πq
inj represent the total power injected into subsystem 1 and subsystem

2 respectively. The coupling loss factors η12 and η21 characterising the power flow between two subsystems

are calculated with

η12 =
1

N1ωc

N1∑
p=1

N2∑
q=1

βpq, η21 =
1

N2ωc

N1∑
p=1

N2∑
q=1

βpq. (10)

When SEA-like is employed for one single system, the underlying assumption implies that energy equiparti-115

tion is fulfilled for all the subsystems. In real applications, this can be difficult to fulfill as some subsystems116

can exhibit a modal behavior not compatible with the modal energy equipartition assumption.117

3. Derivation of a hybrid SmEdA/SEA formulation118

3.1. Hybrid SmEdA/SEA-Like method119

For applications where subsystems with low and high modal densities coexist, it is possible to mix a

SmEdA description for some subsystems and a SEA description for the others. This is done in a quite

straightforward way by assuming modal energy equipartition as done in section 2.2 but only for some

subsystems. For example, consider that subsystem 1 can be described by its deterministic modes (because

of a low modal density for example) while subsystem 2 can only be described by global quantities (because

of a too high modal density for example). In that case, the modal energy equipartition is only assumed for

subsystem 2

Πp
inj = (ηpωp +N2γp)Ep − γpE2, ∀p ∈ [1, N1],

Π2
inj = −

N1∑
p=1

N2γpEp +

(
N1∑
p=1

γp + η2ωc

)
E2,

(11)

where120

γp =
1

N2

N2∑
q=1

βpq (12)

represents the averaged modal coupling coefficient between mode p of subsystem 1 and all the modes of121

subsystem 2 in the frequency band of interest.122

In this hybrid formulation, the unknowns are either the modal energies (here for subsystem 1) or the global123

energy (here for subsystem 2) of the coupled subsystems. However, the modal or global energy responses124

from the above formulation are frequency averages taken from a single deterministic system. In addition,125
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computing Eq. (12) still relies on modal coupling loss factor calculation and so on the modal information of126

the cavity. Even if this formulation shows that mixing a SmEdA description for some subsystems to a SEA127

description for the others, it is only a post-process of SmEdA formulation. The difficulty arises here from128

the estimation of the average coupling loss factor γp which depends on natural frequencies and mode shapes129

of both subsystems (see Eq. (2)). In the next section, the concept of an equivalent stochastic subsystem is130

introduced. In that approach, the deterministic natural frequencies and mode shapes of the SEA-described131

subsystems are replaced by a theoretical diffuse field based on statistical information.132

3.2. Equivalent stochastic subsystems133

The SEA description of a subsystem implies the appearance of a diffuse field in the subsystem but also134

that the global energy of the subsystem is the energy expectation over a population of nearly identical135

subsystems and not the energy of a particular element of the population. Let us consider the example in136

Fig. 2, a thin structure is excited by a random force F of white-noise type at the position Me and coupled137

with a cavity with uncertain boundaries and containing a rigid body located at a random position. Let138

consider that a diffuse field and so the modal energy equipartition could never be reached for the structure139

subsystem. In that case, a deterministic SmEdA description is well adapted. Conversely, even though the140

cavity is only subject to surface excitation from the vibrating structure, homogeneity, and isotropy of the141

acoustic field can be guaranteed from one hand by the shape of the cavity which can exhibit ergodicity142

property [28] and for another hand by the random position of the rigid object and the small variations of143

the cavity shapes from one system to another one. In this situation, the acoustic field in the cavity can144

be reasonably supposed to be diffuse over the statistical population. It results that the subsystem can be145

characterized by these properties of diffuseness of its acoustic field instead of describing it by the uncertain146

geometrical and physical parameters. In the following, an equivalent stochastic subsystem will be defined as147

a subsystem in which a diffuse field is assumed (as for the cavity in the present example). Therefore, for each148

sample of this equivalent stochastic subsystem, the modal frequencies and the mode shapes on the coupling149

surface used in Eq. (12) should be estimated in order to construct a SmEdA/SEA-like model corresponding150

to this sample. If the geometry of the stochastic subsystem does not exhibit symmetries, the probability151

distribution of the local eigenvalue spacings tends to the one of the Gaussian Orthogonal Ensemble (GOE)152

matrix, and its mode shapes can be considered as a zero-mean Gaussian random field and comply with153

the cross-spectrum density function of a diffuse field. The process for generating the modal frequencies is154

described in section 3.2.1 whereas those for the mode shapes are presented in the section 3.2.2. Finally, a155

Monte Carlo process is applied to deduce the mean and the confidence interval of the energy responses from156

the estimations with the SmEdA/SEA-like models. This process leads to the so-called hybrid SmEdA/SEA157

model as resumed in section 3.3.158
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Figure 2: Illustration of three samples of the uncertain vibroacoustic system characterized by a cavity with uncertain boundary

conditions and an internal rigid body at an arbitrary position.

3.2.1. Natural frequencies of the equivalent stochastic cavity159

Let us considered the equivalent stochastic cavity of volume V and of the sound speed c. The modal160

density of the cavity for the frequency band [ωl, ωu] of central frequency ωc can be estimated from the161

analytical expression, [5]:162

n(ωc) =
ω2
cV

2π2c3
. (13)

The expected number of modes in the considered frequency band can then be deduced and expressed as:163

Ne = n(ωc) (ωu − ωl). (14)

To construct the natural frequencies of the stochastic cavity, it is supposed that the probability distri-

bution of the local eigenvalue spacing of the equivalent stochastic cavity tends to the one of a GOE matrix

[21, 22]. This type of matrix is real and symmetric with random entries that can be written as 1

GnG
(σG) :=


G11 G12 . . . G1nG

G12 G22 . . . G2nG

...
...

. . .
...

G1nG
G2nG

. . . GnGnG

 , (15)

where nG represents the number of rows and columns. Entries in the GOE matrix are independent Gaussian164

random variables, the ones on the diagonal having a variance 2σ2
G and the off-diagonal ones having a variance165

σ2
G. As matrix GnG

(σG) is real and symmetric, it has nG eigenvalues λGr, which are real and centered around166

zero, and the density of the GOE eigenvalues, for nG � Ne, converges to167

nλG (λG) =
2nG

πr

√
1−

λ2
G

r2
, −r < λG < r, (16)

with r := 2σG
√
nG. In the following numerical calculation, nG is set to be ten times Ne. The normalized168

eigenvalue spacings sGr of the GOE are defined as,169

sGr := nλG (λG0) (λGr − λG0) , (17)

1:= means that the item on the left-hand side is being defined to be what is on the right-hand side.
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where λG0 is an arbitrary but fixed value for all the GOE eigenvalues λGr (λG0 = 0 is chosen in the following).170

In another hand, for the equivalent stochastic cavity, the rth normalized eigenvalue spacing is given by171

sr := nλ(λc) (λr − λl) , (18)

where λl = ω2
l . n

λ(λc) represents the eigenvalue density of the equivalent stochastic cavity at the central172

angular frequency ωc (λc = ω2
c ) and it is related by the modal density n(ωc) [21]173

nλ(λc) = nλ
(
ω2
c

)
=
n(ωc)

2ωc
. (19)

The rth acoustic eigenvalue λr of the equivalent stochastic cavity in the frequency band of interest can be174

expressed as,175

λr =
sr

nλ(λc)
+ λl as long as λr < λu. (20)

The realization of λr can be related to the GOE matrix by imposing the normalized eigenvalue spacings sr176

to be the same as those of the GOE matrix sGr. The rth modal frequency ωr of the equivalent stochastic177

cavity can finally be obtained by:178

ωr =

√
2ωc

sGr

n(ωc)
+ ωl2 as long as ωr < ωu. (21)

In conclusion, the synthesis of the modal frequencies of the cavity in the frequency band of interest can be179

decomposed in 4 steps:180

- First, evaluation of the number of expected modes using Eq. (14);181

- Second, construction of a GOE matrix of dimension ten times the number of expected modes;182

- Third, extraction of the eigenvalues of the GOE matrix and estimation of the eigenvalue spacings with183

Eq. (17);184

- Last, calculation of the modal frequencies with Eq. (21);185

3.2.2. Mode shapes of an equivalent stochastic cavity186

Here, it is supposed that the mode shapes of the equivalent stochastic cavity can be considered as a187

zero-mean Gaussian random field and that they comply to the cross-spectrum density function of a diffuse188

field. The methods of mode shapes realization of the diffuse field has been studied by many researchers,189

a brief review is presented here to introduce the mode shape realization with spatial approach [21, 22]190

and wavenumber approach [29, 30]. The obtained mode shapes are required for the calculation of modal191

interaction works Wpq (see Eq. (3)). The integral in the definition of Wpq will be estimated with the192

rectangular rule. Hence, the coupling surface is discretized by a regular grid of Θ points xi, i ∈ [1, Θ]. A193
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mode shape vector containing the rth realization of the modal pressure on the coupling surface is defined194

as,195

ϕr := [ϕr (x1) ϕr (x2) . . . ϕr (xΘ)]
T
, (22)

considering statistical properties of an acoustic diffuse field. The Cross Spectrum Density (CSD) of the196

modal pressure at two different positions is then given by197

Gϕrϕr (xi,xj) = E [ϕr(xi)ϕr(xj)] = SϕrϕrGDAF (xi − xj) , (23)

where198

- Sϕrϕr is the Auto Spectrum Density (ASD) of the blocked pressure on the coupling surface which is199

independent of the point xi, i ∈ [1, Θ] as the process is spatially homogeneous,200

- GDAF (xi − xj) is the normalized CSD of a diffuse acoustic field defined by [31, 32]201

GDAF (∆x) =
sin (k0‖∆x‖)
k0‖∆x‖

, (24)

where k0 = ωc
c0

is the acoustic wavenumber at the central frequency of the considered frequency band.202

The mass (or strain energy) of the random cavity mode for the rth realization is defined by203

Mr =
1

ρ0c20

∫
Ω

ϕ2
r(x)dx. (25)

Normalizing the mode shapes such that the expectation of the modal mass (i.e. ensemble averaged on204

the different realizations) is equal to one ( i.e. E [Mr]k = 1 ) leads to the expression of the space average of205

the expectation of the quadratic modal pressure206

〈
ϕ2
r

〉
Ω

=
1

VΩ

∫
Ω

E
[
ϕ2
r(x)

]
k
dx =

ρ0c
2
0

VΩ
. (26)

According to Sabine’s assumptions [33], for a standard diffuse field, a ratio of 2 occurs between the ASD

of the blocked pressure and the space average of the quadratic pressure. It results that

Sϕrϕr =
2ρ0c

2
0

VΩ
. (27)

Eq. (23) and Eq. (27) define the CSD of the modal pressure such that the acoustic field is diffuse and the207

mode shapes are normalized to one. In the following, two numerical processes to synthetize realizations of208

these modal pressures complying with these two equations are presented:209

- Spatial approach:210

Consider an eigendecomposition of the cross spectral matrix of the modal pressure211

Gϕrϕr = [Gϕrϕr (xi,xj)]Θ×Θ = PΓPT, (28)
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where Γ is a diagonal matrix containing the eigenvalues and P is a full matrix containing the eigen-212

vectors. The blocked pressure vector of the rth realization is then obtained by [21, 22]213

ϕr = PΓ
1
2 ζr, (29)

where Γ
1
2 is a diagonal matrix containing the square root of the eigenvalues of Γ, and ζr is a vector of214

Θ standard normal random variables that can be realized with a Gaussian random number generator.215

- Wavenumber approach:216

The spatial Fourier transform of the normalized CSD of a diffuse field GDAF is [29]217

G̃DAF (k) =


2π
k0

1√
k20−‖k‖2

, if ‖k‖ < k0,

0, otherwise .
(30)

Only components inside the acoustic wavenumber domain (i.e.‖k‖ < k0) are not null. Let discretise218

this domain with a wavenumber, δk in both wavenumber directions. Φk represents the discretized219

acoustic wavenumber domain. Taking into account the ASD of the blocked pressure given by Eq.(27),220

the blocked pressure vector of the rth realization is then obtained by [23, 30]221

ϕr(x) =

√
ρ0c0δk√
2VΩπ

∑
ζ∈Φk

√
GDAF (kζ)e

iζςreikζx, x ∈ Σp, (31)

where ζςr is the phase attributed to the ςth wall plane wave for the rth realization and corresponds to222

a random value uniformly distributed in [0, 2π]. The wavenumber approach avoids the eigendecompo-223

sition of the spatial approach which can save computing time.224

3.3. Hybrid SmEdA/SEA formulation225

Figure 3: Flow chart of the hybrid SmEdA/SEA approach

The hybrid SmEdA/SEA formulation is developed using a Monte Carlo simulation as shown in the226

flowchart of Fig. 3. For the structure/cavity system, the deterministic modes of the structure (subsystem227

1) can be computed using any available method (for example analytical solutions for academic structures or228

finite element models for more complex cases) while for the cavity (subsystem 2) the realizations of natural229
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frequencies and blocked mode shapes on the coupling surface can be obtained through the process detailed230

in the section 3.2. This process is repeated Ns times to generate a set of different realizations for the231

purpose of characterizing the randomness as much as possible. For each element of this set, a SmEdA/SEA-232

Like analysis is performed. This set of SmEdA/SEA-Like analyses forms the samples for the Monte Carlo233

simulation, upon which, the ensemble average response can be calculated along with the confidence interval234

generated by the uncertainty and randomness.235

As the modes of the equivalent stochastic cavity are constructed based on GOE matrix theory, the236

number of modes in each statistical realization can slightly vary. Assuming the number of modes in the sth237

realization is N̄2 (N̄2 ≈ Ne), the averaged modal coupling coefficient between mode p of structure and all238

the N̄2 modes of the cavity approximates to239

γsp ≈
1

N̄2

N̄2∑
q̄=1

βpq̄. (32)

Then, for the sth system sample (s ∈ [1, Ns]) consisting of the deterministic modes of subsystem 1 and the

sth statistical realization of subsystem 2, the energy conservation equation of the SmEdA/SEA-like model

becomes

Πp
inj =

(
ηpωp + N̄2γ

s
p

)
Esp − γspEs2 , ∀p ∈ [1, N1],

Π2
inj = −

N1∑
p=1

N̄2γ
s
pE

s
p +

(
N1∑
p=1

γsp + η2ωc

)
Es2 ,

(33)

in which Esp and Es2 denote the modal energy of mode p of the structure and the total energy of the cavity

for the sth sample. Then the frequency average total energy of the structure of the sth sample and the

frequency average exchanged power between two subsystems can be calculated with

Es1 =

N1∑
p=1

Esp, Πs
12 =

N1∑
p=1

γsp
(
N̄2E

s
p − Es2

)
. (34)

The database of the Monte Carlo simulation can be established with the total energy of subsystem 1240 {
E1

1 , ..., E
Ns
1

}
, the total energy subsystem 2

{
E1

2 , ..., E
Ns
2

}
and the exchanged power between two subsys-241

tems
{

Π1
12, ...,Π

Ns
12

}
. The ensemble average of each output can be calculated with242

X =
1

Ns

Ns∑
s=1

Xs, (35)

where Xs represents one particular element of a dataset in Joule or Watt. The interval in which 95%243

outputs are expected to fall within (referred as 95% confidence interval in the following) are defined as the244

zone bounded by its 2.5% and 97.5% percentile. The results are expressed in dB with the reference value245

Xref = 10−12 J for the energies or Xref = 10−12 W for the power exchanged.246
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4. Numerical applications247

4.1. Description of the test case248

Figure 4: A simply supported plate excited by a point force and coupled to a cavity containing a rigid sphere at an uncertain

position.

The vibroacoustic system considered for the numerical applications is presented in Fig. 4. It consists249

in a simply supported plate of dimensions La = 0.38 m and Lb = 0.31 m and of thickness h = 1 mm250

excited by a random point force F of white-noise type at position (xe, ye) = (0.23, 0.11) m. It is coupled251

to a cavity of dimensions Lx = 0.48 m, Ly = 0.45 m and Lz = 0.465 m. The left bottom corner of the252

plate is located according to the left bottom corner of the cavity at ∆x = 0.068 m and ∆y = 0.11 m. The253

plate is made of steel whereas the cavity is filled of air. The Young’s modulus, the Poisson ratio and the254

mass density of the steel are, respectively, E = 2.1 × 1011 Pa, υ = 0.31 and ρ = 7800 kg/m3. The mass255

density and the sound speed of the air are respectively ρair = 1.29 kg/m3 and cair = 340 m/s. The damping256

loss factor for both subsystems is supposed constant with frequency. It is set to η = 0.01 for the plate and257

ηair = 0.001 for the cavity. A rigid sphere of radius r = 0.15 m is placed inside the cavity at an uncertain258

position (xs, ys, zs) ∈ [r;Lx − r]× [r;Ly − r]× [r;Ly − r]. This sphere disrupts the neatly arranged modes259

in the rectangular cavity and it is the source of uncertainty in the present system (like an object can be260

a source of uncertainty inside a room of a building or a passenger cavity of an automotive). Its position261

is chosen uniformly distributed in the 3 directions. A population of the uncertain vibroacoustic systems is262

them considered. Each element of this population corresponds to the a given position of the sphere.263

In the proposed hybrid SmEdA/SEA approach, the plate is described as a SmEdA subsystem with264

its deterministic modes (calculated analytically) whereas the cavity is described as a SEA subsystem with265

properties corresponding to an equivalent stochastic cavity as described in section 3.2. The results of the266
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hybrid SmEdA/SEA results should be compared to the energy responses of the population of the considered267

system. For this purpose, the energy response should be estimated for some element of the population.268

Finite element simulations have been carried out with the ACTRAN software. For each element of the269

population, a finite element mesh has been built and the frequency energy responses of the plate and the270

cavity have been computed. The meshing size is set to be smaller than 1/8 of the shortest wavelength in each271

subsystem respectively. For the third-octave band from 565 Hz to 3150 Hz, the meshing size is 3.2mm for the272

plate and 8mm for the cavity. Consequently, there are about 895000 nodes in the cavity and 11500 nodes in273

the plate. The frequency step is set to be smaller than 1/6 of the smallest damping bandwidth, which is 0.5274

Hz. As a result, there are 5930 steps for the simulation from 565 Hz to 3150 Hz. Even if using a server with275

strong computing power 2 and setting parallel computing with 4 cores, it takes more than 1 week to compute276

one element of the population of the uncertain system. The results of the hybrid SmEdA/SEA approach277

will be compared in a first step to the results concerning three elements of the population chosen arbitrary:278

Element 1: (xs, ys, zs) = (0.22, 0.25, 0.18) m, Element 2: (xs, ys, zs) = (0.28, 0.18, 0.17) m, Element 3:279

(xs, ys, zs) = (0.26, 0.21, 0.19) m.280

As previously discussed, the equivalent stochastic cavity considered in the hybrid SmEdA/SEA approach281

assumes a diffuse field. It can then be expected that the comparison between the hybrid SmEdA/SEA282

approach and the FEM simulations are in accordance for a frequency above which a diffuse field is achieved283

in the cavity. The boundary diffuse field index BDFI defined by Chazot et al. [33] is an indicator to evaluate284

the degree of diffuseness of an acoustic field on a rigid surface. When BDFI is close to 2, the acoustic field285

on the considered surface (i.e. the coupling surface) can be considered as diffuse. Fig. 5 illustrates the286

boundary diffuse field index of the three elements of the population defined previously. It can be observed287

for the 3 elements that the field can be considered as diffuse from the third-octave band centered on 1600288

Hz.289

22 processors Intel(R) Xeon(R) 2.20Ghz with 256 Go RAM
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Figure 5: Boundary diffuse field index of three elements of the population of the uncertain vibroacoustic systems.

4.2. Representativeness of the equivalent stochastic cavity290

The equivalent stochastic cavity is considered to describe the SEA subsystem in the hybrid SmEdA/SEA291

approach in order to generate the modal frequencies and modes shapes of this system. In the present section,292

we are going to study the representativeness of these generated quantities by comparing them to the ones293

corresponding to the three elements of the population of the system as described in the section 4.1. In each294

simulation, the meshing size is set to be smaller than 1/8 of the wavelength in the cavity.295

4.2.1. Modal frequencies296

As shown in Fig. 6(a)-(c), the probability density distributions of the local eigenvalue spacings in the297

3150 Hz third-octave band for the three elements of the population follows a Wigner distribution instead298

of a Poisson distribution. The corresponding equivalent natural frequencies generated by the equivalent299

stochastic cavity produce the probability density distributions plotted in Fig. 6(d)-(e), here for three different300

realizations. They clearly produce natural frequencies that follow the same Wigner distribution. It can301

be noticed that neither the three elements of the population of the real uncertain system nor the three302

realizations of the equivalent stochastic cavity exhibit a fixed number of modes. The three elements of the303

population have respectively 208, 207 and 209 modes while the three realizations of the equivalent stochastic304

cavity generate 209, 206 and 204 modes. Nevertheless, the variability on the number of modes is small and305

of the same magnitude for both approaches reinforcing the hypothesis that the natural frequencies generated306

by the equivalent stochastic cavity are representative of the population of the real uncertain system.307
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Figure 6: Probability density distributions of local eigenvalue spacing in the third-octave band of central frequency 3150Hz: (a-

c), distributions for the elements #1 , #2, #3 respectively; (d-f): distributions of three realizations of the equivalent stochastic

cavity; dashed green curve: Wigner distribution; dash-dotted red curves: Poisson distribution.

4.2.2. Representativeness of the equivalent modes shapes308

(a) (b)

Figure 7: Examples of mode shape realizations of the equivalent stochastic cavity with: (a), the spatial approach; (b), the

wavenumber approach. Results on the coupling surface between the plate and the cavity for the third-octave band of central

frequency 3150 Hz.

Realizations of mode shapes for the equivalent stochastic cavity can be generated by both the spatial309

approach and the wavenumber approach. The results are expected to be the same but the CPU time may be310

different. To validate this, 100 mode shape realizations in the fc = 3150 Hz third-octave band are generated311
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respectively by these two methods and one example of each method is illustrated in Fig. 7. By comparing312

Fig. 7(a) and 7(b), it can be seen that the mode shapes generated by spatial and wavenumber approaches313

share similar wavelength and spatial variation features. In addition, generating 100 realizations by using314

the spatial approach takes 95 s while it only takes about 1.27 s using the wavenumber approach. Therefore,315

the results regarding the equivalent stochastic cavity in the following numerical simulations are computed316

with mode shapes generated by the wavenumber approach.317

(a) (b) (c)

(d) (e) (f)

Figure 8: Examples of mode shapes for: (a-c), the elements #1 , #2, #3 of the uncertain cavity respectively; (d-f): three

realizations of the equivalent stochastic cavity. Results on the coupling surface for the third-octave band of central frequency:

(a,d), 2000 Hz; (b,e), 2500 Hz; (c,f), 4000 Hz.

Fig. 8 shows a mode shape on the coupling surface for each of the three elements of the population of the318

real uncertain system (Fig. 8 (a)-(c) for elements 1, 2, and 3, respectively) and three mode shape realizations319

of the equivalent stochastic cavity (Fig. 8 (d)-(f)) in the frequency bands centered on fc = 2000 Hz, 2500320

Hz and 4000 Hz respectively. Again, it can be observed that the equivalent stochastic cavity generates mode321

shapes showing similar wavelengths and amplitudes compared to the one observed in the population of the322

real uncertain system.323

4.2.3. Representativeness of the equivalent interaction modal works and modal coupling loss factors324

In the hybrid SmEdA/SEA process, the interaction modal works have to be computed with the analytical325

plate modes and the generated modes shapes with using Eq. (3). In Fig. 9 they are compared to those326

obtained for element 1 of the population of the real uncertain system. In both computations, the deter-327
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ministic modes of the plate remain the same, the only difference comes from the cavity mode shapes. Even328

though there are more than 200 modes for both element #1 and the realization of the equivalent stochastic329

cavity, Fig. 9 only shows the interaction modal works of cavity modes q ordered from 1th to 80th as they330

are sufficient to illustrate their statistical feature.331

(a) (b)

Figure 9: Interaction modal works between the rectangular plate and: (a), the element #1 of the uncertain cavity; (b) one

realization of the equivalent stochastic cavity. Results for the third-octave band of central frequency 3150 Hz.

Obviously, the two results are not expected to be the same. Indeed, a particular mode shape with a332

particular order generated by the equivalent stochastic cavity can be very different from the corresponding333

mode shape with the same order computed for element 1 of the population, leading to a different interac-334

tion modal work. However, one has to remind that the equivalent stochastic cavity only generates modes335

statistically equivalent to those of any subsystem with a diffuse field. Each draw of the equivalent stochastic336

cavity is expected to be different from the real studied case but equivalent on average on several draws. This337

point will be discussed in the next section. Nevertheless, one can distinguish some common characteristics338

of the two computations plotted in Fig. 9: some modes of the plate (for mode orders equal to 5, 6, 9, 13,339

18, 19, 20, and 24) are less coupled to the cavity compared to the other ones, whatever the description of340

the cavity modes. This expresses well that some plate modes are weakly coupled to the cavity modes due341

to non spatial matching.342

Introducing these interaction modal works in Eq. (2) permits to compute the modal coupling presented343

in Fig. 10. Even if the natural frequencies and the modes shapes used in Eq. (2) are generated statistically344

and share only few features with the real studied system (here the cavity with a sphere inside), the two345

results are similar. Again, here the comparison is done for only one particular realization of the equivalent346

stochastic cavity while the process described in Fig. 3 is based on several draws to evaluate the ensemble347

averages and the 95% confidence intervals. In the next section, the convergence of the approach with respect348

to the number of draws is investigated.349
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(a) (b)

Figure 10: Modal coupling loss factors between the rectangular plate and: (a), the element #1 of the uncertain cavity; (b) one

realization of the equivalent stochastic cavity. Results for the third-octave band of central frequency 3150 Hz.

4.3. Convergence of hybrid SmEdA/SEA formulation350
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Figure 11: Convergence of the averaged modal coupling coefficient γsp as a function of the number of samples Ns for the plate

mode p=12, 20 and 24: expectation, full line; confidence interval: colored area. Results for the third-octave band of central

frequency 3150 Hz in dB with γref = 1 s−1 as reference value.

As described in section 3.2, Ns draws of the equivalent stochastic cavity are considered for estimating351

the mean and the confidence interval of the energy response of the population of systems. The convergence352

of the hybrid SmEdA/SEA results as a function of the number of draws, Ns is then studied here. The353

expectation as well as the confidence interval of the averaged modal coupling coefficient γsp (calculated with354

Eq. (32)) are plotted in Fig. 11 for three different plate modes (p=12, 20 and 24) as a function of Ns.355

For the three modes of the plate, the convergence of the averaged modal coupling coefficient is very fast356

either for the expectation or the confidence intervals. Even if the results stabilize from 200 draws, only a357

few variations appear for a much smaller number of draws. This point is important because the number of358

draws directly conditions the computation time.359
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Figure 12: Convergence of energy expectation and confidence interval of the cavity as a function of the number of samples Ns

for the third-octave band of central frequency (a,b) 1000 Hz, (c,d) 3150 Hz. (a) the expectation with Ēs
2(Ne

s ) = 94.2 dB, (b)

the confidence interval with HEs2
(Ne

s ) = 10.6 dB. (c) the expectation with Ēs
2(Ne

s ) = 94.4 dB, (d) the confidence interval with

HEs2
(Ne

s ) = 1.7 dB, with the reference value Xref = 10−12J.

The final quantities of interest are the subsystem energies because physical quantities like the spatial360

mean square velocity for the plate or the spatial mean square pressure for the cavity can be deduced from361

them. As the plate is directly excited by the external mechanical force and that the coupling between the362

plate and the air cavity is weak, the plate energy can be easily estimated and it is not highly sensitive to the363

cavity uncertainties. On the contrary, the estimation of the cavity energy is more tricky and is sensitive to364

the cavity uncertainties. Hence, let us focus on this last quantity. Fig. 12 plots the predicted expectations365

Ēs2 and the width of 95% confidence interval HEs2
(bounded by 2.5% and 97.5% percentile) of the energy as366

a function of the number of draws. As the values of these two quantities can vary from one set of draws to367

another, the process is repeated 20 times. This allows studying the dispersion of the results of the proposed368

model. For each number of draws, the 20 expectations and the 20 confidence intervals are illustrated in369

the form of subtraction with reference values Ēs2(Ne
s ) and HEs2

(Ne
s ), which are the results obtained with370
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Ne
s = 1000 samples.371

The investigation is proceeded for the third-octave band centered on 1000 Hz in Fig. 12 (a) (b) and372

on 3150 Hz in Fig. 12 (c) (d). As expected, the variability of the predicted expectations (±Varµ) and the373

variability of confidence intervals (±Var∆H) decreases with the number of draws. In addition, the convergence374

of expectation is much faster at 3150Hz than at 1000Hz. The variability at 3150Hz is very small. All the 20375

values are between +/- 0.3 dB compared to the reference value with only 10 draws while they are between376

+/- 0.1 dB with 200 draws. For the width of confidence intervals, the variability is more pronounced but377

is still acceptable. Indeed, the variability at 1000Hz is larger than at 3150Hz but the reference value of the378

confidence interval is larger at 1000 Hz than at 3150 Hz. For 200 draws, all the 20 values of the confidence379

interval compared to the reference value are between +/-1.6 dB at 1000 Hz and +/- 0.3 dB at 3150 Hz380

whereas the reference value is 10.6 dB at 1000 Hz and 1.7 dB at 3150 Hz. To study more in detail this
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Figure 13: Convergence of the confidence interval for the cavity energy as a function of frequency: (a), Variability Var∆H for

different number of draws; (b), Ratio between the variability and the reference value Var∆H/HEs
2
(Ne

s) for different number of

draws.
381

aspect, the variability Var∆H of the confidence interval for the cavity energy and the relative variability (the382

ratio of its variability over the reference value) have been plotted in Fig. 13 as a function of frequency. It383

can be observed in Fig. 13 (a) that the variability of each frequency band can be reduced by employing384

more draws (from 50 to 500). Meanwhile, the variability for each number of draws also decreases when the385

frequency increases. In the lower part of the investigated frequency range, it can take significant values.386

However, the relative variability does not vary significantly with the frequency. When taking more than 200387

draws, the relative variability remains lower than 20% for all the frequency ranges which is satisfactory for388

the practical applications. 200 draws seems then a good compromise between the accuracy of the calculation389

and the computing time.390
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4.4. Hybrid SmEdA/SEA391

Focus now on the final results of the hybrid SmEdA/SEA model and their comparisons with the ones392

obtained by finite element simulations for some elements of the population of uncertain systems. The results393

plotted in Fig. 14 have been obtained considering 200 draws of the equivalent stochastic cavity. In this394

figure, it has shown the expectation and the confidence interval (95%) predicted by the hybrid SmEdA/SEA395

approach as a function of frequency and for the two subsystems. Two main remarks can be made on these396

results.397

- First, the confidence interval of the plate is much narrower than the confidence interval of the cavity.398

This can be explained by the fact that the plate is directly excited by the external force and that the399

coupling between the plate and the cavity (filled with air) is weak. It results that the uncertainty of400

the cavity does not affect significantly the response of the panel which is dominated by the external401

force and the deterministic mode shapes.402

- Second, the confidence interval of the cavity is wider in low frequency and becomes narrower as fre-403

quency goes up. As the number of cavity modes and the modal overlap factor increase with frequency,404

this behavior is expected. In the low frequency bands, the number of modes to be generated for the405

equivalent stochastic cavity is really low: for instance, there are less than 10 modes in each of the first406

three frequency bands. Obviously, with such a small number of modes, the variations from one draws407

to another can be important leading to a large confidence interval. Conversely, in the mid to high408

frequency bands, more than 60 modes have been generated for each frequency band above 2000 Hz.409

In this case, the large number of modes leads to natural frequencies covering statistically the entire410

frequency bands, resulting in less variation in energy predictions and thus a smaller confidence interval411

(less than +/- 2dB in frequency bands above 2000 Hz). This is in agreement with the BDFI in Fig.412

5 which indicates that the diffuse field condition is fulfilled for each element of the population above413

1600 Hz.414

415

Fig. 15 shows the comparison between the 95% confidence interval of the exchanged power obtained by416

the proposed hybrid SmEdA/SEA approach and the frequency average exchanged power computed for 10417

elements of the population of the uncertain system (by randomly moving the sphere inside the cavity). The418

curves for the 10 elements are limited to a maximum frequency of 3530 Hz (third-octave band centered on419

3150 Hz) because the computation time became too important beyond this frequency. It is not appropriate420

to compute the confidence interval with the present FEM results because the number of samples is not421

sufficient. However, increasing the number of samples would have led to prohibitive computing times.422

Nevertheless, one can notice that in Fig. 15 the power exchanged predicted by FEM for the 10 elements of423
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Figure 14: Subsystem energies predicated by the hybrid SmEdA/SEA approach as a function of frequency (dB, ref. 10−12 J):

Expectation, dash-dotted line; confidence interval, colored area.

the population are well in the 95% confidence interval (excepted for one element in the third-octave 1000 Hz).424

Moreover, the evolution of the width of the confidence interval as a function of frequency is in agreement425

with the dispersion of the FEM results which decreases with the frequency. Above 1600 Hz, the confidence426

intervals are representative of the dispersion of the power exchanged for the 10 elements of the considered427

population. However, below this frequency, the confidence intervals are not completely consistent with the428

dispersion of the FEM results. This can be explained by the fact that the uncertainties in the considered429

population are not large enough to reach, at these frequencies, the state of diffuse field supposed in the hybrid430

SmEdA/SEA model. Considering a smaller rigid sphere in the cavity would induce smaller variations of the431

cavity energy in the low frequency whereas a larger sphere would lead to larger variations. As the proposed432

hybrid SmEdA/SEA approach considers a non-parametric stochastic field, it is not able to describe the433

effect of uncertainties on particular physical parameters like the sphere radius. However, it is able to give434

an upper bound of the dispersion of the subsystem energies as long as the acoustic/vibratory field is diffuse435

in the uncertain subsystem.436

As a comparison, the total computation time for direct finite element analysis of the 10 elements of the437

population of uncertain systems up to the 3150 Hz third-octave band was almost four weeks whereas the438

total computation of the SmEdA/SEA model (with 200 draws of the equivalent stochastic cavity) up to the439

5000 Hz third-octave band was less than 12 hours. Computing the confidence interval with FEM is evidently440

not possible because its computation time becomes too important as the number of elements increases. By441

contrast, the computation time for the SmEdA/SEA approach can be further reduced by considering a442
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Figure 15: confidence interval of the exchanged power between the plate and the cavity (dB, ref. 10−12 W) predicated by the

hybrid SmEdA/SEA model (confidence interval in blue) and by FEM for 10 elements of the population (dash-dotted line).

smaller number of draws without a significant modification of the results as seen in Sec. 4.3.443

5. Conclusion444

The theoretical fundamentals of a hybrid SmEdA/SEA model of a vibroacoustic system have been445

established in the present paper. Though the presented hybrid model is deduced for a system containing446

only one deterministic and one statistical subsystem, it can be easily extended to vibroacoustic systems447

containing more than two subsystems. In this hybrid model, the low modal density subsystem (typically448

a vibrating structure) is represented deterministically by a SmEdA model and its modes whereas the high449

modal density subsystem (typically an acoustic cavity) is represented statistically by a SEA model and450

global physical quantities. For this latter, in addition to the SEA modal energy equipartition assumption, it451

is supposed that two statistical properties are fulfilled: (a), the distribution of the modal frequency spacings452

can be related to the distribution of the eigenvalue spacings of a Gaussian Orthogonal Ensemble matrix;453

(b), the acoustic or vibratory field of the subsystem can be considered as diffuse. Under these assumptions,454

draws of the modal frequencies and mode shapes of the uncertain subsystem can be easily generated by455

dedicated processes. For each of these draws, a SmEdA/SEA-like model is then built and solved. Applying456

a Monte Carlo process, the mean and confidence interval of the subsystem energies can be finally deduced457

from the energy distribution of the different SmEdA/SEA-like models. This approach has been applied to a458

test case composed of a plate coupled to a cavity containing a rigid sphere located at an uncertain position.459

The results are compared to the ones obtained by finite element simulations for ten different positions of the460
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rigid sphere inside the cavity. Some conclusions can be drawn from the numerical results and the comparison461

with FEM:462

- The mode shapes generated by the equivalent stochastic cavity are representative of those computed463

by a finite element method. They share the same mode count, probability density distribution the464

eigenvalue spacing as well as similar wavelengths and amplitudes. These mode shapes can be generated465

by a spatial approach or a wavenumber approach but this latter is much less computationally expensive.466

The resulting interaction modal works and modal coupling loss factor used in the SmEdA/SEA model467

also share similar features compared to the real uncertain cavity with a sphere inside.468

- The averaged modal coupling coefficients γsp as well as the mean and 95% confidence interval of the469

predicted cavity energy converge very quickly. When the number of draws considered is larger than 200,470

the mean and the confidence interval of the cavity energy become stable with the relative variability471

of confidence interval lower than 20% for all the frequency ranges.472

- The exchanged power results concerning 10 elements of a population of an uncertain system computed473

by FEM are contained in the 95% confidence interval predicted by the hybrid SmEdA/SEA model.474

This confirms the effectiveness of the proposed model.475

- The proposed model can be used to predict the energy response of an uncertain vibroacoustic system476

without the need to establish a detailed parameter model for the uncertainty characteristics. It results477

that the computation time has been greatly reduced compared to a parametric model that can be built478

from conventional FEM simulations.479

The present approach is fully based on an energy representation of the coupling between a deterministic480

subsystem to a stochastic subsystem. It can be seen as an alternative approach to the hybrid FE-SEA481

approach which is based on the diffuse field reciprocity relation [17, 18, 19] and the dynamic stiffness482

representation. These two approaches have similar objectives but with a different base. In the future, the483

relations between the two approaches will deserve to be studied.484
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