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The granular column collapse is a simplified version of granular flows such as landslides,
avalanches, and other industrial processes mobilized in air or within a fluid. In this configu-
ration, the particles collapse in an accelerating phase, reaching a state of constant spreading
velocity until they decelerate and stop. Granular flows commonly involve particles of
different sizes, a property termed polydispersity. Understanding the role of polydispersity
remains a challenging task that is often analyzed with nearly monodisperse systems and
demanding a series of simplifications when coupled with a fluid in a numerical model.
Here, we study the effect of particle-size polydispersity in dry and immersed granular
columns, using a finite element method-discrete element method model for fluid-particle
interactions. We show that the velocity of the column collapse and runout distance decrease
with an increase in the level of polydispersity in immersed conditions, and remain nearly
independent of the level of polydispersity in dry conditions. Moreover, we find that the
runout scales with the spreading front kinetic energy, weighted by the ratio between the
particles’ density and the density difference between particles and fluid. This scaling helps
in identifying the governing processes in polydisperse granular columns, unifying the
runout description of both dry and immersed collapses, and indicating that the column
initial packing fraction is the governing parameter.

DOI: 10.1103/PhysRevFluids.7.084304

I. INTRODUCTION

Granular flows are found across scales, from geophysical mass flows such as landslides, debris
flows, and pyroclastic flows, to industrial processes such as in pharmaceutic, cosmetic, and con-
struction industries. In a granular system, the ratio between the particles volume Vp and a reference
total volume Vt is known as the packing fraction φ = Vp/Vt . For monodisperse particles, reference
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values of φ are the random loose packing (φl = 0.55) and random close packing (φc = 0.64) [1].
Among granular flows, the presence of particles of different sizes, a property termed polydispersity,
is a common characteristic. In a given granular system, φ grows with the level of polydispersity,
because small particles fill the voids between coarse particles, resulting in an increase of the
system bulk density [2]. Furthermore, granular flows occur in varied ambient fluids (e.g., air, water)
where particle-fluid interactions significantly influence their behavior (e.g., collapse sequence,
front velocity, final deposit), balancing the forces associated to the collective particles inertia and
the ambient fluid viscosity. Courrech du Pont et al. [3] propose three flow regimes as a function of
the Stokes number St = (ρp�ρgd3)1/2/(18μf

√
2) and the density ratio χ = √

ρp/ρf , where d is the
particle diameter, g is the gravitational acceleration, μf is the fluid dynamic viscosity, ρp and ρf are
the particle and fluid densities, respectively, and �ρ = ρp − ρf is the density difference between
particles and fluid. The three flow regimes and the limits between them are the free-fall regime
where ambient drag is negligible. This regime occurs for St � St∗ and χ � χ∗, where St∗ = 10 and
χ∗ = 4 are the transition limits to the inertial and viscous regimes. The inertial regime occurs when
particle-particle and particle-fluid drag interactions are strong, occurring for any pair of St and χ

below their transition values and for a ratio St/χ > 2.5. The viscous regime occurs when particles
are limited by their Stokes velocity, and for St/χ < 2.5.

A benchmark configuration in the study of granular flows is the collapse of a granular column.
On it, a granular assembly is built with an initial height H0 and an initial length L0, resulting in
an aspect ratio A = H0/L0. The column collapses by self-weight over a horizontal plane, leaving
a final deposit with height Hf and runout Lf . The collapse sequence begins with a vertical fall
of particles. Then the column starts a horizontal acceleration phase, reaching a state of constant
spreading velocity until it decelerates and stops. For short columns, identified with A < 2.3 in two-
dimensional simulations [4], the free fall only occurs for particles at the column free face.

The relationship between the column mobility and its aspect ratio is found in experimental dry
[5,6] and immersed cases [7–9], and in numerical dry [4,10] and immersed simulations [11–14],
showing how Lf varies with A in the aforementioned flow regimes. Besides the influence of A, the
column mobility is linked to the collapse kinematics [10]. Numerically, previous studies link the
column mobility with the peak kinetic energy of a single grain in dry and immersed cases [11].
Other studies show that Lf scales linearly as a function of the front velocity during steady state
U , a characteristic flow height (e.g., H0), the ratio between ρf and ρp, and g [15,16]. Moreover,
the column final runout Lf is a descriptor of the deposit shape, which is a macrorepresentation of
the friction coefficient between particles [17]. For dry granular columns, the final runout is found
to be independent of the column polydispersity [18], confirming the observations on simple shear
cells and proving an nonexistent effect of polydispersity on the macroscopic friction angle [19–22].

Previous studies on immersed granular flows show that increasing φ enhances, for example, the
effective viscosity [23]. In consequence, in immersed monodisperse columns, the collapse sequence
depends on the column initial packing fraction φ0, where initially loose columns collapse faster and
reach longer runouts than dense columns [24,25]. Despite the agreement of the column density
influence on the final runout in monodisperse columns, the relationship with φ0 remains to be
confirmed in highly polydisperse columns, where only few experimental studies have explored the
collapse of a bidisperse granular system [26,27].

In this study, we are interested in the collapse of granular columns with different particle-size
distributions (PSD) in dry and immersed conditions. We focus on clarifying the role of polydis-
persity on the column collapse sequence and final runout. We aim to extend the observations on
monodisperse column collapses, in both dry and immersed conditions, to polydisperse columns by
exploring a wide range of PSDs, ranging from relative initially loose to initially dense packings.
We employ a finite element method (FEM) coupled with a contact dynamics discrete element
method (DEM), for the fluid and solid phases, respectively. The simulation of such systems is
computationally expensive due to the large number of particles required for representative granular
samples, the necessary short computation time step for avoiding particle interpenetrations on the
smallest particles, and the challenging coupling of the momentum transfer from a moving particle
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cluster to the fluid mesh. These challenges are successfully managed in the simulation campaign,
guaranteeing that there is no penetration during the contact solution in the nonsmooth DEM and
employing a fluid solution that can manage high packing fractions, resulting in the computation of
particle-fluid interactions that are not precise.

The paper is organized as follows. The numerical methods, and the description of the simulation
campaign are presented in Sec. II. The characteristics of the column collapse are described in
Sec. III. The collapse kinematics and the column final runout are discussed in Secs. IV and V,
respectively. In Sec. VI we propose a scaling between the final runout and the collapse energy; and
finally, conclusions are presented in Sec. VII.

II. METHODS

A. Coupled FEM-DEM model

As mentioned above, the current study is conducted in a coupled finite element method (FEM)
with a discrete element method (DEM), simulating the collapse of a granular column in different
ambient fluids. For the fluid motion, we employ a continuous representation solved with a finite
element spatial discretization combined with an implicit temporal discretization of the incom-
pressible Navier-Stokes equations [28]. The method couples the particle discrete solution with the
fluid continuum solution by a loop solver that first obtains the packing fraction within each mesh
element and then computes the resultant fluid velocity, fluid pressure, and particles-fluid interaction
forces with the current state variables, which are the fluid velocity, the fluid pressure, and the
particles’ velocity. Particles-fluid interactions forces considered in the model are buoyancy and
drag [see Eqs. (A1) and (A4) in the Appendix]. The drag model formulation for a single particle
takes into account the influence of the surrounding particles with a function of φ [see Eq. (A5)],
found to be satisfactory for φ above the random loose packing φl [29]. A drag model formulation
for polydisperse and highly dense granular flows remains an open question. Although alternative
methods to compute the drag force in polydisperse systems have been recently formulated [30–32],
the model employed in this work accounts for the polydispersity level by associating it to an increase
in packing fraction, relative to a monodisperse PSD. Moreover, in this framework the hydrodynamic
torque is assumed to be zero and no lubrication forces are considered between particles.

The coupled computation results in the particle source terms for the next time step of the DEM
computation, updating the particle position. In this approach, a coupled coarse-scale solution is
an appealing approximation for the fluid motion, being capable of managing polydisperse systems
with high packing fractions, and demanding special care in the mesh sizing relative to the maximum
particle diameter.

The granular system is simulated with the nonsmooth contact dynamics approach (NSCD)
developed by Moreau and Jean [33,34]. The method is a class of the DEM, where perfectly rigid
bodies interact by volume exclusion and Coulomb friction. In this method, the equations of motion
are integrated in a time step obtaining the particles kinematics. This method is convenient for the
simulation of highly polydisperse systems, because volume exclusion allows a complete interaction
between small and big particles without the need of tailored stiffness parameters as in the smooth
DEM class. Also, the method employs a stable integration scheme without the need of stabilization
techniques [35].

In this study, we use, out of simplicity, two open-source software packagesfor the simulation of
the granular column collapse. LMGC90 [36] is used for dry granular columns and MIGFLOW [37] is
used for immersed granular columns. Both software packages employ equivalent formulations of
the DEM. We have made the necessary tests to justify the implementation of both codes, resulting
in equivalent macroscopic behaviors. For faster simulations, we use parallel computing available in
LMGC90 and use PETSC4PY package [38] for solving the fluid motion equations in MIGFLOW.

An immersed granular column collapse is intrinsically a three-dimensional process, allowing
fluid percolation through the moving granular media in all directions. In our simulations, the

084304-3



OSCAR POLANÍA et al.

granular domain is simplified into a two-dimensional representation, where fluid percolation is
obstructed by a large packing fraction, larger than in a three-dimensional system. An alternative
for solving the particle-fluid interaction, representing the three-dimensional packing fraction within
a two-dimensional system, is to reduce the particle’s diameter, seen by the fluid phase, by an ad
hoc factor. Kumar et al., employing a different framework with a DEM coupled with a lattice
Boltzmann method, use a factor of 0.9 to model the permeability of a three-dimensional case
with a two-dimensional approach [39]. In this work, we opt for a similar solution reducing all
particle diameters by a factor of 0.9 for representing a three-dimensional packing fraction in a
two-dimensional simulation domain when computing the particle-fluid interactions.

Finally, we use a constant fluid mesh element size, computing the particle-fluid interaction as
a function of the packing fraction. Potential limitations of this approach can be related to the
size ratio between the fluid elements and the smallest particles in the system, oversimplifying the
momentum transfer between fluid and small particles. However, we focus on the macroscopic effects
that polydispersity has on the column collapse controlled by the packing fraction and not by the
calculation of the motion of single particles, resulting in a cost-effective numerical framework.
Other approaches, such as the one of Capecelatro and Desjardins [40], could be employed to model
polydisperse systems and provide a more detailed solution at the particle scale, demanding a higher
computational cost.

B. Column construction and collapse

The columns studied in this work consist of a two-dimensional granular system of variable levels
of polydispersity, defined by the particle-size ratio λ = dmax/dmin, relating the size of the biggest
to the smallest particle. In our simulations, we study five values of λ = [1.2, 3, 5, 10, 19]. For
all values of λ, we use a PSD that consists of 25 disk diameters, linearly distributed between dmin

and dmax. In all the resultant PSDs, the number of particles per diameter is set to have the same
mass. This means that each particle diameter has 1/25 of the mass necessary for filling the initial
column dimensions. For all PSDs, the particle diameter d50 = 0.001 m has a cumulative unitary
mass, relative to the column total mass, of 0.5. The minimum and maximum diameter are equal
to dmin = 2d50/(λ + 1) and dmax = dminλ, respectively. The median diameter d ranges between
[0.0001 : 0.001] m [see Figs. 1(a) and 1(b)]. The disks have ρp = 1500 kg/m3, with a friction
coefficient of 0.3, typically encountered in geomaterials [41], and restitution coefficient of 0 found
not to affect the collapse behavior of granular columns [17].

The columns initial length L0 is equal to 0.05 m, and the initial height H0 varies between [0.015
: 0.25] m, covering seven column aspect ratios A = [0.3, 0.5, 0.75, 1.0, 2.0, 3.5, 5.0] and allowing
the study of short and tall columns. Cabrera and Estrada show that particle-size effects become
negligible in the column final runout when the ratio between L0 and the average particle diameter
〈d〉 is at least 50 [4]. In this work, we fulfill this condition in all cases, considering 〈d〉 as d50 or d .
Moreover, the total number of particles Np in each column varies with A and λ, ranging between
Np ≈ [1000 : 110000].

The columns are built as an initial gravity deposit of particles in a rectangle with dimensions
L0 and H0, and are let to settle by self-weight. The columns have an initial packing fraction φ0,
varying between loose to very dense packings relative to the random loose φl and random close
packing φc for monodisperse disks [42,43] [see Fig. 1(c)]. The column collapse is set by removing
the lateral wall and is driven by the particles’ self-weight with g = 9.81 m/s2. Lf and Hf describe
the deposit geometry when the collapse finishes (see Fig. 2). We measure Lf as the position of the
farthest particle with three active contacts still in touch with the deposit bulk. Three repetitions of
each combination of λ and A are performed by randomly shuffling the particles location, resulting
in a new gravity deposit and avoiding the effect of the initial particle spatial distribution within the
column. In this work, a total of 189 simulations are performed. The time step was chosen relative to
dmin and H0 as dt < dmin/

√
2H0g. For simplicity, we use dt = 0.0001 s and, for extreme cases with

A = [3.5, 5.0] and λ = [10, 19], dt = 0.00001 s. Note that both dt values satisfy the inequality.
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FIG. 1. (a) Particle size distribution as a function of the size ratio λ = dmax/dmin, with a common cumulative
mass of 0.5 for d50 = 0.001 m. (b) Normalized median particle diameter d/d50 as a function of λ. (c) Initial
packing fraction φ0 as a function of λ, where the dashed lines indicate the random loose (φl = 0.772)
and random close packing (φc = 0.822) for monodisperse disks [42,43]. (d)–(h) Close-up views show the
polydispersity level for λ = [1.2, 3, 5, 10, 19].

The fluid is solved in a rectangular domain composed of a regular mesh of triangular elements
of size 5d50. The domain boundaries are considered as walls with no flux across them, and with
pressure set to zero only at the upper wall. The mesh domain is found to be sufficiently large for
avoiding pressure reflections at the foremost boundaries. The fluid has the properties of water with
density ρf = 1000 kg/m3 and viscosity μf = 0.001 Pa s. Moreover, the physical parameters of
particles and fluid that we use have been previously employed to validate the numerical framework
approximation [28].

In this study, assuming the fluid density and viscosity as zero, the collapse of dry columns
simulate flows in the free-fall regime with the Stokes number St � St∗ and χ � χ∗. Note that
the “∗” marks the transition limits presented by Ref. [3]. Within these regimes, immersed columns
focus on flows that belong to the inertial regime with St = 3.37 and χ = 1.22, both considering
the representative particle diameter as d50. These values of St and χ allow the study of granular
flows near the transition between inertial and viscous flows, relative to monodisperse systems,
aiming at highlighting the role of the level of polydispersity in the collapse regimes. Our im-
mersed simulations have St/χ = 2.76, a value that is close to the regime transition at St/χ = 2.5
[3]. In Sec. IV we refer to the relevance of studying polydisperse columns near this regime
transition.

III. COLLAPSE SEQUENCE

During the collapse of a granular column, the particles in movement are separated from the
motionless particles by a sliding or failure plane. In the sequence of dry column collapses, we
observe the rapid development of this sliding plane that, regardless of the level of polydispersity,
shows a similar inclination in columns with the same aspect ratio A at a similar collapse instant. This
similarity in the collapse dynamics occurs from beginning to end of the collapse sequence, implying
that the sliding plane is independent of λ [see Figs. 2(a) and 2(b)]. On the contrary, it becomes
evident that polydispersity changes the collapse sequence of immersed collapses [see Figs. 2(c) and
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FIG. 2. (a), (b) Collapse sequence of dry and (c), (d) immersed columns. The columns have an aspect
ratio A = H0/L0 = 1.0 and particle-size ratio λ = [1.2, 19] (left, right). τ is a characteristic time τ = √

H0/g∗,
where g∗ stands for a reduced gravity due to the ambient fluid buoyant force g∗ = g �ρ/ρp, and �ρ = ρp − ρf

is the density difference between particles and fluid. The insets in (c) and (d) compare the particles size with
the fluid mesh size.

2(d)]. Columns with low levels of polydispersity (λ = 1.2) rapidly develop an inclined sliding plane
of a thick layer of moving particles, and at high levels of polydispersity (λ = 19) the sliding plane
tends towards a thin and nearly vertical layer of moving particles, while most of the core remains
nearly static. In the latter, the initial mobilization results in the free fall of particles at the column
release face, slowly propagating inwards as a sequence of steep and thin slides (see Supplemental
Material (movies) [44]). The inwards propagation of thin slides has been previously observed
experimentally by Thompson and Huppert on the study of immersed sand column collapses,

084304-6



COLLAPSE OF DRY AND IMMERSED POLYDISPERSE …

0 10 20 30 40
t /

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(L
i
L 0

)/
H

0

0 10 20 30 40
t /

(a) (b)

0.0 0.2 0.4 0.6
0.0

0.1

0.2

L i
L 0

[m
]

t [s]

U

Δt
ΔL

/ p

1
1/3

1.2 19
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for (a) dry and (b) immersed columns and for A = [1.0, 3.5] (�,�), respectively, and λ = [1.2, 19]. The inset
in (a) shows the evolution of Li for λ = 19 and A = 1.0, and dashed gray lines delimit the collapse steady
propagation stage interval.

suggesting that the occurrence of such behavior is caused by the particle angularity [45]. Here,
we argue that an increase in λ leads to more stable columns, by means of denser packings [see
Fig. 2(b)], frustrating the fluid percolation through the whole collapse sequence. In consequence,
the frustrated percolation limits the amount of mobilized particles, leading to the formation of thin
nearly vertical slides.

The column front translation provides simplified information on the entire collapse sequence,
such as collapse velocity, collapse sequence stages, and column mobility. After the initiation of the
column collapse, the front translation has a distinct initial stage of acceleration until reaching a
steady side propagation. Later, the front decelerates and stops at the runout distance Lf . Figure 3
shows the instantaneous evolution of the front position Li normalized by H0, for a timeline scaled
by a characteristic time τ = √

H0/g∗, where g∗ stands for a reduced gravity due to the ambient
fluid buoyant force g∗ = g�ρ/ρp [15]. Herein, the factor �ρ/ρp = 1/3 and �ρ/ρp = 1 stands
for immersed and dry scenarios, respectively. During the steady propagation stage, dry column
collapses share a common slope regardless of λ, while for immersed columns collapses, this only
occurs at low levels of polydispersity (λ < 5), and the whole column collapse lasts longer with
the increment of λ. The slope between Li and t represents the front velocity U computed in the
interval where the front propagation has a steady stage with no acceleration [see inset of Fig. 3(a)].
Moreover, Lf is consistently longer in dry columns than in immersed columns [see Fig. 3(b)]. The
relationship between Lf , λ, A, and U is further discussed by means of a simplified model in Sec. VI.
A table with the parameters of each simulation and the main results that support our study is included
as Supplemental Material [44].

IV. FRONT KINEMATICS

From the previous observations, we can highlight that the level of polydispersity has a significant
effect on the collapse sequence of immersed columns but a minimal effect on dry columns. As
a result, highly polydisperse columns last longer in immersed conditions until coming to a full
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FIG. 4. Normalized front velocity U as a function of the column aspect ratio A. UFF is the free-fall velocity
UFF = √

2H0g∗. The dashed lines are the characteristic velocities found by Bougouin and Lacaze for free-
fall (U ∗ ≈ 0.55), inertial (U ∗ ≈ 0.27), viscous inertial (U ∗ ≈ 0.196), and inertial regimes (U ∗ ≈ 0.024) [9].
�ρ/ρp is the density difference between particles and fluid �ρ = ρp − ρf , and particles density ρp, where
�ρ/ρp = 1/3 for immersed cases and �ρ/ρp = 1 for dry cases. Error bars correspond to the standard deviation
of U between repetitions. Note that in immersed cases, the error bar is smaller than the marker size.

halt. Employing monodisperse particles, Bougouin and Lacaze [9] show that the collapse velocity
in the steady state U is proportional to the free-fall velocity UFF = √

2g∗H0, with U ∗ = U/UFF ≈
[0.024, 0.196, 0.27, 0.55] for viscous, viscous inertial, inertial, and free-fall regimes, respectively.
The common slope during the steady propagation stage for dry cases in Fig. 3(a) indicates that U is a
function of H0, confirming the proportionality proposed by Bougouin and Lacaze [9] and extending
it to polydisperse systems in dry conditions. In our results, U fluctuates around a characteristic
velocity of the free-fall regime (U ∗ ≈ 0.55) in dry collapses. Those fluctuations are linked to the
increment of λ, which overall leads to slightly faster collapses (see Fig. 4). Columns with A < 1
present lower values of U related to a shorter accelerating stage in its collapse sequence. Moreover,
the normalized front velocity ranges between U ∗ = [0.19 : 0.24] for immersed columns with λ � 5.
This range is found to be characteristic of collapses between the viscous inertial and inertial regimes.
An increment of λ reduces U ∗ in immersed cases, being more evident on columns with A � 2. This
observation is notable and suggests that an increment in λ makes the collapse transition towards a
viscous regime and an increment in the column aspect ratio A enhances this regime transition.

Under the assumption that U is the velocity resulting from the whole column mass M, we com-
pute the kinetic energy during the steady propagation stage as EU

K = MU 2/2, with M = ∑Np

i mi =
φ0ρpH0L0, where mi denotes the mass of each particle. At first glance, immersed collapses are less
energetic than dry collapses. The energy of dry collapses increases with polydispersity because
columns are denser and, contrary to immersed collapses, tend to be slightly faster. On both cases,
EU

K grows as a function of A with a power law with an exponent of power index 2, regardless
of the column level of polydispersity (see Fig. 5), while for immersed cases, this trend breaks at
λ > 5. Note that, for immersed columns, the increment of λ consistently reduces EU

K . Furthermore,
the energy of tall (A > 2) and highly polydisperse columns (λ � 10) deviates from the quadratic
tendency. This deviation of EU

K coincides with the fact that the front velocity U transitions from the
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inertial to the viscous regime by the joined effect of the levels of polydispersity λ and the column
aspect ratio A.

V. COLLAPSE MOBILITY

A common characteristic between dry and immersed columns is that the final runout increases
with A and it follows a function in the form of a power law L∗ = Aβ , where L∗ = (Lf − L0)/L0. Al-
though the power law holds for polydisperse systems in dry and immersed cases [see Fig. 6(a)], the
final runout L∗ of immersed columns within an ambient fluid tends to shorten with polydispersity.
L∗ collapses on a power law with the exponent β = 1 for columns with A < 2. For taller columns
A � 2, L∗ deviates with β = [0.92, 0.56] for dry and immersed cases, respectively, representing the
transition from short to tall columns. The exponent β = 1 for short columns agrees with previous
numerical studies [4,10,11]. For tall columns, the exponent β = 0.92 exceeds the common range
0.66 � β � 0.80 [4,5,10], and for immersed collapses the result β = 0.56 is within the range
0.56 � β � 0.64 [11,14].

An interesting remark is that L∗ appears to be limited by the effect of λ for both dry and immersed
columns, showing common values of L∗ within the same A. This limited effect of λ on L∗ is
independent of the polydispersity level in dry columns, confirming previous works [18–21], and
is seen in the immersed columns as a decrease of L∗ when λ increases, saturating for λ � 10 [see
Fig. 6(c)]. The reduction of the final runout in immersed cases suggests that the macroscopic friction
angle depends on the level of polydispersity up to a given value of λ, here observed for λ � 5.

VI. SCALING: KINETICS AND RUNOUT

Based on the previous sections, we can make global observations for dry and immersed condi-
tions relating the collapse energy and the column final runout. Dry columns are more energetic
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FIG. 6. (a) Normalized final runout L∗ as a function of the column aspect ratio A, and as a function of the
PSD size ratio λ for (b) dry and (c) immersed cases. The dashed lines in (a) are the best fits for a function in
the form of L∗ = αAβ for λ = 1.2 with the values of β shown in gray. L0 is the initial column length, and Lf is
the final runout. Error bars correspond to the standard deviation of Lf between repetitions.

and have a longer runout than immersed columns. In immersed columns, the energy decreases
with the level of polydispersity, and the final runout tend to decrease with the increment of the
polydispersity reaching a limit controlled by the macroscopic friction angle. Therefore, we propose
a unified scaling for the processes involved in the column mobility and collapse kinematics for both
dry and immersed cases.

Topin et al. propose a scaling with the analogy of a falling particle subjected to a viscous drag
force [11]. In this study, we can not achieve such simplification because the particles’ different
sizes. Moreover, Lajeunesse et al. propose a force balance between the basal frictional force, as a
function of the front velocity U , and an opposing force related to a reference wedge weight [5].
Here, we propose a similar simplified model with the analogy of a sliding block with an initial
velocity and opposite resistance such that Mẍ(t ) = −kẋ(t ), where ẋ(t ) and ẍ(t ) are the block
velocity and acceleration, respectively, and k is an equivalent suspension viscosity. Solving this
equation, and considering the initial velocity as U and the initial position as L0, we get at an infinite
time:

Lf − L0 = MU/k. (1)

We divide both sides by L0 and include EU
K in Eq. (1), obtaining

L∗ =
√

2

kL0

√
M

√
EU

K . (2)

According to Eq. (2)

L∗ ∝
√

M
√

EU
K . (3)

With these considerations the column final runout and the collapse kinematics of dry and immersed
cases notably scale (see Fig. 7). Although dry and immersed configurations scale on different slopes,
it is remarkable that the simplified model collapses for all levels of polydispersity.
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FIG. 7. Scaling of the normalized final runout L∗ with the column kinematics according to Eq. (2). M is
the column mass, and EU

K is the kinetic energy. Error bars correspond to the standard deviation of L∗ and EU
K

between repetitions.

An evaluation of the dependency of L∗ with the model variables M and EU
K shows a clear distinc-

tion in the trend for M > 5, that corresponds to columns with an aspect ratio A � 2. Note in Fig. 6(a)
that the trend breaks for A � 2, distinguishing between short and tall columns. Consequently, M
allows an alternative distinction between short and tall columns, considering that taller columns
result in a larger amount of particles [see Fig. 8(a)]. As a function of EU

K , there are two parallel
trends that follow a power law with an exponent of power index 0.5 [see Fig. 8(b)], indicating that
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FIG. 8. Normalized runout L∗ as a function of (a) the column mass M, and (b) the kinetic energy EU
K during

the steady propagation stage. Error bars correspond to the standard deviation of L∗ and EU
K between repetitions.
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FIG. 9. Scaling of the normalized runout L∗ with the column kinematics according to Eq. (4) with
(δ, ε, ζ ) = (0, 1, 0.5). ρp is the particles density, �ρ is the density difference between particles and fluid, and
EU

K is the kinetic energy during the steady propagation stage. Error bars correspond to the standard deviation
of L∗ and EU

K between repetitions.

the energy difference of dry and immersed cases depends on a relation between the particles and the
ambient fluid.

Based on the later observations, we include the column effective mass M∗ = M�ρ/ρp in Eq. (3),
and obtain:

L∗ ∝ (M∗)δ
(

ρp

�ρ

)ε(
EU

K

)ζ
, (4)

where the exponents δ, ε, and ζ weigh the influence of each of the column controlling factors. The
best scaling is obtained by setting δ = 0, disregarding the distinction between short and tall columns,
and setting ζ = 0.5 and ε = 1 resulting in a satisfactory scaling between EU

K and L∗ (see Fig. 9).
Notably, all columns follow a common trend, despite the ambient fluid, the level of polydispersity,
and the column aspect ratio. Deviations in the trend occur for immersed tall columns with λ = 19
when there are strong fluid effects (e.g., buoyancy and drag force), reducing the collapse velocity and
implying a regime transition from inertial to viscous. Moreover, we include new simulations with
ρp = 2500 kg/m3 and �ρ/ρp = 3/5, showing the reliability of the scaling and suggesting that the
collapse is governed by a distinct combination of the factors �ρ/ρp and EU

K . This scaling suggests,
with the considerations mentioned above, that the column kinematics are directly related with the
final runout, linking a faster collapse with a longer runout. Notably, the packing fraction φ0, which
increases with λ, can be suggested as a key parameter that governs the column kinematics, being
stronger in immersed granular flows, and allows the characterization of the granular assembly by a
characteristic grain diameter (e.g., 〈d〉, d50, d). This observation is in agreement with the observed
relevance of φ0 in immersed collapses [24], but extends it when φ0 is larger than the monodisperse
random close packing φc.

We acknowledge that the proposed scaling is an oversimplification of the entire physical problem.
However, it is remarkable that this simple scaling captures the final runout and kinematics of a
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granular column collapse when dry or immersed, and in a wide range of polydispersity levels.
Notably, the scaling works well for the polydispersity levels that we employ, but deviates when fluid
effects are strong. Although the level of polydispersity is not explicit in the scaling, it is essential
in the computation of EU

K , because the column bulk density varies with λ, and we evidence the
dependency of the front velocity U to the level of polydispersity.

VII. CONCLUSIONS

We studied the collapse of granular columns in dry and immersed conditions with a coupled finite
element method and discrete element method. We systematically varied the column aspect ratio,
covering a range of short and tall columns while exploring different levels of polydispersity. Our
results with monodisperse systems, for both dry and immersed conditions, are in agreement with
previous experimental and numerical results. Moreover, we evidenced that the motion of immersed
collapses is highly dependent on the level of polydispersity. We showed, in immersed columns, that
the increment of the column polydispersity enhances the fluid-particles interactions, by increasing
the column packing fraction and decreasing the front velocity and the column final runout. On the
contrary, polydispersity does not have a strong effect on the collapse sequence and final runout of
dry columns.

The increment in the polydispersity level reduces the final runout of immersed columns. How-
ever, we found that for high levels of polydispersity, the reduction of the final runout does not
vary considerably. The principal effect of high levels of polydispersity is the change in the collapse
sequence that results in slower front velocities, especially for tall columns, and a retrogressive thin
sliding layer. Despite similar initial flow conditions between columns, relative to the Stokes number
and the density ratio, there is evidence that an increase in the level of polydispersity results in the
reduction of the front velocity, leading the column to transition from an inertial regime towards a
viscous regime.

We propose a scaling that is an analogy of a simple sliding block model that has an initial velocity
and an opposite resistance between the final runout and the front kinetic energy. In this scaling,
and for immersed cases, we assume that the front carries all the viscous effects. Remarkably, the
variables of the scaling can be easily measured in the laboratory and in numerical experiments.
Moreover, this model suggests that, with the considerations mentioned above, the initial packing
fraction is the governing factor of the column final runout and kinematics, allowing the character-
ization of the granular assembly by a characteristic grain diameter. Interestingly, we show that the
scaling does not require a distinction of the involved mass, indicating that the final runout is only a
function of the fluid-particles density ratio and the front kinetic energy. Regardless of its simplicity,
it is notable that this simple scaling captures the final runout and kinematics of a granular column
collapse when dry or immersed. Although the level of polydispersity is not explicit in the scaling,
it is essential in the computation of the front kinetic energy, and we evidence the dependency of the
front velocity to the level of polydispersity.

Finally, this work indicates that polydisperse immersed granular flows do not occur suddenly,
rather they progressively slide over thin layers, as the level of polydispersity increases. These
results show that highly polydisperse flows will last longer and develop slower flows. The practical
implications of this model could be of great use in the hazard assessment of offshore infrastructure
against submarine landslides or in the handling of immersed industrial granular systems such as
fresh concrete, or in pharmaceutical and cosmetic applications.

Although our results are limited by the physical considerations that we have made, they agree
with previous experimental and numerical results for monodisperse cases and contribute a per-
spective in the study of immersed polydisperse flows. Further studies could employ more precise
physical assumptions, including lubrication to determine if it has a significant role on dense granular
flows, or implementing drag forces formulations for polydisperse systems.
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APPENDIX: EQUATIONS

In this study we use a coarse-grained numerical model FEM-DEM [28]. For the fluid phase mo-
tion, the incompressible Navier-Stokes equations are solved and averaged using a weight function
for considering the influence of particles on the fluid. The packing fraction φ is the weight variable
that represents the fluid volume ν = 1 − φ in the fluid mesh elements. The particle motion is solved
with the nonsmooth contact dynamics approach (NSCD). In this method, perfectly rigid particles
interact by volume exclusion and Coulomb friction [33,34]. The following are the equations solved
in the FEM-DEM model as proposed in the original paper [28].

The conservation laws for the fluid phase are

ρf

(
∂u
∂t

+ ∇ · uu
ν

)
= ∇ · [2μfνd(u) − pI] + f + νρf g, (A1)

∂ν

∂t
+ ∇ · u = 0, (A2)

where u = νw is the mean velocity of the fluid phase, p is the pressure, f is the force of the particle-
fluid interaction, I the identity tensor, and d(u) is the rate of deformation tensor, computed as:

d(u)
�=

(
∇ u

ν
+

(
∇ u

ν

)T )
. (A3)

Both pressure p and fluid velocity u depend on the packing fraction that is computed every time
step with the particles position.

The particles’ motion results from their contact interaction, solved with NSCD, and the particle-
fluid interaction. The velocity of a single grain i is computed with Newton second law of motion:

d

dt
(mivi ) = mig − Vi∇p|xi − Di, (A4)

where m, V , x, and v are the mass, volume, position, and velocity of a single grain, respectively.
The particle-fluid interaction force f [see Eq. (A1)] is represented by the combination of Vi∇p|xi

and the drag force Di. Note that for dry simulations, particle-fluid interaction forces are zero.
In our study, the solution is considered two-dimensional assuming the particles as disks of unitary

depth and, as consequence, the drag force Di is computed as:

Di = G
(
ν|xi

)
Cd di

ρf

2

∥∥∥∥vi − ui

ν

∣∣∣∣
xi

∥∥∥∥
(

vi − ui

ν

∣∣∣∣
xi

)
, (A5)

where d is the diameter of a single particle and Cd is the drag coefficient computed as:

Cd =
(

0.63 + 4.8√
Rei

)2

, (A6)
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and the Reynolds number

Rei =
√

2dν|xi

μf
. (A7)

The function G(ν|xi ), that multiplies the drag force of a single particle, considers the effect that
the surrounding particles have on the fluid-particle interaction [29].

G
(
ν|xi

) = ν−1.8|xi (A8)

More details of the nonsmooth contact dynamics approach can be found in Refs. [33–35] and an
extensive description of FEM-DEM model for granular flows can be found in Ref. [28].
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